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Abstract

To date, a group signature construction which is both efficient and proven secure in a formal model has not
been suggested. In this work we give the first such construction. To this end we present a new formal model
for group signatures capturing the state-of-the-art requirements in the area. We then construct an efficient
scheme and prove its security. Our methods require novel cryptographic constructs and new number-theoretic
machinery for arguing security over the group of quadratic residues modulo a composite when its factorization
is known Along the way, we unveil properties which go beyond the state-of-the-art-scheme [Ateniese et
al.2000] and reveal subtle points regarding the assumptions and requirements that underly efficient group
signature schemes.
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1 Introduction

The notion ofgroup signaturas a useful anonymous non-repudiable credential primitive that was introduced by
Chaum and Van Heyst [CvH91]. This primitive involves a group of users, each holding a membership certificate
that allows a user to issue a publicly verifiable signature which hides the identity of the signer within the group.
The public-verification procedure employs only the public-key of the group. Furthermore, in a case of any dispute
or abuse, it is possible for the group manager (GM) to “open” an individual signature and reveal the identity
of its originator. Constructing an efficient scalable group signature has been a research target for many year:
since its introduction, see e.g., [CP94, CS97, CM98, CM99, Cam97, KP98, AT99, ACJTO00, CL01, KYO03]. The
current state of the art is the scalable scheme of Ateniese, Camenisch, Joye and Tsudik [ACJTOQ] that provide:
constant signature size and resistance to attacks by coalitions of users. This remarkable scheme was bas
on a novel use of the DDH assumption combined with the Strong-RSA assumption over groups of unknown
order. Recently, Bellare, Micciancio and Warinschi [BMWO03], noticing that [ACJTO0O0] only prove a collection

of individual intuitive security propertiés advocated the need for a formal model for arguing the security of
group signature. This important observation is in line with the development of solid security notions in modern
cryptography. They also offered a model of a relaxed group signature primitive and a generic construction in
that model. Generic constructions are inefficient and many times are simpler than efficient constructions (that
are based on specific number theoretic problems). This is due to the fact that generic constructions can emplo
(as a black box) the available heavy and powerful machinery of general zero-knowledge protocols and general
secure multi-party computations. Thus, generic constructions typically serve only as plausibility results for the
existence of a cryptographic primitive [Gol97].

The above state of affairs [ACJT00, BMWO3] indicates that there exists a gap in the long avenue of research
efforts regarding the group signature primitive. This gap is typical in cryptography and is formed by a difference
between prohibitively expensive constructions secure in a formal sense and efficient more ad-hoc constructions
In many cases, as indicated above, it is easier to come up with provably secure generic inefficient construction:s
or to design efficient ad-hoc constructions. It is often much harder to construct an efficient implementation that is
proven secure within a formal model. To summarize the above, itis apparent that the following question remained
open till today:

Design arefficient group signature which igrovably securewithin a formal model.

One of our contributions is solving the above open question by, both, proposing a new formal model for group
signature which follows the [GMR84] paradigm, as well as providing an efficient provably secure construction.
Our construction is motivated by the [ACJT00]-scheme.

This contribution reveals numerous subtleties regarding what assumptions are actually necessary for achiev
ing the security properties. For example, the anonymity property in our treatment is totally disassociated from any
factoring related assumption. Our investigation also reveals delicate issues regarding the proper formal modeling
of the group signature primitive with regards to the work of [BMWO03]. For example, the need of formalizing
security against attack by any internal or external entity that is active in the scheme. Lack of such treatment, while
proper for the relaxed notion of group signature of [BMWO03], is insufficient for proving the security of efficient
state-of-the-art schemes that follow the line of work of [ACJT00]. Our modeling follows our work [KTY04],
adapting it to the current setting.

1.1 Our Contributions

Below, we outline what this work achieves in more details.

These properties include unforgeability, anonymity, coalition-resistance (the fact that coalitions of group members cannot produce
another membership certificate), exculpability (the fact that an adversarial group manager cannot produce a signature that opens to
non-adversarial controlled user).



1. MODELING. We present a new formal model that defines properties of schemes which share the nature of
the state-of-the-art efficient group signatures schemes [ACJT00]. The model captures all their security require-
ments and functions (e.g., interactively joining group members). Our model is based on our model of Traceable
Signatures [KTY04] which is the first formal model in the area of group signing without added trusted parties.
In particular, our model has the three types of attacks that involve the GM and the users as in [KTY04]. We
allow adversarial opening of signatures (see the next item). As in [KTY04], all the attacks are modeled as games
between the adversaries and a party called the interface. The interface represents the system in a real environme
and simulates the behavior of the system (a probabilistic polynomial time simulator) in the security proof. The
attacker gets oracle query capabilities to probe the state of the system and is also challenged with an attack tasl|
We note that this follows the approach of [GMR84] for modeling security of digital signatures.

2. ADVERSARIAL OPENING IN EFFICIENT SCHEMES. As mentioned above, our formal model extends the
security requirements given by the list of security properties of [ACJTO00] by allowing the adversary to request
that the system opens signatures of its choice. In [ACJTO0O0] opening of signatures was implicitly assumed to be
an internal operation of the GM. We note that such stronger adversarial capability was considered in the formal
model of [BMWO03] and was explicitly left out in [KTYO04]. For achieving an efficient scheme with adversarial
opening we needed to develop novel cryptographic constructs.

3. STRONGERANONYMITY PROPERTY In the scheme of [ACJT00] anonymity is argued against an adversary
that is not allowed to corrupt the GM. This is a natural choice since in their scheme the GM holds the trapdoor
which provides the opening capability, namely an ElIGamal key. The GM also holds the trapdoor that is required
to enroll users to the group, namely the factorization of an RSA-modulus. However, pragmatically, there is
no need to combine the GM function that manages group members (which in real life can be run by e.g., a
commercial company) with the opening authority function (which in real life can be run by a government entity).
To manage members the GM still needs to know the factorization. The opening authority, on the other hand, must
know the ElGamal key. This split of functions is not a relaxation of group signatures but rather a constraining
of the primitive. In fact, now we should allow the anonymity adversargawupt the GM as wellFor proving
security in the above stronger adversarial scenario, we had to develop a novel machinery for arguing security.

4. NUMBER-THEORETIC MACHINERY AND CRYPTOGRAPHICPRIMITIVES. The last two contributions above
required building cryptographic primitives over the set of quadratic residues madsdlpq that remain secure
when the factorization (into two strong primegs); is known to the adversary.

To this end, we investigate the Decisional Diffie Hellman Assumption over the quadratic residues modulo
and we prove that it remains hard even if the adversary knows the factorization. In fact, we prove that any adver-
sary that knows the factorizatign ¢ and solves the DDH problem over quadratic residues modulo a composite
n = pq, can be turned into a DDH-distinguisher for quadratic-residues modulo a prime number.

This result is of independent interest since it suggests that the DDH(@Rén) does not depend to the
factorization problem at all.

Also, the present work requires a CCA2 encryption mechanism that operates over the quadratic residues
modulon so that (i) encryption should not use the factorizatiompfi.e., the factorization need not be a part
of the public-key), but on the other hand (ii) the factorizatiokn®wnto the attacker. In this work we derive
such a primitive in the form of an EIGamal variant following the general approach of twin encryption [NY90,
DDNO91, FPO01] which is CCA2 secure under the DDH assumption in the Random Oracle model (note that our
efficient group signature requires the random oracle anyway since it is derived from the Fiat-Shamir transform
[FS86, AABNO2]).

5. EFFICIENT CONSTRUCTION We provide an efficient construction of a group signature that is proven secure
in our model. While, we would like to note that our scheme is strongly influenced by [ACJTO0O0] (and originally
we tried to rely on it as much as possible), our scheme, nevertheless, possesses certain subtle and importa
differences. These differences enable the proof of security of our scheme whereas the scheme in [ACJT00
cannot be proven secure in our model: There are many reasons for this, e.g., the [ACJT00]-scheme lacks al
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appropriate CCA2 secure identity embedding mechanism. Moreover, our efficient construction can support (if
so desired), the separation of group management and opening capability as mentioned above. Finally we not
that a syntactically degenerated version of our construction (that retains its efficiency) can be proven secure in
the model of [BMWO03] (and is, in fact, a relaxed group signature scheme of the type they have suggested).

6. UNDERPINNING PRINCIPLES. Some seemingly rather interesting results come from our investigation.

() Anonymity was argued in [ACJTO0O] to be based on the decisional Diffie-Hellman Assumption over Quadratic
Residues modulo a composite and given that the GM was assumed to be uncorrupted, the key-issuing trapdoc
(the factorization of the modulus) was not meant to be known to the adversary. As argued above, we prove thal
anonymitystill holdswhen the adversary is given the factorization trapdoor (even when there is no separation of
group management and opening authority). Thus, we disassociate anonymity from the factoring problem.

(i) In [ACJTOQ] the property of coalition resistance is shown based on the Strong-RSA assumption. In our
setting, we can refine the attack by an adversary corrupting a coalition of users into two cases:

(a) An attack where the coalition of users tries to frame another user, in which case the attack does not depend o
any factoring related assumption and is, therefore, disassociated from the Strong-RSA assumption. In this cas
the GM can be part of the attacking coalition.

(b) An attack where a coalition tries to evade tracing, where the strong RSA assumption is needed; this is, of
course, an attack against the GM.

1.2 Organization

In section 2 we present some background useful tools and the intractability assumptions. In section 3 we investi-
gate the behavior of the DDH assumption over the quadratic residues modulo a composite when the factorizatior
is known to the distinguisher. In section 4 we discuss the kind of CCA2 security that will be required in our
setting (overQ R(n) but with known factorization) and we present an efficient and provably secure construction
based on the EIGamal twin-encryption paradigm. In section 5 we present our security model and definitions and
in section 6 we give our construction and its proofs of correctness and security. In section 7 we present group Sig-
natures with separated authorities (i.e., the GM and the opening authority — OA). In this setting, we demonstrate
how our construction can still be proven secure when assuming a stronger anonymity adversary that is allowec
to corrupt the GM in addition to users. Finally, in section 8 we discuss the interactive version of our scheme as
an identity escrow scheme.

2 Preliminaries

NoOTATIONS. We will write PPT for probabilistic polynomial-time. #; andD, are two probability distributions
defined over the same support set that is parameterizéda®ywill write dist 4(D;, D2) to denote the distance
|Prob,. p, [A(z) = 1] — Prob,_p,[A(x) = 1]|. Note that typicallydist 4 will be expressed as a function of
k. If nis an integer, we will denote by:| the set{1,...,n}. If we write a =,, b for two integersz, b we mean
thatn dividesa — b or equivalently that:;, b are the same element withify,. A function f : IN — R will be
called negligible if for allc > 0 there exists &. such that for alk > k., f(k) < k~¢. In this case we will write
f (k) = negl(k). If £, x € IN we will write S(2¢,2#) for the set{2¢ — 2# 4-1,...,2 +2# — 1}. PPT will stand
for “probabilistic polynomial time.”

Throughout the paper (unless noted otherwise) we will work over the group of quadratic residues modulo
n, denoted byQ R(n), wheren = pg andp = 2p’ + 1 andq = 2¢' + 1 andp, q,p’, ¢’ prime numbers. All
operations are to be interpreted as modul@nless noted otherwise). We will employ various related security
parameters (as introduced in the sequel); with respect to an entity we willassthe security parameter to denote
a quantity proportional to the logarithm of the size of the entity. Next we define the Cryptographic Intractability
Assumptions that will be relevant in proving the security properties of our constructions.



The first assumption is the Strong-RSA assumption. It is similar in nature to the assumption of the difficulty
of finding e-th roots of arbitrary elements &}, with the difference that the exponents not fixed (i.e., it is not
part of the instance).

Definition 1 Strong-RSA. Given a composite (as described above), ande QR(n), it is infeasible to find
u € Z¥ ande > 1 such thaw® = z(modn), in time polynomial irv.

