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Abstract

To date, a group signature construction which is both efficient and proven secure in a formal model has not
been suggested. In this work we give the first such construction. To this end we present a new formal model
for group signatures capturing the state-of-the-art requirements in the area. We then construct an efficient
scheme and prove its security. Our methods require novel cryptographic constructs and new number-theoretic
machinery for arguing security over the group of quadratic residues modulo a composite when its factorization
is known. Along the way, we unveil properties which go beyond the state-of-the-art-scheme [Ateniese et
al.2000] and reveal subtle points regarding the assumptions and requirements that underly efficient group
signature schemes.
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1 Introduction

The notion ofgroup signatureis a useful anonymous non-repudiable credential primitive that was introduced by
Chaum and Van Heyst [CvH91]. This primitive involves a group of users, each holding a membership certificate
that allows a user to issue a publicly verifiable signature which hides the identity of the signer within the group.
The public-verification procedure employs only the public-key of the group. Furthermore, in a case of any dispute
or abuse, it is possible for the group manager (GM) to “open” an individual signature and reveal the identity
of its originator. Constructing an efficient scalable group signature has been a research target for many years
since its introduction, see e.g., [CP94, CS97, CM98, CM99, Cam97, KP98, AT99, ACJT00, CL01, KY03]. The
current state of the art is the scalable scheme of Ateniese, Camenisch, Joye and Tsudik [ACJT00] that provides
constant signature size and resistance to attacks by coalitions of users. This remarkable scheme was based
on a novel use of the DDH assumption combined with the Strong-RSA assumption over groups of unknown
order. Recently, Bellare, Micciancio and Warinschi [BMW03], noticing that [ACJT00] only prove a collection
of individual intuitive security properties1, advocated the need for a formal model for arguing the security of
group signature. This important observation is in line with the development of solid security notions in modern
cryptography. They also offered a model of a relaxed group signature primitive and a generic construction in
that model. Generic constructions are inefficient and many times are simpler than efficient constructions (that
are based on specific number theoretic problems). This is due to the fact that generic constructions can employ
(as a black box) the available heavy and powerful machinery of general zero-knowledge protocols and general
secure multi-party computations. Thus, generic constructions typically serve only as plausibility results for the
existence of a cryptographic primitive [Gol97].

The above state of affairs [ACJT00, BMW03] indicates that there exists a gap in the long avenue of research
efforts regarding the group signature primitive. This gap is typical in cryptography and is formed by a difference
between prohibitively expensive constructions secure in a formal sense and efficient more ad-hoc constructions.
In many cases, as indicated above, it is easier to come up with provably secure generic inefficient constructions
or to design efficient ad-hoc constructions. It is often much harder to construct an efficient implementation that is
proven secure within a formal model. To summarize the above, it is apparent that the following question remained
open till today:

Design anefficient group signature which isprovably securewithin a formal model.

One of our contributions is solving the above open question by, both, proposing a new formal model for group
signature which follows the [GMR84] paradigm, as well as providing an efficient provably secure construction.
Our construction is motivated by the [ACJT00]-scheme.

This contribution reveals numerous subtleties regarding what assumptions are actually necessary for achiev-
ing the security properties. For example, the anonymity property in our treatment is totally disassociated from any
factoring related assumption. Our investigation also reveals delicate issues regarding the proper formal modeling
of the group signature primitive with regards to the work of [BMW03]. For example, the need of formalizing
security against attack by any internal or external entity that is active in the scheme. Lack of such treatment, while
proper for the relaxed notion of group signature of [BMW03], is insufficient for proving the security of efficient
state-of-the-art schemes that follow the line of work of [ACJT00]. Our modeling follows our work [KTY04],
adapting it to the current setting.

1.1 Our Contributions

Below, we outline what this work achieves in more details.
1These properties include unforgeability, anonymity, coalition-resistance (the fact that coalitions of group members cannot produce

another membership certificate), exculpability (the fact that an adversarial group manager cannot produce a signature that opens to a
non-adversarial controlled user).
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1. MODELING. We present a new formal model that defines properties of schemes which share the nature of
the state-of-the-art efficient group signatures schemes [ACJT00]. The model captures all their security require-
ments and functions (e.g., interactively joining group members). Our model is based on our model of Traceable
Signatures [KTY04] which is the first formal model in the area of group signing without added trusted parties.
In particular, our model has the three types of attacks that involve the GM and the users as in [KTY04]. We
allow adversarial opening of signatures (see the next item). As in [KTY04], all the attacks are modeled as games
between the adversaries and a party called the interface. The interface represents the system in a real environment
and simulates the behavior of the system (a probabilistic polynomial time simulator) in the security proof. The
attacker gets oracle query capabilities to probe the state of the system and is also challenged with an attack task.
We note that this follows the approach of [GMR84] for modeling security of digital signatures.

2. ADVERSARIAL OPENING IN EFFICIENT SCHEMES. As mentioned above, our formal model extends the
security requirements given by the list of security properties of [ACJT00] by allowing the adversary to request
that the system opens signatures of its choice. In [ACJT00] opening of signatures was implicitly assumed to be
an internal operation of the GM. We note that such stronger adversarial capability was considered in the formal
model of [BMW03] and was explicitly left out in [KTY04]. For achieving an efficient scheme with adversarial
opening we needed to develop novel cryptographic constructs.

3. STRONGERANONYMITY PROPERTY. In the scheme of [ACJT00] anonymity is argued against an adversary
that is not allowed to corrupt the GM. This is a natural choice since in their scheme the GM holds the trapdoor
which provides the opening capability, namely an ElGamal key. The GM also holds the trapdoor that is required
to enroll users to the group, namely the factorization of an RSA-modulus. However, pragmatically, there is
no need to combine the GM function that manages group members (which in real life can be run by e.g., a
commercial company) with the opening authority function (which in real life can be run by a government entity).
To manage members the GM still needs to know the factorization. The opening authority, on the other hand, must
know the ElGamal key. This split of functions is not a relaxation of group signatures but rather a constraining
of the primitive. In fact, now we should allow the anonymity adversary tocorrupt the GM as well. For proving
security in the above stronger adversarial scenario, we had to develop a novel machinery for arguing security.

4. NUMBER-THEORETIC MACHINERY AND CRYPTOGRAPHICPRIMITIVES . The last two contributions above
required building cryptographic primitives over the set of quadratic residues modulon = pq that remain secure
when the factorization (into two strong primes)p, q is known to the adversary.

To this end, we investigate the Decisional Diffie Hellman Assumption over the quadratic residues modulon
and we prove that it remains hard even if the adversary knows the factorization. In fact, we prove that any adver-
sary that knows the factorizationp, q and solves the DDH problem over quadratic residues modulo a composite
n = pq, can be turned into a DDH-distinguisher for quadratic-residues modulo a prime number.

This result is of independent interest since it suggests that the DDH overQR(n) does not depend to the
factorization problem at all.

Also, the present work requires a CCA2 encryption mechanism that operates over the quadratic residues
modulon so that (i) encryption should not use the factorization ofn, (i.e., the factorization need not be a part
of the public-key), but on the other hand (ii) the factorization isknownto the attacker. In this work we derive
such a primitive in the form of an ElGamal variant following the general approach of twin encryption [NY90,
DDN91, FP01] which is CCA2 secure under the DDH assumption in the Random Oracle model (note that our
efficient group signature requires the random oracle anyway since it is derived from the Fiat-Shamir transform
[FS86, AABN02]).

5. EFFICIENT CONSTRUCTION. We provide an efficient construction of a group signature that is proven secure
in our model. While, we would like to note that our scheme is strongly influenced by [ACJT00] (and originally
we tried to rely on it as much as possible), our scheme, nevertheless, possesses certain subtle and important
differences. These differences enable the proof of security of our scheme whereas the scheme in [ACJT00]
cannot be proven secure in our model: There are many reasons for this, e.g., the [ACJT00]-scheme lacks an

4



appropriate CCA2 secure identity embedding mechanism. Moreover, our efficient construction can support (if
so desired), the separation of group management and opening capability as mentioned above. Finally we note
that a syntactically degenerated version of our construction (that retains its efficiency) can be proven secure in
the model of [BMW03] (and is, in fact, a relaxed group signature scheme of the type they have suggested).

6. UNDERPINNING PRINCIPLES. Some seemingly rather interesting results come from our investigation.
(i) Anonymity was argued in [ACJT00] to be based on the decisional Diffie-Hellman Assumption over Quadratic
Residues modulo a composite and given that the GM was assumed to be uncorrupted, the key-issuing trapdoor
(the factorization of the modulus) was not meant to be known to the adversary. As argued above, we prove that
anonymitystill holdswhen the adversary is given the factorization trapdoor (even when there is no separation of
group management and opening authority). Thus, we disassociate anonymity from the factoring problem.
(ii) In [ACJT00] the property of coalition resistance is shown based on the Strong-RSA assumption. In our
setting, we can refine the attack by an adversary corrupting a coalition of users into two cases:
(a) An attack where the coalition of users tries to frame another user, in which case the attack does not depend on
any factoring related assumption and is, therefore, disassociated from the Strong-RSA assumption. In this case
the GM can be part of the attacking coalition.
(b) An attack where a coalition tries to evade tracing, where the strong RSA assumption is needed; this is, of
course, an attack against the GM.

1.2 Organization

In section 2 we present some background useful tools and the intractability assumptions. In section 3 we investi-
gate the behavior of the DDH assumption over the quadratic residues modulo a composite when the factorization
is known to the distinguisher. In section 4 we discuss the kind of CCA2 security that will be required in our
setting (overQR(n) but with known factorization) and we present an efficient and provably secure construction
based on the ElGamal twin-encryption paradigm. In section 5 we present our security model and definitions and
in section 6 we give our construction and its proofs of correctness and security. In section 7 we present group sig-
natures with separated authorities (i.e., the GM and the opening authority – OA). In this setting, we demonstrate
how our construction can still be proven secure when assuming a stronger anonymity adversary that is allowed
to corrupt the GM in addition to users. Finally, in section 8 we discuss the interactive version of our scheme as
an identity escrow scheme.

2 Preliminaries

NOTATIONS. We will write PPT for probabilistic polynomial-time. IfD1 andD2 are two probability distributions
defined over the same support set that is parameterized byk we will write distA(D1,D2) to denote the distance
|Probx←D1 [A(x) = 1] − Probx←D2 [A(x) = 1]|. Note that typicallydistA will be expressed as a function of
k. If n is an integer, we will denote by[n] the set{1, . . . , n}. If we write a ≡n b for two integersa, b we mean
thatn dividesa − b or equivalently thata, b are the same element withinZn. A function f : IN → R will be
called negligible if for allc > 0 there exists akc such that for allk ≥ kc, f(k) < k−c. In this case we will write
f(k) = negl(k). If `, µ ∈ IN we will write S(2`, 2µ) for the set{2` − 2µ + 1, . . . , 2` + 2µ − 1}. PPT will stand
for “probabilistic polynomial time.”

Throughout the paper (unless noted otherwise) we will work over the group of quadratic residues modulo
n, denoted byQR(n), wheren = pq andp = 2p′ + 1 andq = 2q′ + 1 andp, q, p′, q′ prime numbers. All
operations are to be interpreted as modulon (unless noted otherwise). We will employ various related security
parameters (as introduced in the sequel); with respect to an entity we will useν as the security parameter to denote
a quantity proportional to the logarithm of the size of the entity. Next we define the Cryptographic Intractability
Assumptions that will be relevant in proving the security properties of our constructions.
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The first assumption is the Strong-RSA assumption. It is similar in nature to the assumption of the difficulty
of finding e-th roots of arbitrary elements inZ∗n with the difference that the exponente is not fixed (i.e., it is not
part of the instance).

Definition 1 Strong-RSA. Given a compositen (as described above), andz ∈ QR(n), it is infeasible to find
u ∈ Z∗n ande > 1 such thatue = z(modn), in time polynomial inν.

Note that the variant we employ above restricts the inputz to be a quadratic residue. This variant of Strong-
RSA has been discussed before [CS00], and by restricting the exponent solutions to be only odd numbers we have
that (i) it cannot be easier than the standard unrestricted Strong-RSA problem, but also (ii) it enjoys a random-self
reducibility property (see [CS00]).

The second assumption that we employ is the Decisional Diffie-Hellman Assumption (see e.g., [Bon98] for
a survey). We state it below for a general groupG and later on in definition 11 we will specialize this definition
to two specific groups.

Definition 2 Decisional Diffie-HellmanGiven a description of a cyclic groupG that includes a generatorg, a
DDH distinguisherA is a polynomial inν timePPTthat distinguishes the family of triples of the form〈gx, gy, gz〉
from the family of triples of the form〈gx, gy, gxy〉, wherex, y, z ∈R #G. TheDDH assumption suggests that
this advantage is a negligible function inν.

