
Pairing-Based One-Round Tripartite Key
Agreement Protocols

Zhaohui Cheng??, Luminita Vasiu and Richard Comely

School of Computing Science, Middlesex University
White Hart Lane, London N17 8HR, United Kingdom,

{m.z.cheng,l.vasiu,r.comely}@mdx.ac.uk

March 15, 2004

Abstract. Since Joux published the first pairing-based one-round tri-
partite key agreement protocol [11], many authenticated protocols have
been proposed. However most of them were broken soon or proved not to
achieve some desirable security attributes. In this paper we present three
protocol variants based on Shim [17] and Zhang et al.’s work [21]. As the
formalized model of this kind of AK protocols is not mature, the security
properties of the protocols are heuristically investigated by attempting
a list of attacks described in the literature and presented as a reference,
that can be used to evaluate other protocols.

1 Introduction

Key Agreement Protocols (KAP) are the mechanisms by which two or more par-
ties can establish an agreed secret key over a network controlled by adversaries.
Normally the established keys vary on each execution (session) of the protocol. If
in a protocol one party is assured that no other party aside from the specifically
identified party (or parties) may gain access to the particular established secret
key, then the key agreement protocol is said to provide key authentication. A key
agreement which provides mutual key authentication between (or among) par-
ties is called an Authenticated Key agreement (AK). Although an AK provides
key authentication, one party is not sure whether the other party (or parties)
actually has possession of the established secret. If in a protocol, one party is
assured that a second (possibly unidentified) party actually has possession of a
particular secret key, the protocol is said to provide key confirmation. If a key
agreement protocol holds both key authentication and key confirmation, it is
called an Authenticated Key agreement with key Confirmation (AKC).

Some common security attributes are generally believed to be necessary for
an AK or AKC.

1. Known session key security: each run of the protocol should result in a
unique secret session key. The compromise of one session key should not
compromise other session keys (e.g. parallel sessions, previous sessions and
future sessions).

?? Associated with Olym-Tech Inc. as an external researcher.



2. Forward secrecy: if long-term private keys of one or more entities are com-
promised, the secrecy of previously established session keys should not be
affected. We say that a protocol has partial forward secrecy if one or more but
not all the entities’ long-term keys can be corrupted without compromising
previously established session keys, and we say that a protocol has perfect
forward secrecy (PFS) if the long-term keys of all the entities involved may
be corrupted without compromising any session key previously established
by these entities.

3. Key-compromise impersonation resilience: the compromise of a party A’s
long-term private key (keys) will allow an adversary to impersonate A, but
it should not enable the adversary to impersonate other entities to A.

4. Unknown key-share resilience: party A should not be able to be coerced into
sharing a key with party C when in fact A thinks that he is sharing the key
with some party B.

Apart from the security requirements, the communication and computation
cost are also the critical considerations when designing key agreement protocols.
There are a great number of two-party or two-party with online trust center
protocols (refer to [12] for surveys) available in the literature. Formalized models
of AK’s and AKC’s have been developed, e.g. indistinguishability-based models
[4][6] and simulation-based models [9][16]. Some formalizing work has also been
done for group key agreement protocols, e.g. [2][15]. In 2000 Joux presented a
new efficient one-round tripartite key agreement protocol [11] by using an old
mathematical tool, i.e. pairing on elliptic curves. A (symmetric) pairing is a
bilinear map ê : G1 ×G1 → G2 with group G1 and G2 of a large prime order q,
which has the following properties [3]:

1. Bilinear: For all P, Q,R, S ∈ G1, ê(P+Q,R+S) = ê(P, R)ê(P, S)ê(Q,P )ê(Q, S)1.
2. Non-Degenerate: For a given point Q ∈ G1, ê(Q,R) = 1G2 for all R ∈ G1 if

and only if Q = 0G1 .
3. Computable: There is an efficient algorithm to compute ê(P,Q) for any

P, Q ∈ G1.

By using the pairing computation and a Diffie-Hellman type scheme, the proto-
col2 requires each party to transmit only a single broadcast message to establish
an agreed session key among three parties.

A → B, C : aP (1)
B → A, C : bP (2)
C → A,B : cP (3)

Joux’s One-round Tripartite Key Agreement

After the session, A computes KA = (bP, cP )a. B computes KB = (aP, cP )b

and C computes KC = (aP, bP )c. The established session key is K = KA =
KB = KC = (P, P )abc. The protocol is secure against passive adversaries based
on the Bilinear Diffie-Hellman (BDH) assumption [3].
1 In particular ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Z∗q
2 Note that the original protocol used the asymmetric pairing.



Assumption 1 Bilinear Diffie-Hellman Assumption Let G be a parameter
generator which with system parameters 1k as input generates two cyclic groups
G1,G2 of prime order q and a bilinear map ê. We define the advantage of an
algorithm A in solving the problem (BDH) by:

AdvG,A(k) = Pr[A(q,G1,G2, ê, P, sP, aP, bP ) = ê(P, P )sab |
〈q,G1,G2, ê〉 ← G(1k), a generator P ← G1, s, a, b

R←− Z∗q ].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k)
is negligible (We say that it is difficult to solve this problem or the BDH is hard).