Note that the variant we employ above restricts the inpatbe a quadratic residue. This variant of Strong-
RSA has been discussed before [CS00], and by restricting the exponent solutions to be only odd nhumbers we hav
that (i) it cannot be easier than the standard unrestricted Strong-RSA problem, but also (ii) it enjoys a random-self
reducibility property (see [CS00]).

The second assumption that we employ is the Decisional Diffie-Hellman Assumption (see e.g., [Bon98] for
a survey). We state it below for a general gra@w@and later on in definition 11 we will specialize this definition
to two specific groups.

Definition 2 Decisional Diffie-HellmanGiven a description of a cyclic grou@ that includes a generatay, a
DDH distinguisherA is a polynomial inv timePPTthat distinguishes the family of triples of the fotp¥, ¢¥, ¢*)
from the family of triples of the forny®, ¢¥, g*¥), wherex,y, 2 € #G. TheDDH assumption suggests that
this advantage is a negligible functionin

Finally, we will employ the discrete-logarithm assumption over the quadratic residues modittoknown
factorization (note that the discrete-logarithm problem is assumed to be hard even when the factorization is
known, assuming of course that the factors @afre large primeg, ¢ and whereo — 1 andq — 1 are non-smooth).

Definition 3 Discrete-Logarithm. Given two valueg, b that belong to the set of quadratic residues modulo
with known factorization, so that € [p'¢'] : a® = b, find in time polynomial in the integerz so thata” = b.

Conventions. (i) our proofs of knowledge will only be proven to work properly in the honest-verifier setting.

On the one hand, the honest-verifier setting is sufficient for producing signatures. On the other hand, even in
the general interactive setting the honest-verifier scenario can be enforced by assuming the existence, e.g., of
beacon, or some other mechanism that can produce trusted randomness; alternatively the participants may exect
a coin flipping algorithm and use methods that transform the honest verifier proofs to a regular proofs. (ii) the

public parameters employed in our various protocol designs (e.g., the composite mgdullide assumed to

be selected honestly.

2.1 Auxiliary Lemmas

We prove below two auxiliary lemmas that will be useful later on. The first lemma is an extension of a well-
known lemma. This known lemma is case (i) in the proof, and is attributed to [Sha83]. Several variants and
extensions of this lemma have been used before (e.g., [CS00, CL02)).

Lemma4 Letn = pg withp = 2p' + 1 andq = 2¢' + 1 with p, ¢, p’, ¢’ all prime numbers. Suppose we know
y € Z%, 2 € QR(n) andt, m € Z such thaty’ =,, 2™ with gcd(t,m) < t andt > 1 is an odd number. Then we
can finde > 1 andu € Z7 such that: =,, «¢, or we can factom.

Proof. Case (i):gcd(t,m) = 1 we can computey, 5 € Z such thatt + m = 1. From this, in turn, we obtain:
v = Zat+ﬁm — (Za)t(zm),@ — (zayﬂ)t

and thus, we return as the solution to the challenge, the{pail = (2%y°,t).
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Case (ii): suppose thgtd(t,m) = & > 1. It follows that§ < min{|¢|, |m|} and ift’ = £ andm’ = 2, it holds

that (y*')% =, (z™')?.

Now observe that sinceis an odd number and™ € QR(n) it must be the case thatalso belongs to
QR(n). Under the assumptioged(d, p'q’) = 1 we know that the exponentiation-map ov@R(n) defined as
fs(a) = a’(modn) is bijective (since'q is the order ofQ R(n)), from which we obtain thag’ =, 2™ with
ged(t',m’) = 1; moreovert’ > 1 sinceged(t, m) = 6 < t. Thus, we reduced case (ii) to case (i).

Now suppose thated(d, p’q") > 1. It follows thaté is a multiple ofp’ (w.l.0.g.). Then we can factor as
follows: choose a random integerless tham; if gcd(w,n) > 1 then we are done; otherwise,c Z; and will
happen thatv is a square modulp = 2p’ + 1 with high probability, (since approximately half of the positive
integers less than are squares modulg). It follows thatw?’ = (w%)QP' = (w%)l’—l =, 1. Now compute the
integery = w® = w™ (mod n), whered = 7p' for somer € Z. Sincen | U —w™' it follows thatp | U —w™
and as aresult] =, w™ =, (w”')™ =, 1. It follows that there exists an€ Z such thal/ — 1 = rp. Observe
that it has to be that < ¢ sinceU < n. From this we obtain thajcd(U — 1,n) = p. O

The second lemma below is a probabilistic indistinguishability result that will be useful in the proof of
security of our construction.

Lemma 5 Letn be av-bit compositer = (2p" + 1)(2¢' + 1) anda, ap € QR(n) with a a generator. Consider
the following distributions ove@ R(n):

1. D; with A «— a” wherez g [|n/4]].

2. Dy with A « a® wherex «p [n?].

3. Dy with A — (aga®)'/¢(modn) wherez «—g [|n/4]] ande a prime withe —p S(2¢,24) — {p/, ¢’}
where/, € IN with S(2¢,2#) C [p'q].

4. R with A —p QR(n).

It holds thatdist(D;, R) = negl(v) forall ¢ = 1,2, 3.

Proof. For the case = 1, recall that the order o R(n) in Z} is p'¢’ and thatn = (2p' + 1)(2¢' + 1) =
4p'q' +2(p' + ¢') + 1. It follows that|n/4] = p'q’ + E5% + 251 + 1. The dominant term in the statistical

distance of the two distributior®; andR is the fractionL"/L‘g/Zﬁ’/q/ = f;;;gj which is clearly negligible in the
parametep.

Regarding the case= 2, let us consider the general case for two integérs B, of the distribution of the
random variableX mod B whenX «—pg [A]. It follows that in this distributionA mod B elements ofZ g are
assigned probability| A/B| + 1)/A and B — A mod B elements ofZ g are assigned probabilityd/B|/A.
The dominant term in the statistical distance between this distribution and the uniforrd gver 42 For
the cased = n? andB = p’q’ we immediately have that the statistical distance is negligible.

Finally, regarding = 3, we know from item 1, that” with « < [|n/4]] is indistinguishable fronR. It
follows thataga® is indistinguishable frorfk, and assuming thatd(e, p’q’) = 1 (ensured by the statement of the
theorem) it follows that the mapping @R (n) defined asf.(a) = a®(modn) is bijective, thus the distribution
(apa®)/¢(modn) is statistically indistinguishable fro@ R(n). This will be the case foany fixed choice of
e in the set(S(2¢,2*) — {p,¢'}) N {p | pisaprimg. Now if e is selected at random, the random variable
(apa®)/¢(modn) will also be indistinguishable frorR. O

2.2 The Forking Lemma

Below we mention a general-purpose lemma that is instrumental in proving the security of signature schemes in
the random oracle setting that has been formulated by Pointcheval and Stern [PS00] as the “forking-lemma”:



Lemma 6 (General Forking-Lemma). Consider be a probabili®ieTP, a PPTpredicate) and hash-function
H with range{0, 1}* thought of as a random oracle. The predic@ieatisfies the propert@(z) = T = (z =
(p1,¢,p2)) N (¢ = H(p1)). R is a process that give(t, c) reprogramsH so thatH(¢) = c. P is allowed to ask
queries or{ and onR. Moreover, it is assumed th@& behaves in such a way so that queries:) submitted by
‘P to R adhere to the following conditions:

e The componentis uniformly distributed ovef0, 1}*.
e The componerttfollows a probability distribution so that the probability of the occurrence of a spegific
is bounded by /2*.

Assume now thaP’"® (param) returns outputr such thatQ(xz) = T with non-negligible probability >
10(s + 1)(s + ¢)/2*, whereq is the number of{-queries performed b§, and s is the number oRR queries.
Then, there exists BPTP’ so that ify < P’(param) it holds with probabilityl /9 (i) y = (p1, ¢, p2, ¢, p) (ii)
Q{p1,c,p2)) =T, (iii) Q({p1,d, p2)) = T, (iv) ¢ # ¢. The probabilities are taken over the choicesForthe
random coin tosses @ and the random choice of the public-parametesgam.

The above fundamental lemma (slightly differently formulated) was investigated and proven in [PS00]. The
original lemma (as presented in [PS00]) allowed random oracle and signing queries. Nevertheless, it is apparen
in the arguments presented in [PS00] that signing queries submitted to a simulator machine can be abstracted «
random oracle “reprogramming” queries (i.e., the adversary submits signing queries to the simulator, who in turn
reprograms the random oracle). Note that the two conditions stated in our formulation above are essential due t
the way that the simulator treats signing queries in the proof of the original forking-lemma of [PS00] (as well as
the properties of the underlying signing scheme) enforce these conditions as well.

2.3 Discrete-Log Relation Sets and Signatures

Discrete-log relation sets were introduced in [KTY04] as a basic tool to plan complex proofs of zero-knowledge
over the set of quadratic residues moduland will be useful in our designs. This type of proofs was motivated
and in fact unifies previous works on such proof systems, cf. [CM98, ACJTO0O].

Unlike [KTYO04] here we use the tool of discrete-log relation sets in two alternate settings: when the factor-
ization is unknown (as originally employed in [KTY04]), and also when the factorization is known. Interestingly,
we need both cases and in fact we require a uniform protocol that would work smoothly under both scenarios.
To the best of our knowledge this is the first such proof system that is required to be operational in both domains
simultaneously. Let us first recall the definition of a discrete-log relation set:

Definition 7 Adiscrete-log relation s&t with z relations over variables andn objects is a set of relations de-
fined over the objectd,, ..., 4,, € QR(n) and the free variablea, . .., o, with the following specifications:
(1) Thei-th relation in the sef? is specified by a tupléa?, ..., a’,) so that eachz;ﬁ is selected to be one of the
free variables{a, ..., a,} or an element o%. Thez x m matrix [aé]i,j will be denoted byD g or simply D.

The relation is to be interpreted eﬁ;”:l A;]' = 1. (2) Every free variabley; is assumed to take values in a finite
integer rangeS (2%, 24i) wherel;, p1; > 0. _
We will write R(as, .. ., ;) to denote the conjunction of all relatiof§” A;j = 1 that are included inR.

A discrete-log relation sek is said to be triangular, if for each relatiancontaining the free variables

Qup, Oy s - - - 5 Oy, It holds that the free-variables,,,, . .., «,, were contained in relations,...,i — 1. In
[KTYO04] a 3-move honest verifier zero-knowledge proof (see e.g. [CDS94]) was designed that allows to a
prover that knows witnesses, . . ., z, such thatR(x1, . .., z,) = 1 to prove knowledge of these values.



Theorem 8 For any discrete-log relation se® there exists a 3-move protocol (figure 1) that satisfies (i) com-
pleteness and (ii) honest-verifier zero-knowledge. (iii) assuming that the factorizatior=0pq is unknown,
given two accepting conversations with the same first move, it is possible to extract a witness for a triahgular
or any prover generating accepting conversations can be turned to a factorization algorithm;

Alternatively, (iil) assuming the factorization ef= pq is known, given two accepting conversations with the
same first move, it is possible to extract a witness for any discrete-log relation set assumitfg<thatin{p’, ¢’}
(wherek is the length of the challenge).

Proof. Items (i), (ii), (iii) were proven in [KTYO04].

We note that (i) and (ii) are unconditional. This is immediate for completeness, where regarding honest-
verifier zero-knowledge, in [KTY04] this property is proven in the statistical sense. As a result, knowledge of the
factorization ofn does not alter the argumentation for (i) and (ii).