Finally, we will employ the discrete-logarithm assumption over the quadratic residues modulon with known
factorization (note that the discrete-logarithm problem is assumed to be hard even when the factorization is
known, assuming of course that the factors ofn are large primesp, q and wherep− 1 andq− 1 are non-smooth).

Definition 3 Discrete-Logarithm. Given two valuesa, b that belong to the set of quadratic residues modulon
with known factorization, so thatx ∈ [p′q′] : ax = b, find in time polynomial inν the integerx so thatax = b.

Conventions. (i) our proofs of knowledge will only be proven to work properly in the honest-verifier setting.
On the one hand, the honest-verifier setting is sufficient for producing signatures. On the other hand, even in
the general interactive setting the honest-verifier scenario can be enforced by assuming the existence, e.g., of a
beacon, or some other mechanism that can produce trusted randomness; alternatively the participants may execute
a coin flipping algorithm and use methods that transform the honest verifier proofs to a regular proofs. (ii) the
public parameters employed in our various protocol designs (e.g., the composite modulusn) will be assumed to
be selected honestly.

2.1 Auxiliary Lemmas

We prove below two auxiliary lemmas that will be useful later on. The first lemma is an extension of a well-
known lemma. This known lemma is case (i) in the proof, and is attributed to [Sha83]. Several variants and
extensions of this lemma have been used before (e.g., [CS00, CL02]).

Lemma 4 Let n = pq with p = 2p′ + 1 andq = 2q′ + 1 with p, q, p′, q′ all prime numbers. Suppose we know
y ∈ Z∗n, z ∈ QR(n) andt,m ∈ Z such thatyt ≡n zm with gcd(t,m) < t andt > 1 is an odd number. Then we
can finde > 1 andu ∈ Z∗n such thatz ≡n ue, or we can factorn.

Proof. Case (i):gcd(t,m) = 1 we can computeα, β ∈ Z such thatαt + βm = 1. From this, in turn, we obtain:

z = zαt+βm = (zα)t(zm)β = (zαyβ)t

and thus, we return as the solution to the challenge, the pair〈u, e〉 = 〈zαyβ, t〉.
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Case (ii): suppose thatgcd(t,m) = δ > 1. It follows thatδ ≤ min{|t|, |m|} and if t′ = t
δ andm′ = m

δ , it holds
that(yt′)δ ≡n (zm′

)δ.
Now observe that sincet is an odd number andzm ∈ QR(n) it must be the case thaty also belongs to

QR(n). Under the assumptiongcd(δ, p′q′) = 1 we know that the exponentiation-map overQR(n) defined as
fδ(a) = aδ(modn) is bijective (sincep′q′ is the order ofQR(n)), from which we obtain thatyt′ ≡n zm′

with
gcd(t′,m′) = 1; moreovert′ > 1 sincegcd(t,m) = δ < t. Thus, we reduced case (ii) to case (i).

Now suppose thatgcd(δ, p′q′) > 1. It follows thatδ is a multiple ofp′ (w.l.o.g.). Then we can factorn as
follows: choose a random integerw less thann; if gcd(w, n) > 1 then we are done; otherwise,w ∈ Z∗n and will
happen thatw is a square modulop = 2p′ + 1 with high probability, (since approximately half of the positive
integers less thann are squares modulop). It follows thatwp′ = (w

1
2 )2p′ = (w

1
2 )p−1 ≡p 1. Now compute the

integerU = wδ = wπp′( mod n), whereδ = πp′ for someπ ∈ Z. Sincen | U−wπp′ it follows thatp | U−wπp′

and as a result,U ≡p wπp′ ≡p (wp′)π ≡p 1. It follows that there exists anr ∈ Z such thatU − 1 = rp. Observe
that it has to be thatr < q sinceU < n. From this we obtain thatgcd(U − 1, n) = p. ut

The second lemma below is a probabilistic indistinguishability result that will be useful in the proof of
security of our construction.

Lemma 5 Letn be aν-bit compositen = (2p′ + 1)(2q′ + 1) anda, a0 ∈ QR(n) with a a generator. Consider
the following distributions overQR(n):

1. D1 with A ← ax wherex ←R [bn/4c].
2. D2 with A ← ax wherex ←R [n2].
3. D3 with A ← (a0a

x)1/e(modn) wherex ←R [bn/4c] and e a prime withe ←R S(2`, 2µ) − {p′, q′}
where`, µ ∈ IN with S(2`, 2µ) ⊆ [p′q′].

4. R with A ←R QR(n).

It holds thatdist(Di,R) = negl(ν) for all i = 1, 2, 3.

Proof. For the casei = 1, recall that the order ofQR(n) in Z∗n is p′q′ and thatn = (2p′ + 1)(2q′ + 1) =
4p′q′ + 2(p′ + q′) + 1. It follows thatbn/4c = p′q′ + p′−1

2 + q′−1
2 + 1. The dominant term in the statistical

distance of the two distributionsD1 andR is the fractionbn/4c−p′q′
bn/4c = p′+q′

bn/4c which is clearly negligible in the
parameterν.

Regarding the casei = 2, let us consider the general case for two integersA > B, of the distribution of the
random variableX mod B whenX ←R [A]. It follows that in this distributionA mod B elements ofZB are
assigned probability(bA/Bc + 1)/A andB − A mod B elements ofZB are assigned probabilitybA/Bc/A.
The dominant term in the statistical distance between this distribution and the uniform overZB is A mod B

A . For
the caseA = n2 andB = p′q′ we immediately have that the statistical distance is negligible.

Finally, regardingi = 3, we know from item 1, thatax with x ←R [bn/4c] is indistinguishable fromR. It
follows thata0a

x is indistinguishable fromR, and assuming thatgcd(e, p′q′) = 1 (ensured by the statement of the
theorem) it follows that the mapping inQR(n) defined asfe(a) = ae(modn) is bijective, thus the distribution
(a0a

x)1/e(modn) is statistically indistinguishable fromQR(n). This will be the case forany fixed choice of
e in the set(S(2`, 2µ) − {p′, q′}) ∩ {p | p is a prime}. Now if e is selected at random, the random variable
(a0a

x)1/e(modn) will also be indistinguishable fromR. ut

2.2 The Forking Lemma

Below we mention a general-purpose lemma that is instrumental in proving the security of signature schemes in
the random oracle setting that has been formulated by Pointcheval and Stern [PS00] as the “forking-lemma”:
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Lemma 6 (General Forking-Lemma). Consider be a probabilisticPPTP, a PPTpredicateQ and hash-function
H with range{0, 1}k thought of as a random oracle. The predicateQ satisfies the propertyQ(x) = > =⇒ (x =
〈ρ1, c, ρ2〉) ∧ (c = H(ρ1)). R is a process that given〈t, c〉 reprogramsH so thatH(t) = c. P is allowed to ask
queries onH and onR. Moreover, it is assumed thatP behaves in such a way so that queries〈t, c〉 submitted by
P toR adhere to the following conditions:

• The componentc is uniformly distributed over{0, 1}k.
• The componentt follows a probability distribution so that the probability of the occurrence of a specifict0

is bounded by2/2k.

Assume now thatPH,R(param) returns outputx such thatQ(x) = > with non-negligible probabilityε ≥
10(s + 1)(s + q)/2k, whereq is the number ofH-queries performed byP, ands is the number ofR queries.
Then, there exists aPPTP ′ so that ify ← P ′(param) it holds with probability1/9 (i) y = 〈ρ1, c, ρ2, c

′, ρ′2〉 (ii)
Q(〈ρ1, c, ρ2〉) = >, (iii) Q(〈ρ1, c

′, ρ2〉) = >, (iv) c 6= c′. The probabilities are taken over the choices forH, the
random coin tosses ofP and the random choice of the public-parametersparam.

The above fundamental lemma (slightly differently formulated) was investigated and proven in [PS00]. The
original lemma (as presented in [PS00]) allowed random oracle and signing queries. Nevertheless, it is apparent
in the arguments presented in [PS00] that signing queries submitted to a simulator machine can be abstracted as
random oracle “reprogramming” queries (i.e., the adversary submits signing queries to the simulator, who in turn
reprograms the random oracle). Note that the two conditions stated in our formulation above are essential due to
the way that the simulator treats signing queries in the proof of the original forking-lemma of [PS00] (as well as
the properties of the underlying signing scheme) enforce these conditions as well.

2.3 Discrete-Log Relation Sets and Signatures

Discrete-log relation sets were introduced in [KTY04] as a basic tool to plan complex proofs of zero-knowledge
over the set of quadratic residues modulon and will be useful in our designs. This type of proofs was motivated
and in fact unifies previous works on such proof systems, cf. [CM98, ACJT00].

Unlike [KTY04] here we use the tool of discrete-log relation sets in two alternate settings: when the factor-
ization is unknown (as originally employed in [KTY04]), and also when the factorization is known. Interestingly,
we need both cases and in fact we require a uniform protocol that would work smoothly under both scenarios.
To the best of our knowledge this is the first such proof system that is required to be operational in both domains
simultaneously. Let us first recall the definition of a discrete-log relation set:

Definition 7 A discrete-log relation setR with z relations overr variables andm objects is a set of relations de-
fined over the objectsA1, . . . , Am ∈ QR(n) and the free variablesα1, . . . , αr with the following specifications:
(1) Thei-th relation in the setR is specified by a tuple〈ai

1, . . . , a
i
m〉 so that eachai

j is selected to be one of the
free variables{α1, . . . , αr} or an element ofZ. Thez ×m matrix [ai

j ]i,j will be denoted byDR or simplyD.

The relation is to be interpreted as
∏m

j=1 A
ai

j

j = 1. (2) Every free variableαj is assumed to take values in a finite

integer rangeS(2`j , 2µj ) where`j , µj ≥ 0.

We will writeR(α1, . . . , αr) to denote the conjunction of all relations
∏m

j=1 A
ai

j

j = 1 that are included inR.

A discrete-log relation setR is said to be triangular, if for each relationi containing the free variables
αw, αw1 , . . . , αwb

it holds that the free-variablesαw1 , . . . , αwb
were contained in relations1, . . . , i − 1. In

[KTY04] a 3-move honest verifier zero-knowledge proof (see e.g. [CDS94]) was designed that allows to a
prover that knows witnessesx1, . . . , xr such thatR(x1, . . . , xr) = 1 to prove knowledge of these values.
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Theorem 8 For any discrete-log relation setR there exists a 3-move protocol (figure 1) that satisfies (i) com-
pleteness and (ii) honest-verifier zero-knowledge. (iii) assuming that the factorization ofn = pq is unknown,
given two accepting conversations with the same first move, it is possible to extract a witness for a triangularDR

or any prover generating accepting conversations can be turned to a factorization algorithm;
Alternatively, (iii′) assuming the factorization ofn = pq is known, given two accepting conversations with the

same first move, it is possible to extract a witness for any discrete-log relation set assuming that2k < min{p′, q′}
(wherek is the length of the challenge).

Proof. Items (i), (ii), (iii) were proven in [KTY04].
We note that (i) and (ii) are unconditional. This is immediate for completeness, where regarding honest-

verifier zero-knowledge, in [KTY04] this property is proven in the statistical sense. As a result, knowledge of the
factorization ofn does not alter the argumentation for (i) and (ii).

Regarding property (iii′) we remark that in the soundness argument (iii), the factorization is used only as a
tool to ensure that if a prover generates accepting conversations, some integers formed by the prover’s answers
divide each other (and if not, a factorization can be found). This way of arguing about soundness was put forth in
[FO98] to deal with the fact that the underlying group is of unknown order. In the known factorization setting the
order ofQR(n) is known and thus one can show soundness more easily (e.g., [CDS94]); the only thing that needs
to be ensured is that challengesc ∈ {0, 1}∗ and differences of challenges (as integers) are invertible modulop′q′,
something guaranteed by the condition2k < min{p′, q′}. ut

A signature based on a proof of knowledge based on a discrete-log relation set can be obtained by applying
the Fiat-Shamir transform [FS86]. We detail this transformation below. LetG be a hash function with range
{0, 1}k andD the matrix of some discrete-log relation setR over the base elementsA1, . . . , Am ∈ QR(n).
The proof of knowledge of figure 1 can be made into a signature as follows: given a messageM , the verifier’s
challenge in the proof of knowledge will be computed asc ← G(M,A1, . . . , Am, B1, . . . , Bz) using the hashG.
The signature onM will be denoted assgnD

G (M) and computed as〈c, s1, . . . , sr〉wheres1, . . . , sr are computed
as in the figure 1 andc is the hashG(M,A1, . . . , Am, B1, . . . , Bz).

The verification algorithmverD
G on a signature〈c, s1, . . . , sr〉 for a messageM is implemented by the

following check: c
?= G(M,A1, . . . , Am, B1, . . . , Bz), where eachBi is computed by the verifier asBi =

(
∏

j:ai
j∈Z A

ai
j

j

∏
j:∃w,ai

j=αw
A2`w

j )−c
∏

j:∃w,ai
j=αw

Asw
j , for i = 1, . . . , z.

