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Abstract

WinZip is a popular compression utility for Microsoft Windows computers, the latest version
of which is advertised as having “[e]asy-to-use AES encryption to protect your sensitive data.”
We exhibit several attacks against WinZip’s encryption method, dubbed AE-2. We then discuss
secure alternatives. Since at a high level the underlying WinZip encryption method appears
secure (the core is exactly Encrypt-then-MAC using AES-CTR and HMAC-SHA1), and since
one of our attacks was made possible because of the way that WinZip Computing, Inc. decided
to fix a different security problem with its previous encryption method AE-1, our attacks further
underscore the subtlety of designing cryptographically secure software.
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1 Introduction

WinZip [17] is a popular compression utility for Microsoft Windows computers, the latest version
of which is advertised as having “[e]asy-to-use AES encryption to protect your sensitive data” [17].
Because of WinZip’s already established large user base, and because of its advertised encryption
feature, we anticipate that many current and future users will choose to exercise this encryption
feature in an attempt to cryptographically protect their data.

Unfortunately, WinZip’s latest encryption scheme, dubbed AE-2 [16] and shipped with WinZip
9.0, is insecure. We exhibit several attacks in this paper, and then propose ways of fixing the proto-
col. We believe that our proposed fixes are relatively non-intrusive and will be easy to incorporate
into WinZip and other WinZip-compatible applications.

WinZip. We shall write “WinZip” when we mean “WinZip 9.0” or any other recent version of
WinZip or a WinZip-compatible tool that uses the AE-2 encryption scheme [16].1 When archiving
a file, if the length of the file is above some threshold, WinZip first compresses the file using some
standard compression method such as DEFLATE [7]. WinZip then invokes the AE-2 encryption
method on the output of the previous stage. Specifically, it derives AES [6] and HMAC-SHA1 [13]
keys from the user’s passphrase and then encrypts the output of the compression stage with AES
in counter (CTR) mode (AES-CTR) and MACs the resulting ciphertext with HMAC-SHA1. The
underlying AES-CTR-then-HMAC-SHA1 core is a provably secure authenticated encryption scheme
per results by Bellare and Namprempre [1] and Krawczyk [13] and standard assumptions on AES-
CTR and HMAC-SHA1.

A collection of problems. All our attacks exercise different flaws with the way WinZip
attempts to protect users’ files. Furthermore, each of the attacks accomplish something slightly
different, which means that different adversaries may prefer different attacks. Since no single
“best” attack exists, and since in order to eventually fix the protocol we must first understand the
(orthogonal) security issues with the current design, we discuss each of the main flaws we found,
and their corresponding attacks, in turn. It is worth noting here that although our attacks can
reveal a significant amount of information about WinZip-encrypted files to an adversary, including
in some cases the entire contents of the original files, none of our attacks “totally break” WinZip
in the sense that they don’t recover a passphrase or an underlying AES key simply from a single
WinZip archive or a set of archives.

Information leakage from encrypted files’ headers. According to the WinZip documen-
tation, there is a known problem with the WinZip encryption architecture in that the header of
an encrypted file appears in the WinZip archive in cleartext. Contained in this header is both
the encrypted file’s original file name, the file’s last modification date and time, the length of the
original plaintext file, and the length of the resulting ciphertext data, the latter also being the
length of the compressed plaintext data plus some known constant. Although we understand that
WinZip may have had functionality and usability reasons for leaving the file names unencrypted,
the risks of leaving the file names unencrypted should not be discounted. For example, if the name
of a compressed and encrypted file in the PinkSlips.zip archive is PinkSlip-Bob.doc, encrypting
the files in the archive will not prevent Bob from learning that he may soon be laid off.

We do not, however, see a strong reason for storing the date and time information and the
length of the original plaintext file in an encrypted file’s header unencrypted. Leaking the length
of the original plaintext file is a concern since, as Kelsey observes [11], an adversary knowing both

1According to the documentation packaged with WinZip 9.0, “Because the technical specification for WinZip’s
AES format extension is available on the WinZip web site, we anticipate that other Zip file utilities will add support
for this format extension.”
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the length of the uncompressed plaintext file and the length of the compression output will be able
to learn some information about the original plaintext. For example, from the compression ratio
an adversary might learn the language in which the original file was written [3].