Regarding property (ifij we remark that in the soundness argument (iii), the factorization is used only as a
tool to ensure that if a prover generates accepting conversations, some integers formed by the prover’s answel
divide each other (and if not, a factorization can be found). This way of arguing about soundness was put forth in
[FO98] to deal with the fact that the underlying group is of unknown order. In the known factorization setting the
order ofQR(n) is known and thus one can show soundness more easily (e.g., [CDS94]); the only thing that needs
to be ensured is that challenges {0, 1}* and differences of challenges (as integers) are invertible madglo
something guaranteed by the condititn< min{p’, ¢'}. 0

A signature based on a proof of knowledge based on a discrete-log relation set can be obtained by applying
the Fiat-Shamir transform [FS86]. We detail this transformation below.glLb¢ a hash function with range
{0,1}* and D the matrix of some discrete-log relation setover the base elements, ..., A, € QR(n).

The proof of knowledge of figure 1 can be made into a signature as follows: given a magsage verifier's
challenge in the proof of knowledge will be computed-as G(M, Ay, ..., An, B1,..., B;) using the hasg.

The signature o/ will be denoted aSgng(M) and computed a&;, s1, . .., s,) Wheresy, ..., s, are computed
as in the figure 1 andis the haslG (M, Ay, ..., Apn, B1, ..., B.).
The verification algorithrmeré7 on a signaturgc, s1, ..., s,) for a messagél/ is implemented by the

following check: ¢ L G(M,As,...,An,B1,...,B,), where eachB; is computed by the verifier aB;, =

at Lo\ N .

(Hj:a;EZ Ajj Hj:ﬂw,aé:aw Aj2 ) ¢ Hj:ﬂw,aé.:aw Ajw’ fori = 1’ EEEEZ

The security of the Fiat-Shamir signature construction [FS86] was investigated by [PS00] as was noted above.

Note that the proof of knowledge of figure 1 also enforces interval constraints on the witnesses. In partic-
ular if proving knowledge of a witness € S(2¢,2#) the proof ensures that the witness belongs to the range
S(2¢, 2¢(n+k)+2) " This constraint comes “for free” in the soundness proof. If tighter integer ranges are needed
they can also be achieved at the cost of making the proof slightly longer by employing [Bou00]. The tightness
achieved by the proof for discrete-log relation sets itself will be sufficient for our designs.

3 Decisional Diffie Hellman over@ R(n) with known Factorization

Our constructions will require the investigation of the number-theoretic machinery presented in this section.
Letn be a composite; = pg withp = 2p'+1andq = 2¢'+1 (p, q,p’, ¢’ primes). Recall that elementszf,

are in a 1-1 correspondence with theZpk Z7. Indeed, giverib, c) € Z; x Zy, consider the system of equations

x = b(modp) andz = ¢(modq). Using Chinese remaindering we can construct a solution of the above system

sinceged(p, ¢) = 1 and the solution will be unique insidé&’. Alternatively for anya € Z} we can find the

corresponding paib, c) in Zy x Z7 by computingb = a(modp) ande = a(modq) (note thatged(a,n) = 1

implies thatb # 0O(modp) andc # 0O(modg). The mappinge from Z; x Z; to Z;, is called the Chinese

remaindering mapping. Observe thgtreserves quadratic residuosity: indgg@R(p) x QR(q)) = QR(n).



Proof of knowledge for a Discrete-Log Relation Sef
objectsAy, ..., A, r free-variablesyy, . . ., a,., parameterse > 1,k € IN,
Each variabley; takes values in the rang&(2¢, 2+5)
P proves knowledge of the witnessese S(2%, 2€4 )42y st. R(x1, ..., 2,) = 1

P 1%
forw € {1,...,r} selectt,, €g £{0, 1}<rutk)
fori e {1,...,z} setB; = Hjﬂw’a;:aw Azw Biy s c € {0,1}*
(&
&
forwe {1,...,7r} Sets, =ty — ¢ (z, — 20w) T Verify:

forwe {1,...,r}
Sw €y £{0, 1}t +L
forie {1,...,z2}
a’ Lw
Bi(Hj:a;EZ Aj] Hj:ﬂw,a;:aw A? )C

2
X Sw
Hj:ﬂw,a;.:aw Aj -

Figure 1: Proof of Knowledge for a Discrete-Log relation sit(from [KTY04]). Regarding the length of the
proof we note that the proof requires the first communication flow from the prover to the verifier to be of size
QR(n) elements (where is the number of relations if®) and the second communication flow from the prover
to the verifier to be of total bit-length’! _, (€(pw + k) + 1).

The following two lemmas will be useful in the sequel as they show how the Chinese remaindering mapping
behaves when given inputs expressed as powers inside the two @pét(ps$ andQR(q). In essence it shows
that there is a simple way to define the discrete-logarithm of the result of the mapping if we know the discrete-
logarithms of the two inputs to the mapping.

Lemma 9 Let g1, g2 be generators of the group3R(p) and QR(q) respectively, where the groups are de-
fined as above. Then, if = p(g7*, g5%), wherep is the Chinese remaindering mapping, it holds tj¥at=

, , n—1 n—1_ .
a?1+P T2 (modn) wherea = p(ggﬂ ,gép) ) is a generator of) R(n).

Proof. First we show that is a generator of) R(n). Assume without loss of generality thelt > ¢’. Then it

holds thaty’ Z, and as a resulf’ is an invertible element d&*,. It follows thatg] = g%ql)fl is well defined
and is a generator @) R(p) (sinceg; is a generator of) R(p)). Furthermore’(modq’) € Z, since it cannot
be the case that =, 0 as this would mean that eithgt = ¢’ or p’ is not prime. It follows thap’ has an

inverse modul@’ and as a resulf, = gé”/rl is well defined and is a generator@fz(q) (sinceg: is a generator
of QR(q)). Finally we remark that ifj;, go are randomly selected generatorslRk(p), QR(q) respectively, it
holds thaty}, ¢4 are uniformly distributed over all generators.

Sincea = p(g4, g5), it follows thata =, ¢} (p) anda =, g4(q). Itis easy to see that must be a generator
unless the order ok inside Z}, is divisible by eithery’ or ¢’; but this can only happen i =, 1 ora =, 1
something not possible unless eitlgr=, 1 or g5 =, 1. This case is excluded given thgt g5 are generators
of their respective group@ R(p) andQR(q). This completes the argumentation thas a generator of) R(n).

Now, since = p(g7*, g5°) it follows that 5 = ¢i* (p) and3 = ¢52(¢); Using this fact together with the
properties okx we have: 1

Q1P T2 =, Q' *1 =, (g§q) )‘1/331 =, g%

’ / 12 N—1 /
qritpwe — PT2 — () \plwe — w0
o =q =p (92 ) =p Y2
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Due to the uniqueness of the Chinese remaindering solution i#jdefollows that3 = o *1+2'%2(modn) is
the solution of the system. O

Lemma 10 Fix a generatora of QR(n) and an integert € IN. The mapping, : Zy x Zy — QR(n),
with 7, (21, z2) = a@)'@1+@)'22 js 3 bijection. The inverse mapping ! is defined as; (o) = ((¢') 'z
mod p/, (p/) "tz mod ¢').

Proof. Let (x1,z2), (], x5) € Zy x Zy be two tuples Witl’ﬂ'(.’L‘l,:L‘g) = 7(z,24). It follows that(q')'z; +
(022 Zorder(a) (€)' + (p)'ahy; sincea is a generatorp | (¢)(z1 — 2)) + () (z2 — ), from which
we havey' | (¢')!(z1 — «}) which impliesp’ | x1 — =}, i.e.,z1 = z. In a similar fashion we show that = .
The onto property follows immediately from the number of elements of the domain and the range.

Regarding the inverse, defing p* to be integersitZ,,, Z,, respectively, so that'(¢')" =, 1 andp*(p')" =,
1. Moreover lety; = ¢*x mod p’ andys = p*x mod ¢'. We can find integers;, 7 so thatg*x = m1p’ + 1
andp*z = maq’ + y2. We will show that(q’)'y1 + (p')'y2 =, = which will complete the proof.

In order forp’q’ to divide(¢')ty1 +(p’)ty2— it should hold that botlp’, ¢’ divide (q')tyl—i—(p’)tyg—x. Indeed,

p' divides(q')'y1 + (") y2 — x since(q') y1 + (0") 'y — 2 = (¢) (¢"x —mp) +p'y2 — 2 =p (¢)'¢"r —2 =y 0.
In a similar fashion we show that divides(¢')'y; + (p’)!y2 — x. From these two facts it follows immediately
thatr (771 (a®)) = 7({y1,42)) = o*. O

Let desc(1”) be a PPT algorithm, called a group descriptor, that on ingut outputs a description of a
cyclic groupG denoted byig Depending on the groug; may have many entries; in our setting it will include
a generator ofy, denoted byl;.gen and the order off denoted byi;.ord. We require tha2” ! < d¢.ord < 2,
i.e., the order of5 is av-bit number with the first bit set. Additionally. contains the necessary information
that is required to implement multiplication ou8t We will be interested in the following two group descriptors:

e descy: Givenl” find av-bit primep’ > 2v~1 for which it holds thap = 2p’ + 1 andp is also prime. Ley
be any quadratic residue moduyloWe setQ R(p) to be the group of quadratic residues modul@evhich
in this case is of ordey’ and is generated hy). The descriptotlesc,, returns(g, p, p’) and it holds that if
d— descp (1Y), d.ord = p’ andd.gen = g.

e desc.: Givenv find two distinct primes/’, ¢’ of bit-length /2 so thatp'q’ is a v-bit number that is
greater thar2”~! and so that there exist primesq such thatp = 2p/ + 1 andg = 2¢' + 1. Letg be
any quadratic residue modulothat is a generator of the group @fR(n) (such element can be found
easily). The descriptodesc. returns(a, n, p,¢,p',¢') and it holds that ifd — descc(1), d.ord = p'¢/
andd.gen = a. The implementation oflesc. that we will consider is the following: executescy
twice, to obtaind; = (91,p,P") andd, = (92,q,4") with p # ¢, and setd = (g9, = pq,p,q,p,q")
wherea = p(g§q/)_1,g§p/)_l). For such a descriptiog we will call the descriptiong; andds, the prime
coordinates ofl.

Now we proceed to define the Decisional Diffie Hellman Problem.

Definition 11 A Decisional Diffie Hellman (DDH) distinguisher for a group descriptiesc is a PPT algorithm
A with range the sef0, 1}; the advantage of the distinguisher is defined as follows:

AdvEDI (1) = dist 4 (D, RIese)
whereDdes¢ contains elements of the for(m] g%, ¥, g*"Y) whered — desc(1¥), g = d.gen andz,y —r [d ord],

andRdesc contains elements of the form 9%, gY,9%) whered «— desc(1¥), g = d.genandz,y,z —p [d ord].
Finally we define the overall advantage quantified over all distinguishers as follows:

AdvEPH (1)) = P%gr}fzt Adv(?eg{j(u)



The main result of this section is the theorem below that shows that the DDH(@RéR) with known
factorizationis essentially no easier than the DDH over the prime coordinat€gR(f»). The proof of the
theorem is based on the construction of a mapping of DDH triples drawn from the two prime coordinate groups
of QR(n) into DDH triples of @ R(n) that is shown in the following lemma:

Lemma 12 Letd « descc(1”) with d, dz < desc,(1*/2), its two prime coordinates, such thét = (g1, p, p')
andds = (92,4, ¢'). The mapping* as follows:

p*(<CZ17A1? Blv Cl>7 <J2’ AQ’ BQv 02>) =df <Jﬂp(‘417 A2)>p(B1a BQ)?ﬂ((Cl>q/7 (CZ)Z],»

satisfies the properties W(DS?ZC”, DS?ZCP) = pdesce and (i) p*(Rijs;p, Rf}js;") =~ Rdesce where= stands for
statistically indistinguishable.

The mapping* will return L in cased;.ord = ds.ord. This is a negligible probability event when selecting
d1, dy at random fromdescy, and is the event that contributes the negligible statistical difference in properties (i)

and (ii).