The security of the Fiat-Shamir signature construction [FS86] was investigated by [PS00] as was noted above.
Note that the proof of knowledge of figure 1 also enforces interval constraints on the witnesses. In partic-

ular if proving knowledge of a witnessx ∈ S(2`, 2µ) the proof ensures that the witness belongs to the range
S(2`, 2ε(µ+k)+2). This constraint comes “for free” in the soundness proof. If tighter integer ranges are needed
they can also be achieved at the cost of making the proof slightly longer by employing [Bou00]. The tightness
achieved by the proof for discrete-log relation sets itself will be sufficient for our designs.

3 Decisional Diffie Hellman overQR(n) with known Factorization

Our constructions will require the investigation of the number-theoretic machinery presented in this section.
Letn be a composite,n = pq with p = 2p′+1 andq = 2q′+1 (p, q, p′, q′ primes). Recall that elements ofZ∗n

are in a 1-1 correspondence with the setZ∗p×Z∗q . Indeed, given〈b, c〉 ∈ Z∗p×Z∗q , consider the system of equations
x ≡ b(modp) andx ≡ c(modq). Using Chinese remaindering we can construct a solution of the above system
sincegcd(p, q) = 1 and the solution will be unique insideZ∗n. Alternatively for anya ∈ Z∗n we can find the
corresponding pair〈b, c〉 in Z∗p × Z∗q by computingb = a(modp) andc = a(modq) (note thatgcd(a, n) = 1
implies thatb 6≡ 0(modp) and c 6≡ 0(modq). The mappingρ from Z∗p × Z∗q to Z∗n is called the Chinese
remaindering mapping. Observe thatρ preserves quadratic residuosity: indeedρ(QR(p)×QR(q)) = QR(n).

9



Proof of knowledge for a Discrete-Log Relation SetR
objectsA1, . . . , Am, r free-variablesα1, . . . , αr, parameters:ε > 1, k ∈ IN,

Each variableαj takes values in the rangeS(2`j , 2µj )
P proves knowledge of the witnessesxj ∈ S(2`j , 2ε(µj+k)+2) s.t.R(x1, . . . , xr) = 1

P V
for w ∈ {1, . . . , r} selecttw ∈R ±{0, 1}ε(µw+k)

for i ∈ {1, . . . , z} setBi =
∏

j:∃w,ai
j=αw

Atw
j

B1,...,Bz−→ c ∈R {0, 1}k

c←−
for w ∈ {1, . . . , r} setsw = tw − c · (xw − 2`w)

s1,...,sr−→ Verify:
for w ∈ {1, . . . , r}

sw ∈? ±{0, 1}ε(µw+k)+1

for i ∈ {1, . . . , z}
∏

j:∃w,ai
j=αw

Asw
j

?= Bi(
∏

j:ai
j∈Z A

ai
j

j

∏
j:∃w,ai

j=αw
A2`w

j )c

Figure 1: Proof of Knowledge for a Discrete-Log relation setR (from [KTY04]). Regarding the length of the
proof we note that the proof requires the first communication flow from the prover to the verifier to be of sizez
QR(n) elements (wherez is the number of relations inR) and the second communication flow from the prover
to the verifier to be of total bit-length

∑r
w=1(ε(µw + k) + 1).

The following two lemmas will be useful in the sequel as they show how the Chinese remaindering mapping
behaves when given inputs expressed as powers inside the two groupsQR(p) andQR(q). In essence it shows
that there is a simple way to define the discrete-logarithm of the result of the mapping if we know the discrete-
logarithms of the two inputs to the mapping.

Lemma 9 Let g1, g2 be generators of the groupsQR(p) and QR(q) respectively, where the groups are de-
fined as above. Then, ifβ = ρ(gx1

1 , gx2
2 ), whereρ is the Chinese remaindering mapping, it holds thatβ =

αq′x1+p′x2(modn) whereα = ρ(g(q′)−1

1 , g
(p′)−1

2 ) is a generator ofQR(n).

Proof. First we show thatα is a generator ofQR(n). Assume without loss of generality thatp′ > q′. Then it

holds thatq′ ∈ Z∗p′ and as a resultq′ is an invertible element ofZ∗p′ . It follows thatg′1 = g
(q′)−1

1 is well defined
and is a generator ofQR(p) (sinceg1 is a generator ofQR(p)). Furthermorep′(modq′) ∈ Z∗q′ since it cannot
be the case thatp′ ≡q′ 0 as this would mean that eitherp′ = q′ or p′ is not prime. It follows thatp′ has an

inverse moduloq′ and as a resultg′2 = g
(p′)−1

2 is well defined and is a generator ofQR(q) (sinceg2 is a generator
of QR(q)). Finally we remark that ifg1, g2 are randomly selected generators ofQR(p), QR(q) respectively, it
holds thatg′1, g

′
2 are uniformly distributed over all generators.

Sinceα = ρ(g′1, g
′
2), it follows thatα ≡p g′1(p) andα ≡q g′2(q). It is easy to see thatα must be a generator

unless the order ofα insideZ∗n is divisible by eitherp′ or q′; but this can only happen ifα ≡p 1 or α ≡q 1
something not possible unless eitherg′1 ≡p 1 or g′2 ≡q 1. This case is excluded given thatg′1, g

′
2 are generators

of their respective groupsQR(p) andQR(q). This completes the argumentation thatα is a generator ofQR(n).
Now, sinceβ = ρ(gx1

1 , gx2
2 ) it follows thatβ ≡ gx1

1 (p) andβ ≡ gx2
2 (q); Using this fact together with the

properties ofα we have:

αq′x1+p′x2 ≡p αq′x1 ≡p (g(q′)−1

1 )q′x1 ≡p gx1
1

αq′x1+p′x2 ≡q αp′x2 ≡p (g(p′)−1

2 )p′x2 ≡p gx2
2

10



Due to the uniqueness of the Chinese remaindering solution insideZ∗n it follows thatβ = αq′x1+p′x2(modn) is
the solution of the system. ut

Lemma 10 Fix a generatorα of QR(n) and an integert ∈ IN. The mappingτα : Zp′ × Zq′ → QR(n),
with τα(x1, x2) = α(q′)tx1+(p′)tx2 is a bijection. The inverse mappingτ−1

α is defined asτ−1
α (αx) = 〈(q′)−tx

mod p′, (p′)−tx mod q′〉.

Proof. Let 〈x1, x2〉, 〈x′1, x′2〉 ∈ Zp′ × Zq′ be two tuples withτ(x1, x2) = τ(x′1, x
′
2). It follows that(q′)tx1 +

(p′)tx2 ≡order(α) (q′)tx′1 + (p′)tx′2; sinceα is a generator,p′q′ | (q′)t(x1 − x′1) + (p′)t(x2 − x′2), from which
we havep′ | (q′)t(x1 − x′1) which impliesp′ | x1 − x′1, i.e.,x1 = x′1. In a similar fashion we show thatx2 = x′2.
The onto property follows immediately from the number of elements of the domain and the range.

Regarding the inverse, defineq∗, p∗ to be integers inZp′ ,Zq′ respectively, so thatq∗(q′)t ≡p′ 1 andp∗(p′)t ≡q′

1. Moreover lety1 = q∗x mod p′ andy2 = p∗x mod q′. We can find integersπ1, π2 so thatq∗x = π1p
′ + y1

andp∗x = π2q
′ + y2. We will show that(q′)ty1 + (p′)ty2 ≡p′q′ x which will complete the proof.

In order forp′q′ to divide(q′)ty1+(p′)ty2−x it should hold that bothp′, q′ divide(q′)ty1+(p′)ty2−x. Indeed,
p′ divides(q′)ty1 +(p′)ty2−x since(q′)ty1 +(p′)ty2−x = (q′)t(q∗x−π1p

′)+p′y2−x ≡p′ (q′)tq∗x−x ≡p′ 0.
In a similar fashion we show thatq′ divides(q′)ty1 + (p′)ty2 − x. From these two facts it follows immediately
thatτ(τ−1(αx)) = τ(〈y1, y2〉) = αx. ut

Let desc(1ν) be a PPT algorithm, called a group descriptor, that on input1ν it outputs a description of a
cyclic groupG denoted bỹdG. Depending on the group,̃dG may have many entries; in our setting it will include
a generator ofG, denoted bỹdG.gen and the order ofG denoted bỹdG.ord. We require that2ν−1 ≤ d̃G.ord < 2ν ,
i.e., the order ofG is aν-bit number with the first bit set. AdditionallỹdG contains the necessary information
that is required to implement multiplication overG. We will be interested in the following two group descriptors:

• descp: Given1ν find aν-bit primep′ > 2ν−1 for which it holds thatp = 2p′ + 1 andp is also prime. Letg
be any quadratic residue modulop. We setQR(p) to be the group of quadratic residues modulop (which
in this case is of orderp′ and is generated byg). The descriptordescp returns〈g, p, p′〉 and it holds that if
d̃ ← descp(1ν), d̃.ord = p′ andd̃.gen = g.

• descc: Given ν find two distinct primesp′, q′ of bit-length ν/2 so thatp′q′ is a ν-bit number that is
greater than2ν−1 and so that there exist primesp, q such thatp = 2p′ + 1 andq = 2q′ + 1. Let g be
any quadratic residue modulon that is a generator of the group ofQR(n) (such element can be found
easily). The descriptordescc returns〈α, n, p, q, p′, q′〉 and it holds that ifd̃ ← descc(1ν), d̃.ord = p′q′

and d̃.gen = α. The implementation ofdescc that we will consider is the following: executedescp

twice, to obtaind̃1 = 〈g1, p, p′〉 and d̃2 = 〈g2, q, q
′〉 with p 6= q, and setd̃ = 〈g, n = pq, p, q, p′, q′〉

whereα = ρ(g(q′)−1

1 , g
(p′)−1

2 ). For such a descriptioñd we will call the descriptions̃d1 andd̃2, the prime
coordinates of̃d.

Now we proceed to define the Decisional Diffie Hellman Problem.

Definition 11 A Decisional Diffie Hellman (DDH) distinguisher for a group descriptordesc is a PPT algorithm
A with range the set{0, 1}; the advantage of the distinguisher is defined as follows:

AdvDDH
desc,A(ν) = distA(Ddesc

ν ,Rdesc
ν )

whereDdesc
ν contains elements of the form〈d̃, gx, gy, gx·y〉 whered̃ ← desc(1ν), g = d̃.gen andx, y ←R [d̃.ord],

andRdesc
ν contains elements of the form〈d̃, gx, gy, gz〉 whered̃ ← desc(1ν), g = d̃.gen andx, y, z ←R [d̃.ord].

Finally we define the overall advantage quantified over all distinguishers as follows:

AdvDDH
desc (ν) = max

PPTAAdvDDH
desc,A(ν)

11



The main result of this section is the theorem below that shows that the DDH overQR(n) with known
factorization is essentially no easier than the DDH over the prime coordinates ofQR(n). The proof of the
theorem is based on the construction of a mapping of DDH triples drawn from the two prime coordinate groups
of QR(n) into DDH triples ofQR(n) that is shown in the following lemma:

Lemma 12 Let d̃ ← descc(1ν) with d̃1, d̃2 ← descp(1ν/2), its two prime coordinates, such thatd̃1 = 〈g1, p, p′〉
and d̃2 = 〈g2, q, q

′〉. The mappingρ∗ as follows:

ρ∗(〈d̃1, A1, B1, C1〉, 〈d̃2, A2, B2, C2〉) =df 〈d̃, ρ(A1, A2), ρ(B1, B2), ρ((C1)q′ , (C2)p′)〉

satisfies the properties (i)ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ) ∼= Ddescc
ν and (ii) ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 ) ∼= Rdescc
ν , where∼= stands for

statistically indistinguishable.
The mappingρ∗ will return ⊥ in cased̃1.ord = d̃2.ord. This is a negligible probability event when selecting

d̃1, d̃2 at random fromdescp and is the event that contributes the negligible statistical difference in properties (i)
and (ii).