Interactions between compression and the AE-2 encryption method. One of our
chosen-ciphertext attacks exploits a novel interaction between WinZip’s compression algorithm
and the AE-2 encryption method. In particular, although the underlying AES-CTR-then-HMAC-
SHA1 core of AE-2 provably protects both the privacy and the integrity of encapsulated data (cf. [1]
and [13]), an attacker can exploit the fact that the header fields indicating the chosen compression
method and the length of the original file are not authenticated by HMAC-SHA1 as part of AE-2.

An example situation in which an adversary could exploit this flaw is the following: Two parties,
Alice and Bob, wish to use WinZip to protect the privacy and integrity of some corporate data. To
do this, they first agree upon a shared secret passphrase. Suppose Alice uses WinZip to compress
and encrypt some file F, using their agreed upon passphrase to key the encryption, and let F.zip
denote the resulting archive. Now suppose Alice sends F.zip to Bob, perhaps through email or by
putting it on some corporate file server or an anonymous ftp server.

We argue that the type of security that Alice and Bob would expect in this situation is very
similar to the notion of authenticated encryption introduced by Bellare and Rogaway [2] and Bellare
and Namprempre [1]. Unfortunately, an adversary, Mallory, could break the security of WinZip
under this model. For example, assume that Mallory has the ability to change the contents of F.zip,
replacing it with a modified version, F-prime.zip, that has a different value in the header field
indicating the chosen compression method and an appropriately revised value for the plaintext
file length. When Bob tries to decrypt and uncompress F-prime.zip, he will use the incorrect
decompression method and will get back what looks like completely unintelligible garbage G. Now
suppose that Mallory can obtain G in some way. For example, suppose Bob sends the frustrated
note “The file you sent was garbage!” to Alice. If Mallory intercepts that note, he might reply
to Bob, while pretending to be Alice, “I think I’ve had this problem before; could you send the
garbage that came out so that I can figure out what happened; it’s just garbage, there’s no reason
not to include it in an email.” Mallory, after obtaining G, can reconstruct Alice’s original data F.

We believe that the above attack scenario is in some cases quite realistic. The following quote,
appearing on two of WinZip Computing, Inc.’s websites [15, 18], shows that WinZip Computing,
Inc. expects some users to mail encrypted Zip files to other users, thus satisfying one possible
precondition of our attack:

“Note: Recipients to whom you send AES-encrypted Zip files must have a compatible
Zip file utility in order to decrypt the files [15, 18].”

It also appears that employees of at least one large corporation basically used Alice’s and Bob’s
approach for sharing confidential files: Diebold Election Systems employees transported important
election-related files, compressed and encrypted into Zip archives, via an anonymous ftp site [9].2

Given Jones’ [9] discussion of Diebold’s procedures, we would not be surprised if an adversary able
to modify F.zip could also get access to the decrypted, garbage-looking file G. Additionally, we
remark that security products should ideally remain secure even in the face of potential misuses by
non-security conscious users, which supports our claim that the attack we describe is realistic and
should be protected against.

The attack discussed in this heading was made possible because of the way that WinZip Com-
puting, Inc. decided to fix a different problem with its previous encryption method, AE-1. Details

2Diebold used another Zip-derivative which had a different and even more insecure encryption algorithm and many
of Diebold’s passphrases have been recovered from the encrypted archives.
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in the body of this paper.

Interactions with AE-1 and a chosen-protocol attack. According to the WinZip AE-
2 specification [16], the AE-2 encryption method fixes a security problem with an earlier AE-1
encryption method. Further, according to [16], software implementing the AE-2 encryption method
must be able to decrypt files encrypted with AE-1. While AE-2 does protect against a specific attack
against AE-1, there is unfortunately a chosen-protocol attack against WinZip that exploits the fact
that an adversary can force WinZip to use the AE-1 decryption method on an AE-2-encrypted file.