Proof. Observe that ifd; = ¢', By = ¢{*,C1 = ¢1"¥* and Ay = g5, Bo = g5, Cy = ¢1*?, based on the
properties of the mappingshown in lemma 9 it follows that

p(A1, Ag) = QT T2 g p(B1, By) = Q7 v1+p'y2

p((C1)T, (Co)P') = @)y +(p) 2 22ys

Now we show that if( A1, By, C1) is a DDH triple fromdy, and (A, Ba, Cs) is a DDH triple fromd, then
(A, B,C) is a DDH triple fromd that hasi; andds as its two prime coordinates:

l98a Aloge B — (¢'z14p'2)(@'y14P'y2) — (4201514 ()2 22y2+p'd (wry2+t2211) = (@) @1 +(P)222y2 —
= = =, =

From the above and lemma 10 we can deduce easilypt‘r(alf‘zc”,DS;ch) = Ddesce, je., the distribution

escp

defined byp* when applied to two distributions of DDH triples froﬁn;j /o Over the respective groups is statisti-

cally close to the distributio®d°, This completes the proof for property (i) of the lemma. Regarding property
(ii), observe that ifA; = gi*, B1 = ¢{',C1 = g7* and Ay = ¢32, Bs = ¢3*,Cy = ¢;?, based on the properties
of the mapping shown in lemma 9 it follows that

p(Al, AQ) = aq’x1+p/xz and p(Bl, BQ) — aq’y1+p/y2

p(C(C)Y) = aldPa 0

and thuso*(Rfj;C", jos;p) = Rdesce follows easily from lemma 10. O

Theorem 13 Advi2H (1) < 2AdvEPH (1 /2).

desce descp

Proof. Let A be any DDH-distinguisher fatesc.. Consider the following PPH;: A, takes as input a descrip-
tion d; « desc,(1¥/2), with d; = (g1, p,p’) and a tripler; of QR(p); A; operates as follows: then samples a

quadruple/ds, 75) of DS;;C" and then simulated on inputp*((dy, 71), (d2, 72)), wherep* is the mapping defined

in lemma 12. Using property (i) of lemma 12, we have thgtsce = p*(paesce plesc

w2 1Dy ) and thus,

(Fact 1) dist 4(DE™, p" (R Dy ®)) = AdvRRH 4 (v/2) < AdvRDH (v)2)
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Consider now the PPH, that takes as input a descriptidg < desc,(1*/2) with dy = (g9, ¢, ¢') and a tripler,
over QR(q). A, samples a quadruplel;, 1) of R and simulatesd on inputp*((ds, 1), (da, 72)). Using

v/2
property (i) of lemma 12 we have th@desce = p*(R‘Vljs;", Rf‘;zc") and thus,
(Fact 2) dist 4(p" (R, D), RAS<) = AdVRRH 4 (v/2) < AdVRRE (v/2)
Finally by applying the triangle inequality to facts 1 and 2 above, we obtain:
AvaﬁG{;’Cc(u) = dist 4 (Ddesce, Rdesce) < 2Adv££cf (v/2)
Since the above holds for an arbitrary choicedothe theorem follows. O

Then we proceed to state explicitly the two variants of the assumption:

Definition 14 The following are two Decisional Diffie Hellman AssumptionsThe DDH assumption over
guadratic residues for groups of prime ordd&PH-Prime) asserts that:

Advfeg)cf(l/) = negl(v)
e The DDH assumption over quadratic residues for groups of compaosite order with known Factorizddbi (

Comp-KF) asserts that:

Adviﬁf(y) = negl(v)

Theorem 15 DDH-Prime — DDH-Comp-KF.

Proof. The DDH assumption over the quadratic residues for prime order suggests that dor-all there

exists av, € Z such thatAdvl(v) < v=¢for all v > ».. Now we have to show that for any> 0 we
can find some value for beyond which it holds thaddv},2" (v) < v=¢. Fix some arbitrary: > 0. Let

9. be such that for alb > vy, it holds thatAdvPPH (1) < v=2¢. Using theorem 13 we have that for all

descp
v > vge, AdvRRT (v) < 2AdVEDI (v/2) < 2(v/2)7%¢ = 22¢71/u2¢ < v, where the last inequality holds if
v > {/22¢+1, We conclude that for anyit holds thatAdv DX (v) < v=¢, provided that > max{V/22¢+1, vy, }.
O

4 CCA2 PK-Encryption over @ R(n) with known factorization

Our constructions will require an identity embedding mechanism that is CCA2 secure; such a mechanism is
presented in this section.

A public-key encryption scheme comprises three proced(@es, Enc,Dec). The syntax of these proce-
dures is as followsGen(1¥) returns a paifpk, sk) that constitutes the public-key and secret-key of the scheme
respectively. The probabilistic encryption functiBne takes as input the parametgt, a public-keypk and a
messagen and returns a ciphertext. The decryption functiomec takes as input a secret-kel and a ci-
phertexty and returns either the corresponding plaintextor the special failure valug.. The soundness of
a public-key encryption requires that for atpk, sk), Dec(sk, Enc(1”, pk,m)) = m with very high probability
in the security parameter (preferably always). There are various notions of security for public-key encryption
[GM84, NY90, RS92, DDNO0Q], below we will be interested in the so-cal®A and CCA2 security in the
indistinguishability sense. For completeness we define these notions below:

A CCA2 adversary4 against a public-key encryption scheii@en, Enc, Dec) is a PPT predicate with range
in {0, 1} that is thought to operate in the following game:

13



The CCA2 Gamer'A,, for security parameter (denoted byG:A , (1¥)):
{pk, sk) < Gen(1");
(auz, mg, m1) — AP*()(choose, 17, pk)
Choose «—pr {0,1};
Sety* < Enc(1Y, pk, mp);
SetDec ™" (sk, ) to be “if x # 1)* then return Dec(s,z) else return 1"
b APecVIsky] (guess, aux, V*);
. ifb=>b"returnT else returnL;
A CPA adversary4 operates as above but is denied access t@theoracles in steps 2 and 6 in the above
game. The corresponding restricted game is caﬂ;léq.

No akwdpE

Definition 16 For X € {cca2, cpa}, A public-key encryption scheme satisKesecurity if for anyPPTpredicate
A it holds that2Prob[Gy (1¥) = T] — 1 = negl(v).

4.1 An ElGamal CCA2 variant over ) R(n) with known factorization in the RO Model

Consider the following cryptosyste(@en,,, Enc,,., Decgy):

e The key-generatdten,, on inputl” samples the descriptiah= (9,n,p,q,P,q) — descc(1V), selects a
valuex —p [p'¢’] and outputpk = (g,n,p, ¢, h = g*) andsk = .

e The encryption functiorEnc,, operates as follows: giveh/ € QR(n), it selectsr g [|n/4]] and
returns the paitg”, h" M).

e The decryption operatiobec,, is given(G, H) and returng7~* H (modn).

Note that this cryptosystem is an EIGamal variant over quadratic residues modulo a composite, so that

(i) the factorization is available to the adversary, but:
(i) the factorization is not necessary for encryption.

Theorem 17 The cryptosysterGen,,, Ency,, Dec,,) described above satisfi€PA-security under the assump-
tion DDH-Compo-KF, and thus under the assumptiBDH-Prime (theorem 15).

Proof. The proof of CPA-security for the EIGamal variant we define is similar to the proof BA-security for
the proof of semantic security for the regular EIGamal encryption, see [TY98]. O

We remark that EIGamal variants over composite order groups have been considered before, e.g., [McC88]
in the setup that was considered the adversary was denied the factorization and security properties of the cryp
tosystem were associated with the factoring assumption. Our variant above, on the other hand, shows that th
semantic security (in the sense@PA-security) of the composite modulus ElGamal variant we define still holds
under the standard prime-order Decisional Diffie-Hellman assumptidid-Prime.

Now let us turn our attention to achievi@®CA2 security in the above setting. Double encryption has been
employed as a tool to obtain chosen-ciphertext security [NY90]. The “twin-conversion” has been formalized in
[FPO1] and transforms @PA-secure cryptosystem into@A2-cryptosystemGen’, Enc’, Dec’) as follows:

e Gen’ performs two independent executionsief: to obtain the public-kepk’ = (pk;, pky) and the secret-
keyssk’ = (skj, ska).
e The encryption algorithrinc’, given a plaintexin, it outputs

Enc'(pk’,m) = {(c1, c2,0) = (Enc(pk;, m), Enc(pky, m), o)

whereos is a non-interactive proof that shows that the two ciphertext outpisadf namelyc,, co, together
with the public-keypk’ belong to the languagé = {(pk,, pks, Enc(pky, m), Enc(pky, m)) | m}.
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e The decryptioec’ verifies the non-interactive proof of language membership and if it is correct it returns
the decryption of one of the two ciphertexts; otherviise’ returns.L.

In [FPO1] the following theorem was shown:

Theorem 18 [FP01] The cryptosystenGen’, Enc’, Dec’) described above i€ CA2-secure provided that (i) the
underlying cryptosysterféen, Enc, Dec) is CPA-secure, and (ii) the non-interactive proof of language member-
ship employed ilinc’ is simulation-sound

A non-interactive proof of language-membership for a languagecalled simulation-sound [Sah99] if it is
hard for an adversary that possesses a {dirc*) so thatc* is a valid noninteractive proof of the facte £
to produce another pait, ¢) for anyz ¢ L (i.e., the adversary should not be able to a forge a proof). More
formally, a proof of language membership will be called simulation-sound, if for all ARTholds that the
probabilitySuccfjm‘”iZk Prob[(z,c) — A(z*,c*) |z & LA (z,c) # (x*, )] is negligible.

Below we apply the twin-transform to the EIGamal variant we presented in the beginning of the section,
from now on we work in the random oracle model (the hash function will be treated as idealized hash which is a
random oracle):

e Gen;, samplegg,n,p,q,p’,q') < descc(1”), selectscy, zo —p [p'q'| and returnsthek’ = (g,n,p, ¢, y1 =

g™,y = ¢g*2) and the secret-kesk’ = (21, z2).

e The encryptiorknc;,: in order to encrypt a message, we form the two ciphertextég™ , y;'m) and

(g",yy*m) with 1,5 < [|n/4]|] and we attach a proof of language membership for the Ianguage:

£qr = {<7%972/17y2a <g7“1’y;’2m>’ <gr2ay£2m>> ’ 1,72 € [Ln/4j],m € QR(TL)}

Note that we want to preserve the property that encryption does not use the factorizatidn ofder to
prove language membership of a tuple g, y1, y2, (G1, Y1), (G2, Y2)) to L, it suffices to present a proof
of knowledge for the discrete-log relation set (see section({@s3),0, —1,0,0, 0), (p2,0,0,0,0, —1,0),
(0, p1, p2,0,1,0, —1) defined over the base elemeptsy;) !, v, G1, Y1, G, Ya.

It follows that the output oEnc . Is of the form(G1, Y1, G, Yo, 7), wherer is the non-interactive proof
of language membership lﬂqr In definition 19 below we show how the proofis derived from the

methodology of section 2.3.
e The decryptlomec is as in the twin conversion description.

Definition 19 The proof of language membership 6f,. Assuming that the values, > € S(2¢,2*), where

¢, u are parameters such that(2¢, 2#) = [|n/4|], the proof of knowledge of a discrete-log relation set described
above, suggest that the prover seletitsts € +{0, 1}6(/“’“), and transmit to the verifier the valud$; =

g, By = g*?, B3 = y?/y?. The verifier selects a challenges {0, 1}*, and subsequently the prover computes
s; =t —c(r; — 2ﬁ) for i = 1,2 and transmits to the verifier the values, s;. The verification check is the
following: g% = Bi(g* /G1)%, g% =1 Ba(g” /Go)® andys? /yi" = Bs(Y1/Y2)*(y2/y1). In order to
make the proof non-interactive using a hash functton {0, 1}* — {0, 1}* and we perform the following: the
non-interactive proofr in the description ofinc;,. will have the form

<C = H(ga (yl)_17y27 G17Y17 G2>Y27 Bla BQa B3>a51, 82>

and the verification step that is partbéc/ ., operates as follows: given the non-interactive proct (c, s1, s2),

the check is implemented as:

qr’

S2— C2 Y
e = H(g, (51) 192, G, Y1, G, Va, Gig™ ¥ Gy P22 )
y11 Yy

The proofr constructed as above will be denoteddiygk [n, g, y1,y2, (G1, Y1), (G2, Y2)].
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From theorem 8 we know that the above proof is complete, sound and honest verifier zero-knowledge in the
statistical sense, provided thédtq' > 2* (note that we are in the setting where the adversary is allowed to know
the factorization of: — on the contrary we preserve the property that encryption in our twin ElIGamal variant
does not require the factorization of.