Remark 1 One implication of the BDH assumption is that the used bilinear
pairing ê cannot be extended to a 3-multilinear [5] map ĕ with an extra property,
i.e. it is easy to compute k such that ê(P, P )k = ĕ(P, P, P ). There are some obsta-
cles to prove the truth of the implication. First, it is not clear yet whether such a
3-multilinear map satisfying the requirements (multilinear, non-degenerate, com-
putable) exists. Second, if such 3-multilinear maps do exist, it is still a problem
whether a 3-multilinear map can be extended3 from the used bilinear map. Third,
even if the bilinear map can be extended, it still requires that the extending struc-
ture allows the computation to find k such that ê(P, P )k = ĕ(P, P, P ) to be done
easily. Note that the nonexistence of this special 3-multilinear map does not prove
the hardness of BDH but will help to reduce some people’s doubt about the cor-
rectness of the assumption. On the other hand, the existence of extendable mul-
tilinears is a potential threat to many pairing based cryptosystems. For more
information of the BDH assumption, please refer to [5][10].

Like the basic Diffie-Hellman key agreement protocol, Joux’s protocol also suffers
from the man-in-the-middle attack because it does not authenticate the commu-
nicating parties. To address this security threat, many one-round authenticated
key agreement protocols have been proposed. Basically these protocols can be di-
vided into two broad categories, i.e. certification-based protocols including [1][17]
and identity-based protocols such as [13][14][18][21]. Unfortunately most of them
have been broken or shown not to achieve some desirable security attributes by
the attacks presented in [7][18][20][19]. In fact we will show that currently there
is no one-round tripartite AK protocol achieving all four security attributes.

In this paper, we strengthen Shim’s certification-based protocol [17] to pre-
vent attacks and present two variants of an identity-based protocol [21]. And we
heuristically evaluate these protocols’ security by attempting a list of attacks.
We hope that the attack list can be used as a reference to design this type of
protocols in future before the formalized model for this type of protocols be-
comes mature. In fact every existing protocol can be broken by one or more
attacks in the list. The paper is organized as follows. In section 2, we explain
two existing protocols which are the basis of our proposals. Three protocols and
a list of attacks are presented in the next section. We evaluate the protocols’
3 Boneh et al. find that at least direct extension using tensor of Weil or Tate pairing

has difficulty [5].



computation and communication complexity in section 4. We draw a conclusion
in the end.

2 Two Existing Protocols

2.1 A Certification-Based Protocol

To provide implicit authentication, one method is to introduce certifications into
the system. Party A with an identifer IA, a long-term private key xA and the pub-
lic key yA = xAP obtains a certification CertA = (IA‖yA‖P‖SCA(IA‖yA‖P ))
from a certification authority (CA). SCA is the signature of CA and P is the
system parameter. Shim presented a certification-based protocol in [17]. In the
protocol each party randomly chooses an integer from Z∗q and broadcasts a mes-
sage consisting of its certification and the scalar result of its public key with the
chosen random integer.

A → B,C : TA = a(xP ), CertA (1)
B → A, C : TB = b(yP ), CertB (2)
C → A,B : TC = c(zP ), CertC (3)

Shim’s Certification-Based Protocol

After exchanging the messages, each party computes the session key using one
of the following functions.

KA = ê(TB , TC)axê(YB ,YC)x

= ê(P, P )axbyczê(P,P )xyz

KB = ê(TA, TC)byê(YA,YC)y

= ê(P, P )axbyczê(P,P )xyz

KC = ê(TA, TB)czê(YA,YB)z

= ê(P, P )axbyczê(P,P )xyz

But it was shown that this protocol does not achieve the key-compromise im-
personate resilience attribute [20]. If adversary E knows A’s private key x, then
it can randomly choose integer u and broadcast message (2) to impersonate B
to A and C.

A → EB , C : TA = a(xP ), CertA (1)
EB → A,C : TB = uP, CertB (2)
C → A, B : TC = c(zP ), CertC (3)

Key-Compromise Impersonate Attack

After the session, E can compute the session key KE = ê(TA, TC)uê(YB ,YC)y

=
ê(P, P )axuczê(P,P )xyz

= KA = KC .

2.2 Identity-Based Protocols

Since Boneh and Franklin’s pioneering work [3] on the identity-based encryption
system based on pairing, many identity-based cryptosystems have been devel-
oped. All the systems adopt a similar setup. In these systems, there is a Key



Generation Center (KGC), which with given security arguments 1k generates sys-
tem params 〈q,G1,G2, ê, P, sP, n, H1〉. G1,G2 are two cyclic groups with prime
order q. P is the generator of G1. s is randomly chosen from Z∗q as the KGC’s
private key. Ppub = sP is the KGC’s public key and H1 : {0, 1}n → G∗1 is a cryp-
tographic hash function. In the system each party can apply the hash function
H1 on any party I’s identification IDI to find an element QI = H1(IDI) ∈ G1

and party I uses its identifer IDI as the public key and gets its private key
SI = sQI from the KGC.