The attack works in the same setting as the previous attack. In this attack, Mallory intercepts
F.zip, makes a guess of F, and creates a replacement F-prime.zip based off his guess. If Bob
can successfully decrypt F-prime.zip, e.g., if Bob doesn’t complain to Alice that the file failed to
decrypt, then Mallory learns with high probability whether his guess for F was correct. To compare
this attack with the previous attack, note that Mallory only needs to learn whether F-prime.zip
decrypted successfully. On the other hand, Mallory only learns whether his guess for F was correct.
Still, this may constitute a serious attack if Mallory knows that F is from a small set of possible
values, perhaps because of pre-existing knowledge of the message space or additional information
gleaned from the compression ratio, and wants to know which value it is. (Actually, in some
situations Mallory may learn more than just whether his guess was correct; details in the body of
this paper.)

Key collisions and repeated keystream. To encrypt a file, WinZip first takes the user’s
passphrase and derives cryptographic keys for AES and for HMAC-SHA1. The key derivation
process is randomized; the purpose of this randomization is so that two different files encrypted
with the same passphrase will use different AES and HMAC-SHA1 keys. Unfortunately, because not
enough randomness is used in the key derivation process, we expect key collisions after encrypting
only 232 files when using AES with 128-bit keys (248 files for 192-bit AES and 264 files for 256-bit
AES). Furthermore, the AE-2 specification says that the initial CTR mode counter is always zero.3

Thus, we can expect keystream reuse after encrypting only around 232 files, which is much less
than the 264 files we would expect if we chose a different random key for each file. Additionally,
assuming that the encrypted files are all of realistic size, then this is also less than the number of
files we would expect if we used AES in CTR mode with just a single key but a randomly selected
initial counter for each file.

It is worth noting that because WinZip encrypts each file in an archive independently, all 232

files need not be put into separate archives; we expect keystream reuse even if all 232 files are
distributed amongst only a small set of WinZip archives.

The problems with keystream reuse are well known: Once Alice reuses keystream, Mallory will
be able to learn information about the compressed and encrypted plaintext. In the worst-case
scenario, if Mallory knew the entire content of the larger, after compression, of two files encrypted
with the same keystream, then Mallory would immediately know the entire contents of the other
file.

Other ways of attacking WinZip. We remark that there are other ways in which an adversary
might attack WinZip or any other compression utility. For example, as noted in the WinZip
documentation, an adversary might try to capture a user’s passphrase by installing a keyboard
logger on the user’s computer or might try to resurrect a plaintext file from memory. We also
observe what we believe to be a novel integrity attack against self-extracting password-protected

3Previously we said that the underlying Encrypt-then-MAC core of AE-2 is a provably secure authenticated
encryption scheme per Bellare and Namprempre [1] and Krawczyk [13]. Because the initial CTR mode counter is
always zero, we were assuming that each key is used to encrypt at most one message, which is typically the case
assuming that less than 232 files are encrypted per passphrase.
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executables: An adversary wanting to replace the data encapsulated by a password-protected self-
extracting executable could write a new executable, with a similar user interface to the real self-
extracting executable, that ignores the user-entered passphrase and simply creates a data file of the
adversary’s choice. However, attacks such as these are unrelated to the AE-2 encryption method,
and since our focus is on the AE-2 encryption method we do not consider these attacks further.

Secure alternatives. Motivated by the issues and attacks discussed above, we discuss how to fix
the WinZip encryption algorithm while simultaneously minimizing the changes to the AE-2 speci-
fication. Full proofs and definitions, written so as to be generically applicable to the composition
of compression algorithms with cryptographic modes of operation, to appear in the full version of
this paper. For our definitions, we use a notion related to authenticated encryption [1, 2], the main
difference being that we take into consideration the fact that the output of the compression stage
will typically have a different length than the plaintext input to the compression stage.