Now observer thatGen,, , Ency,., Decy,.) will be CCA2-secure based on theorems 17 and 18, as long as the
non-interactive proof of knowledge described in definition 19 satisfies simulation-soundness. We argue about
this fact in the following theorem:

Theorem 20 Let.4 be aPPTadversary that is given (i}, p, ¢, g, y1 = ¢**,y2 = g*2 where(g, n, p, q,y1, y2) =
pk’ is distributed according t@en’qr, (i) (G1,Y1,G2, Yo, ) «— Enc{],,(pk’, m) for any fixed known message
and (i) access to the random oraclg, it returns a tuple(G}, Y/, G5, Ys, 7') so that the verification step of
Dec;, (in definition 19) passes but it holds thef/ (G )™ # Y5 /(G5)**. Assuming thap’, ¢’ > 2*, it holds that
the success probability of is negligible.

Proof. Let g, n, p, q, y1, yo be parameters distributed asdétan.

Consider now a procedufethat has access to the random or&¢land the reprogramming oradke P takes
asinputg, n, p, q, y1, y2, and for a fixed message it constructs a ciphertext as follow&= 1, G2, Y1, Y2, Tgimul) =
(g™ y1* M, g™, y5> M, Tiimui) Where mgimu = (¢, s1,s2) iS a simulated proof of language membership for
G1,Y1,Gs, Y, obtained by virtue of theorem 8 item (ii). Note thHAtdoes not need to knowy, r,. P then
usesR to reprogrant as follows

SQ—CZE c
H on input<g, (y1) "L, y2, G1, Y1, Ga, Ya, GS g™ 2 G5 g°2 2, M> answers:
yiﬂ*CQ ch
SubsequentlyP simulatesA by providing the inputg, n, p, ¢, y1, y2) and(G1, Y1, G2, Y2, msimul) @S above.
Wheneverd makes a query: to the random oraclé(, P passes it directly to the random oraéte
It is easy to see that the output distributiongfoind A are statistically indistinguishable. Now letbe the
non-negligible probability of the event thBtoutputs &G, Y/, G5, Y,, 7) so that it is a valid ciphertext accord-
ing to the test obecy, and moreoverY(/(G')™ # Y, /(G5)** which is equivalent td’ /Y5 # (G)™ /(G5)™.
Based on lemma 6, we can derive a procedeiréhat outputs with the proper probability two valid language
membership proofsy, 7, for the ciphertex{G/, Y/, G}, Y;). Based on the soundness of the proof of language
membership as argued in theorem 8 item’(iiiye can extract with non-negligible probability a witnessrs
so thatG) = ¢™, G, = ¢",Y]/Yy = y;* /y5?. It follows that it holds(G})™! /(G5)** # yi*/y5>. But this is
contradiction by the definition af;, y2 and the condition imposed a¥,, G5. It follows that our assumption that
« is non-negligible is inconsistent and thusnust be negligible from which the theorem follows. a

5 Group Signatures: Model and Definitions

The parties that are involved in a group signature scheme are the Group Manager (GM) and the users. In the
definition below we give a formal syntax of the five procedures the primitive is based on.

Our formalization is geared towards schemes as the [ACJT00] scheme where users are joining the system b
executing a join-dialog with the GM (and not any other trusted entity or tamper-proof element exists). Naturally,
this formalization can capturalso the case where a third party creates the user signing keys privately and
distributes them through private channels and with trusted parties, however we do not deal with these easier cas
in our model (we remark later how such simplifying assumptions can be introduced and how properties specified
in our model apply to them). We emphasize that our join dialog does not require a private channel between the
GM and the user.
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Definition 21 A group signature scheme is a digital signature scheme that comprises of the following five proce-
dures;

SETUP: On input a security parametel”’, this probabilistic algorithm outputs the group public KE\(in-
cluding all system parameters) and the secret&dgr the GM. Note thaSETUP is not supposed to output the
members’ signing keys. Moreov@&ETUP initializes a public-state string't with two componentst, se,s = 0
and Stans = €.

JOIN: A protocolbetween the GM and a user that results in the user becoming a new group member. The
user’s output is a membership certificate and a membership secret. We denita theer's membership cer-
tificate bycert; and the corresponding membership secretséay. SinceJOIN is a protocol, it is made out
of two interactive Turing Machines (ITM)yser, Jom- Only Juser has a private output tape. An execution of
the protocol is denoted aguser(1”,Y),Jem(1”, Y, S)] and has two “output” components: the private out-
put of the useri, cert;, sec;) «— U[Juser(1”, ), Jem (17, St, Y, S)] and the public communication transcript,

(1, transcript;) < T[ Juser(17, ), Jom (17, St, Y, S)]. After a successful execution IfIN the following public
updates are madeStysers = Stusers U {1} and Styrans = Stirans|| (i, transcript;).

SIGN: A probabilistic algorithm that given a group’s public-key, a membership certificate, a membership
secret, and a message outputs a signature for the message We writeSIGN(), cert;, sec;, m) to denote the
application of the signing algorithm.

VERIFY: An algorithm for establishing the validity of an alleged group signature of a message with respect
to a group public-key. I is a signature on a message, then we hav&ERIFY(),m,o0) € {T, L}.

OPEN: An algorithm that, given a message, a valid group signature on it, a group public-key, the GM’s
secret-key and the public-state it determines the identity of the signer. In part@@#aim,o,),S, St) €
Stusers U {J—}

Notation We will write (cert;, sec;) =y (transcript;) to denote the relationship between the private output of
Juser @nd the public-transcript when the protocol is executed based on the group public-kégreover, any
givencert, based o, has a unique correspondiser; we will also denote this relationship legrt =y sec.

We remark that=y in both cases, is a polynomial-time relationship in the parameter

5.1 Correctness

The correctness of a group signature scheme is broken down in four individual propertiaser(fagging
soundnessnandates that users are assigned a unigue tag (depending on order of joiningJ@iatipeotocol;
(i) join soundnessandates that the private output tapel gf, after a successful execution of theIN dialog
contains a valid membership certificate and membership secresidiilng soundnesmandates that the group
signature scheme behaves like a digital signature;qpgning soundnesmandates that thePEN algorithm
succeeds in identifying the originator of any sighature generated according to specifications. Formally,

Definition 22 A group signature is correct if the following statements hold with very high probability over the
coin tosses of all procedures. L&Y, S) < SETUP(1").

e Usertagging soundnes$ (i, transcript;) <« T[ Juser(17, V), Jom(1”, St, Y, S)] theni = max Stysers + 1
(wheremax () = 0, and the occurrence dft here is before the updat®t, scrs = Stusers U {i}).

e Join soundnesdf (i, cert;, sec;) «— U[ Jyser (17, ), Jam(1¥, St, Y, S)] then it holds thatert; =y, sec;.

e Signing soundnesg-or anycert =y sec, and any message, VERIFY(), m, SIGN()/, cert,sec,m)) =
T.

e Opening soundnes$or any (cert;, sec;) =y (transcript;), with (i, transcript;) € Stirans, @any message
m, and anyo «— SIGN()/, cert;, sec;, m) it holds thatOPEN(m, o, ), S, St) = i.
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5.2 Security

Below we present the general model for security. A number of oracles are specified. Through these oracles the
adversary may interact with an Interface that represents the system in the real world, and simulates its operatiol
(i.e., a simulator) in the security proof. This allows us to model adversaries with capabilities (modeled by subsets
of the oracles) and attack goals in mind, in the spirit of [GMR84]. However, since we deal with a “privacy
primitive” we have to deal with a number of goals of mutually distrusting and mutually attacking parties, thus
we need more than one adversarial scenario. The inteffasan ITM that is initialized with a statetate; =
(St,Y,S) < SETUP(1") that accepts the following types of queries (in a stateful fashion):

e Qb and Q. : the interface returns the public-and secret-key respectively.

e Q. join: the interface initiates a protocol dialog simulatihg,. The user created from this interaction and
entered inSt,s..s IS marked a$/* (adversarially controlled).

e O, join: the interface simulates in private an instantiation of In&N protocol dialog. The user created
from this interaction and entered BY,s.s is marked a€/?. The resulting membership certificate and
membership secret will be appendedsinte;. The interface returns as response to this quengaiel
protocol transcript (this excludes private coin-tosses and the membership secret).

e Op_join: the interface initiates a protocol dialog simulatihg.,. The user created from this interaction will
be also entered ift,.,s and will be marked by/’. The resulting membership certificate and membership
secret will be appended #tates.

e Q. (i): given thati € UP U U? the interface recover&ert;, sec;) from stater and returngcert;, sec;).
If U is a set of users we denote B, (i) the operation of the corrupt oracle when queries for usets in
are declined.

e Qign(i,m): giventhati € UPUU® the interface simulates a signaturerarby looking up the membership
certificate and membership secret available from the execution of eit@gr g, or Qp_j.in query and
returns the corresponding signature.

e O.pen(0): the interface applies the opening algorithm to the given signatuie S is a set of signatures
we denote b)Q;pSen the operation of the opening oracle when queries for signaturgsane declined.

We remark that the interface maintains a history of all queries posed to the above oracles (if these queries
accepted an input); for instance, we use the notatisia (Qs;gn) to denote the history of all signature queries.

Security Modeling. We next define our security model, which involve three attack scenarios and security against
them. These security properties are based on our modeling of Traceable Signatures [KTY04] and are portec
from the traceable signature setting to the group signature setting, augmenting them with adversarial opening
capability. In particular, we use the same terminology for the attacks to facilitate the comparison between these
two primitives.

The first security property relates to an adversary that wishes to misidentify itself. In a misidentification-
attack the adversary is allowed to join the system thro@gh.;, queries and open signatures at will; finally he
produces a forged group signature (cf. an existential adaptive chosen message attack, [GMR84]) that does nc
open into one of the users he controls.

The Misidentification-Attack Gamé'?._
stater = (St,V,S) < SETUP(1¥);
(m,o) — AI[qubvgafjoionpen](1V)
i = OPEN(m, 0,),S, St)
4. If (VERIFY(Y,m,0) = T)A (i € U*) A ((i,m) & histz(Qsign)) then returnT else returnL.
Our second security property relates to a framing type of attack. Here the whole system conspires against the
user. The adversary is in control not only of coalitions of users but of the GM itself. It is allowed to introduce

for security parameter (denoted byG:A._(1¥)):

mis

wn e
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“good” users into the system by issuidl},_j.i, queries to the interface and obtain signatures from them. Finally
the adversary produces a signature that opens to one of the “good” users (cf. this attack is akin of an existentia
adaptive chosen message attack [GMR84] but with an “opening” challenge in mind, since it is protecting the user
side).

