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Abstract

We herein discuss two modes of attack on multivariate public-key cryptosystems. A 2000
Goubin-Courtois article applied these techniques against a special class of multivariate PKC’s
called “Triangular-Plus-Minus” (TPM), and may explain in part the present dearth of research
on “true” multivariates – multivariate PKC’s in which the middle map is not really taken in a
much larger field. These attacks operate by finding linear combinations of matrices with a given
rank. Indeed, we can describe the two attacks very aptly as “high-rank” and “low-rank”.

However, TPM was not general enough to cover all pertinent true multivariate PKC’s. Tame-
like PKC’s, multivariates with relatively few terms per equation in the central map and an easy
inverse, is a superset of TPM that can enjoy both fast private maps and short set-up times.

However, inattention can still let rank attacks succeed in tame-like PKCs. The TTS (Tame
Transformation Signatures) family of digital signature schemes lies at this cusp of contention.
Previous TTS instances (proposed at ICISC ’03) claim good resistance to other known attacks.
But we show how careless construction in current TTS instances (TTS/4 and TTS/2 ′) exacerbates
the security concern of rank, and show two different cryptanalysis in under 257 AES units.

TTS is not the only tame-like PKC with these liabilities – they are shared by a few other
misconstructed schemes. A suitable equilibrium between speed and security must be struck. We
suggest a generic way to craft tame-like PKC’s more resistant to rank attacks. A demonstrative
TTS variant with similar dimensions is built for which rank attack takes > 280 AES units, while
remaining very fast and as resistant to other attacks. The proposed TTS variants can scale up.

In short: We show that rank attacks apply to the wider class of tame-like PKC’s, sometimes
even better than previously described. However, this is relativized by the realization that we can
build adequately resistant tame-like multivariate PKC’s, so the general theme still seem viable
compared to more traditional or large-field multivariate alternatives.

1 Introduction

In a sense, this paper describes an episode of the usual balancing act as a cryptologist veers between
requirements in speed and security. We will discuss two specialized linear-algebra based attacks
against multivariate public-key cryptosystems of a certain type, one that we will term “tame-like”.

After we define tame-like PKC’s, we will discuss why they are desirable, and how the attacks in
question, which we will collectively call “rank attacks”, affects the security and design of a tame-
like multivariate scheme. Proper criteria for building a good tame-like PKC are given and instances
from the TTS family of signature schemes are constructed to be resistant to concerns of rank while
retaining good qualities including speed, scalability, flexibility, and minimal resource requirements.



1.1 Multivariate Public-Key Cryptosystems

RSA still “rules” all PKC some 30 years after public-key cryptography was invented ([17]). How-
ever, due to current advances in cryptography like number field sieves ([7, 42]), secure RSA applica-
tions requires ever-longer keys, which negatively affects the execution speed and cost of deployment.

Multivariate PKCs were introduced as an alternative to cryptosystems with large algebraic struc-
tures. A typical multivariate PKC (following notations of [8]) over the base field K has a public
map V = φ3 ◦ φ2 ◦ φ1 : Kn → Km. Maps φ1 : w 7→ x = M1w + c1 and φ3 : y 7→ z = M3y + c3

are invertible affine in Kn and Km respectively. The security of the scheme is then based on the
NP-hardness ([22]) in solving a large system of quadratics and the decomposition of V into compo-
nents φ1, φ2, and φ3. Preimages for φ2 : x 7→ y are presumed available, but the speed of the private
map depends on how fast this inversion can be. The speed of the public map and the size of the keys
depends only on m and n, and key generation on the complexity of φ2 — but of this more later.

The currently best-renowned multivariate PKC’s, SFLASHv2 ([39]) and QUARTZ ([38]), de-
scend from Matsumoto-Imai’s C? ([28]) and Patarin’s HFE ([37]) respectively. Both second-round
NESSIE ([33]) digital signature scheme candidates were designed by Patarin-Goubin-Courtois team.
The former was eventually recommended for low-cost smart cards. Alas, the security of these can-
didates is under siege,1 and their speed and key sizes can still use some improvement.

1.2 Tame-Like Multivariate Public-Key Cryptosystems

In C? (resp. HFE), the central map φ2 is really taking one (resp. sum of a few) given high powers.
As a result in HFE, φ−1

2 is painfully slow; C? has a simpler and much faster φ−1
2 , but vulnerabilities

of the C?− family originate from its structure ([36]). In either family each yi when written as a
quadratic polynomial in the xj has hundreds of terms, and we cannot invert φ2 without treating all
of y as an element in a larger field, resulting in a time penalty.

Given that multiple variables were introduced for speed originally, it seems natural to investigate
alternatives in which each xi or yj is a separate entities, rather than one component of a big field
element, yet φ−1

2 must remain quickly doable. In this way, the central map does not have to be taken
over a much larger structure. Such PKC’s we term true multivariates. We will hereafter concentrate
mainly on one subclass of true multivariates, the Tame-Like Multivariate PKC’s.

A tame-like PKC’s is a multivariate whose central map φ2 has relatively few terms in each
equation and a speedy inverse image readily available, usually by no more than serial substitution
and solving linear systems. As we shall explain, tame-like PKC’s are extremely fast and suited for
deployment in resource-poor PKI environments. The question is are they secure enough?

Early tame-like multivariate PKC’s had included Birational Permutation Schemes ([40]) and
TTM ([29]). Coppersmith et al put paid the former ([10, 11]). Goubin and Courtois announced
cryptanalysis of TTM in particular and of all “TPM” (triangular-plus-minus) PKC’s, a much broader
genre of similar systems, in general ([23]). The techniques they used were not new: One appears to
be due to Coppersmith et al and the other seems well-known in other circles before introduced to
cryptography by Shamir and Kipnis ([4, 10, 11, 26, 43]). But they somewhat expanded the scope and
simplified the procedures. They also conveyed the impression that the concept of a faster signature
systems than C?-based ones is beyond redemption. Little attention has been paid to tame-like PKC
since then until Chen and Yang proposed the TTS (Tame Transformation Signatures) family of
digital signatures ([8]). As usual, the truth lies somewhere in between.

We will discuss how the rank attacks of Goubin-Courtois function and how well they work in
general. We point out liabilities in current TTS instances, in particular, the non-obvious vulnerability

1Patarin et al recently announced that SFLASHv2 is not secure enough ([15]), although the cryptanalysis ([13])
is disputed ([49]). SFLASHv3, its intended replacement, is supposedly still faster than RSA but has much bigger
dimensions, signatures and keys. QUARTZ, slow to begin with, also has its security called into question ([12, 20]).
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of having central equations with many linear combinations at the same rank. We show how to
cryptanalyze them on these vulnerabilities. Then we show how to construct tame-like PKC so as
to account for such possible weaknesses. In line with our suggestions, we exhibit patched TTS
instances resistant to all known attacks. The result of our suggested repair work seems promising:
still lightning-fast, especially suited for embedded implementations but can also excel elsewhere.

(m, n) PubKey SecKey Dual

Rank
Rank XL RSA

bits

ECC
bits

Sign
@ µs

Setup
@ ms

Verify
@ ms

16, 22 4400 B 879 B 262 287 268 512 112 34 6.4 0.05
20, 26 7540 B 1254 B 271 288 284 768 128 45 11.5 0.09
20, 28 8680 B 1399 B 280 2120 284 1024 144 51 15.1 0.11
24, 32 13440 B 1864 B 288 2121 295 1536 160 67 25.4 0.18
24, 34 15096 B 2039 B 296 2153 295 2048 176 76 32.8 0.20
28, 38 21812 B 2594 B 2105 2154 2110 2560 192 91 48.4 0.26
28, 40 24080 B 2799 B 2113 2186 2110 3072 208 104 58.6 0.28
32, 44 33088 B 3444 B 2121 2186 2125 4096 224 121 90.0 0.44
32, 46 36064 B 3679 B 2129 2218 2125 5120 240 138 105.0 0.48
36, 50 47700 B 4414 B 2138 2219 2136 6144 256 157 143.0 0.60

Table 1: Security and Performance of Enhanced TTS, (m, n) = hash and signature sizes

As seen in Table 1 (speed tests on a 500 MHz Pentium III PC with gcc3), compared to RSA,
the patched TTS variant has good security2 levels against known attacks, and it signs 3 orders of
magnitude faster (cf.Tab. 4). We did basic simulations to make sure that no estimate is out of line.
We hope to have somewhat spurred renewed interest in multivariates.