Related work. Biham and Kocher [5] and Stay [14] cryptanalyzed PKZIP’s stream cipher; the
results in [5] and [14] do not apply to WinZip’s new AE-2 encryption method. Biham [4] introduced
the notion of key collision attacks in the context of DES, noting that we expect one key collision after
encrypting about 228 messages using randomly selected 56-bit DES keys. Our key collision attack
accomplishes the same goal, seeing data encrypted with the same key, but is more efficient than a
normal key collision attack because of the way that WinZip derives AES keys from passphrases.
Kelsey, Schneier, and Wagner [12] introduced the concept of a chosen-protocol attack.

2 The WinZip compression and encryption method

WinZip’s underlying compression architecture follows the Info-ZIP specification [8]. The AES-based
AE-2 encryption algorithm is described on WinZip’s website [16]. The difference between the AE-2
encryption algorithm and the AE-1 encryption algorithm is slight and will be mentioned below.

A Zip archive can contain multiple files. At a high-level, each file in an archive is compressed
and encrypted independently, typically using the same passphrase for the encryption of each file,
and the resulting compressed and encrypted files are concatenated to form the resulting multi-
file archive. Additional information, including copies of parts of the headers from the individual
encrypted files, is added to the end of the resulting concatenated file. Since it is not critical
to understand the structure of the WinZip archive trailer, we focus on how an individual file is
compressed and encrypted. We stress, however, that in actually mounting some of our attacks that
require modifying portions of a file’s header, the adversary may also have to modify the identical
header information mirrored at the end of the archive.

When referring to fields of an encrypted file’s header, byte strings will be written like 504b0304bs,
meaning that the first byte is 50bs = 80, the second byte is 4bbs = 75, and so on. Integers (such as
lengths) stored in multi-byte fields are encoded in little endian format.

Per-file header information. According to the Info-ZIP specification [8], all compressed files
have the following structure (the fields important to our work are highlighted): file header signature
(4 bytes, always 504b0304bs), version needed to extract (2 bytes), general purpose bit flag (2
bytes, bit 0 must be set to 1), compression method (2 bytes), last modification time (2 bytes), last
modification date (2 bytes), 32-bit CRC (4 bytes), compressed size (4 bytes), uncompressed size (4
bytes), file name length (2 bytes), extra field length (2 bytes), file name (variable size), and extra
field (variable size). Following the header fields is the file data itself. We describe how the file data
looks when it is compressed and encrypted shortly, but first we describe the contents of the extra
field when the AE-2 encryption method is used.
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AE-2 settings and the AE-2 extra data field. When the AE-2 WinZip encryption algorithm
is turned on, the four bytes reserved for the 32-bit CRC are set to zero and the two bytes reserved
for the compression algorithm indicator are set to 6300bs. The extra data field of the above header
will consist of the following 11 bytes (again, important fields highlighted): extra field header id (2
bytes, always 0199bs), data size (2 bytes, always 0700bs since there are seven remaining bytes in
the 11-byte extra data field), version number (2 bytes, always 0200bs for AE-2), 2-character vendor
ID (2 bytes, always 4145bs for AE-2), value indicating AES encryption strength (1 byte), and the
actual compression method used to compress the file (2 bytes). The encryption strength field will be
01bs (resp., 02bs or 03bs) if the file is encrypted with AES using a 128-bit (resp., 192-bit or 256-bit)
key. Example values for the actual compression method are 0800bs if the file is DEFLATEd [7] and
0000bs if no compression is used.

File data. Following the formal extra data field described above, we have the following additional
AE-2-specific fields, formally encoded as part of the file data field. These additional fields are: salt
(variable length), password verification value (2 bytes), encrypted file data (variable length), and
the authentication code (10 bytes). The salt is 8 bytes (resp., 12 bytes or 16 bytes) long if the AES
key is 128 bits (resp., 192 bits or 256 bits) long.