The Framing-Attack Gamé’,, for security parameter (denoted byGz (1*)):

stater = (St,Y,S) < SETUP(1");

<m, U) P AI[qukaenyb—join7Qsign}(1”)

i = OPEN(m, 0,), S, St)

4. If (VERIFY(Y,m,0) = T) A (i € U®) A ((i,m) & histz(Qsign)) then returnT else returnL.

wn e

Finally we model anonymity. In an anonymity-attack the adversary operates in two ptagesidguess.
In the choose stage the adversary is allowed to join the system thro@gh;.i, queries, as well open signa-
tures throughQ,,.n queries. The adversary terminates ey stage by providing a pair of membership cer-
tificates/secrets (that were likely obtained either throaighjoin queries). The adversary obtains a “challenge
signature” using one of the two membership certificate/secrets it provided at random, and then proceeds in the
guess stage that operates identically to fley stage with the exception that the adversary is not allowed to open
the challenge signature. Note that this attack is similar to a CCA2 attack when an individual group signature is
considered an identity concealing ciphertext.

The Anonymity-attack Gamé&'4\,,, for security parameter (denoted byG . (1¥)):
stater = (St,Y,S) < SETUP(1¥);

(auz, m, certy, secy, certy, secy, ) «— AZ[CpubQajoin, Qopenl (play, 1)

if =((cert; =y secy) A (certa =y secy)) then terminate and returh;

Choose) g {1,2};

o «— SIGN(), certy, secy, m);

b AI[qumQa—joimQ;p{eg}](guess7auw);

if b=>0*returnT else returnL;

No agprwdhE

Definition 23 A group signature scheme is secure if for all PHETIit holds that (i)Prob[G;ﬁ]is(l”) =T] =
negl(v) (i) Prob[G. (1¥) = T] = negl(v) and (iii) 2Prob[G%,,, (1) = T] — 1 = negl(v)

fra anon

5.3 Discussion

Bellare et al. [BMWO03] concentrated on designing a formal model for group signatures and a generic (inefficient)
construction that can be proven secure in this model. We note that a preliminary suggestion for a formal model
for the related primitive of identity escrow, was presented by Camenisch and Lysyanskaya [CLO1] in the style of
ideal model vs. real model. The [BMWO03] model compressed the series of security requirements of [ACJTOOQ]
into two formal security conditions. While this model was a step towards the realization of a secure model for
group signatures it was in fact modeling a weaker primitive, a relaxed group signature, compared to the primitive
realized by [ACJTOO]. This fact is noted by the authors themselves. We note that we believe that, methodolog-
ically, it is sound to introduce relaxed notions for understanding better the possibility of formal modeling of
complex primitives, as was done in [BMWO03].

To understand the relaxation, note that, in particular, the syntax of [BMWO03] suggested that the tamper-
proof key-setup algorithm produces all members’ signing keys (which may be a useful model in certain settings).
While this may seem to be a minor issue, it is in fact quite crucial, since it prevents any attempt to formalize the
exculpability property of [ACJTOO] in a natural way without adding additional trusted parties. Indeed, [BMWO03]
introduce a “fourth” trusted tamper-proof party, a key-issuing authority, which is trusted to generate all keys
and distribute them to the GM and the users. Clearly, such was not the approach of [ACJTO0] who instead
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emphasized a group join protocol involving the GM and the user that does not rely on external trusted parties
(whose employment relaxes much of the underlying difficulties of group signatures).

The group signature model of Bellare et al. has two security properties called “full-traceability” and “full-
anonymity.” Naturally, if one wishes to take this model and adapt it somehow to capture the operation of the
[ACJTO00]-scheme (that assumes no trusted third parties) is immediately in trouble: “full-traceability” (that is the
basis of unforgeability) gives to the adversary the GM’s secret key. In a scheme where users Join in the sense c
Ateniese et al. the adversary would simply create a new membership certificate and thus forge a signature. As
result a scheme in the sense of Ateniese et al. proven secure in the Bellare et al. model can potentially have th
adversary forging signatures at will. This point has not escaped the authors themselves and is, in fact, mentione
in Bellare et al. when they motivate the fourth party and discuss partially dynamic groups (when users can join
dynamically). They propose simply that the adversary should be denied the key-issuing mechanism which is a
clear relaxation when compared to the goals of [ACJTOO].

In contrast, in order to cope with the above subtleties of the security modeling, our security against “misiden-
tification attack” will prevent adversaries from forging signatures outside of their coalition even when they obtain
signatures and open them at will. Our “framing attack,” on the other handallagllv the adversary to corrupt
the GM totally and irrevocablynd, in fact, no party is untouchable in this attack. These two attacks imply that
there is no other party, but the GM that holds the group private key which is used for membership certificate
generation (following the modeling of [KTY04]). This is in contrast with the [BMWOQ03] model where in their
“partially dynamic group” formulation (i.e., the [ACJTOQ] setting), they deny to the adversary access to the GM’s
membership certificate generation mechanism altogether (assuming it is a tamper-proof party); this is a signifi-
cant relaxation of the model which eases the attack scenario substantially. For further comparison between thq
two models we refer to the observation #2 at the end of the next section.

The differences above as well as the intuitive goals in [ACJTO0] and the extended notion of a scheme with
separable authorities motivated our model. We next discuss our scheme and show its correctness and security.

6 Building a Secure Group Signature

The scheme we will prove security will be built based on the state-of-the-art scheme of [ACJT00]. We note that
it is impossible to prove security of the [ACJTO00]-scheme in our model.

The public-parameters of the group signature are a composite madwalius bits, such thak, = pq with
p=2p 4+ 1andq = 2¢' + 1 (wherep, ¢,p’, ¢’ are primes), as well as a sequence of elements ingiEe:)
denoted by, a, g, y and two lengthg, 1, so thatS(2¢,2#) C {1,...,p'q'}. The membership certificates are of
the form (A, e) so that4 € QR(n) ande is a prime number irf(2¢, 2#). The membership secret is a value
such thatiga® = A°. Given the above structure, the basic functions of the group signature scheme employ two
hash functiong/, H and are implemented as follows:

SETUP: On input a security parametet this probabilistic algorithm first samples a group description for
{9,n,p0,q,7',q) «— descc(1”). Then, it selects;, & «—p Z3, v a0, a,h —p QR(n) and publishes the group
public key) =4 (n,a0,a,9,h,y = ¢°, 9 = ¢*) and the secret key is set® =g (p, ¢, z,2). The procedure
also selects the parametéts:, k € IN ande > 1 as functions o# so that the following condition is satisfied
S(2¢,2¢m+R)+2)y C {5, ... min{p/, ¢} — 1}.

JOIN: A protocol between the GM and a user that allows the joint computation of a membership certificate
(A, e) so that only the user obtains the membership secréirst we give the functionality of the protocol using a
trusted partyl”: the specification of the protocdf,,,, J£,, using a third trusted pary is as follows:JI_,, (1%, )
sendsgo to the trusted party’, who in turn selects: < |n/4] and writes to the GM’s communication tape
the valueC' = a” mod n and writes to the user’s private tape the vatuelJg,, (1%, Y, S) readsC from the
communication tape witl’, it selects a prime —p S(2¢,2*) — {p/, ¢’} and computest = (aga)'/¢(modn);
finally it writes (i, A, e) in the regular communication tape wheres the next available user tag (a counter is
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employed) and terminates! ., reads(A, e) from the communication tape and writés A, e, x) in its private
output tape. As shown in the “non-adaptive drawings of random powers” protocol of (section 6, [KTY04]) it
is possible to derive aefficientprotocolJ s, Jom thatdoes noemploy a trusted party and achieves the above
ideal functionality.

In the above descriptiorcert; = (A, e), sec; = =z, transcript; = (C, A, e). If transcript = (C}, Ay, er)
andcert = (A. e.),sec = xz.), the relationshipert =y sec is true iff ASc = apa®°, and the relationship
(transcript) =y (cert, sec) is true iff A, = A. ande; = e, andcert =y sec.

SIGN: The signing algorithm is based on a proof of knowledge that is preceded by the VBIUES, Ty, 15,
Ts,T,) defined as follows when invoked by thh user:

Tufl R Ln/4J : Tl - Ainv T2 = gT’ Tl - Ai?fi T2 = gfu T3 - geihT
T4 — niZkH[nag)yhyZa <T25T1>’ <T27T1>]

The noninteractive proof of knowledda ensures that the twin ciphertekt, Ts, Tl, Ty is properly formed
(see section 4.1). To complete the description of the signature, consider the discrete-log relation set over the fre
variablesr, e, z, s', s":

g 9> h ()™ y M) a a T3 1 T
Th=¢": r 0 0 1 O 0 0 0 0 0 0
D Ts=¢h": ¢ O r O 0 O 0 0 —-1 0 0
'_ Ts5=9¢": s 0 0 e 0 0O 0 0 0 0 0
aga®y* =T¢: 0 0 0 0 s e x 1 0 0 0

| Ts=g(g»)"'h": 1 " r 0 0 0 00 -1 0 0 |

The above proof ensures tHét, 75 is the EIGamal encryption of a valukthat if raised to an odd integer
it can be split by the prover in the formya®. Note thatD is clearly triangular; the values;, 75 are included in
the base so that they will be included inside the hash when we transform the proof in the non-interactive setting;
we also require that the whole pro®j is also included in the hash. The signature on a messageill be
formed by employing the Fiat-Shamir transform over the proof of knowledge in the discrete-log relatitg: set
sgng (M). It follows from the above that the outpBIGN(Y, cert;, sec;, M) has the following form:

(¢, 51,82, 53, 54, 55) Wherec = G(M, g, ¢*, h, (To) "y, (T1) ", a, a0, T3, T1, To, Ty, By, Bo, B, By, Bs)

whereBy, ..., Bs, s1,...,s5 are defined based on the structure of the mafriabove and the description of
section 2.3.

VERIFY: given a signature = (c, s1, s2, S3, S4, S5) the verification algorithm is implemented according to
the verification algorithmrerg as described in section 2.3 and verifyifig

OPEN: The opening procedure given a signatarns as follows:

. Verify o using the public verification proceduv&RIFY.

. Parses to recover the values;, Ts.

. Verify that the noninteractive proof of knowled@g is correct.
. Computed = T (7¥)~! mod n.

. Match A to some user’s first component of the membership certifichtes;) (as available in the database
maintained during thé0IN protocols).

6. If either steps 1 or 3 or 5 fail, returh, else return the user found in step 5.

a b~ WO DN PP
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6.1 Correctness and Security of the Construction

Theorem 24 The group signaturéSETUP, JOIN, SIGN, VERIFY, OPEN) defined above is correct.

Proof. Regarding user tagging soundness, it follows immediately since the GM maintains a countéiatas
incremented after each successful join. Regarding join soundness, it follows immediately since by construction
the user obtaingi, A,e,x) so thatcert; = (4, e) andsec; = z that satisfy the relationshipert; = sec;,

which is A = apa”(modn). Regarding signing soundness, observe that a user that holds the membership
certificate(A, e) and the membership sectetif she follows the specifications in the construction of the values

Ty, Ty, Ty, 15, Ts, Ty she knows a witness for the discrete-log relation/3€by settings’ = er ands” = %).

Based on the completeness of the proof of knowledge she can create a valid signature. Finally, regarding the
opening soundness, observe that for any valid signaturepttiealgorithm will recover the valud = 7, (75) ™"

which is equal to the first component of the membership certificate) that corresponds to the originator of

the signature. By matching this to the datab&sg,,,s that contains all0IN transcripts of the form{C, A, e)

the identity of the user (the numbarwill be revealed, as long as every user is assigned a umlquEmponent.

The probability that the0IN dialog assigns to a user the sami@€omponent is negligible. Indeed, if two users

are assigned the samevalue in their certificate, it must be the case thatC')'/¢ = (aoC”)"/¢ for a random

choice ofe, ¢’ from the spaces(2¢,2*) — {p’, ¢’} and a random choice @, C’. In this case it must hold that
(apC)¢ = (apC")® which is a negligible probability event, sin€& C’ are uniformly distributed ove®R(n)

and bothf(a) = a¢(modn), f’(a) = ¢ (modn) are bijections ove@ R(n). 0

The proof of security of our scheme is naturally more involved and will be broken down into the following
three theorems:

Theorem 25 (Security against misidentification attacks) For @y T A it holds thatProb[Gﬁ}is(l”) =T] =

negl(v) assuming that the Strong-RSA problem is hard in the random oracle model.