2 TTS As Tame-Like Multivariate PKC’s

One (the) obvious idea is to have the xi computable in mostly sequential order when given y. We
will in Sec. 3 show this previously attempted approach ([21, 40]) to be not entirely sound.

2.1 Tame Transformations, Tame(-Like) Maps, and TTS

One candidate for a suitable φ2 for a tame-like PKC suggests itself naturally. In algebraic geometry
there is a type of map called a Tame Transformation. With dimensions m ≥ n, this is a polynomial
map3 φ : Kn → Km, taking x to y either affinely (y = Mx + c) or in de Jonquiere form:

y1 = x1;

yj = xj + qj(x1, x2, . . . , xj−1), j = 2 · · ·n;

yj = qj(x1, x2, . . . , xn), j = n + 1 · · ·m.

K is the base field. If bijective, it is a tame automorphism over K, in which case obviously m = n.
A tame transformation can be inverted quickly, but its inverse has high degree and is hard to

write out explicitly. This is a venerable concept — in two variables, all polynomial automorphisms
can be decomposed into compositions of tame automorphisms ([32]). It is unknown, despite the
efforts of a lot of algebraic geometers, whether a map in three or more variables is a composition of
tame automorphisms, and if so how to decompose it.

Moh harnessed this basic idea in his public-key encryption scheme TTM ([29]). Chen and Yang
adapted the underlying concept of TTM for digital signatures and for security concerns extended it

2Security Estimates for RSA and ECC taken from NESSIE ([34])
3Note that in a finite field just about any function can be represented as a polynomial.
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slightly ([8]) to include the larger class of polynomial maps that we can easily find an inverse for
using a sequence of substitutions and solving for linear equations, but without a low degree explicit
inverse. As in [8], we will hence term such maps tame. For example, the map below

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−2 + ck xk−6 xk−3 + dk xk−5 xk−4, 8 ≤ k ≤ 26;

y27 = x27 + a27 x19 x26 + b27 x20 x25 + c27 x21 x24 + d27 x0 x27;

is a tame map, because a preimage can be componentwise computed, straightforwardly and quickly,
after assigning any x1, . . . , x7 and x0 6= −d−1

27 . We see that Shamir’s Birational Permutations uses a
tame-like middle map. Tame maps are also the centerpiece of TTS ([8]):

The TTS (Tame Transformation Signatures) family of digital signature schemes are de-
fined as “a multivariate scheme with a tame map as its central, non-linear portion φ2”.

φ2 was sometimes also called the kernel map, but it is too confusing here, and we will use
the name the central map instead. A TTS scheme clearly fits the tame-like concept4 (cf. Sec. 1)
whenever each central equation, i.e. an equation giving a yi in x from the cental map, has relatively
few terms involving the xj’s compared to the dimensions n and m.

2.2 Current Variants of TTS

In the notation of [8], the public or verification map V of TTS has the canonical decomposition of

most multivariate PKC’s, namely V : w ∈ Kn φ1

7→ x
φ2

7→ y
φ3

7→ z ∈ Km. We will henceforth take the
base field K to be GF(28). The current5 form of TTS is “TTS/4” ([8]), using 20-byte hashes and
28-byte signatures. Its central map φ2 : x = (x0, x1, . . . , x27) 7→ y = (y8, y9, . . . , y27) is:

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−4 + ck xk−6 xk−2 + dk xk−5 xk−3, 8 ≤ k ≤ 23;

y24 = x24 + a24 x16 x23 + b24 x17 x20 + c24 x18 x22 + d24 x4 x24;

y25 = x25 + a25 x17 x24 + b25 x18 x21 + c25 x4 x23 + d25 x5 x25;

y26 = x26 + a26 x18 x25 + b26 x4 x22 + c26 x5 x24 + d26 x6 x26;

y27 = x27 + a27 x4 x26 + b27 x5 x23 + c27 x6 x25 + d27 x7 x27.

We see that this φ2 is also tame because from any y we quickly compute one possible x by randomly
assigning a value to x0, . . . , x7, subject to the restrictions xi 6= −d−1

20+i for i = 4 · · ·7, then solving
sequentially for x8, . . . , x27. An alternative form called TTS/2′ uses as φ2 the map given in Sec. 2.1.
Both TTS instances operate over K = GF(28) as follows (cf. [8]):

To Setup Keys: Generate random full-rank 28 × 28 matrix M1 and 20 × 20 matrix M3 over K.
Similarly, generate random non-zero ai, bi, ci, di ∈ K for i = 8 · · ·27, and a random vector
c1 ∈ K28. Find the composition V = φ3 ◦ φ2 ◦ φ1 and in the process compute the unique c3

such that V has no constant part. Save the 8680 coefficient of V as the public key. Save M
−1
1 ,

M
−1
3 , c1, c3, and parameters ai, bi, ci, di as the private key, 1312 bytes long.

To Sign: Take the message M , find its 160-bit hash digest vector z = H(M). Do y = M
−1
3 (z−c3),

then x ∈ φ−1
2 (y) as above, then w = M

−1
1 (x − c1). Release (M,w).

To Verify: On receiving (M,w), compute hash z = H(M) and match with V (w).

4Compared to a straight tame transformation, a φ2 for TTS seems to be missing a few equations. This is because the
public map of a signature scheme need not be injective, so some information can be compressed or projected out.

5Boldface indices are irregularities in the pattern of indices made in TTS/4 for security improvements ([8]).
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TTS/4 and TTS/2′ claim very fast execution times, short signatures, manageable key lengths,
and reasonable security. Previous analysis ([8]) seems to show known attacks to be ineffective. The
best attacks previously came from the XL family ([14]). [8] claims good XL-resistance for the TTS
family schemes because it can be structured to have high-dimensional solution spaces at infinity
([30]). Even giving the XL-wielding attacker all benefits of the doubt, TTS/4 and TTS/2′ still have
a security level of 280 AES blocks or 288 finite field multiplications. The other powerful general
attack, the method of Gröbner Bases, is hard to obtain a tight timing for. But the same properties
that guards against XL-methods also helps against Gröbner Basis attacks.

We will show however that there is design misjudgment in these TTS instances that leads to fast
cryptanalysis and how to patch them effectively and generically.

3 Rank Attacks vs. TPM and Other Tame-Like PKC’s

The presentation of rank attacks [23] was very broad, one might even say ambitious. The authors
postulated a type of PKC called TPM (triangular plus-minus), which is essentially just a multivariate
PKC using for its central map (φ2) a tame transformation with some equations lopped off at the
beginning and some extraneous equations added. TPM was pronounced to be completely useless
due to very general attacks. The implication was left hanging in the air that for serious purposes, no
tame-like (or non-C∗-descended, non-HFE-derived) PKC’s need not even apply, ever.

In a nutshell, [23] showed that the private keys of TPM’s and some similar tame-like PKC’s
can be distilled from the public key through seeking linear combinations of certain matrices at given
ranks. To evaluate how tame-like PKC’s stand up to such attacks, we need to answer many questions:

• Does the TPM category really cover all the tame-like PKCs of interest?
NO! In particular, TTS does not match what the authors of [23] describe as a TPM signature
scheme. T. Moh ([31]) also maintains that the description does not match TTM.

Some mismatches: A tame-like signature scheme may solve linear equations rather than
search; tame-like PKC’s need not have a sequence of increasing kernels in the central equa-
tions. The TTM central map comprise more than one part, altering its rank properties.

• If not, can the attack be extended to other tame-like systems?
Yes, some objections of [31] seem valid, yet the ideas are meritorious and can be applied to
decompose public maps from many PKC’s, including badly designed TTS or TTM instances.

• Does the attack always work as described? Can it be faster or slower, and when?
Yes, sort of. The attacks will run on all TPM and some other tame-like systems with time
costs similar to what is given in [23]. The attack concludes successfully any time we can
find kernels corresponding to all central equations. If the central equations are tangled some-
how and finding the kernel to one central equation makes finding another one easier, we may
cryptanalyze much faster (cf. Sec. 3.3). Otherwise the search can go on for a lot longer.

• Can we construct systems of a requisite complexity under Rank and other attacks?
Yes, we can arrange for any desired complexity against rank attacks while retaining high
practical speed and resilience against other attacks; that is the subject matter of Sec. 4.