Encryption and authentication. Before applying the AE-2 encryption method, assuming the
length of the plaintext file is above a certain threshold, the plaintext file is compressed. Then an
AES encryption key, an HMAC-SHA1 key, and a password verification value are derived from the
user’s passphrase and a salt using the PBKDF2-HMAC-SHA1 algorithm [10]. The length of the
salt depends on the chosen length of the AES key and is specified above. The specification [16]
states that the salt should not repeat, and since this must be true across different invocations of
the compression tool, suggests making the salt a random value.

The derived AES key is used to encrypt the compressed data using AES in CTR mode with
zero as the initial counter. The compressed plaintext data is not padded before encryption. After
encryption, the encrypted data is MACed using HMAC-SHA1 and the derived MAC key, and 80
bits of the HMAC-SHA1 output are used as the authentication code.

AE-1. The only differences between the AE-2 method and the earlier AE-1 method is that in AE-1
the version number in the extra data field is 0100bs and the 32-bit CRC field in the file’s header is
not all zero but actually contains the CRC of the original unencrypted data. The motivation for
zeroing out the CRC field in AE-2 is because the CRC of the plaintext will leak information about
the plaintext.

3 Header-based information leakage

As discussed in Section 1, the header leaks information in several ways. The names of the encrypted
files are stored in cleartext. This is a concern since many users will probably not expect this
behavior. The files’ last modification dates and times are also stored unencrypted. Additionally,
the length of plaintext files are stored in the files’ headers unencrypted. This is a concern since,
as Kelsey showed in [11], an adversary can learn information about the plaintext simply given
the lengths of both the original and the compressed data. As Kelsey notes, information leakage
via the compression ratio of files becomes particularly effective if Mallory has pre-existing partial
knowledge of the plaintext or if Mallory can see the compression ratio of multiple related files, e.g.,
different versions of the same file over time.

The WinZip documentation notes that these pieces of information are included unencrypted in
the header. However, the risks associated with leaving these fields unencrypted is not considered.
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Furthermore, although there may be functionality or usability reasons for leaving the file names
unencrypted, there does not seem to be a strong reason for leaving the length of the original
plaintext file, nor the last modification date and time, unencrypted.

4 Exploiting the interaction between compression and encryption

Recall the setup described in Section 1. The critical observation for this attack is that despite the
fact that the underlying encryption core is a provably secure Encrypt-then-MAC authenticated en-
cryption scheme (cf. [1, 13]), the compression type indicator and the length of the original file, which
are stored in the the encrypted file’s header, are not authenticated. This means that an adversary
can change the compression type and uncompressed file length without voiding the HMAC-SHA1
authentication tag attached to the file. Consequently, assuming that the new uncompressed file
length field is correct or that the extraction tool does not check that field, when Bob attempts to
decrypt and decompress the modified file F-prime.zip, the MAC verification will succeed and the
user will not see any error. But because the adversary changed the compression type, the file will
be decompressed using the wrong algorithm and the resulting file G will look like garbage.

In the most natural case, one would probably change the compression type from 0800bs, which
appears to be WinZip’s default and which corresponds the DEFLATE algorithm [7], to 0000bs,
which corresponds to no compression. This is very easy to do and very efficient — simply parse
the file and change the compression type and the uncompressed file length fields in the file’s header
and in the trailer at the end of the WinZip archive. After Bob runs the WinZip extraction tool on
F-prime.zip to get garbage G, which he accidentally passes to Mallory in some way, Mallory can
run the DEFLATE algorithm on G himself and recover the original data.

We implemented this attack against WinZip 9.0. To create F-prime.zip from F.zip, rather
than parse F.zip and switch the compression type from 0800bs to 0000bs, we found that the Unix
tcsh command line

cat F.zip | sed ’s/\(\x02\x00\x41\x45\x01\)\x08\x00/\1\x00\x00/g’ \
> F-prime.zip

was sufficient in all of the cases that we tried, showing that the attack is indeed very easy to
mount. We would only expect the above command line to not work as desired if the 7-byte string
02004145010800bs appears in F.tar in a place not corresponding to the extra data field of a file’s
header or in the mirror of the extra data field at the end of the WinZip archive. Since the WinZip
9.0 extraction tool did not seem to verify the length of the extracted file, we did not need to modify
the field of a file’s header corresponding to the length of the uncompressed file.