Proof. We first consider the passive adversary case, this case corresponds to an adaptive chosen message exist
tial forgery attack. In this case the adversary instead of being active within the system he us@s_gslyand

Qsign queries (instead®,_join queries : note tha@,_.i, and Qg.n queries can easily be simulated @y _join
queries).

Let (n,a) be a challenge for the Strong-RSA problem, and4die a passive misidentification adversary as
explained above that has access to the two random oracles employed in the sg¢fEme:

Below we detail a procedur® that operates ofrz, a) and has access to a random oraglend to an oracle
reprogramming procesk (cf. lemma 6). P is a simulation of4. Prior to the beginning of the simulation,
P computes two tupled’, S as follows: Y := (n,ap,a,g,h,y,y) whereh «—r QR(n),z,& «—gr [[n/4]],

r g [n?,a0 =a",y = g% 9 = g%, andS := (z, #). MoreoverP initializes a tablel’;; that will be employed
for the simulation of the random oracte In the simulation of4 by P, the queries ofd are answered as follows:

e Qb query:P returns). Observe that this answer to tlak,,, query is indistinguishable from the answer
in the actual misidentification attack game. This is because both distributjorsa” andy «— ¢%, 9 «— ¢*
are statistically indistinguishable from the uniform o@R(n) (cf. lemma 5).

e O, _ioin query: note thaf® cannot really simulate th@0IN protocol since the factorization of is not
known. InsteadP selectse; as in the actual0OIN protocol and a valuel; at random fromQR(n); P
does not select the; value. Note that random sampling fra(n) is still possible even if one doesn'’t
know the factorization ofi, and moreover based on lemma 5 the distributiompfs indistinguishable
from the distribution of4; in real JOIN protocol executionsP maintains a user counter and every time a
Qp—join query is submitted it increases the couritédow P selects < [n/4] and sets, = a”( mod n),

C! = (A" /ap)" and returns as outpyt, a}, C’, A;, e;). The output is clearly indistinguishable from the

»

actual output of the interface in@,_join query.
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e Qgen query: such a query includes the tugie M), wherei corresponds to one of the users that were
introduced throughQ,_j.in queries.P answers this query tgl, by forming7y, 75, Tl, Tg, T3, Ty exactly
as in the description of the actual scheme. Note first, that this is possible since no knowleqge of
log, (A" /ap) is required in the formation of these values; second, the computati®h @fquires using
the random oraclé{. P will select the challenge at random and enter the value in the corresponding
location of theT’, table (or use the existing value if it exists ;). To complete the signature, the
proof of knowledge for the discrete-log relation set must be simulated ($mdacking knowledge of
z; = log,(A;*/ap) does not have a witness for the relation). This proof of knowledge will be simulated by
selecting a challengeat random from{0, 1}* and then using the honest-verifier zero-knowledge simulator
from theorem 8 to produce the signature. Finalywill need to reprogram the oraclg so thatc =
G(M,g,g% h, (T)"Y,y, (T1) Y, a, a0, Ty, T1, Ts, Ty, By, By, Bs, By, Bs). This is done by invoking the
queryR.

o Oypen query: such queries are answered following@hReN algorithm; note thalP possesses both decryp-
tion keysz, z.

e H queries are answered by table-lookup using the tébleif a queryz to H does not exist iril},, P
selects: — {0, 1}* and answers by, while it inserts(z, ¢) into T3,.

e G queries are answered by askiGglirectly.

Observe now that the above proced@®esatisfies all requirements of lemma 6. In particular with respect
to reprogramming querie@, ¢) that are submitted b to R it holds thatc is indeed selected at random from
{0, 1}* and moreover, the first componeris distributed in such a way so that no single individuias probabil-
ity more thare /2" (a trivial result using the random choiceBf, Bo, . .., Bs and the fact that < [log(n)| —2).

It follows that based on lemma 6 we can derive an algorifinthat produces (with the proper probability) two
distinct proofs of knowledge with the same first move (and of course with the same HgadierTy, 1, Ts, Ty).

Now, using the soundness property of the proof of knowledge we may recover a witness for the proof of knowl-
edge that includes the valueg, x, that in turn will reveal the tupléA = T, /h", e, x) satisfying the property

A® = gpa”(modn). Let us denote this modified’ procedure that results in the valudse, = by P”.

The proceduréP”, for the given Strong-RSA challende, a) providesA, e, z such thatA® = a"** with
e > 1 an odd number and € QR(n). Observe that the conditions of lemma 4 are satisfied and thus, if
d = ged(e,r 4+ x) < e it follows immediately from lemma 4 that we can either faotasr solve the Strong-RSA
challenge(n, a). To complete the proof we use the following claim that is based on [CLO2]:

Claim With probability at least /2 over the coin tosses of the proced@¢it holds thaty < e.

Suppose the claim is false. It follows that with probability greater thy@nover the coin tosses of the above
simulation it holds that = e, i.e.,e | r + x. Let z,2’ be integers such that = 2/ + ¢(n)z. Indeedz is
independent of the view of the adversary. On a random choiceef; [n?], the valuez is a random variable
from Z,,; it follows that for more than half choices efwe have that | 2’ + ¢(n)z + x. By the pigeonhole
principle there must exisy € Z,, such that | 2’ + zp¢(n) + xz ande | 2’ + (20 + 1)¢(n) + x; it follows that
e | ¢(n) = 4p'¢’; sincee > 4 by size restrictions (the proof enforces S(2¢, 2¢(*+#)+2)) it holds thate has a
large common prime factor with(n). Using the same techniques as in the proof of lemma 4, we conclude that
knowledge ofe allow us to factom. This completes the proof for the passive misidentification adversary.

Next we consider the active adversary misidentification attack, which corresponds to adaptive chosen mes:
sage evasion of the opening mechanism. We will recall the following (essentially theorem 1 of [ACJTO0O0]):

Claim. Fix public parameters, ag € QR(n) and a integer rang8(2¢, 2#). Suppose that there is a PRTthat
given a sequence of tuplés;, e;, A;) fori = 1,..., K with A" = apa™ returns a distinct tupléz, e, A) such
that A° = apa®. Then one can turil to a PPT algorithm solving the Strong-RSA problem.

Suppose now we have;, e;, 4;) fori = 1,..., K with A" = apa®. We will use the active misidentification
adversary to derive an algorithi as described in the above claim.
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The only difference from the passive misidentification simulation is that we have to use the drawing of random
powers protocol to plug the values, . . . , zx into the drawn random elements provided to the adversary. This is
possible based on the simulatability of the drawing of random powers protocol (as described and used in sectior
6 of [KTYO04]). In all other aspects the simulation proceeds as in the passive misidentification case. 0O

Theorem 26 (Security against framing attacks) For aRPT A it holds thatProb[G{r‘a(l”) = T]| = negl(v)

assuming that the Discrete-logarithm problem is hard over@i®(n) with known factorization, in the random
oracle model.

Proof. Let (n, p, q, a, A) be an instance of the discrete-logarithm problem @y&(r») with known factorization
p,qwWith p = 2p' + 1 andq = 2¢' + 1 (p/, ¢’ primes) where’ is the number of bits of.. Let A be any framing
adversary that has access to the two random oracles employed in the s¢hétme:

Below we will detail a procedur® that operates ofn, p, ¢, g, A) and has access to a random oratlend
to an oracle reprogramming proceRs(cf. lemma 6). P is a simulation ofA. Prior to the beginning of the
simulation,P computes two tuple¥, S as follows:)Y := (n, ag, a, g, h,y,§) whereg,h «—r QR(n),z,z g
'), r g [Pd],a0 =a",y = ¢g°, 9 = g%, andS := (p, q, =, &). MoreoverP initializes a tablel’;; that will be
employed for the simulation of the random oratleln the simulation of4 by P, the queries of4 are answered
as follows:

e Onub OF Qiey query: P returns) or S respectively. Observe that this answer to g, query is the
identical to the answer in the actual framing attack game.

e Op_join query:P upon receiving such a query it should initiatéGIN protocol dialog with the adversary.
Indeed, in thei-th Qy_jui, invocation, the adversary submits the valije P selectsz; —r [p'¢/] and
submits to the adversary the valde= a" A. This must be done using the simulatability of the drawing
of random powers protocol as proven in [KTY04]. Observe thas uniformly distributed inQ R(n) and
the adversary will not notice any difference from real executions offthe protocol’s steps (whergé, e,
submits the valu€’ = (a’)*i instead). Subsequently the adversary replieéiby, e) so thatd® = aoC
and the protocol dialog terminateB.stores the value§, r;, A;, e;) as part of its internal state.

e Qggn query: such a query includes the tugie)M), wherei corresponds to one of the users that were
introduced throughQy,_j.in queries. P answers this query tel, by forming T, Ty, Ty, Th, Ty, Ty €X-
actly as in the description of the actual scheme. Again, this is possible since no knowledge-of
log, (A" /ap) is required in the formation of these values; second, the computati®h fquires using
the random oraclé{. P will select the challenge at random and enter the value in the corresponding
location of theT’, table (or use the existing value if it exists ;). To complete the signature, the
proof of knowledge for the discrete-log relation set must be simulated ($ndacking knowledge of
z; = log,(AS"/ap) does not have a witness for the relation). This proof of knowledge will be simu-
lated by selecting a challengeat random from{0, 1}* and then using the honest-verifier zero-knowledge
simulator from theorem 8 to produce the signature. Findfywill need to reprogram the oraclg so
thate = G(M, g, g2, h, (To) L, y, (T1) ", a, ap, T3, 11, 15, Ty, By, Ba, B3, By, Bs). This is done byP by
invoking the oracle reprogramming queRy

e H queries are answered by table-lookup using the té@bleif a queryz to H does not exist i, P
selects: + {0, 1}* and answers by, while it inserts(z, c) into T%,.

e G queries are answered by askigglirectly.

Similarly to the proof of theorem 26, it holds thatsatisfies the requirements of lemma 6, and based on it we
can derive with the proper probability an algoritti?h that produces two distinct proofs of knowledge with the
same first move (and of course with the same he@gers, 71, T», T, T4). Now, using the soundness property
of the proof of knowledge we may recover a witness for the proof of knowledge that includes thervatlias,
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that, in turn, will reveal the tupléA’ = Ty /h"", ¢/, 2') satisfying the property4’)¢ = apa® (modn). Based
on the conditions of the framing game there will beigrsuch thatd” = A;,. Now observe that this implies
that (aga®™ )/ = (aga"0 A)/¢o which is equivalent ta("t#)(¢io/€)=7="iy — A, from which we obtain the
discrete-logarithm ofi. Note that the range restrictieh € S(2¢, 2#) makes sure thajcd(¢’, p'q’) = 1, so that
e’ is invertible modulg/'q’. O

Theorem 27 (Security against anonymity-attacks) For @PRT A it holds that2Prob[GZ,

anon(lu) = T] —-1=
negl(v) assuming th®DH-Compo-KF in the random oracle model.