Proof. Observe that ifA1 = gx1
1 , B1 = gy1

1 , C1 = gx1y1
1 andA2 = gx2

2 , B2 = gy2
2 , C2 = gx2y2

1 , based on the
properties of the mappingρ shown in lemma 9 it follows that

ρ(A1, A2) = αq′x1+p′x2 and ρ(B1, B2) = αq′y1+p′y2

ρ((C1)q′ , (C2)p′) = α(q′)2x1y1+(p′)2x2y2

Now we show that if〈A1, B1, C1〉 is a DDH triple fromd̃1, and〈A2, B2, C2〉 is a DDH triple fromd̃2 then
〈A, B,C〉 is a DDH triple fromd̃ that hasd̃1 andd̃2 as its two prime coordinates:

αlogα A logα B = α(q′x1+p′x2)(q′y1+p′y2) = α(q′)2x1y1+(p′)2x2y2+p′q′(x1y2+x2y1) ≡n α(q′)2x1y1+(p′)2x2y2 = C

From the above and lemma 10 we can deduce easily thatρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ) = Ddescc
ν . i.e., the distribution

defined byρ∗ when applied to two distributions of DDH triples fromDdescp

ν/2 over the respective groups is statisti-

cally close to the distributionDdescc
ν . This completes the proof for property (i) of the lemma. Regarding property

(ii), observe that ifA1 = gx1
1 , B1 = gy1

1 , C1 = gz1
1 andA2 = gx2

2 , B2 = gy2
2 , C2 = gz2

1 , based on the properties
of the mappingρ shown in lemma 9 it follows that

ρ(A1, A2) = αq′x1+p′x2 and ρ(B1, B2) = αq′y1+p′y2

ρ((C1)q′ , (C2)p′) = α(q′)2z1+(p′)2z2

and thusρ∗(Rdescp

ν/2 ,Rdescp

ν/2 ) = Rdescc
ν follows easily from lemma 10. ut

Theorem 13 AdvDDH
descc

(ν) ≤ 2AdvDDH
descp

(ν/2).

Proof. LetA be any DDH-distinguisher fordescc. Consider the following PPTA1: A1 takes as input a descrip-
tion d̃1 ← descp(1ν/2), with d̃1 = 〈g1, p, p′〉 and a tripleτ1 of QR(p); A1 operates as follows: then samples a

quadruple〈d̃2, τ2〉 ofDdescp

ν/2 and then simulatesA on inputρ∗(〈d̃1, τ1〉, 〈d̃2, τ2〉), whereρ∗ is the mapping defined

in lemma 12. Using property (i) of lemma 12, we have thatDdescc
ν

∼= ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ) and thus,

(Fact 1) distA(Ddescc
ν , ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 )) = AdvDDH
descp,A1

(ν/2) ≤ AdvDDH
descp

(ν/2)

12



Consider now the PPTA2 that takes as input a descriptioñd2 ← descp(1ν/2) with d̃2 = 〈g2, q, q
′〉 and a tripleτ2

overQR(q). A2 samples a quadruple〈d̃1, τ1〉 of Rdescp

ν/2 and simulatesA on inputρ∗(〈d̃1, τ1〉, 〈d̃2, τ2〉). Using

property (ii) of lemma 12 we have thatRdescc
ν

∼= ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 ) and thus,

(Fact 2) distA(ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 ),Rdescc
ν ) = AdvDDH

descp,A2
(ν/2) ≤ AdvDDH

descp
(ν/2)

Finally by applying the triangle inequality to facts 1 and 2 above, we obtain:

AdvDDH
A,descc

(ν) = distA(Ddescc
ν ,Rdescc

ν ) ≤ 2AdvDDH
descp

(ν/2)

Since the above holds for an arbitrary choice ofA the theorem follows. ut
Then we proceed to state explicitly the two variants of the assumption:

Definition 14 The following are two Decisional Diffie Hellman Assumptions:• The DDH assumption over
quadratic residues for groups of prime order (DDH-Prime) asserts that:

AdvDDH
descp

(ν) = negl(ν)

• The DDH assumption over quadratic residues for groups of composite order with known Factorization (DDH-
Comp-KF) asserts that:

AdvDDH
descc

(ν) = negl(ν)

Theorem 15 DDH-Prime =⇒ DDH-Comp-KF.

Proof. The DDH assumption over the quadratic residues for prime order suggests that for allc > 0 there
exists aνc ∈ Z such thatAdvDDH

descp
(ν) < ν−c for all ν ≥ νc. Now we have to show that for anyc > 0 we

can find some value forν beyond which it holds thatAdvDDH
descc

(ν) < ν−c. Fix some arbitraryc > 0. Let
ν2c be such that for allν ≥ ν2c it holds thatAdvDDH

descp
(ν) < ν−2c. Using theorem 13 we have that for all

ν ≥ ν2c, AdvDDH
descc

(ν) ≤ 2AdvDDH
descp

(ν/2) < 2(ν/2)−2c = 22c+1/ν2c < ν−c, where the last inequality holds if

ν >
c
√

22c+1. We conclude that for anyc it holds thatAdvDDH
descc

(ν) < ν−c, provided thatν ≥ max{ c
√

22c+1, ν2c}.
ut

4 CCA2 PK-Encryption over QR(n) with known factorization

Our constructions will require an identity embedding mechanism that is CCA2 secure; such a mechanism is
presented in this section.

A public-key encryption scheme comprises three procedures〈Gen, Enc, Dec〉. The syntax of these proce-
dures is as follows:Gen(1ν) returns a pair〈pk, sk〉 that constitutes the public-key and secret-key of the scheme
respectively. The probabilistic encryption functionEnc takes as input the parameter1ν , a public-keypk and a
messagem and returns a ciphertextψ. The decryption functionDec takes as input a secret-keysk and a ci-
phertextψ and returns either the corresponding plaintextm, or the special failure value⊥. The soundness of
a public-key encryption requires that for any〈pk, sk〉, Dec(sk, Enc(1ν , pk,m)) = m with very high probability
in the security parameterν (preferably always). There are various notions of security for public-key encryption
[GM84, NY90, RS92, DDN00], below we will be interested in the so-calledCPA andCCA2 security in the
indistinguishability sense. For completeness we define these notions below:

A CCA2 adversaryA against a public-key encryption scheme〈Gen, Enc, Dec〉 is a PPT predicate with range
in {0, 1} that is thought to operate in the following game:

13



The CCA2 GameGA
cca2 for security parameterν (denoted byGA

cca2(1
ν)):

1. 〈pk, sk〉 ← Gen(1ν);
2. 〈aux, m0,m1〉 ← ADec(sk,·)(choose, 1ν , pk)
3. Chooseb ←R {0, 1};
4. Setψ∗ ← Enc(1ν , pk,mb);
5. SetDec¬ψ∗(sk, x) to be “if x 6= ψ∗ then return Dec(s, x) else return ⊥”;

6. b∗ ← ADec¬ψ∗ [sk,·](guess, aux, ψ∗);
7. if b = b∗ return> else return⊥;

A CPA adversaryA operates as above but is denied access to theDec oracles in steps 2 and 6 in the above
game. The corresponding restricted game is calledGA

cpa.

Definition 16 For X ∈ {cca2, cpa}, A public-key encryption scheme satisfiesX-security if for anyPPTpredicate
A it holds that2Prob[GA

X (1ν) = >]− 1 = negl(ν).

4.1 An ElGamal CCA2 variant over QR(n) with known factorization in the RO Model

Consider the following cryptosystem〈Genqr, Encqr, Decqr〉:
• The key-generatorGenqr on input1ν samples the descriptioñd = 〈g, n, p, q, p′, q′〉 ← descc(1ν), selects a

valuex ←R [p′q′] and outputspk = 〈g, n, p, q, h = gx〉 andsk = x.
• The encryption functionEncqr operates as follows: givenM ∈ QR(n), it selectsr ←R [bn/4c] and

returns the pair〈gr, hrM〉.
• The decryption operationDecqr is given〈G,H〉 and returnsG−xH(modn).
Note that this cryptosystem is an ElGamal variant over quadratic residues modulo a composite, so that

(i) the factorization is available to the adversary, but:
(ii) the factorization is not necessary for encryption.

Theorem 17 The cryptosystem〈Genqr, Encqr, Decqr〉 described above satisfiesCPA-security under the assump-
tion DDH-Compo-KF, and thus under the assumptionDDH-Prime (theorem 15).

Proof. The proof ofCPA-security for the ElGamal variant we define is similar to the proof ofCPA-security for
the proof of semantic security for the regular ElGamal encryption, see [TY98]. ut

We remark that ElGamal variants over composite order groups have been considered before, e.g., [McC88];
in the setup that was considered the adversary was denied the factorization and security properties of the cryp-
tosystem were associated with the factoring assumption. Our variant above, on the other hand, shows that the
semantic security (in the sense ofCPA-security) of the composite modulus ElGamal variant we define still holds
under the standard prime-order Decisional Diffie-Hellman assumptionDDH-Prime.

Now let us turn our attention to achievingCCA2 security in the above setting. Double encryption has been
employed as a tool to obtain chosen-ciphertext security [NY90]. The “twin-conversion” has been formalized in
[FP01] and transforms aCPA-secure cryptosystem into aCCA2-cryptosystem〈Gen′, Enc′, Dec′〉 as follows:

• Gen′ performs two independent executions ofGen to obtain the public-keypk′ = 〈pk1, pk2〉 and the secret-
keyssk′ = 〈sk1, sk2〉.

• The encryption algorithmEnc′, given a plaintextm, it outputs

Enc′(pk′,m) = 〈c1, c2, σ〉 = 〈Enc(pk1,m), Enc(pk2,m), σ〉

whereσ is a non-interactive proof that shows that the two ciphertext outputs ofEnc′, namelyc1, c2, together
with the public-keypk′ belong to the languageL = {〈pk1, pk2, Enc(pk1, m), Enc(pk2,m)〉 | m}.
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• The decryptionDec′ verifies the non-interactive proof of language membership and if it is correct it returns
the decryption of one of the two ciphertexts; otherwiseDec′ returns⊥.

In [FP01] the following theorem was shown:

Theorem 18 [FP01] The cryptosystem〈Gen′, Enc′, Dec′〉 described above isCCA2-secure provided that (i) the
underlying cryptosystem〈Gen, Enc, Dec〉 is CPA-secure, and (ii) the non-interactive proof of language member-
ship employed inEnc′ is simulation-sound.

A non-interactive proof of language-membership for a languageL is called simulation-sound [Sah99] if it is
hard for an adversary that possesses a pair〈x∗, c∗〉 so thatc∗ is a valid noninteractive proof of the factx ∈ L
to produce another pair〈x, c〉 for anyx 6∈ L (i.e., the adversary should not be able to a forge a proof). More
formally, a proof of language membership will be called simulation-sound, if for all PPTA it holds that the
probabilitySuccsim−nizk

A = Prob[〈x, c〉 ← A(x∗, c∗) | x 6∈ L ∧ 〈x, c〉 6= 〈x∗, c∗〉] is negligible.
Below we apply the twin-transform to the ElGamal variant we presented in the beginning of the section,

from now on we work in the random oracle model (the hash function will be treated as idealized hash which is a
random oracle):

• Gen′qr samples〈g, n, p, q, p′, q′〉 ← descc(1ν), selectsx1, x2 ←R [p′q′] and returns thepk′ = 〈g, n, p, q, y1 =
gx1 , y2 = gx2〉 and the secret-keysk′ = 〈x1, x2〉.

• The encryptionEnc′qr: in order to encrypt a messagem, we form the two ciphertexts〈gr1 , yr1
1 m〉 and

〈gr2 , yr2
1 m〉 with r1, r2 ← [bn/4c] and we attach a proof of language membership for the language:

Lqr = {〈n, g, y1, y2, 〈gr1 , yr2
1 m〉, 〈gr2 , yr2

2 m〉〉 | r1, r2 ∈ [bn/4c],m ∈ QR(n)}
Note that we want to preserve the property that encryption does not use the factorization ofn. In order to
prove language membership of a tuple〈n, g, y1, y2, 〈G1, Y1〉, 〈G2, Y2〉〉 toLqr it suffices to present a proof
of knowledge for the discrete-log relation set (see section 2.3)〈ρ1, 0, 0,−1, 0, 0, 0〉, 〈ρ2, 0, 0, 0, 0,−1, 0〉,
〈0, ρ1, ρ2, 0, 1, 0,−1〉 defined over the base elementsg, (y1)−1, y2, G1, Y1, G2, Y2.

It follows that the output ofEnc′qr is of the form〈G1, Y1, G2, Y2, π〉, whereπ is the non-interactive proof
of language membership inLqr. In definition 19 below we show how the proofπ is derived from the
methodology of section 2.3.

• The decryptionDec′qr is as in the twin conversion description.