Recall that in AE-1 the CRC field of an encrypted file’s header contains the CRC of the original
plaintext file but that the field is all zero in AE-2. When trying to mount the above attack against
AE-1, since the extraction utility will also verify the CRC of the plaintext, which will typically
fail because the plaintext is now different, the resulting garbage-looking file G will not be saved
and the attack will not immediately go through. While it is true that if Bob is crafty he may be
able to view G among the temporary files created by WinZip during the extraction process and
before the CRC failure is noted, send G to Alice, and thereby leak G to Mallory, it would probably
be unrealistic for Mallory to assume that Bob will find G among WinZip’s temporary files. This
discussion highlights the subtlety of cryptographic design since the vulnerability presented in this
section was accidentally introduced when the authors of the specification tried to fix a different
problem with AE-1.
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5 Exploiting the interaction between AE-2 and AE-1

The motivation for the change from AE-1 to AE-2 is that in AE-1 the CRC of the plaintext will
leak information about the plaintext. While this is true, one can exploit the interaction between
AE-1 and AE-2 in the following chosen-ciphertext attack that reveals information about an AE-
2-encrypted file’s CRC to an adversary, though not as conveniently as with AE-1. Note that
according to the AE-2 specification [16], Zip tools that understand AE-2 must be able to decrypt
files encrypted with AE-1.

Recall again the setup described in Section 1. Assume Alice sends the encrypted file F.zip
to Bob, but assume that Mallory can modify the file in transit and can learn whether Bob can
successfully extract the file he receives using the passphrase he shares with Alice. Now suppose
that Mallory has a guess for what the original contents of F are, but is not completely sure and
wants to verify his guess Guess. He can do this as follows: Compute the 32-bit CRC of Guess
and then modify F.zip such that the the version number in the extra data field is 0100bs and the
CRC field in the header has the CRC of Guess. Let F-prime.zip denote the Mallory-doctored
file. If Mallory’s guess is correct, then Bob will be able to extract F from F-prime.zip without any
error. Otherwise, Bob will see an error dialog box like the following, which is the error we received
when mounting this attack with an incorrect guess and then trying to extract F-prime.zip using
WinZip 9.0:

Data error encountered in file
C:\F

Possibly recoverable, contact help@winzip.com and mention error code 56.

By observing Bob’s reaction, Mallory will learn whether his guess was correct.
Although not necessarily the case with all Zip tools but in the case of WinZip, after dismissing

the initial error dialog box Bob will have the option of viewing a more detailed error log. If Bob
chooses to see this error log, he will see a line like the following:

bad CRC 1845405d (should be 1945405d)

If Bob decides to copy and paste this detailed error message in an email to Alice or help@winzip.
com, and if Mallory sees this email, then Mallory will learn the CRC of plaintext file, and thereby
learn additional information about the plaintext.

If we look more closely at how WinZip behaves when it attempts to extract a modified file with
an incorrect CRC guess, it appears that the file is first extracted, the CRC is checked, the user
is told that the CRC check failed, and then the extracted file is deleted. This means that if Bob
is crafty he will be able to access the unencrypted file between when it is extracted and when it
is automatically deleted after the CRC check fails. Even if Bob does this, which we expect to be
unlikely, he may not be confident in the correct extraction of the file and may convey this lack of
confidence to Alice.