3.1 The Rank Attack: Vulnerability on the Low-Rank Side

Algorithms seeking linear combinations of matrices at a given rank have been around (cf. [4, 43]),
but was first introduced for cryptanalysis by Shamir and Kipnis in [26], against HFE. As presented
by the later [23], the basic ideas of a Rank Attack can be encapsulated as follows:
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1. When a matrix M ∈ Kn×n has rank r, then there is a |K|−r probability that a random vector
w ∈ Kn lies in ker M , a vector space isomorphic to Kn−r.

2. When a quadratic function undergoes an invertible change of variables from x to w (where
x = M1w + c1), its highest-degree part xT Q̂ix becomes wT (MT

1 Q̂iM1)w, or we can say that
the new matrix Qi = M

T
1 Q̂iM1 gives the quadratic part of y in w, and rank Qi = rank Q̂i.

Usually we want Qi or Q̂i written as symmetric form. When charK = 2 as most often is the
case, we cannot do so, but the symmetric matrices Hi = Qi +QT

i , Ĥi = Q̂i + Q̂T
i are uniquely

determined (no matter how we choose Q̂i or Qi) and also satisfy Hi = M
T
1 ĤiM1.

3. When m ≤ n, we expect the system of equations
∑m

j=1 αj(Hjw) = 0 to have no non-trivial
solutions for (αj) most of the time if w is randomly chosen, because there are too many
equations. In contrast, if m > n, we can always find such (αj) regardless of Hi and w.

That given, let the public map take Kn to Km, i.e. m and n be the number of equations and vari-
ables respectively. Also let q = |K|, and r be the smallest rank possible in a central equation
or a linear combination of central equations. For a TPM, but not for a general tame-like system,
this will be the initial central equation. We borrow an illustration from [8], showing the rank of
y8 = x8 + a8 x0 x7 + b8 x1 x6 + c8 x2 x5 + d8 x3 x4, from TTS/2′ (Sec. 2.2):
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0 0 0 0 0 c8 0 0
0 0 0 0 d8 0 0 0
0 0 0 d8 0 0 0 0
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We can write the quadratic part of y8 as (xT Qx) in any
way, and (Q + QT ) will be as shown to the left, and
its kernel is x0 = x1 = · · · = x7 = 0. Indeed, if a
quadratic has the form Cabxaxb + Ccdxcxd + · · · with
all indices a, b, c, d, . . . distinct, then the kernel of the
corresponding symmetric matrix will be {x : 0 = xa =
xb = xc = xd = · · · }, hence for TTS/2′ or TTS/4, {x :
xk−8 = · · · = xk−1 = 0} can be said to be the kernel
of yk in x-space. For ease of reference we will use the
shorthand ker yi, or kerx yi if there may be confusion.

We see that the rank of (the symmetric matrix H8 corresponding to) y8 in x-space is 8. This rank
is unchanged in w-space. Indeed, if the kernel of y8 in x-space is S then the kernel in w-space is
(M1)

−1S. In general for ` cross-terms with distinct indices, the rank of the matrix is 2`. [23] then
gives an attack to break a TPM in expected time O(qd

m
n
erm3). The steps outlined therein are:

1. Let Di be the symmetric matrices representing the homogeneous quadratic portions of the
public keys. That is, if zi = wT D̃iw plus lower terms, then Di = D̃ + D̃T . Take P to be
∑m

i=1 λiDi, an undetermined linear combination of the Di.

2. Guess at a random k-tuple (w1, . . . , wk) of vectors in Kn, where k = dm
n
e, then set Pw1 =

· · · = Pwk = 0 and attempt to solve for λi via Gaussian elimination.

3. In a TPM, the first linear combination located usually represents the initial central equa-
tion. For a tame-like system in general we should have found the central equation(s) or linear
combination(s) thereof with the rank r that is the smallest possible.

If we only use one test vector w in the case of an encryption scheme, a non-trivial solution (λi)
will always exist for the system

∑m

i=1 λiDiw = 0, since m > n (more variables than equa-
tions). I.e. every w belongs to the kernel of some combination of the Di. We need multiple
test vectors so that their common membership in a kernel of some matrix is significant.

Suppose P̄ is a linear combination of the Di with rank r̄, then its kernel has dimension n − r̄,
so the probability that the k-tuple of vectors (w1, . . . , wk) will all fall in ker P̄ is q−kr̄. Since
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the rank usually goes up two at a time, the odds should be overwhelming6 that we have found
a multiple of y1, and the coefficients λi (essentially, a row of M

−1
3 up to a factor).

For a TPM, ker H1 ⊂ ker(H2 + k1H1) ⊂ ker(H3 + k2H2 + k1H1) ⊂ · · · with dimensions
usually increasing in twos. So odds are 255 : 1 in favor of this being a multiple of H1 and not
any linear combination involving H2. We can argue similarly for other tame-like PKC’s.

Also, in general we can tell if we hit a non-minimal kernel (one containing other kernels),
because this is exactly when the P we find will not be unique up to a constant factor.

Proposition 1 (Time to Find a Vector in any Given Kernel) Suppose one unique linear combina-
tion H =

∑m

i=1 αiDi has the minimum rank r, then the algorithm described above will find M
T
1 HM1,

or rather some vector(s) in the dimension-(n − r) kernel [M−1
1 (ker H)], with an expected cost of

≈ qkr (m2(nk/2 − m/6) + mn2k) multiplications in the finite field.

Proof. For each k-tuple (w1, . . . , wk) and each pair (i, j) we must evaluate Diwj with n2 multipli-
cations each, then do Gaussian elimination on nk equations and m variables. The requisite number
of multiplications can be found in numerical analysis texts (e.g. [3]). �

According to [23] the kernels corresponding to each yi form an increasing chain by containment, so
once the largest kernel has been found, the scheme should unravel in its entirety. After that one could
find M3, and then M1 by searching in each kernel space for the next smaller kernel. We note that
square terms in the central map are eliminated during symmetrization7 and does not affect a rank
attack. One expects a rank attack to do its worst against a signature scheme, since k = 1. However,
the TPM schemes being attacked do not represent the actual schemes correctly. Hence, we need
to evaluate how well they actually apply to the point where we can make a real decomposition or
forgery. We will try to compute the actual effort in attacking a TTS instance on rank in Sec. 3.3.

3.2 Other Concerns in a Rank Attack

Clearly attacking on low rank is devastating when the conditions are met. But it is no panacea and
needs some corrections and proper care in implementation. In particular, these can all go wrong:

1. In [23], the target scheme has r = 2. It can be a lot higher. For example, r = 8 in TTS/4 and
TTS/2′; furthermore, often we can increase this parameter with relative ease. According to
[29], the dimensions of a TTM instance can be such that k = d n

m
e = 3. Suppose every central

equation has at least two cross-terms, then r = 4 and we are talking about qkr = 296 already.

2. Normally, in a PKC everything except the secret key is known. But when trying to break a
multivariate PKC, the attacker may not know in advance what scheme a public key represents,
only the base field K, the dimensions (n, m), and a set of public-map polynomials. E.g. a TTS
central map can spawn (in addition to parameters) adjustible indices or even optional terms.

3. In a TPM scheme of [23], the kernels of the central equations form a decreasing sequence:
ker yi+1 ⊂ ker yi. In a well-designed scheme, the kernels of the central equations may not
form such a sequence, and there may be no domino effect. If an attacker need to find every yi
then a lot more effort is necessary (see below). This is intimately connected to the next point.

4. While we assume that y1 has the smallest rank r; other yi and even many linear combinations
of the yi (hence the Hi) with different kernels can also share the same minimum rank r.

6at least when q2 is usually fairly large (65536 here)
7In a sense, square terms are fundamentally linear.
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This is a very double-edged sword. In TTS/2′, for non-zero α (and most i), the rank of
yi+αyi+1 and yi+αyi+2 are both 8. So is yi+αyi+1+βyi+2 if α2ai+1ci+1di+1 = β(bidi+1bi+2+
diai+1di+2); in TTS/4, we also have (most of the) rank (yi + αyi+1) = rank (yi + αyi+2) = 8,
but there are no three-term combinations with rank 8. We see that in either scheme there are
thousands of combinations of the yi at rank 8, whose kernels are for the most part disjoint.

If we can not make use of the relationship between the combinations, just keeping track of
everything is a major chore; if we can, then the cryptanalysis may become substantially easier.

3.3 The “Crawling” Rank Attack vs. TTS/2′ and TTS/4

It is on this last point — multiple equal-sized kernels — that we shall show how to extend the
venerable technique of rank attack to a cryptanalysis of TTS/2′ and TTS/4 with an even lower cost.