Proof. Let .4 be an adversary for the anonymity-attack gaﬂ?q‘ﬁon.
Below we describe a modified anonymity-attack gafffe We form the public-key a9 = (n,aq,q,g,
h,y,4) whereag, a «—r QR(n), z, %,z «— [p'¢] andh = ¢,y = ¢*,§ = ¢°. The secret-key of the system is
defined asS = (p, ¢, x, #). The adversary has access to the two random oré¢lesdG. GameG’ maintains
tablesT’, andT} for the simulation of the random oracles and answers the adversary’s queries as follows:
e The queryQ,, is answered by returning the public-key of the sysfgm
e The queryQ,_join is answered by having’ simulate theJOIN dialog in private and create theh user’s
membership secret and certificate (factorization is known).
e The queryQ,_join initiates aJOIN dialog between the adversary a6d with G’ playing the role of the
interface executinggym. The adversary submits some vatiuend receives from the interfack e so that
A¢ = aoC. Note thatG’ is capable of answering such queries as it possesses the factorization of
e The queryQ.. is answered by recovering the membership certificate and membership secret of a user
¢ € UP and returning it to the adversary.
e In the queryQqpen, the adversary submits a signatureo to be opened.G’ parsess for the values
Tl,Tg,Tl,Tg,Tg,ﬂ and verifies the correctness of the proof of language memberzhift returns_L
if the proof verification fails. Otherwis&’ returnsT}(73)” to the adversary. Note that the opening
is performed in the second ciphertext component. The difference in behavior will only be noticed by
the adversary in the event that the adversary produces a valid proof of language membership for a tuple
(Tl,T2,T1,T2> where the ElGamal ciphertext® , 7> and T}, encrypt different plaintexts; this is a
negligible probability event based on the simulation soundness of the ppadf.
e Queries tdH, G are answered using the tablBg and7g in the usual fashion.

In the end of phasehoose the adversary returngux, Ay, e1, x1, Ag, e2, 2, m). The interface verifies that
AT = apa™ and AS? = apa™, selects;, < {1,2} and forms the signature as follows:

T',72 R [p/q/] : Tl = Aibyra T2 = gr’ TI = Aibgi TQ = g’;‘a T3 = geibTQZ

Subsequently, the interface simulates the proof of language membéisltfising its honest verifier zero-
knowledge simulator and controlling the random or&Glg and furthermore it simulates the proof for signature
sgn® (m) (again using the honest verifier zero-knowledge simulator and controlling the randomTicle
Subsequent oracle queries in tggess stage of the adversary are simulated as above (with the dictated
modification in the opening oracle where the adversary is not allowed to submit the challenge signature).
The above gamé is indistinguishable from the actual gar@ig!,.; this follows from the statistical indistin-

guishability of the proofs of knowledge and the simulation soundness. Now we modify @amehe signing
stage to result in the gant&’:

T, 7"/>f R [p,q/] : Tl = Aibyr7 T2 = gr” Tl = Aibgfv T2 = gd T3 = ge%T;
The modification fronG’ to G” will only incur a difference oﬂdvﬂﬁf’(y) in the view of the adversary. This is
the case since between the gar6éandG” the quadruplég, y, T, T /A;,) behaves as a DDH challenge (valid
DDH quadruple for gamé&’ and random quadruple for garg¥).
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Now we modify againG” to obtain a new gamé&”” again by doing two modifications (i) first we return
the opening of signature to occur in the first ciphertext, i.e., given a valid signature for opening-gami
simulate an opening query by decrypting on the first ciphertext. More@{ewill modify the signing stage of
gameG” as follows:

r't g ) Ti=Agy’, Ta=g", Ty = A", To=g", Ty = g T5
again the modification fron&” to G” will incur a Advi,2" (v) + e difference in the adversary’s view. In this
case¢ accounts for the statistical distance that is due to the switch from the second ciphertext to the first cipher-
text in the opening oracle simulation; note that based on the simulation-soundness of the underlying proof of
language membership it holds thas negligible. Regarding thadv}2H (1) difference observe that the quadru-

descc
ple (g,@},TQ, Tl/Aib> behaves as a DDH challenge (valid DDH quadruple for géifi@nd random quadruple
for gameG"").
Finally we modifyG"’ to the game&="” by modifying the signing oracle to return:

rol i 7 g D] Ti= Ay, Ta=g", Ty = Ay g, To=g", Ty = ¢ T5
This modification will again incur only aAdv).” (v) difference in the adversary’s view. This is the case
since(g, h, T», T3 /g% ) behaves as a DDH challenge (valid DDH quadruple for géifieand random quadruple
for gameG"").

Observe now that the success probability of the adversary in g&his necessarily /2 since all information
about the random bii is lost. It follows easily, that if the anonymity-attack adversarys has non-negligible
advantage in the gan@\ __, then this would violate thBDH-Compo-KF. a

anon?

Observation #1. The framing and anonymity-attacks are not dependent on any factoring related assumption.
This subtle fact eases on the one hand the intractability assumptions (and in fact also the proofs); moreover is
crucial in the next section, where we consider an even stronger adversarial setting.

Observation #2. Recaping on the comparison of our setting to the one of [BMWO03] we remark that our group
signature design of this section can be degenerated to a design that adheres to their syntactic formulation (the
employs a trusted party generating the keys) and then proven secure in their security model. In particular the
SETUP procedure would be executed by the trusted party (as in their model) that will also simulate sevgral
protocols in order to create a number of membership certificates and secrets and subsequently distribute th
membership secrets and certificates to the users as well as hand the opening trapdoor to the GM using secul
channels (alternatively users may join with the trusted party as [BMWO03] suggest in the “partially dynamic”
formulation). After this step is performed, the trusted party does not participate in the protocol or in any attack
and the key-issuing trapdoor (the factorization of the modulus) is untouchable by the adversary. The process
of signing, verifying and opening remains the same as in our construction. Using similar proof arguments as
in our framing and anonymity attacks we can prove “full-traceability” (under the discrete-log assumption) and
“full-anonymity” (under theDDH-Prime assumption). Note that the modified scheme retains its efficiency, and
doesn’t depend on the factoring assumption at all. This suggestarilagiroup signature scheme where the
trapdoor for joining users is different from the opening trapdoor that is proven secure in our security model of
section 5 can be modified as above, using the trusted party of [BMWO03] and then proven secure in their model.

7 Group Signatures with Authority Separability : Anonymity from Trapdoor
Holders

In a group signature with separated authorities we differentiate between the GM, who is responsible for group
membership operations and an Opening Authority (OA), who is responsible for the revocation of anonymity
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(opening a signature). This separation is relevant to practice, since group management should be typically con
sidered an ISP operation whereas revocation of anonymity must be performed by some (possible external) third:
party authority (which can even be distributed). This authority separability is natural and is not designed to assure
that certain processes are tamper-proof; note that it is a different notion of separability compared to what [CM99]
considered.

The syntax of a group signature with authority separability is similar to the group signature syntax as pre-
sented in definition 21 with the following modifications:

Definition 28 A group signature scheme with authority separability is a digital signature scheme comprises the
following six procedures; the parties involved are the GM, the opening authority and the users.

SETUPGMm: On input a security parametdr”, this probabilistic algorithm outputs the group public K&y
(including necessary system parameters) and the secreidggyor the GM.SETUP¢\ also initializes a public-
state stringSt with two componentSt, s.,s = 0 and St;rqns = €.

SETUPoa: On input a security parametdr’, and the public-keycwu, this probabilistic algorithm generates
the public and secret-key of the opening authority denotetldayand Soa.

We will denote the concatenation B andYem by V.

JOIN: The JOIN protocol is identical to that of definition 21 with the only exceptiem requires only the
secret key of the GMig.

SIGN: identical to definition 21.

VERIFY: identical to definition 21.

OPEN: the opening algorithm is the same as in definition 21 with the exception that only the opening author-
ity’s secret-keySo, is required.

Correctness Given the above minor syntactic differences, the correctness of a group-signature with separated
authorities is defined in the same way as definition 22 by taking into account the above modifications that corre-
spond to the fact thalgym requires onlySgym and0OPEN requires onlySoa.

Security. The security properties of a group-signature with separated authorities must remain the same so that
any secure group signature with separated authorities must also be a secure group signature (by collapsing tr
GM and the OA into a single entity).

Moreover in the separated authority setting the anonymity-attack can be made even stroagginbyhe
adversarial capability of corrupting the GM.

Regarding the security modeling, in the queries that can be posed to the interface, th@guemil be
substituted with two distinct querie8e,cm and Qyeyoa With the obvious results. The definition of the three
attacks will remain unaltered with the following syntactic modifications:

(i) in an framing-attack the adversary will have at its disposal both the quriggm and Qieyon (i.€., the
adversary can corrufoththe GM and the OA)

(i) in the anonymity attack, the adversary will be givaatditional access to th&,.,cm query — this is in
addition to all the queries that are available to the adversary.

The above two modifications are straightforward and thus we will not list the security properties again in this
section. The modified games will be denoteddyy, ..., GA GA

sep’ ' mis—sep’ ~anon—sep*

Definition 29 A group signature scheme with separated authorities is secure if for all RRTholds that (i)
Prob[GA____(1¥) = T] = negl(v) (i) Prob[G4 (1¥) = T] = negl(v) and (iii) 2Prob[G%} (1") =

in—sep out—sep anon—sep

T]—1=negl(v).

Note that any scheme secure under the above definition is also a secure group signature under definition 23,

Construction. The design of a group signature with separated authorities can be based directly on our construc-
tion of section 6 with the following modification: tr8ETUPg\ procedure will produc@®cm = (n, ap, a, g, h)
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with Sgm = (p, q), whereas th6€ETUPpp Will produceYoa = (y, 3) with Soa = (z, ). In all other respects

the scheme will proceed in the same fashion. It is straightforward to spl@BneP procedure to these two
authorities, with the condition (as specified in definition 28) that the GM should go first so that thewialue
made available; afterwards the OA can select the vajugs QQ R(n) with knownlog, y andlog, 3 and publish

the two additional elements to form the combined public ¥ey (n, ag, a, g, y, y). To allow the differentiation

we specifylom = (n, a0, a, g, h), Sem = (P, ), Yoa = (y, 9), andSoa = (log, y,log, ). The design remains
unaltered otherwise. In our security proofs we took special care to disassociate the hardness of factoring from
anonymity. The following theorem is therefore implied:

Theorem 30 The group signature with separated authorities presented above is correct and secure; in partic-
ular: (i) it is secure against misidentification-attacks under the Strong-RSA assumption in the RO model. (ii)
it is secure against framing-attacks under the Discrete-Log hardness assumptio@ Byey with known fac-
torization and the RO model. (iii) it is secure against anonymity-attacks ub@di-Compo-KF in the RO
model.

Proof. The proof is based directly on the proofs of theorems 25, 26 and 27. a

8 ldentity Escrow

An identity escrow scheme [KP98] is an identification scheme that allows an entity to prove it belongs to a public
group in anonymous fashion while it allows to an Escrow to recover the identity of the originator given any
identification transcript. The relationship of this primitive to group signatures is well-known, see e.g., [ACJT00],
and in fact the interactive version of any group signature that is based on the Fiat-Shamir transform yields an
identity-escrow scheme.

While in this work we concentrated on providing a probably secure group signature, it is possible to transform
our exposition to the identity escrow setting by considering the interactive version of our signing algorithm. In
this case instead of use of Random Oracle hashes, to compute challenges the verifier is the entity that provide
these challenges. We remark that while we use two different hash functions in our generation of a signature,
this is not needed to result in two interactions between the prover and the verifier in the interactive setting of an
identity escrow scheme. In fact the prover can show the validity of the twin ciphertext and the validity of the
proof of knowledge that corresponds to the discrete-log relation set simultaneously, something that will result
in a standard 3-move identity escrow scheme. The proofs though have to be made zero-knowledge against an
verifier (rather than “honest verifier” proofs), and standard transformations are possible.

The security of the resulting identity escrow scheme can be based directly on our security modeling with the
following standard constraints that pertain to the interactive setting: (i) Security can be shown against only honest
verifiers, i.e., it is assumed that the random challenges submitted by the verifier are randomly selected. This cat
be enforced in many settings by either employing a beacon that will produce the challenges, or by having the
prover and the verifier executing a coin-flipping protocol. (ii) a verifier will not accept concurrent sessions of
identification protocols. Requirement (ii) can also be lifted by employing techniques such as those of [GMY03].

The notion of group signatures with separated authorities also transforms naturally to the identity escrow
setting, where it yields an identity escrow scheme with separated authorities (one for group management and on
for opening — the escrow agent).
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