Definition 19 The proof of language membership forLqr. Assuming that the valuesr1, r2 ∈ S(2`, 2µ), where
`, µ are parameters such thatS(2`, 2µ) ∼= [bn/4c], the proof of knowledge of a discrete-log relation set described
above, suggest that the prover selectst1, t2 ∈ ±{0, 1}ε(µ+k), and transmit to the verifier the valuesB1 =
gt1 , B2 = gt2 , B3 = yt2

2 /yt1
1 . The verifier selects a challengec ∈ {0, 1}k, and subsequently the prover computes

si = ti − c(ri − 2`) for i = 1, 2 and transmits to the verifier the valuess1, s2. The verification check is the
following: gs1 =? B1(g2`

/G1)c, gs2 =? B2(g2`
/G2)c and ys2

2 /ys1
1 = B3(Y1/Y2)c(y2/y1)c2`

. In order to
make the proof non-interactive using a hash functionH : {0, 1}∗ → {0, 1}k and we perform the following: the
non-interactive proofπ in the description ofEnc′qr will have the form

〈c = H
(
g, (y1)−1, y2, G1, Y1, G2, Y2, B1, B2, B3

)
, s1, s2〉

and the verification step that is part ofDec′qr, operates as follows: given the non-interactive proofπ = 〈c, s1, s2〉,
the check is implemented as:

c =? H
(
g, (y1)−1, y2, G1, Y1, G2, Y2, G

c
1g

s1−c2`
, Gc

2g
s2−c2`

,
ys2−c2`

2 Y c
2

ys1−c2`

1 Y c
1

)

The proofπ constructed as above will be denoted bynizkH[n, g, y1, y2, 〈G1, Y1〉, 〈G2, Y2〉].
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From theorem 8 we know that the above proof is complete, sound and honest verifier zero-knowledge in the
statistical sense, provided thatp′, q′ > 2k (note that we are in the setting where the adversary is allowed to know
the factorization ofn — on the contrary we preserve the property that encryption in our twin ElGamal variant
does not require the factorization ofn).

Now observer that〈Gen′qr, Enc
′
qr, Dec

′
qr〉 will be CCA2-secure based on theorems 17 and 18, as long as the

non-interactive proof of knowledge described in definition 19 satisfies simulation-soundness. We argue about
this fact in the following theorem:

Theorem 20 LetA be aPPTadversary that is given (i)n, p, q, g, y1 = gx1 , y2 = gx2 where〈g, n, p, q, y1, y2〉 =
pk′ is distributed according toGen′qr, (ii) 〈G1, Y1, G2, Y2, π〉 ← Enc′qr(pk′,m) for any fixed known messagem,
and (iii) access to the random oracleH, it returns a tuple〈G′

1, Y
′
1 , G

′
2, Y

′
2 , π

′〉 so that the verification step of
Dec′qr (in definition 19) passes but it holds thatY ′

1/(G′
1)

x1 6= Y ′
2/(G′

2)
x2 . Assuming thatp′, q′ > 2k, it holds that

the success probability ofA is negligible.

Proof. Let g, n, p, q, y1, y2 be parameters distributed as inGen′qr.
Consider now a procedureP that has access to the random oracleH and the reprogramming oracleR. P takes

as inputg, n, p, q, y1, y2, and for a fixed messagem it constructs a ciphertext as follows:〈G1, G2, Y1, Y2, πsimul〉 =
〈gr1 , yr1

1 M, gr2 , yr2
2 M,πsimul〉 where πsimul = 〈c, s1, s2〉 is a simulated proof of language membership for

G1, Y1, G2, Y2 obtained by virtue of theorem 8 item (ii). Note thatP does not need to knowr1, r2. P then
usesR to reprogramH as follows

H on input
〈
g, (y1)−1, y2, G1, Y1, G2, Y2, G

c
1g

s1−c2`
, Gc

2g
s2−c2`

,
ys2−c2`

2 Y c
2

ys1−c2`

1 Y c
1

〉
answersc

Subsequently,P simulatesA by providing the input〈g, n, p, q, y1, y2〉 and〈G1, Y1, G2, Y2, πsimul〉 as above.
WheneverA makes a queryx to the random oracleH, P passes it directly to the random oracleH.

It is easy to see that the output distributions ofP andA are statistically indistinguishable. Now letα be the
non-negligible probability of the event thatP outputs a〈G′

1, Y
′
1 , G

′
2, Y

′
2 , π〉 so that it is a valid ciphertext accord-

ing to the test ofDec′qr and moreover,Y ′
1/(G′

1)
x1 6= Y ′

2/(G′
2)

x2 which is equivalent toY ′
1/Y ′

2 6= (G′
1)

x1/(G′
2)

x2 .
Based on lemma 6, we can derive a procedureP ′ that outputs with the proper probability two valid language

membership proofsπ1, π2 for the ciphertext〈G′
1, Y

′
1 , G

′
2, Y

′
2〉. Based on the soundness of the proof of language

membership as argued in theorem 8 item (iii)′, we can extract with non-negligible probability a witnessr1, r2

so thatG′
1 = gr1 , G′

2 = gr2 , Y ′
1/Y ′

2 = yr1
1 /yr2

2 . It follows that it holds(G′
1)

x1/(G′
2)

x2 6= yr1
1 /yr2

2 . But this is
contradiction by the definition ofy1, y2 and the condition imposed onG′

1, G
′
2. It follows that our assumption that

α is non-negligible is inconsistent and thusα must be negligible from which the theorem follows. ut

5 Group Signatures: Model and Definitions

The parties that are involved in a group signature scheme are the Group Manager (GM) and the users. In the
definition below we give a formal syntax of the five procedures the primitive is based on.

Our formalization is geared towards schemes as the [ACJT00] scheme where users are joining the system by
executing a join-dialog with the GM (and not any other trusted entity or tamper-proof element exists). Naturally,
this formalization can capturealso the case where a third party creates the user signing keys privately and
distributes them through private channels and with trusted parties, however we do not deal with these easier case
in our model (we remark later how such simplifying assumptions can be introduced and how properties specified
in our model apply to them). We emphasize that our join dialog does not require a private channel between the
GM and the user.
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Definition 21 A group signature scheme is a digital signature scheme that comprises of the following five proce-
dures;

SETUP: On input a security parameter1ν , this probabilistic algorithm outputs the group public keyY (in-
cluding all system parameters) and the secret keyS for the GM. Note thatSETUP is not supposed to output the
members’ signing keys. MoreoverSETUP initializes a public-state stringSt with two componentsStusers = ∅
andSttrans = ε.

JOIN: A protocolbetween the GM and a user that results in the user becoming a new group member. The
user’s output is a membership certificate and a membership secret. We denote thei-th user’s membership cer-
tificate bycerti and the corresponding membership secret byseci. SinceJOIN is a protocol, it is made out
of two interactive Turing Machines (ITM)Juser, JGM. Only Juser has a private output tape. An execution of
the protocol is denoted as[Juser(1ν ,Y), JGM(1ν ,Y,S)] and has two “output” components: the private out-
put of the user,〈i, certi, seci〉 ← U[Juser(1ν ,Y), JGM(1ν , St,Y,S)] and the public communication transcript,
〈i, transcripti〉 ← T[ Juser(1ν ,Y), JGM(1ν , St,Y,S)]. After a successful execution ofJOIN the following public
updates are made:Stusers = Stusers ∪ {i} andSttrans = Sttrans||〈i, transcripti〉.

SIGN: A probabilistic algorithm that given a group’s public-key, a membership certificate, a membership
secret, and a messagem outputs a signature for the messagem. We writeSIGN(Y, certi, seci,m) to denote the
application of the signing algorithm.

VERIFY: An algorithm for establishing the validity of an alleged group signature of a message with respect
to a group public-key. Ifσ is a signature on a messagem, then we haveVERIFY(Y,m, σ) ∈ {>,⊥}.

OPEN: An algorithm that, given a message, a valid group signature on it, a group public-key, the GM’s
secret-key and the public-state it determines the identity of the signer. In particularOPEN(m,σ,Y,S, St) ∈
Stusers ∪ {⊥}.

Notation. We will write 〈certi, seci〉 ®Y 〈transcripti〉 to denote the relationship between the private output of
Juser and the public-transcript when the protocol is executed based on the group public-keyY. Moreover, any
givencert, based onY, has a unique correspondingsec; we will also denote this relationship bycert ®Y sec.
We remark that®Y in both cases, is a polynomial-time relationship in the parameterν.

5.1 Correctness

The correctness of a group signature scheme is broken down in four individual properties: (i)user tagging
soundnessmandates that users are assigned a unique tag (depending on order of joining) by theJOIN protocol;
(ii) join soundnessmandates that the private output tape ofJuser after a successful execution of theJOIN dialog
contains a valid membership certificate and membership secret; (iii)signing soundnessmandates that the group
signature scheme behaves like a digital signature; (iv)opening soundnessmandates that theOPEN algorithm
succeeds in identifying the originator of any signature generated according to specifications. Formally,

Definition 22 A group signature is correct if the following statements hold with very high probability over the
coin tosses of all procedures. Let〈Y,S〉 ← SETUP(1ν).

• User tagging soundness. If 〈i, transcripti〉 ← T[ Juser(1ν ,Y), JGM(1ν , St,Y,S)] theni = max Stusers+1
(wheremax ∅ = 0, and the occurrence ofSt here is before the updateStusers = Stusers ∪ {i}).

• Join soundness. If 〈i, certi, seci〉 ← U[ Juser(1ν ,Y), JGM(1ν , St,Y,S)] then it holds thatcerti ®Y seci.

• Signing soundness. For anycert ®Y sec, and any messagem, VERIFY(Y,m, SIGN(Y, cert, sec,m)) =
>.

• Opening soundness. For any〈certi, seci〉 ®Y 〈transcripti〉, with 〈i, transcripti〉 ∈ Sttrans, any message
m, and anyσ ← SIGN(Y, certi, seci, m) it holds thatOPEN(m, σ,Y,S, St) = i.
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5.2 Security

Below we present the general model for security. A number of oracles are specified. Through these oracles the
adversary may interact with an Interface that represents the system in the real world, and simulates its operation
(i.e., a simulator) in the security proof. This allows us to model adversaries with capabilities (modeled by subsets
of the oracles) and attack goals in mind, in the spirit of [GMR84]. However, since we deal with a “privacy
primitive” we have to deal with a number of goals of mutually distrusting and mutually attacking parties, thus
we need more than one adversarial scenario. The interfaceI is an ITM that is initialized with a statestateI =
〈St,Y,S〉 ← SETUP(1ν) that accepts the following types of queries (in a stateful fashion):

• Qpub andQkey: the interface returns the public-and secret-key respectively.

• Qa−join: the interface initiates a protocol dialog simulatingJGM. The user created from this interaction and
entered inStusers is marked asUa (adversarially controlled).

• Qp−join: the interface simulates in private an instantiation of theJOIN protocol dialog. The user created
from this interaction and entered inStusers is marked asUp. The resulting membership certificate and
membership secret will be appended instateI . The interface returns as response to this query theJOIN
protocol transcript (this excludes private coin-tosses and the membership secret).

• Qb−join: the interface initiates a protocol dialog simulatingJuser. The user created from this interaction will
be also entered inStusers and will be marked byU b. The resulting membership certificate and membership
secret will be appended instateI .

• Qcorr(i): given thati ∈ Up ∪ U b the interface recovers〈certi, seci〉 from stateI and returns〈certi, seci〉.
If U is a set of users we denote byQ¬U

corr(i) the operation of the corrupt oracle when queries for users inU
are declined.

• Qsign(i, m): given thati ∈ Up∪U b the interface simulates a signature onm by looking up the membership
certificate and membership secret available from the execution of either aQp−join or Qb−join query and
returns the corresponding signature.

• Qopen(σ): the interface applies the opening algorithm to the given signatureσ. If S is a set of signatures
we denote byQ¬S

open the operation of the opening oracle when queries for signatures inS are declined.

We remark that the interfaceI maintains a history of all queries posed to the above oracles (if these queries
accepted an input); for instance, we use the notationhistI(Qsign) to denote the history of all signature queries.

Security Modeling. We next define our security model, which involve three attack scenarios and security against
them. These security properties are based on our modeling of Traceable Signatures [KTY04] and are ported
from the traceable signature setting to the group signature setting, augmenting them with adversarial opening
capability. In particular, we use the same terminology for the attacks to facilitate the comparison between these
two primitives.

The first security property relates to an adversary that wishes to misidentify itself. In a misidentification-
attack the adversary is allowed to join the system throughQa−join queries and open signatures at will; finally he
produces a forged group signature (cf. an existential adaptive chosen message attack, [GMR84]) that does not
open into one of the users he controls.

The Misidentification-Attack GameGA
mis for security parameterν (denoted byGA

mis(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m, σ〉 ← AI[Qpub,Qa−join,Qopen](1ν)
3. i = OPEN(m, σ,Y,S, St)
4. If (VERIFY(Y, m, σ) = >) ∧ (i 6∈ Ua) ∧ ((i,m) 6∈ histI(Qsign)) then return> else return⊥.

Our second security property relates to a framing type of attack. Here the whole system conspires against the
user. The adversary is in control not only of coalitions of users but of the GM itself. It is allowed to introduce
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“good” users into the system by issuingQb−join queries to the interface and obtain signatures from them. Finally
the adversary produces a signature that opens to one of the “good” users (cf. this attack is akin of an existential
adaptive chosen message attack [GMR84] but with an “opening” challenge in mind, since it is protecting the user
side).