Take any given rank 8 central equation, then when n = 28 and m = 20, according to Prop. 1, we
should need 2568 · [202 · (28/2 − 20/6) + 20 · 282] ≈ 278 field multiplications to hit this equation.
NESSIE ([33]) requirements are not counted in field multiplications however, but in AES blocks.
Using data from the NESSIE performance report ([35]), and comparing with actual operations, we
obtain the exchange rate of one AES block to between ≈ 25 and 26 finite field multiplications if
these are done with tables of logarithms and exponentials. All told, we can expect a time complexity
of ≈ 272 if we want to find a vector in any given rank-8 kernel. However, there are many kernels
to choose from, and any single one works. For simplicity in illustration, let a8 = a9 = a10 = b8 =
· · · = d10 = 1 in TTS/2′, then we have

ker y8 = {x : x0 = x1 = · · · = x7 = 0};

ker y9 = {x : x1 = x2 = · · · = x8 = 0};

ker y10 = {x : x2 = x3 = · · · = x9 = 0};

ker(y8 + αy9) = {x : x1 = x3 = x5 = x7 = 0, x0 : x2 : x4 : x6 : x8 = α4 : α3 : α2 : α : 1};

ker(y8 + αy10) = {x : x2 = x3 = x6 = x7 = 0, x0 : x4 : x8 = x1 : x5 : x9 = α2 : α : 1}.

With these coefficients there is no rank-8 combination of y8, y9, y10; when such a combination
exists, the kernel vectors x would have x2 = x7 = 0 and x0 : x4 : x6 : x8 = x1 : x3 : x5 : x9 in fixed
ratios. In the case of TTS/4, we have instead the kernels

ker(y8 + αy9) = {x : x1 = x5 = x6 = x7 = 0, x0 : x3 : x2 : x4 : x8 = α4 : α3 : α2 : α : 1};

ker(y8 + αy10) = {x : x3 = x4 = x7 = x9 = 0, x1 : x8 = α : 1, x0 : x5 : x6 : x9 = α3 : α2 : α : 1}.

These kernels show the way to cryptanalysis along these steps:

1. Run the algorithm of Sec. 3.1 to find a vector u and the associated quadratic z =
∑

i λizi of
rank 8. Verify U = ker z to be of codimension 8, and find a basis for U . The expected number
of multiplications needed is roughly 278 divided by the number of rank-8 forms, or ∼ 265.

We note that kernels of these 10,000+ rank-8 forms are largely distinct. Since there are only 20
rank-8 forms yi, but about 5000 rank-8 forms yi +αyi+1 and almost as many forms yi +αyi+2,
so it is with good probability that the first vector yielding a codimension-8 kernel will come
from a mixed form rather than from one of the yi’s, and we need to isolate yi’s thence.

2. Repeat the same algorithm as above, except that now we only test random vectors v ∈ U until
v lies in more than one kernel; i.e., when we solve

∑

i αiDiv = 0, the (λi) are not unique up
to a constant factor. Find a basis {(α(j)

i )i=1···m}j=1···s for this solution set in α-space, where
s > 1, and translate it into (ŷj)j=1···s in quadratic forms, via ŷj =

∑m

i=1(α
(j)
i zi). When this

does happen, we expect the dimension s to be 2 or 3.
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In the unlikely case that we find two distinct sets of results (v and (ŷi)) in maybe 5000 tests,
the initial (λi), or rather the quadratic form

∑m

i=1 λizi that these coefficients correspond to, is
likely a multiple of some yi where 9 ≤ i ≤ 25. The two different kernels we find should be
{x : xi−9 = xi−8 = · · · = xi−1 = 0} and {x : xi−8 = · · · = xi−1 = xi = 0}. The two
solution spaces must then correspond to span(yi, yi±1).

More likely we locate only a single multi-dimensional solution space for the (αi) in 10000
tries, that should be span(yi, yi+1) or span(yi, yi+1, yi+2) depending on its dimension. For
example, assume that we initially hit a vector that lies in the kernel U of y8 +αy9 and no other
quadratic form. With probability 2−8 a random vector v ∈ U will lie in ker y8 ∩ ker y9 =
{x : x0 = x1 = · · · = x8 = 0}. The same applies for any z = yi + αyi+1. Similarly if
z = yi + αyi+2, or any three-term combination that has rank 8, the odds to hit a vector v in
more than one kernel is 2−16, and what we find is (ker yi) ∩ (ker yi+1) ∩ (ker yi+2).

The expected number of field multiplications needed for this step is very small, equivalent to
trying 216 random vectors w in Sec. 3.1, or about 230 multiplications here.

3. Of all the linear combinations of quadratic forms ŷi we find, modulo constant factors, we find
the kernels Ui associated with them. There will be either 257 or 2562 + 256 + 1 = 65793
distinct linear combinations. Among the forms ŷi we should have either two or three of the
yi’s. Repeat the search in each Ui as above until we find the kernels that corresponds to the
yi’s. Suppose we check 212 vectors from each of the ∼ 216 kernels Ui to see if any of them is a
yi, that would take no more than 242 multiplications.

4. Say we have found the form for y9, since y9 = x9 + a9x1x8 + b9x2x7 + c9x3x6 + d9x4x5, we
should be able to identify one linear combination of the wi as x9 and eight others as x1, . . . , x8,
so in short, finding any yi should yield in very short order all yj and xj where j < i. Even if
we can’t do the decomposition, the same incremental search going up and down the indices
will locate all the forms yi and xi, i.e. the matrices M1 and M3, for us.

With the above crawl process aiding our attack, the chance of finding a kernel vector is essentially
multiplied by about 214 as compared to the attack in [23]. The upshot is that a solution can be located
in between 264 to 265 multiplications (or 258 to 259 AES blocks).

We experimented with 2- and 3-term analogues to TTS/2′ schemes. We were unable to complete
the whole run with 248 field multiplications for a three-term (r = 6, n = 22, m = 16) TTS/2′

analogue, but the incremental search technique works, and on (Pentium or Athlon) PC’s, the above
projected cryptanalysis process was in reasonable accord with what happened during our testing.
With 2-term TTS/2′ type sample scheme (r = 4, n = 16, r = 12) identifying the initial vector
actually takes less time (∼ 232 multiplies) than the search for each new yi (∼ 240 multiplies).

3.4 The Dual Rank Attack: Vulnerability on the High-Rank Side

A natural converse8 of the Rank Attack — finding a large kernel shared by a small subset of the
space spanned by the matrices Hi — is to find a small kernel shared by a large subset of the linear
combinations of the Hi. Let the fewest number of appearances of all variables in the cross-terms of
the central equations be a total u times, and without loss of generality let this be the last variable
xn−1. In TTS/4, this is x27, which only appears in y27. In the earlier TTS/2 (cf. [8]), x27 does not
appear in any cross-term . In Birational Permutation Schemes ([40]), the last central variable appear
in only one equation. Here we try to describe concisely why u cannot be too small:

8We can rephrase the above as to look at a linear combination of the (duals of) wi with low rank when expressed as
a linear mapping from the wj to zk, so the name “Dual Rank Attack” seems apt.
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1. If xn−1 does not appear in any yj, then every matrix Ĥj will have zeros for the entire last row
and column. Thus the intersection of all the kerx zj (and hence the kerw zj = ker Dj) will be
non-empty and contain the subspace corresponding to Un−1 = {x : x0 = · · · = xn−2 = 0}.

2. Suppose xn−1 only appear in a cross-term in one central equation, say yn−1. Then whenever
αn−1 = 0, the matrix P =

∑

i αiHi will again contain the subspace Un−1. Indeed, denote by
mij the (i, j)-entry of M3, and we see that for every pair of indices (i, j) there will be a linear
combination, namely mj,n−1Di − mi,n−1Dj whose kernel contain the same subspace Un−1.

We can extend the above to: for all indices i < j, if we cannot find a cij such that Un−1 ⊂
ker(Dj + cijDi), then mi,n−1 = 0 — so we can quotient xn−1 out of the system.

3. In general, with almost any (u+ 1)-subset picked from the Di, there is a unique linear combi-
nation of these matrices with a kernel containing the common subspace Un−1.