6 Repeating keystream

When AE-2 is used with a 128-bit AES key, then one can expect CTR mode keystream reuse after
encrypting approximately 232 files, which is much less than one would normally expect given 128-
bit AES keys and 128-bit blocks. (When using 192-bit AES keys with AE-2, we expect keystream
reuse after encrypting 248 files; when using 256-bit AES keys, we expect collisions after encrypting
264 files). The security problems with reusing keystream are well-known.
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This problem arises for two reasons. First, the salt used when deriving the AES and HMAC-
SHA1 keys from the passphrase is only 64 bits (resp., 96 bits and 128 bits) long when the desired
AES key length is 128 bits (resp., 192 bits and 256 bits). Second, AES-CTR is specified to always
use zero as the initial block counter. The former means that, with 128-bit keys, after encrypting
232 files we expect there to be one AES key that we used twice. The latter means that when we
use the same AES key twice, we will use the same keystream both times.

7 Fixes

Let us begin by addressing the information leakage discussed in Section 3. Since there appears to
be little need to know the length of a plaintext file before starting to decrypt the file, we suggest
encrypting the length of the plaintext file along with the current data that is encrypted. This
could be done by prepending the four byte length field to the output of the WinZip compression
stage and then encrypting the resulting string using AES-CTR and zeroing out the length field
in the unencrypted header. Alternatively, it may be possible to not include the plaintext length,
encrypted or otherwise, in the WinZip archive at all. The same applies to the last modification date
and time fields. Dealing with information leakage through the file names seems more problematic
since, from a functionality perspective, the makers of WinZip appear to want to allow users to view
the contents of archives without first having to supply a passphrase. Since this appears to be a
design requirement, leaking information in this way is unavoidable, though perhaps WinZip could
provide an option to encrypt file names for added security.

Let us ignore chosen-protocol attacks for now. To address the problems raised in Section 4,
one approach might be to MAC the original uncompressed plaintext instead of the ciphertext and
then encrypt the resulting tag in a MAC-then-Encrypt-style construction. However, we do not
recommend this as a general design procedure since the resulting construction may not be gener-
ically secure (cf., the counter examples for MAC-then-Encrypt in [1, 13]). Much better would be
to build off of WinZip’s current Encrypt-then-MAC core since Encrypt-then-MAC is known to be
generically secure (again due to [1, 13]). Having decided to continue to use the existing Encrypt-
then-MAC core, which is also attractive since reusing the current core means less modifications
to the WinZip encryption specification, we note the following general design principle for crypto-
graphic encapsulation methods: A cryptographic encapsulation algorithm should authenticate all
of the information that an extractor/decapsulator will use when reconstructing the original data,
excluding the authentication tag itself and assuming that the extractor already has a copy of the
shared authentication key. In the case of WinZip, since the compression type field of an encrypted
file’s header will be accessed when extracting an encrypted file, this means that the compression
type value should be MACed along with the AES-CTR-generated ciphertext.

To prevent chosen-protocol attacks, it might be tempting to apply the above principle and create
a new AE version that MACs the encryption method version number field in the extra data field
of an encrypted file’s header. This, however, does not necessarily work since here we are concerned
about attacks that exploit the interaction between different encapsulation/decapsulation schemes,
and, in particular, interactions with schemes, AE-1 and AE-2, that have already been specified
and that do not currently authenticate that field. To see why this is a problem, note that an
adversary could move the extra data MACed using the new method into the ciphertext portion of
an AE-2-format archive and thereby mount a chosen-protocol attack. While one might try MACing
information not directly available to an adversary, we view such an approach as inelegant. Rather,
we suggest diversifying the AES and HMAC-SHA1 key derivation process in such a way that the
AES and HMAC-SHA1 keys derived from some passphrase and salt using the new encryption
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method will be different from the keys derived from the same passphrase and salt when using the
AE-1 and AE-2 encryption methods. This could involve, for example, prepending the encryption
method version number to the salt before running the key derivation procedure.

Finally, to address the keystream reuse issue from Section 6, we suggest not always using zero
as the initial AES-CTR mode counter, but to use a random initial counter selected from the set
of all possible 128-bit integers. The initial counter should be included in the resulting archive and
should also be included in the string to be MACed. Alternatively, one could increase the length of
the salt.

Complete details, as well as security definitions and generic security proofs, to appear in the
full version of this paper.
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