The Framing-Attack GameGA
fra for security parameterν (denoted byGA

fra(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m, σ〉 ← AI[Qpub,Qkey,Qb−join,Qsign](1ν)
3. i = OPEN(m, σ,Y,S, St)
4. If (VERIFY(Y, m, σ) = >) ∧ (i ∈ U b) ∧ ((i,m) 6∈ histI(Qsign)) then return> else return⊥.

Finally we model anonymity. In an anonymity-attack the adversary operates in two stagesplay andguess.
In the choose stage the adversary is allowed to join the system throughQa−join queries, as well open signa-
tures throughQopen queries. The adversary terminates theplay stage by providing a pair of membership cer-
tificates/secrets (that were likely obtained either througha− join queries). The adversary obtains a “challenge
signature” using one of the two membership certificate/secrets it provided at random, and then proceeds in the
guess stage that operates identically to theplay stage with the exception that the adversary is not allowed to open
the challenge signature. Note that this attack is similar to a CCA2 attack when an individual group signature is
considered an identity concealing ciphertext.

The Anonymity-attack GameGA
anon for security parameterν (denoted byGA

anon(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈aux, m, cert1, sec1, cert2, sec2, 〉 ← AI[Qpub,Qa−join,Qopen](play, 1ν)
3. if ¬((cert1 ®Y sec1) ∧ (cert2 ®Y sec2)) then terminate and return⊥;
4. Chooseb ←R {1, 2};
5. σ ← SIGN(Y, certb, secb,m);

6. b∗ ← AI[Qpub,Qa−join,Q¬{σ}
open ](guess, aux);

7. if b = b∗ return> else return⊥;

Definition 23 A group signature scheme is secure if for all PPTA it holds that (i)Prob[GA
mis(1

ν) = >] =
negl(ν) (ii) Prob[GA

fra(1
ν) = >] = negl(ν) and (iii) 2Prob[GA

anon(1
ν) = >]− 1 = negl(ν)

5.3 Discussion

Bellare et al. [BMW03] concentrated on designing a formal model for group signatures and a generic (inefficient)
construction that can be proven secure in this model. We note that a preliminary suggestion for a formal model
for the related primitive of identity escrow, was presented by Camenisch and Lysyanskaya [CL01] in the style of
ideal model vs. real model. The [BMW03] model compressed the series of security requirements of [ACJT00]
into two formal security conditions. While this model was a step towards the realization of a secure model for
group signatures it was in fact modeling a weaker primitive, a relaxed group signature, compared to the primitive
realized by [ACJT00]. This fact is noted by the authors themselves. We note that we believe that, methodolog-
ically, it is sound to introduce relaxed notions for understanding better the possibility of formal modeling of
complex primitives, as was done in [BMW03].

To understand the relaxation, note that, in particular, the syntax of [BMW03] suggested that the tamper-
proof key-setup algorithm produces all members’ signing keys (which may be a useful model in certain settings).
While this may seem to be a minor issue, it is in fact quite crucial, since it prevents any attempt to formalize the
exculpability property of [ACJT00] in a natural way without adding additional trusted parties. Indeed, [BMW03]
introduce a “fourth” trusted tamper-proof party, a key-issuing authority, which is trusted to generate all keys
and distribute them to the GM and the users. Clearly, such was not the approach of [ACJT00] who instead
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emphasized a group join protocol involving the GM and the user that does not rely on external trusted parties
(whose employment relaxes much of the underlying difficulties of group signatures).

The group signature model of Bellare et al. has two security properties called “full-traceability” and “full-
anonymity.” Naturally, if one wishes to take this model and adapt it somehow to capture the operation of the
[ACJT00]-scheme (that assumes no trusted third parties) is immediately in trouble: “full-traceability” (that is the
basis of unforgeability) gives to the adversary the GM’s secret key. In a scheme where users Join in the sense of
Ateniese et al. the adversary would simply create a new membership certificate and thus forge a signature. As a
result a scheme in the sense of Ateniese et al. proven secure in the Bellare et al. model can potentially have the
adversary forging signatures at will. This point has not escaped the authors themselves and is, in fact, mentioned
in Bellare et al. when they motivate the fourth party and discuss partially dynamic groups (when users can join
dynamically). They propose simply that the adversary should be denied the key-issuing mechanism which is a
clear relaxation when compared to the goals of [ACJT00].

In contrast, in order to cope with the above subtleties of the security modeling, our security against “misiden-
tification attack” will prevent adversaries from forging signatures outside of their coalition even when they obtain
signatures and open them at will. Our “framing attack,” on the other hand, willallow the adversary to corrupt
the GM totally and irrevocablyand, in fact, no party is untouchable in this attack. These two attacks imply that
there is no other party, but the GM that holds the group private key which is used for membership certificate
generation (following the modeling of [KTY04]). This is in contrast with the [BMW03] model where in their
“partially dynamic group” formulation (i.e., the [ACJT00] setting), they deny to the adversary access to the GM’s
membership certificate generation mechanism altogether (assuming it is a tamper-proof party); this is a signifi-
cant relaxation of the model which eases the attack scenario substantially. For further comparison between the
two models we refer to the observation #2 at the end of the next section.

The differences above as well as the intuitive goals in [ACJT00] and the extended notion of a scheme with
separable authorities motivated our model. We next discuss our scheme and show its correctness and security.

6 Building a Secure Group Signature

The scheme we will prove security will be built based on the state-of-the-art scheme of [ACJT00]. We note that
it is impossible to prove security of the [ACJT00]-scheme in our model.

The public-parameters of the group signature are a composite modulusn of ν bits, such thatn = pq with
p = 2p′ + 1 andq = 2q′ + 1 (wherep, q, p′, q′ are primes), as well as a sequence of elements insideQR(n)
denoted bya0, a, g, y and two lengths̀, µ, so thatS(2`, 2µ) ⊆ {1, . . . , p′q′}. The membership certificates are of
the form〈A, e〉 so thatA ∈ QR(n) ande is a prime number inS(2`, 2µ). The membership secret is a valuex
such thata0a

x = Ae. Given the above structure, the basic functions of the group signature scheme employ two
hash functionsG,H and are implemented as follows:

SETUP: On input a security parameterν, this probabilistic algorithm first samples a group description for
〈g, n, p, q, p′, q′〉 ← descc(1ν). Then, it selectsx, x̂ ←R Z∗p′q′ , a0, a, h ←R QR(n) and publishes the group

public keyY =df 〈n, a0, a, g, h, y = gx, ŷ = gx̂〉 and the secret key is set toS =df 〈p, q, x, x̂〉. The procedure
also selects the parameters`, µ, k ∈ IN andε > 1 as functions ofν so that the following condition is satisfied
S(2`, 2ε(µ+k)+2) ⊆ {5, . . . , min{p′, q′} − 1}.

JOIN: A protocol between the GM and a user that allows the joint computation of a membership certificate
〈A, e〉 so that only the user obtains the membership secretx. First we give the functionality of the protocol using a
trusted partyT : the specification of the protocolJT

user, J
T
GM using a third trusted partyT is as follows:JT

user(1
ν ,Y)

sendsgo to the trusted partyT , who in turn selectsx ←R bn/4c and writes to the GM’s communication tape
the valueC = ax mod n and writes to the user’s private tape the valuex. JT

GM(1ν ,Y,S) readsC from the
communication tape withT , it selects a primee ←R S(2`, 2µ) − {p′, q′} and computesA = (a0a)1/e(modn);
finally it writes 〈i, A, e〉 in the regular communication tape wherei is the next available user tag (a counter is
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employed) and terminates.JT
user reads〈A, e〉 from the communication tape and writes〈i, A, e, x〉 in its private

output tape. As shown in the “non-adaptive drawings of random powers” protocol of (section 6, [KTY04]) it
is possible to derive anefficientprotocolJuser, JGM thatdoes notemploy a trusted party and achieves the above
ideal functionality.

In the above description,certi = 〈A, e〉, seci = x, transcripti = 〈C, A, e〉. If transcript = 〈Ct, At, et〉
and cert = 〈Ac, ec〉, sec = xc〉, the relationshipcert ®Y sec is true iff Aec

c = a0a
xc , and the relationship

〈transcript〉 ®Y 〈cert, sec〉 is true iff At = Ac andet = ec andcert ®Y sec.
SIGN: The signing algorithm is based on a proof of knowledge that is preceded by the values〈T1, T2, T̂1, T̂2,

T3, T4〉 defined as follows when invoked by thei-th user:

r, r̂ ←R bn/4c : T1 = Aiy
r, T2 = gr, T̂1 = Aiŷ

r̂, T̂2 = gr̂, T3 = geihr

T4 = nizkH[n, g, y1, y2, 〈T2, T1〉, 〈T̂2, T̂1〉]
The noninteractive proof of knowledgeT4 ensures that the twin ciphertextT1, T2, T̂1, T̂2 is properly formed

(see section 4.1). To complete the description of the signature, consider the discrete-log relation set over the free
variablesr, e, x, s′, s′′:

D :=




g g2 h (T2)−1 y (T1)−1 a a0 T3 T̂1 T̂2

T2 = gr : r 0 0 1 0 0 0 0 0 0 0
T3 = gehr : e 0 r 0 0 0 0 0 −1 0 0
T e

2 = gs′ : s′ 0 0 e 0 0 0 0 0 0 0
a0a

xys′ = T e
1 : 0 0 0 0 s′ e x 1 0 0 0

T3 = g(g2)s′′hr : 1 s′′ r 0 0 0 0 0 −1 0 0




The above proof ensures thatT1, T2 is the ElGamal encryption of a valueA that if raised to an odd integere,
it can be split by the prover in the forma0a

x. Note thatD is clearly triangular; the valueŝT1, T̂2 are included in
the base so that they will be included inside the hash when we transform the proof in the non-interactive setting;
we also require that the whole proofT4 is also included in the hash. The signature on a messageM will be
formed by employing the Fiat-Shamir transform over the proof of knowledge in the discrete-log relation setRD:
sgnD

G (M). It follows from the above that the outputSIGN(Y, certi, seci,M) has the following form:

〈c, s1, s2, s3, s4, s5〉 wherec = G(M, g, g2, h, (T2)−1, y, (T1)−1, a, a0, T3, T̂1, T̂2, T4, B1, B2, B3, B4, B5)

whereB1, . . . , B5, s1, . . . , s5 are defined based on the structure of the matrixD above and the description of
section 2.3.

VERIFY: given a signatureσ = 〈c, s1, s2, s3, s4, s5〉 the verification algorithm is implemented according to
the verification algorithmverD

G as described in section 2.3 and verifyingT4.
OPEN: The opening procedure given a signatureσ is as follows:

1. Verify σ using the public verification procedureVERIFY.

2. Parseσ to recover the valuesT1, T2.

3. Verify that the noninteractive proof of knowledgeT4 is correct.

4. ComputeA = T1(T x
2 )−1 mod n.

5. MatchA to some user’s first component of the membership certificate〈Ai, ei〉 (as available in the database
maintained during theJOIN protocols).

6. If either steps 1 or 3 or 5 fail, return⊥, else return the user found in step 5.
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6.1 Correctness and Security of the Construction

Theorem 24 The group signature〈SETUP, JOIN, SIGN, VERIFY, OPEN〉 defined above is correct.

Proof. Regarding user tagging soundness, it follows immediately since the GM maintains a counter fori that is
incremented after each successful join. Regarding join soundness, it follows immediately since by construction
the user obtains〈i, A, e, x〉 so thatcerti = 〈A, e〉 and seci = x that satisfy the relationshipcerti ® seci,
which is Ae = a0a

x(modn). Regarding signing soundness, observe that a user that holds the membership
certificate〈A, e〉 and the membership secretx, if she follows the specifications in the construction of the values
T1, T2, T̂1, T̂2, T3, T4 she knows a witness for the discrete-log relation setD (by settings′ = er ands′′ = e−1

2 ).
Based on the completeness of the proof of knowledge she can create a valid signature. Finally, regarding the
opening soundness, observe that for any valid signature, theOPEN algorithm will recover the valueA = T1(T2)−x

which is equal to the first component of the membership certificate〈A, e〉 that corresponds to the originator of
the signature. By matching this to the databaseSttrans that contains allJOIN transcripts of the form〈C, A, e〉
the identity of the user (the numberi) will be revealed, as long as every user is assigned a uniqueA component.
The probability that theJOIN dialog assigns to a user the sameA component is negligible. Indeed, if two users
are assigned the sameA-value in their certificate, it must be the case that(a0C)1/e = (a0C

′)1/e′ for a random
choice ofe, e′ from the spaceS(2`, 2µ) − {p′, q′} and a random choice ofC,C ′. In this case it must hold that
(a0C)e′ = (a0C

′)e which is a negligible probability event, sinceC,C ′ are uniformly distributed overQR(n)
and bothf(a) = ae(modn), f ′(a) = ae′(modn) are bijections overQR(n). ut

The proof of security of our scheme is naturally more involved and will be broken down into the following
three theorems:

Theorem 25 (Security against misidentification attacks) For anyPPTA it holds thatProb[GA
mis(1

ν) = >] =
negl(ν) assuming that the Strong-RSA problem is hard in the random oracle model.