Now we must exploit this critical weakness ([11]) by finding linear combinations
∑

i αizi whose
kernels share a non-empty intersection, which Coppersmith-Stern-Vaudenay ([10, 11]) did elegantly
without needing to search, in a way that can be extended to find an ascending chain of kernels in the
matrix algebra over a ring. This neatly broke Birational Permutations. The basic C-S-V lemma is:

When P = Dj +λDi is the linear combination whose kernel contains Un−1, then P has
a characteristic polynomial f(x) = det(Dj − λDi − xI) with double roots. Hence, if
we solve the resultant of f ′(x) and f(x) as an equation in λ, that should be our cij .

[23] carried out the same Dual Rank Attack9 by searching, while mistakenly comparing the C-
S-V idea to those in Sec. 3.1. As an equivalent formulation, the essence of the more plebian G-C
version of the Dual Rank Attack (to find Un−1) can be distilled as follows:

1. Form an arbitrary linear combination P =
∑

i αiDi; find V = ker P by Gaussian elimination.

2. When dim V ≥ 1, set (
∑

j λjDj)V = {0} and check if the solution set V̂ of the (λi), also
found via a Gaussian Elimination, form a subspace dimension m − u.

3. With probability q−u we have V = Un−1. We can then expand to find bigger kernels.

One trial costs an elimination plus possible testing, so total cost is
[

mn2 + n3

6
+ n

q
(m3/3 + mn2)

]

qu.

We can cut down to a little more than
(

un2 + n3

6

)

qu (in field multiplications) if we only consider

linear combinations of only (u + 1) of the matrices Di, and don’t get too unlucky.
The method of Coppersmith et al is still applicable in expanding to larger kernels, but for a TPM,

or even the non-TPM TTS/2′ and TTS, it is a lot easier. The next bigger kernel up the chain, which
is U26 = {x0 = x1 = · · · = x25 = 0}, can be found by looking at subspaces of V = U27, which will
get us U26 with probability 1/q. After we have the entire sequence of kernels, the cryptanalysis is
almost complete, so for TTS/4 and TTS/2′, the cryptanalysis can be almost instant.

3.5 Further Discussion about Rank Attacks

Cryptanalysis of TTS/4 proceeds identically as TTS/2′, except that there seems to be no three-term
combinations of rank 8. We can use the crawl to fish out successive yi once one combination with a
rank-8 kernel has been found. The complexity should obviously be comparable to that of TTS/2′.

We can cryptanalyze improperly constructed instances of TTM very easily. Quite a few variants
of TTM had been proposed by T. Moh et al. Some of them have central equations of the form

9Suggested by someone asked to review an earlier version. It seems more suitable than High or Max Rank Attack.
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yj = xi + Ajxhx`. That is an equation of rank 2. The presentation in [23] does not make it very
clear, but the attack does not necessarily have to work on the initial equations. If there is no other
central equation of rank 2 with either xh or x` in a cross-term, the kernel attack will easily locate
yj, xh, x` and xi after an expected 2562k attempts at guessing some kernel vectors, where k = dm

n
e

is 2 or 3, that’s about 258 multiplications max. Suppose we have many equations of rank 2, whose
sole cross-terms are xixj1 , xixj2, . . . , xixjs

. By the same arguments as in Sec. 3.3, we will locate
a kernel vector of a quadratic form that looks like xi(α1xj1 + α2xj2 + · · · + αsxjs

) after 2562k−s+1

attempts. Even with two cross-terms in each equation, if there are s equations of which any linear
combination will still be rank 4, the cost is only 28(4k−s+1) attempts, where the effort in each attempt
is some substitutions plus a Gaussian Elimination.

There is a moral to learn from this episode. People noticed the impact of rank in multivariate
cryptography early on. For example, Theobald was impressed enough to issue a warning ([44])
“varying ranks of quadratic forms” comprising the non-linear portion of a multivariate PKC is
dangerous. However, with great trepidation we venture this humble opinion:

Expert cryptographers were warning against varying ranks, however, the dangers that
they saw may really have been chains of kernels ordered by containment, and in partic-
ular, such a chain of kernels with some vulnerability at either end.

Note that we said either end. When you have a long chain of kernels, the smallest as well as the
largest can be the weakness, like we expanded on, as above.

4 Tame-Like Signatures Free from Rank Concerns

What kind of Tame-Like Signature Schemes can we build that are secure to Rank Attacks? Clearly,
being non-TPM is not sufficient, since no TTS instance discussed so far is a TPM. Neither is TTM.

The conclusion we can draw from Sec. 3 is: To be safe, the minimum rank r in the matrices
representing the central equations and their linear combinations must be high; so must the minimum
non-reducible number of equations u where any given variables shows in cross-terms. What else?

4.1 Criteria for a Safe, Fast Multivariate Signature Scheme

Aside from Rank Attacks, main concerns for a tame-like multivariate PKC must surely be the pow-
erful method of Gröbner Bases and its distant cousin, the linearization or XL based methods.

Proposition 2 In a Tame-Like Digital Signature Scheme needing a complexity estimate of C:

1. Each equations should have as many cross-terms with no repeated indices as possible.

2. Almost all linear combinations of central equations should result in quadratic forms of higher
rank, only a relatively small number can have equal rank.

If k linear combinations of central equations share a minimal rank r = 2`, then we need

qr ·
(

m2(n/2 − m/6) + mn2
)

/k ≥ C. (1)

3. If the minimum number of appearances is u in central equations for any variable xi, then

qu
(

un2 + n3/6
)

≥ C. (2)

These sum up what we were doing in the last section.
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4. Let A be the smallest maximal set of v indices 0 ≤ i < n such that every cross-term in the
central map has at least one index in A, then we require

q2v−n−1(n − v)4 ≥ C. (3)

This is to avoid concerns that plagued Oil-and-Vinegar (OV) and unbalanced OV schemes
([24, 25]). Within this restraint, lower v means higher XL/FXL complexity (see Appendix).

5. Let D0 = D0(m, k) := min{D : [tD]
(

(1 − t)k−1 (1 + t)m
)

, T :=
(

m−k+D0

D0

)

, R =
(

m−k+D0−2
D0−2

)

then
min

k
qk · m2RT (c0 + c1 lg T ) < C (4)

where c0 ≈ 4, c1 ≈ 1/4 are constants.

Item 5 results from XL/FXL ([12, 13, 14, 47, 49]) and Gröbner-based attacks ([2, 19, 20]). One
should refer to [30] for some algebraic geometry on XL-type attacks, and to [5, 6, 27] on Gröbner
Bases theory. For now see Table 1 for estimated security levels for conformant tame-like schemes
under XL. An explanation of these estimates can be found in the Appendix.

4.2 Tame-Like Digital Signature Schemes Built To Rank Specifications

NESSIE requires a complexity of 280 AES blocks, or about 286 multiplications. Because of birthday
attacks, the hash length needs to be 160-bit, or m ≥ 20. Obviously n > m in a signature scheme like
TTS. We need r ≤ 10, so there should be at least 5, probably 6 or 7 cross-terms in each equation.
But we don’t want n too large, because (a) n − m too large can lead to searching-like concerns
(see [8]); (b) makes securing them against XL attacks harder (see Appendix 5.2); and (c) obviously
means longer keys and times (all ∝ n3). In all, we want (n, m) no bigger than (28, 20) or perhaps
(32, 24).

Is this possible? Yes, by adopting a segmented design. The initial xi’s (x0, . . . , x7) are essen-
tially random (see below). The initial equations (starting with y8) are solved as a linear system for
x8 and subsequent xi’s, with six plus cross-terms each; then the some “tame” equations yield more
xi’s through only serial substitution; then the last block of equations is solved as a linear system for
the final xi’s (at least nine, which is also the minimum number of cross-terms in this block). For
ease of programming, the two systems to solve should have the same number of equations.

What is the security assessment by Rank Attack? Each equation has rank 12 or more. Even
if linear combinations of two consecutive equations in the first segment all have the same rank 12,
we have a comfortable cushion since 28×12 = 296. If the last block has 9 equations, the Dual Rank
Attack takes 2569 · (9 · 282 + 283/3) or around 286 multiplications ≈ 280 AES blocks.

Can we ensure a signature for any hash? Yes! Do not use x0 until the final segment of equations.
Make up the first segment with non-zero constant multiples of x1 on the main diagonal of the system
matrix, no other appearances for x1. Then set up the final segment so that it has constant multiples
of x0 as the main diagonal of its system matrix and no other appearances of x0. This will do.

We exhibit an illustrative TTS instance with central map φ2, with two blocks of nine equations
each (and 7 and 10 terms per equation respectively) sandwiching two tame equations.

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · ·16;

y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13;

y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;

yi = xi + pi,0xi−11xi−9 +
∑i−1

j=19 pi,j−18 x2(i−j)−(i mod 2) xj + pi,i−18x0xi

+
∑27

j=i+1 pi,j−18 xi−j+19 xj, i = 19 · · ·27.
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To see φ2 more clearly and that it meets our requirements, we tabulate it differently in Table 2.
Of course, we will need to scale up the new variant if our estimate is somewhat off, or to meet future,
higher security requirements. We will discuss this next in Sec. 4.3.

y 8 9 10 11 12 13 14 15 16
8 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7

10 1 2 3 4 5 6 7
11 7 1 2 3 4 5 6
12 6 7 1 2 3 4 5
13 5 6 7 1 2 3 4
14 4 5 6 7 1 2 3
15 3 4 5 6 7 1 2
16 2 3 4 5 6 7 1

y 19 20 21 22 23 24 25 26 27 cross
19 0 18 17 16 15 14 13 12 11 8, 10
20 2 0 18 17 16 15 14 13 12 9, 11
21 3 1 0 18 17 16 15 14 13 10, 12
22 6 4 2 0 18 17 16 15 14 11, 13
23 7 5 3 1 0 18 17 16 15 12, 14
24 10 8 6 4 2 0 18 17 16 13, 15
25 11 9 7 5 3 1 0 18 17 14, 16
26 14 12 10 8 6 4 2 0 18 15, 17
27 15 13 11 9 7 5 3 1 0 16, 18

Table 2: Table Form of a Possible Central Map of an Enhanced TTS

The φ2 given above can be inverted as follows:

1. Assign x1, . . . , x7 and try to solve the first nine equations for x8 to x16.

2. If we fail to solve the first system of equations, just redo everything from scratch. The prob-
ability is around 255/256 that this system can be solved. At the very least the determinant
of the first system (for any choice of x1 through x6) is a degree-9 polynomial in x1 there can
only be at most 9 choices of x1 to make the first system degenerate, so the odds to solve this
system is at least 247/256 and we will eventually hit upon a solution.

3. Solve serially for x17 and x18 using the next two equations (y17 and y18).

4. Assign a random x0 and try to solve the second system of nine equations for x19 through x27.
Again, there will be at most nine x0 that makes the determinant of the second system zero.
So, if the first attempt to solve it fails, try other x0 until a solution is found.

Otherwise this signature scheme is identical to that of TTS/4 and TTS/2′. We can call this Enhanced
TTS. The public key is still 8680 bytes, and the private key 1399 bytes (with 167 variable non-zero
parameters, 1184 parameters in the matrices, and 48 bytes in the vectors). In this φ2 we have h = 15
as in Item 4 above (all cross-terms vanish if x0 = x2 = x4 = x6 = 0 = xi, i = 8 · · ·18), and the
“dimension of solution set at infinity” (dim H∞) parameter is ~ = 4 after 8 variables are guessed.

4.3 Scaled-Up Versions of Enhanced TTS

We were unable to find φ2 with n = 28, m = 20 in two systems of 10 equations that can be easily
constructed with regular patterns in its indices, unless we accept repetitive cross-terms (there are no
repeats now). However, more irregular instances exist, and an example is given in Appendix A.

However, we can scale the above up to provide for a whole sequence of TTS instances, which
we will call the “odd sequence” because the parameter u is odd. We have (for ` ≥ 4) the (m, n) =
(4`, 6` − 2), with security parameters (u, r) = (2` − 1, 4` − 6)

yi = xi +
∑2`−3

j=1 pijxjx2`−2+(i+j+1 mod 2`−1), for 2` − 2 ≤ i ≤ 4` − 4;

yi = xi +
∑`−2

j=1 pijxi+j−(4`−3)xi−j−2`)

+
∑2`−3

j=`−1 pijxi+j−3`+6xi+`−5−j , i = 4` − 3 or 4` − 2;

yi = xi + pi0xi−2`+1xi−2`−1 +
∑i−1

j=4`−1 pi,j−(4`−2)x2(i−j)−(i mod 2)xj + pi,i−(4`−2)x0xi

+
∑6`−3

j=i+1 pi,j−(4`−2)x4`−1+i−jxj, for 4` − 1 ≤ i ≤ 6` − 3.

13



There is a different sequence of Enhanced TTS instances with the same Rank Attack estimates,
accounting for an even more conservative estimate for XL/FXL attacks, as in the equations below

yi = xi +
∑7

j=1 pijxjx8+(i+j+1 mod 10), i = 8 · · ·17;

yi = xi + pi1xi−17xi−14 + pi2xi−16xi−15 + pi3xi−10xi−1 + pi4xi−9xi−2

+pi5xi−8xi−3 + pi6xi−7xi−4 + pi7xi−6xi−5, i = 18 · · ·21;

yi = xi + pi,0xi−10xi−14 +
∑i−1

j=22 pi,j−21 x2(i−j)−(i mod 2) xj + pi,i−21 x0xi

+
∑31

j=i+1 pi,j−21 xi−j+21 xj, i = 22 · · ·31.

This larger φ2 (also cf. Tab. 3) has (n, m) = (32, 24) and an FXL complexity about 216× higher.

y 8 9 10 11 12 13 14 15 16 17
8 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7

10 1 2 3 4 5 6 7
11 1 2 3 4 5 6 7
12 7 1 2 3 4 5 6
13 6 7 1 2 3 4 5
14 5 6 7 1 2 3 4
15 4 5 6 7 1 2 3
16 3 4 5 6 7 1 2
17 2 3 4 5 6 7 1

y 22 23 24 25 26 27 28 29 30 31 cross
22 0 21 20 19 18 17 16 15 14 13 8, 12
23 1 0 21 20 19 18 17 16 15 14 9, 13
24 4 2 0 21 20 19 18 17 16 15 10, 14
25 5 3 1 0 21 20 19 18 17 16 11, 15
26 8 6 4 2 0 21 20 19 18 17 12, 16
27 9 7 5 3 1 0 21 20 19 18 13, 17
28 12 10 8 6 4 2 0 21 20 19 14, 18
29 13 11 9 7 5 3 1 0 21 20 15, 19
30 16 14 12 10 8 6 4 2 0 21 16, 20
31 17 15 13 11 9 7 5 3 1 0 17, 21

y term1 term2 term3 term4 term5 term6 term7
18 1, 4 2, 3 8, 17 9, 16 10, 15 11, 14 12, 13
19 2, 5 3, 4 9, 18 10, 17 11, 16 12, 15 13, 14
20 3, 6 4, 5 10, 19 11, 18 12, 17 13, 16 14, 15
21 4, 7 5, 6 11, 20 12, 19 13, 18 14, 17 15, 16

Table 3: A More Conservative Central Map for Enhanced TTS (n = 32, m = 24)

We give the central map at higher dimensions for these Enhanced TTS instances, called the
“even sequence” because the parameter u is even. In the given φ 2 below, we have (for ` ≥ 5) the
(m, n) = (4`, 6` − 4), with security parameters (u, r, v) = (2` − 2, 4` − 10, 4` − 2).

yi = xi +
∑2`−5

j=1 pijxjx2`−4+(i+j+1 mod 2`−2), for 2` − 4 ≤ i ≤ 4` − 7;

yi = xi +
∑`−4

j=1 pijxi+j−(4`−6)xi−j−(2`+1)

+
∑2`−5

j=`−3 pijxi+j−3`+5xi+`−4−j, for 4` − 6 ≤ i ≤ 4` − 3;

yi = xi + pi0xi−2(`+1)xi−2(`−1) +
∑i−1

j=4`−2 pi,j−(4`−3)x2(i−j)−(i mod 2)xj + pi,i−(4`−3)x0xi

+
∑6`−5

j=i+1 pi,j−(4`−3)x4`−2+i−jxj, for 4` − 2 ≤ i ≤ 6` − 5.

5 Discussion and Conclusion

We provide an executive summary of what we see in tame-like PKC’s and especially signature
schemes, which we will (hopefully) justify in what remains of this section:

Advantages of tame-like PKC’s are speed, ease of implementation, and avoiding old attacks.