Proof. We first consider the passive adversary case, this case corresponds to an adaptive chosen message existen-
tial forgery attack. In this case the adversary instead of being active within the system he uses onlyQp−join and
Qsign queries (insteadQa−join queries : note thatQp−join andQsign queries can easily be simulated byQa−join

queries).
Let 〈n, a〉 be a challenge for the Strong-RSA problem, and letA be a passive misidentification adversary as

explained above that has access to the two random oracles employed in the scheme:G,H.
Below we detail a procedureP that operates on〈n, a〉 and has access to a random oracleG and to an oracle

reprogramming processR (cf. lemma 6). P is a simulation ofA. Prior to the beginning of the simulation,
P computes two tuplesY,S as follows: Y := 〈n, a0, a, g, h, y, ŷ〉 whereh ←R QR(n), x, x̂ ←R [bn/4c],
r ←R [n2], a0 = ar, y = gx, ŷ = gx̂, andS := 〈x, x̂〉. MoreoverP initializes a tableTH that will be employed
for the simulation of the random oracleH. In the simulation ofA byP, the queries ofA are answered as follows:

• Qpub query:P returnsY. Observe that this answer to theQpub query is indistinguishable from the answer
in the actual misidentification attack game. This is because both distributionsa0 ← ar andy ← gx, ŷ ← gx̂

are statistically indistinguishable from the uniform overQR(n) (cf. lemma 5).
• Qp−join query: note thatP cannot really simulate theJOIN protocol since the factorization ofn is not

known. Instead,P selectsei as in the actualJOIN protocol and a valueAi at random fromQR(n); P
does not select thexi value. Note that random sampling fromQR(n) is still possible even if one doesn’t
know the factorization ofn, and moreover based on lemma 5 the distribution ofAi is indistinguishable
from the distribution ofAi in realJOIN protocol executions.P maintains a user counter and every time a
Qp−join query is submitted it increases the counteri. NowP selectsr ←R [n/4] and setsa′i = ar( mod n),
C ′

i = (Aei
i /a0)r and returns as output〈i, a′i, C ′, Ai, ei〉. The output is clearly indistinguishable from the

actual output of the interface in aQp−join query.
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• Qsign query: such a query includes the tuple〈i,M〉, wherei corresponds to one of the users that were
introduced throughQp−join queries.P answers this query toA, by formingT1, T2, T̂1, T̂2, T3, T4 exactly
as in the description of the actual scheme. Note first, that this is possible since no knowledge ofxi =
loga(A

ei
i /a0) is required in the formation of these values; second, the computation ofT4 requires using

the random oracleH. P will select the challenge at random and enter the value in the corresponding
location of theTH table (or use the existing value if it exists inTH). To complete the signature, the
proof of knowledge for the discrete-log relation set must be simulated (sinceP, lacking knowledge of
xi = loga(A

ei
i /a0) does not have a witness for the relation). This proof of knowledge will be simulated by

selecting a challengec at random from{0, 1}k and then using the honest-verifier zero-knowledge simulator
from theorem 8 to produce the signature. Finally,P will need to reprogram the oracleG so thatc =
G(M, g, g2, h, (T2)−1, y, (T1)−1, a, a0, T3, T̂1, T̂2, T4, B1, B2, B3, B4, B5). This is done by invoking the
queryR.

• Qopen query: such queries are answered following theOPEN algorithm; note thatP possesses both decryp-
tion keysx, x̂.

• H queries are answered by table-lookup using the tableTH; if a queryx to H does not exist inTH, P
selectsc ← {0, 1}k and answers byc, while it inserts〈x, c〉 into TH.

• G queries are answered by askingG directly.

Observe now that the above procedureP satisfies all requirements of lemma 6. In particular with respect
to reprogramming queries〈t, c〉 that are submitted byP toR it holds thatc is indeed selected at random from
{0, 1}k and moreover, the first componentt is distributed in such a way so that no single individualt has probabil-
ity more than2/2k (a trivial result using the random choice ofB1, B2, . . . , B5 and the fact thatk ≤ blog(n)c−2).
It follows that based on lemma 6 we can derive an algorithmP ′ that produces (with the proper probability) two
distinct proofs of knowledge with the same first move (and of course with the same headerT1, T2, T̂1, T̂2, T3, T4).
Now, using the soundness property of the proof of knowledge we may recover a witness for the proof of knowl-
edge that includes the valuesr, e, x, that in turn will reveal the tuple〈A = T1/hr, e, x〉 satisfying the property
Ae = a0a

x(modn). Let us denote this modifiedP ′ procedure that results in the valuesA, e, x byP ′′.
The procedureP ′′, for the given Strong-RSA challenge〈n, a〉 providesA, e, x such thatAe = ar+x with

e > 1 an odd number anda ∈ QR(n). Observe that the conditions of lemma 4 are satisfied and thus, if
δ = gcd(e, r + x) < e it follows immediately from lemma 4 that we can either factorn or solve the Strong-RSA
challenge〈n, a〉. To complete the proof we use the following claim that is based on [CL02]:
Claim With probability at least1/2 over the coin tosses of the procedureP ′′ it holds thatδ < e.

Suppose the claim is false. It follows that with probability greater than1/2 over the coin tosses of the above
simulation it holds thatδ = e, i.e., e | r + x. Let z, x′ be integers such thatr = x′ + φ(n)z. Indeedz is
independent of the view of the adversary. On a random choice ofr ←R [n2], the valuez is a random variable
from Zn; it follows that for more than half choices ofz we have thate | x′ + φ(n)z + x. By the pigeonhole
principle there must existz0 ∈ Zn such thate | x′ + z0φ(n) + x ande | x′ + (z0 + 1)φ(n) + x; it follows that
e | φ(n) = 4p′q′; sincee > 4 by size restrictions (the proof enforcese ∈ S(2`, 2ε(µ+k)+2)) it holds thate has a
large common prime factor withφ(n). Using the same techniques as in the proof of lemma 4, we conclude that
knowledge ofe allow us to factorn. This completes the proof for the passive misidentification adversary.

Next we consider the active adversary misidentification attack, which corresponds to adaptive chosen mes-
sage evasion of the opening mechanism. We will recall the following (essentially theorem 1 of [ACJT00]):

Claim. Fix public parametersa, a0 ∈ QR(n) and a integer rangeS(2`, 2µ). Suppose that there is a PPTA that
given a sequence of tuples〈xi, ei, Ai〉 for i = 1, . . . , K with Aei

i = a0a
xi returns a distinct tuple〈x, e,A〉 such

thatAe = a0a
x. Then one can turnA to a PPT algorithm solving the Strong-RSA problem.

Suppose now we have〈xi, ei, Ai〉 for i = 1, . . . ,K with Aei
i = a0a

xi . We will use the active misidentification
adversary to derive an algorithmA as described in the above claim.
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The only difference from the passive misidentification simulation is that we have to use the drawing of random
powers protocol to plug the valuesx1, . . . , xK into the drawn random elements provided to the adversary. This is
possible based on the simulatability of the drawing of random powers protocol (as described and used in section
6 of [KTY04]). In all other aspects the simulation proceeds as in the passive misidentification case. ut

Theorem 26 (Security against framing attacks) For anyPPTA it holds thatProb[GA
fra(1

ν) = >] = negl(ν)
assuming that the Discrete-logarithm problem is hard over theQR(n) with known factorization, in the random
oracle model.

Proof. Let 〈n, p, q, a,A〉 be an instance of the discrete-logarithm problem overQR(n) with known factorization
p, q with p = 2p′ + 1 andq = 2q′ + 1 (p′, q′ primes) whereν is the number of bits ofn. LetA be any framing
adversary that has access to the two random oracles employed in the scheme:G,H.

Below we will detail a procedureP that operates on〈n, p, q, g, A〉 and has access to a random oracleG and
to an oracle reprogramming processR (cf. lemma 6).P is a simulation ofA. Prior to the beginning of the
simulation,P computes two tuplesY,S as follows:Y := 〈n, a0, a, g, h, y, ŷ〉 whereg, h ←R QR(n), x, x̂ ←R

[p′q′], r ←R [p′q′], a0 = ar, y = gx, ŷ = gx̂, andS := 〈p, q, x, x̂〉. MoreoverP initializes a tableTH that will be
employed for the simulation of the random oracleH. In the simulation ofA byP, the queries ofA are answered
as follows:

• Qpub or Qkey query: P returnsY or S respectively. Observe that this answer to theQpub query is the
identical to the answer in the actual framing attack game.

• Qb−join query:P upon receiving such a query it should initiate aJOIN protocol dialog with the adversary.
Indeed, in thei-th Qb−join invocation, the adversary submits the valuea′i. P selectsxi ←R [p′q′] and
submits to the adversary the valueC = ariA. This must be done using the simulatability of the drawing
of random powers protocol as proven in [KTY04]. Observe thatC is uniformly distributed inQR(n) and
the adversary will not notice any difference from real executions of theJuser protocol’s steps (whereJuser

submits the valueC ′ = (a′)xi instead). Subsequently the adversary replies by〈i, A, e〉 so thatAe = a0C
and the protocol dialog terminates.P stores the values〈i, ri, Ai, ei〉 as part of its internal state.

• Qsign query: such a query includes the tuple〈i,M〉, wherei corresponds to one of the users that were
introduced throughQb−join queries. P answers this query toA, by forming T1, T2, T̂1, T̂2, T3, T4 ex-
actly as in the description of the actual scheme. Again, this is possible since no knowledge ofxi =
loga(A

ei
i /a0) is required in the formation of these values; second, the computation ofT4 requires using

the random oracleH. P will select the challenge at random and enter the value in the corresponding
location of theTH table (or use the existing value if it exists inTH). To complete the signature, the
proof of knowledge for the discrete-log relation set must be simulated (sinceP, lacking knowledge of
xi = loga(A

ei
i /a0) does not have a witness for the relation). This proof of knowledge will be simu-

lated by selecting a challengec at random from{0, 1}k and then using the honest-verifier zero-knowledge
simulator from theorem 8 to produce the signature. Finally,P will need to reprogram the oracleG so
thatc = G(M, g, g2, h, (T2)−1, y, (T1)−1, a, a0, T3, T̂1, T̂2, T4, B1, B2, B3, B4, B5). This is done byP by
invoking the oracle reprogramming queryR.

• H queries are answered by table-lookup using the tableTH; if a queryx to H does not exist inTH, P
selectsc ← {0, 1}k and answers byc, while it inserts〈x, c〉 into TH.

• G queries are answered by askingG directly.

Similarly to the proof of theorem 26, it holds thatP satisfies the requirements of lemma 6, and based on it we
can derive with the proper probability an algorithmP ′ that produces two distinct proofs of knowledge with the
same first move (and of course with the same headerT1, T2, T̂1, T̂2, T3, T4). Now, using the soundness property
of the proof of knowledge we may recover a witness for the proof of knowledge that includes the valuesr′, e′, x′,
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that, in turn, will reveal the tuple〈A′ = T1/hr′ , e′, x′〉 satisfying the property(A′)e′ = a0a
x′(modn). Based

on the conditions of the framing game there will be ani0 such thatA′ = Ai0 . Now observe that this implies
that (a0a

x′)1/e′ = (a0a
ri0A)1/ei0 which is equivalent toa(r+x′)(ei0

/e′)−r−ri0 = A, from which we obtain the
discrete-logarithm ofA. Note that the range restrictione′ ∈ S(2`, 2µ) makes sure thatgcd(e′, p′q′) = 1, so that
e′ is invertible modulop′q′. ut

Theorem 27 (Security against anonymity-attacks) For anyPPTA it holds that2Prob[GA
anon(1

ν) = >] − 1 =
negl(ν) assuming theDDH-Compo-KF in the random oracle model.

Proof. LetA be an adversary for the anonymity-attack gameGA
anon.

Below we describe a modified anonymity-attack gameG′: We form the public-key asY = 〈n, a0, a, g,
h, y, ŷ〉 wherea0, a ←R QR(n), x, x̂, z ← [p′q′] andh = gz, y = gx, ŷ = gx̂. The secret-key of the system is
defined asS = 〈p, q, x, x̂〉. The adversary has access to the two random oraclesH andG. GameG′ maintains
tablesTH andTG for the simulation of the random oracles and answers the adversary’s queries as follows:

• The queryQpub is answered by returning the public-key of the systemY.
• The queryQp−join is answered by havingG′ simulate theJOIN dialog in private and create thei-th user’s

membership secret and certificate (factorization is known).
• The queryQa−join initiates aJOIN dialog between the adversary andG′ with G′ playing the role of the

interface executingJGM. The adversary submits some valueC and receives from the interfaceA, e so that
Ae = a0C. Note thatG′ is capable of answering such queries as it possesses the factorization ofn.