Fast Signing: In SFLASHv2, the signing action includes multiplying and raising to the 128-th
power in (GF(2))37 many times. A tame-like PKC makes this stage faster.
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Fast Setup: In SFLASHv2, the set-up process is a complex and round-about affair, involving
evaluating φ2 — itself a non-trivial procedure! — almost a thousand times. This is no
problem on a modern PC, but setting up on-card for the SFLASHv2 takes a long time. In
a tame-like PKC, with few terms per equations, we can setup quickly by brute-force.

Avoidance of Previous Liabilities: There are many possible tame-like maps φ2, so we can
dodge or alleviate some weaknesses including those that SFLASHv2 must design around.

Drawbacks of tame-like PKCs are (mostly) possible new vulnerabilities on rank.

5.1 Does Our Patched TTS Instances Measure Up?

The answers seems to be: yes in all categories, as shown in Tab. 4 below:

Scheme Signature PublKey SecrKey Setup Signing Verifying
RSA-PSS 1024 bits 128 B 320 B 2.7 sec 84 ms 2.0 ms
ECDSA 326 bits 48 B 24 B 1.6 ms 1.9 ms 5.1 ms
ESIGN 1152 bits 145 B 96 B 0.21 sec 1.2 ms 0.74 ms

QUARTZ 128 bits 71.0 kB 3.9 kB 3.1 sec 11 sec 0.24 ms
SFLASHv2 259 bits 15.4 kB 2.4 kB 1.5 sec 2.8 ms 0.39 ms
TTS(20,28) 224 bits 8.6 kB 1.3 kB 1.5 ms 51 µs 0.11 ms
TTS(24,32) 256 bits 13.4 kB 1.8 kB 2.5 ms 67 µs 0.18 ms

Table 4: TTS and NESSIE round 2 candidates signature schemes on a 500MHz Pentium III

The public (encryption) does not change from TTS/4 to TTS (20,28), but the running time listed
here differ from the data in [8]. We may attribute most of the speed up to the improvements in
version 3 of gcc, the very popular GNU compiler10 that we had upgraded to.

TTS verifies fast due to its smaller dimensions. E.g. SFLASHv2 requires larger dimensions
chiefly to cater to the vagaries of security requirements for C∗-derivatives. In checking (verifying)
a signature we run the public map which takes time approximately equal to mn2/2 multiplications,
which depends only on the hash and signature size and not on any details of central map.

TTS signs fast due to the structure of its public map. Like other multivariates, φ−1
1 and φ−1

3 costs
about n2 and m2 (784 and 400 for TTS (20,28)) multiplications respectively while φ−1

2 does about
n`+2(`3/3+`2), where ` ≈ m/2. As the dimensions grow, n ∼ 3m/2. The entire signing operation
will take around m2(c2 + m/12) multiplications in the field, where the quadratic term coefficient
c2 is around 4.5, and will be larger than 4. The implication is that for practical ranges, the speed of
signatures in TTS goes down in speed, more inversely quadratic in m than the cubic.

Signing in n-bit RSA should cost a sequence of exponentiations and multiplications of length
proportional to n, when each multiplication costs ∼ 2n2 in multiplications or divisions11. So we
expect signing time to be ∝ n3. Assuming that we multipliies and divides by c-bit chunks, the cost
should be greater than 2n3/c2 multiplicative operations, which for c = 32 and n = 1024 is about
2,000,000. TTS (20,28) does about 2,000. So TTS should be 1,000 times faster. Since the security of
each scheme increases in similar fashion, this should hold at all equivalent practical security levels.

We see that the above rough guide is good to the order of magnitude (cf. Tab. 4). Now look at
SFLASHv2. Out of several proposed methods, the most expedious inverse map for its central map
involves solving a system of linear equations that can be written as

xyqa

= xqb

y, x,y ∈ (GF(q))n

10Our previous tests used gcc-2.96, but gcc3 was used by some other NESSIE entrants for their timings.
11Example: an expert, Prof. Brad Lucier of Purdue U., opines that better algorithms (e.g. FFT or Karatsuba) start to

multiply very slightly better than n2 at around 1400 bits and divide better than n2 only at around 6800 bits.
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where a, b are parameters roughly proportional to n. Raising to any qk-th being linear with a fixed
matrix, the system can be set up and solved in αn3 multiplications, where α has the order of “a few”.

Since C∗−− signature schemes also seems to follow roughly n ∼ 3m/2, a back-of-the-envelope
computation shows that at roughly equal security levels, TTS would be about two orders of magni-
tude faster than SFLASH, and this is again in accord with Tab. 4. Since SFLASHv2 had been the
signing speed demon, TTS (20,28) — while a factor of two slower than the superseded versions in
[8] — is indubitably snappy. On a smart card, we can likely make do with lower-rated hardware
and without crypto co-processors, and still work faster than with RSA or ECC.

One might say that the Achilles’ heel for the extended family of multivariate PKC’s has always
been the novelty and untested status, but the next weakness to be mentioned will likely the size
of the public keys. To a large extent, this is no longer a problem for non-embedded applications,
even though 100-kilobyte public keys might conceivably sometimes pose a problem for electronic
commerce. The most practical way around this bugbear for smart cards is to avoid having the public
key stored on-card. However, since modern security often dictates keys to be generated on-card, we
prefer greatly that it be possible to generate public keys from a small amount of stored information.

The next question is: Why is the generation of keys fast for tame-like systems (again cf. Tab. 4)?
Let the (i, j)-position matrix element in Dk be Rijk and that for Hk be R̂ijk. Then Rijk =

∑

`(M3)k`R̂ij`, computable by n2 matrix multiplications at m2 multiplications per, and

R̂ijk =
∑

p xαxβ in yk

p · ((M1)αi(M1)βj + (M1)αj(M1)βi).

Where the sum is taken over all the cross-terms in the central equation giving yk. If the average
number of cross-terms (total cross-terms divided by equations) is t, then we can do this in 3tmn2

multiplications, for a total of m(m+3t)n2. For the dimensions involved, t is usually proportional to
m, so the growth in time is quartic. According state-of-the art ([46]) key generation for multivariates
using other methods (variations of polynomial interpolation) is sixth-order, so we can expect a dif-
ference of at least two orders of magnitudes in setup timings for TTS (or another tame-like signature
scheme) and SFLASH, which is borne out by Tab. 4.

We wish to point out: the fact that verification and key generation varies respectively as the
cubic (mn2) and the quartic (m2n2) in the dimensions can be seen from Tab. 1. The eventually cubic
behavior of signing time is not apparently visible at the dimensions that we are using, but it can be
seen that the increase is somewhat more than in the quadratic.

5.2 Security for Tame-Like Signature Schemes and Especially TTS

There are two classes of attacks against multivariates cryptosystems: general and specific attacks.
Specific attacks cannot function if we design our schemes carefully. General schemes should always
function but can be slow. For example, Gröbner Bases can always be computed, but in the general
case has a woefully high time bound. We list what we know of attacks against multivariates, and
aside from Rank considerations, we refer the reader to the summaries given in [8].

General Attacks: of the following general types

Gröbner Bases Methods: References at [1, 2, 5, 6, 27]. See Appendix B.

Searching vs. Signature Schemes: Dominated by algebraic methods and in general not prac-
tical against tame-like systems ([8]).

Rank Attacks: As discussed in the text.

Linearization-Type: Traceable from [26] and developing to XL attacks. Appendix B below.
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Specific Attacks: Bilinear Relations ([36], used against C∗ and TTM) not functional against TTS;
Separation of Oil and Vinegar ([24, 25], guarded against; Patarin’s IP Approach ([37]), not
functional against TTS (see [8]); Attacks on 2R schemes, nonfunctional against TTS; Sub-
space Attack against SFLASH (see [8]), nonfunctional against TTS.

The discussion above should not be limited to TTS but is concordant with all tame-like systems
constructed according to the rules given in Sec. 4.2. What we can say about the security of TTS?

The main condition for XL and current Gröbner Bases methods to operate is given in the Ap-
pendix. If we assume an optimistic bound for the equation-solving phase, the XL/FXL family of
methods will take the amount of time as given in Tab. 1.

5.3 A Summary

We have described how to construct a tame-like signature scheme less susceptible to attack on rank.
The results look quite promising and we think that it bears another look by cryptographers, notwith-
standing the apparent slowdown in the research of multivariate PKC of recent.
Remark: Around the end of August 2004, we received word of an IWAP 2004 presentation in which
the authors cryptanalyze TTS as presented in [48], which is constructed according to a previous
version of this preprint. We investigated and discovered that we had been too overzealous to make
TTS hypothetically safer against XL and Gröbner type attacks. As a result, we opened a door
to a UOV type of attack. Prof. Jintai Ding of the University of Cincinnati, who co-authored the
presentation with Mr. Zhijun Yin, verified that this is in fact their attack, and that the construction
given here no longer have that same vulnerability. This should in no way detract from the credit due
to Prof. Ding and Mr. Yin, as the cryptanalysis is still highly non-trivial.
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termined Systems, Preprint and private communication.

[3] R. Burden and J. D. Faires, Numerical Analysis, 7th ed., PWS-Kent Publ. Co., 2000.

[4] J. Buss, G. Frandsen, J. Shallit, The Computational Complexity of Some Problems of
Linear Algebra, report RS-96-33 published by BRICS, Aarhus, Denmark. Available at
http://www.brics.dk/RS/96/33.

[5] L. Caniglia, A. Galligo, and J. Heintz, Some New Effectivity Bounds in Computational Geometry,
AAECC-6, 1988, LNCS V. 357, pp. 131–151.

[6] L. Caniglia, A. Galligo, and J. Heintz, Equations for the Projective Closure and Effective Nullstellensatz,
Discrete Applied Mathematics, 33 (1991), pp. 11-23.

[7] S. Cavallar et al, Factorization of a 512-bit RSA modulus. EUROCRYPT 2000, LNCS V. 1807, pp. 1-17.

[8] J.-M. Chen and B.-Y. Yang, A More Secure and Efficacious TTS Scheme, ICISC ’03, LNCS V. 2971,
pp. 320-338; expanded preprint available at http://eprint.iacr.org/2003/160.

[9] D. Coppersmith, private communication.

[10] D. Coppersmith, J. Stern, and S. Vaudenay, Attacks on the Birational Permutation Signature Schemes,
CRYPTO’93, LNCS V. 773, pp. 435–443.

17



[11] D. Coppersmith, J. Stern, and S. Vaudenay, The Security of the Birational Permutation Signature
Schemes, Journal of Cryptology, 10(3), 1997, pp. 207–221.

[12] N. Courtois, Generic Attacks and the Security of Quartz, PKC 2003, LNCS V. 2567, pp. 351–364.

[13] N. Courtois, Algebraic Attacks over GF(2k), Cryptanalysis of HFE Challenge 2 and SFLASHv2, PKC
’04, LNCS V. 2947, pp. 201-217.

[14] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solving Overdefined Systems
of Multivariate Polynomial Equations, EUROCRYPT 2000, LNCS V. 1807, pp. 392–407.

[15] N. Courtois, L. Goubin, and J. Patarin, SFLASHv3, a Fast Asymmetric Signature Scheme, preprint avail-
able at http://eprint.iacr.org/2003/211.

[16] C. Diem, The XL-algorithm and a conjecture from commutative algebra, ASIACRYPT’04, to appear.

[17] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Info. Theory, vol. IT-22, no. 6,
pp. 644-654.
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A An Instance of a Differently-Formed Enhanced TTS

Each row in Tab. 5 specifies a central equation, for the initial equation of the two blocks are:

y8 = x8 + a8x7x8 + b8x6x9 + c8x5x10 + d8x4x11 + e8x3x12 + f8x1x2

y18 = x18 + a18x18x0 + b18x19x4 + c18x20x5 + d18x21x15 + e18x22x14 +

f18x23x13 + g18x24x12 + h18x25x11 + i18x26x10 + j18x27x9 + k18x7x8

We estimate this to have a security estimate of about 288 under Rank and Dual Rank attacks, but
still the same XL complexity of around 280.
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y 7 6 5 4 3 2 1 cross
8 8 9 10 11 12 1, 2
9 9 10 11 12 13 2, 3

10 10 11 12 13 14 3, 4
11 11 12 13 14 15 4, 5
12 12 13 14 15 16 5, 6
13 13 14 15 16 17 6, 2
14 14 15 16 17 8 1, 3
15 15 16 17 8 9 2, 4
16 16 17 8 9 10 3, 5
17 17 8 9 10 11 4, 6

y 18 19 20 21 22 23 24 25 26 27 cross
18 0 4 5 15 14 13 12 11 10 9 7, 8
19 10 0 3 4 16 15 14 13 12 11 8, 9
20 12 11 0 2 3 17 16 15 14 13 9, 10
21 14 13 12 0 5 2 8 17 16 15 10, 11
22 16 15 14 13 0 4 5 9 8 17 11, 12
23 9 8 17 16 15 0 3 4 11 10 12, 13
24 11 10 9 8 17 16 0 2 3 12 13, 14
25 13 12 11 10 9 8 17 0 5 2 14, 15
26 2 14 13 12 11 10 9 8 0 4 15, 16
27 3 5 15 14 13 12 11 10 9 0 16, 17

Table 5: A Different Central Map for Enhanced TTS

B Assessing Tame-Like Signatures for XL-Like Attacks

XL-like attacks are techniques in which the original equations are multiplied by all monomials up to
some degree, then all these resultant equations is solved as a linear system of equation considering
every monomial to be a different independent variable. If there are enough independent equations,
the result is a solution of the system if possible, and a return value of “impossible” otherwise. To
help the method terminate earlier, it is a good idea to guess at some variables (FXL variant).

This approach was first proposed in [14] as a refinement of its precursor, relinearization ([26]).
XL only operates on determined or over-determined systems, i.e. `1(x) = · · · `m(x) = 0, where

n(≤ m) is the dimension of x. With more variables than equations, we must guess at enough
variables so as to have at least as many equations as variables. XL at degree D then goes:

1. Take all monomials xb = xb1
1 xb2

2 · · ·xbn
n with total degree |b| =

∑

i bi ≤ D − 2, and generate
all equations xb`i(x) = 0. Call these equations R(D).

2. The set T = T (D) of monomials of total degree ≤ D has T =
(

n+D

D

)

elements. Run an
elimination on the R = m

(

n+D−2
D

)

equations R(D), treating each xb ∈ T (D) as a variable. I ,
The number of independent equations cannot exceed T − 1 when the system is solvable. We
may conclude the elimination with an equation to solve for x1 (say), if the row echelon form
has a final equation containing up to the D + 1 terms 1, x1, . . . , xD

1 . To achieve this we only
need I ≥ T − D (instead of T = I − 1).

3. If necessary, solve the univariate equation giving x1, and repeat as needed.

Since there are T monomials (including 1) and R equations, the time complexity of XL is whatever
time to solve a system of equations that big. For some rave reviews, see [13] and other papers.

We have however some reason and expert opinions to believe ([9, 41]), that the general approach
is slightly overhyped. There are two problems with XL-like attacks. One is the so-called dim H∞

parameter, which needs to be eliminated, usually by guessing at variables. The other is that there
are more dependencies in the system of equations than what the author counted in [13] and earlier
papers. For example, attacking Enhanced TTS with n = 28, m = 20 even after guessing at thirteen
variables, (i.e. n = 15, m = 20) using a maximum degree of 6 (resp. 5), there are 54264 (resp.
15504) monomials and only 52820 (resp. 13280) of them are independent out of 77520 equations
found. One must get to a degree of 7, in which case using the formulas in [13] and using some
blocking optimizations, it takes > 285 AES block equivalents to do the entire cryptanalysis.
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According to our computations ([16, 47, 49]) a rough guide is for XL methods to operate only if

[tD]
{

(1 − t)m−n−1 (1 + t)m
}

=

m−n−1
∑

j=0

(−1)j

(

m − n − 1

j

)(

m

D − j

)

goes negative. According to the latest reports, the advanced Gröbner Bases methods of F4 and F5

are almost equivalent to the XL+XL2 combination. These algorithms (XL+XL2, F4, and F5) have
a slightly lower operative degree, but cannot use sparse matrix algorithms as well as the original
XL. Furthermore, all of these must be combined with guessing at an optimized number of variables.
Please see [49] for an analysis. Assuming Strassen-like elimination of order lg 7 ≈ 2.8, XL/FXL
will beat F4 and F5 by a small margin.

If we assume that we don’t have to worry about the dim H∞ situation and consider all sorts of
optimizations including the sparse matrix techniques, the best time bounds we can get (which are
computed case-by-case) are as listed in Table 1. Thus, the minimal XL-Like Attack time bounds are
roughly concordant with that of Dual Rank Attack time bounds.
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