• The queryQcorr is answered by recovering the membership certificate and membership secret of a user
i ∈ Up and returning it to the adversary.

• In the queryQopen, the adversary submits a signaturem,σ to be opened.G′ parsesσ for the values
T1, T2, T̂1, T̂2, T3, T4 and verifies the correctness of the proof of language membershipT4. It returns⊥
if the proof verification fails. OtherwiseG′ returnsT̂1(T̂2)x to the adversary. Note that the opening
is performed in the second ciphertext component. The difference in behavior will only be noticed by
the adversary in the event that the adversary produces a valid proof of language membership for a tuple
〈T1, T2, T̂1, T̂2〉 where the ElGamal ciphertextsT1, T2 and T̂1, T̂2 encrypt different plaintexts; this is a
negligible probability event based on the simulation soundness of the proofnizkH.

• Queries toH, G are answered using the tablesTH andTG in the usual fashion.

In the end of phasechoose the adversary returns〈aux,A1, e1, x1, A2, e2, x2,m〉. The interface verifies that
Ae1

1 = a0a
x1 andAe2

2 = a0a
x2 , selectsib ←R {1, 2} and forms the signatureσ as follows:

r, r̂ ←R [p′q′] : T1 = Aiby
r, T2 = gr, T̂1 = Aib ŷ

r̂, T̂2 = gr̂, T3 = geib T z
2

Subsequently, the interface simulates the proof of language membershipT4 (using its honest verifier zero-
knowledge simulator and controlling the random oracleTH) and furthermore it simulates the proof for signature
sgnD(m) (again using the honest verifier zero-knowledge simulator and controlling the random oracleTH).

Subsequent oracle queries in theguess stage of the adversary are simulated as above (with the dictated
modification in the opening oracle where the adversary is not allowed to submit the challenge signature).

The above gameG′ is indistinguishable from the actual gameGA
anon; this follows from the statistical indistin-

guishability of the proofs of knowledge and the simulation soundness. Now we modify gameG′ in the signing
stage to result in the gameG′′:

r, r′, r̂ ←R [p′q′] : T1 = Aiby
r, T2 = gr′ , T̂1 = Aib ŷ

r̂, T̂2 = gr̂, T3 = geib T z
2

The modification fromG′ to G′′ will only incur a difference ofAdvDDH
descc

(ν) in the view of the adversary. This is
the case since between the gamesG′ andG′′ the quadruple〈g, y, T2, T1/Aib〉 behaves as a DDH challenge (valid
DDH quadruple for gameG′ and random quadruple for gameG′′).
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Now we modify againG′′ to obtain a new gameG′′′ again by doing two modifications (i) first we return
the opening of signature to occur in the first ciphertext, i.e., given a valid signature for opening gameG′′′ will
simulate an opening query by decrypting on the first ciphertext. MoreoverG′′′ will modify the signing stage of
gameG′′ as follows:

r, r′r̂, r̂′ ←R [p′q′] : T1 = Aiby
r, T2 = gr′ , T̂1 = Aib ŷ

r̂, T̂2 = gr̂′ , T3 = geib T z
2

again the modification fromG′′ to G′′′ will incur a AdvDDH
descc

(ν) + ε difference in the adversary’s view. In this
case,ε accounts for the statistical distance that is due to the switch from the second ciphertext to the first cipher-
text in the opening oracle simulation; note that based on the simulation-soundness of the underlying proof of
language membership it holds thatε is negligible. Regarding theAdvDDH

descc
(ν) difference observe that the quadru-

ple 〈g, ŷ, T̂2, T̂1/Aib〉 behaves as a DDH challenge (valid DDH quadruple for gameG′′ and random quadruple
for gameG′′′).

Finally we modifyG′′′ to the gameG′′′′ by modifying the signing oracle to return:

r, r′, r̂, r̂′, z′ ←R [p′q′] : T1 = Aiby
r, T2 = gr′ , T̂1 = Aib ŷ

r̂, T̂2 = gr̂′ , T3 = geib T z′
2

This modification will again incur only anAdvDDH
descc

(ν) difference in the adversary’s view. This is the case
since〈g, h, T2, T3/geib 〉 behaves as a DDH challenge (valid DDH quadruple for gameG′′′ and random quadruple
for gameG′′′′).

Observe now that the success probability of the adversary in gameG′′′′ is necessarily1/2 since all information
about the random bitb is lost. It follows easily, that if the anonymity-attack adversaryA is has non-negligible
advantage in the gameGA

anon, then this would violate theDDH-Compo-KF. ut
Observation #1. The framing and anonymity-attacks are not dependent on any factoring related assumption.
This subtle fact eases on the one hand the intractability assumptions (and in fact also the proofs); moreover is
crucial in the next section, where we consider an even stronger adversarial setting.

Observation #2. Recaping on the comparison of our setting to the one of [BMW03] we remark that our group
signature design of this section can be degenerated to a design that adheres to their syntactic formulation (that
employs a trusted party generating the keys) and then proven secure in their security model. In particular the
SETUP procedure would be executed by the trusted party (as in their model) that will also simulate severalJOIN
protocols in order to create a number of membership certificates and secrets and subsequently distribute the
membership secrets and certificates to the users as well as hand the opening trapdoor to the GM using secure
channels (alternatively users may join with the trusted party as [BMW03] suggest in the “partially dynamic”
formulation). After this step is performed, the trusted party does not participate in the protocol or in any attack
and the key-issuing trapdoor (the factorization of the modulus) is untouchable by the adversary. The process
of signing, verifying and opening remains the same as in our construction. Using similar proof arguments as
in our framing and anonymity attacks we can prove “full-traceability” (under the discrete-log assumption) and
“full-anonymity” (under theDDH-Prime assumption). Note that the modified scheme retains its efficiency, and
doesn’t depend on the factoring assumption at all. This suggests thatany group signature scheme where the
trapdoor for joining users is different from the opening trapdoor that is proven secure in our security model of
section 5 can be modified as above, using the trusted party of [BMW03] and then proven secure in their model.

7 Group Signatures with Authority Separability : Anonymity from Trapdoor
Holders

In a group signature with separated authorities we differentiate between the GM, who is responsible for group
membership operations and an Opening Authority (OA), who is responsible for the revocation of anonymity
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(opening a signature). This separation is relevant to practice, since group management should be typically con-
sidered an ISP operation whereas revocation of anonymity must be performed by some (possible external) third-
party authority (which can even be distributed). This authority separability is natural and is not designed to assure
that certain processes are tamper-proof; note that it is a different notion of separability compared to what [CM99]
considered.

The syntax of a group signature with authority separability is similar to the group signature syntax as pre-
sented in definition 21 with the following modifications:

Definition 28 A group signature scheme with authority separability is a digital signature scheme comprises the
following six procedures; the parties involved are the GM, the opening authority and the users.

SETUPGM: On input a security parameter1ν , this probabilistic algorithm outputs the group public keyYGM

(including necessary system parameters) and the secret keySGM for the GM.SETUPGM also initializes a public-
state stringSt with two componentsStusers = ∅ andSttrans = ε.

SETUPOA: On input a security parameter1ν , and the public-keyYGM, this probabilistic algorithm generates
the public and secret-key of the opening authority denoted byYOA andSOA.

We will denote the concatenation ofYOA andYGM byY.
JOIN: TheJOIN protocol is identical to that of definition 21 with the only exceptionJGM requires only the

secret key of the GM,SGM.
SIGN: identical to definition 21.
VERIFY: identical to definition 21.
OPEN: the opening algorithm is the same as in definition 21 with the exception that only the opening author-

ity’s secret-keySOA is required.

Correctness. Given the above minor syntactic differences, the correctness of a group-signature with separated
authorities is defined in the same way as definition 22 by taking into account the above modifications that corre-
spond to the fact thatJGM requires onlySGM andOPEN requires onlySOA.

Security. The security properties of a group-signature with separated authorities must remain the same so that
any secure group signature with separated authorities must also be a secure group signature (by collapsing the
GM and the OA into a single entity).

Moreover in the separated authority setting the anonymity-attack can be made even stronger byaddingthe
adversarial capability of corrupting the GM.

Regarding the security modeling, in the queries that can be posed to the interface, the queryQkey will be
substituted with two distinct queriesQkeyGM andQkeyOA with the obvious results. The definition of the three
attacks will remain unaltered with the following syntactic modifications:

(i) in an framing-attack the adversary will have at its disposal both the queriesQkeyGM andQkeyOA (i.e., the
adversary can corruptboththe GM and the OA)

(ii) in the anonymity attack, the adversary will be givenadditional access to theQkeyGM query — this is in
addition to all the queries that are available to the adversary.

The above two modifications are straightforward and thus we will not list the security properties again in this
section. The modified games will be denoted byGA

fra−sep, G
A
mis−sep, G

A
anon−sep.

Definition 29 A group signature scheme with separated authorities is secure if for all PPTA it holds that (i)
Prob[GA

in−sep(1
ν) = >] = negl(ν) (ii) Prob[GA

out−sep(1
ν) = >] = negl(ν) and (iii) 2Prob[GA

anon−sep(1
ν) =

>]− 1 = negl(ν).

Note that any scheme secure under the above definition is also a secure group signature under definition 23.

Construction. The design of a group signature with separated authorities can be based directly on our construc-
tion of section 6 with the following modification: theSETUPGM procedure will produceYGM = 〈n, a0, a, g, h〉
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with SGM = 〈p, q〉, whereas theSETUPOA will produceYOA = 〈y, ŷ〉 with SOA = 〈x, x̂〉. In all other respects
the scheme will proceed in the same fashion. It is straightforward to split theSETUP procedure to these two
authorities, with the condition (as specified in definition 28) that the GM should go first so that the valuen is
made available; afterwards the OA can select the valuesy, ŷ ∈ QR(n) with knownlogg y andlogg ŷ and publish
the two additional elements to form the combined public keyY = 〈n, a0, a, g, y, ŷ〉. To allow the differentiation
we specifyYGM = 〈n, a0, a, g, h〉, SGM = 〈p, q〉, YOA = 〈y, ŷ〉, andSOA = 〈logg y, logg ŷ〉. The design remains
unaltered otherwise. In our security proofs we took special care to disassociate the hardness of factoring from
anonymity. The following theorem is therefore implied:

Theorem 30 The group signature with separated authorities presented above is correct and secure; in partic-
ular: (i) it is secure against misidentification-attacks under the Strong-RSA assumption in the RO model. (ii)
it is secure against framing-attacks under the Discrete-Log hardness assumption overQR(n) with known fac-
torization and the RO model. (iii) it is secure against anonymity-attacks underDDH-Compo-KF in the RO
model.

Proof. The proof is based directly on the proofs of theorems 25, 26 and 27. ut

8 Identity Escrow

An identity escrow scheme [KP98] is an identification scheme that allows an entity to prove it belongs to a public
group in anonymous fashion while it allows to an Escrow to recover the identity of the originator given any
identification transcript. The relationship of this primitive to group signatures is well-known, see e.g., [ACJT00],
and in fact the interactive version of any group signature that is based on the Fiat-Shamir transform yields an
identity-escrow scheme.

While in this work we concentrated on providing a probably secure group signature, it is possible to transform
our exposition to the identity escrow setting by considering the interactive version of our signing algorithm. In
this case instead of use of Random Oracle hashes, to compute challenges the verifier is the entity that provides
these challenges. We remark that while we use two different hash functions in our generation of a signature,
this is not needed to result in two interactions between the prover and the verifier in the interactive setting of an
identity escrow scheme. In fact the prover can show the validity of the twin ciphertext and the validity of the
proof of knowledge that corresponds to the discrete-log relation set simultaneously, something that will result
in a standard 3-move identity escrow scheme. The proofs though have to be made zero-knowledge against any
verifier (rather than “honest verifier” proofs), and standard transformations are possible.

The security of the resulting identity escrow scheme can be based directly on our security modeling with the
following standard constraints that pertain to the interactive setting: (i) Security can be shown against only honest
verifiers, i.e., it is assumed that the random challenges submitted by the verifier are randomly selected. This can
be enforced in many settings by either employing a beacon that will produce the challenges, or by having the
prover and the verifier executing a coin-flipping protocol. (ii) a verifier will not accept concurrent sessions of
identification protocols. Requirement (ii) can also be lifted by employing techniques such as those of [GMY03].

The notion of group signatures with separated authorities also transforms naturally to the identity escrow
setting, where it yields an identity escrow scheme with separated authorities (one for group management and one
for opening — the escrow agent).
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