Zhang et al. designed a tripartite AK [21] by using an identity-based signature
scheme to provide implicit authentication. In the protocol, party A randomly
chooses two integers a and a

′
from Z∗q and computes the scalars aP and a

′
P

and the signature of these two scalars. After the computation A broadcasts a
message consisting of these three elements to B and C. Party B and C perform
similar operations.

A → B, C : PA = aP, P
′
A = a

′
P, TA = H(PA, P

′
A)SA + aP

′
A (1)

B → A,C : PB = bP, P
′
B = b

′
P, TB = H(PB , P

′
B)SB + bP

′
B (2)

C → A,B : PC = cP, P
′
C = c

′
P, TC = H(PC , P

′
C)SC + cP

′
C (3)

Zhang et al.’s Protocol

After exchanging the messages, party A verifies ê(TB+TC , P ) = ê(H(PB , P
′
B)QB

+ H(PC , P
′
C)QC , Ppub)ê(PB , P

′
B)ê(PC , P

′
C). If the verification is passed, A can

compute eight agreed session keys: K1
A = ê(PB , PC)a = ê(P, P )abc,K2

A = ê(PB , P
′
C)a

= ê(P, P )abc
′
, etc. Party B and C take similar actions. Hence in one session of

this protocol, eight session keys can be established among three parties. Shim
presented a variant [18] of Zhang et al.’s protocol by reducing one element from
each message but to establish only one session key in each run of the protocol.

A → B, C : UA = aP, VA = H(UA)SA + aPpub (1)
B → A,C : UB = bP, VB = H(UB)SB + bPpub (2)
C → A, B : UC = cP, VC = H(UC)SC + cPpub (3)

Shim’s Identity-Based Protocol

Party A verifies ê(P, VB +VC) = ê(Ppub,H(UB)QB +H(UC)QC +UB +UC) and
computes KA = ê(UB , UC)a = ê(P, P )abc. B and C perform a similar operation
to compute the session key K = ê(P, P )abc.

3 Protocol Variants

In this section, we present three variant protocols based on Shim and Zhang et
al.’s work. We heuristically evaluate the protocols’ security by attempting a list
of attacks described in the literature. After that we compare the complexity of
our proposals with the existing work from the computation and communication
point of view.



3.1 A Certification-Based Protocol

As shown in the last section, Shim’s certification-based protocol is vulnerable
to the key-compromise impersonation attack. By introducing one more element
in each message we can resolve this problem. Each party randomly chooses an
integer from Z∗q and broadcasts a message consisting of two scalars and its cer-
tifications. One scalar is the result of the random integer timing the system
parameter P , the other is the result of the random integer timing the party’s
public key.
Protocol 1

A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA (1)
B → A,C : T 1

B = bP, T 2
B = b(yP ), CertB (2)

C → A,B : T 1
C = cP, T 2

C = c(zP ), CertC (3)

After exchanging the messages, party A verifies ê(T 1
B , yP ) = ê(T 2

B , P ) and
ê(T 1

C , zP ) = ê(T 2
C , P ). Alternatively this verification can be done by checking

ê(T 1
B , yP )ê(T 1

C , zP ) = ê(T 2
B +T 2

C , P ) (we prove the equivalence of the two checks
later). Party B and C perform the similar operations. After the check step each
party computes the session key K = ê(P, P )axbycz by using one of the following
functions respectively.

KA = ê(T 2
B , T 2

C)ax = ê(P, P )axbycz

KB = ê(T 2
A, T 2

C)by = ê(P, P )axbycz

KC = ê(T 2
A, T 2

B)cz = ê(P, P )axbycz

Security Analysis
This protocol is based on the discrete logarithm (DL) assumption and the BDH
assumption4. The check step ê(T 1

B , yP ) = ê(T 2
B , P ) guarantees that for message

(2), it is hard to compute integer v and b such that T 2
B = vP = byP without

knowing y. For message (1) and (3), similar guarantees are achieved.

Assumption 2 The Discrete Logarithm Assumption In a cyclic group G1

with prime order q and a generator P ∈ G1, the problem given P and Y = yP
with random integer y ∈ Z∗q to compute y is hard.

Theorem 1 Based on the DL assumption, the problem, given 〈q,G1,G2, ê, P, yP 〉
where y is a random integer in Z∗q , to find integer v and b such that ê(P, P )v =
ê(P, P )by is hard. (We refer to this problem as the bilinear equation (BEQ) prob-
lem.)

Proof: The proof is straightforward. If there exists a randomized polynomial
algorithm A to find the integer v and b, we can simply use this algorithm to
solve the DL problem by returning y = v/b. ¤
The alternative check step ê(T 1

B , yP )ê(T 1
C , zP ) = ê(T 2

B +T 2
C , P ) guarantees that

it is hard to compute integer b, c and t such that ê(P, P )by+cz = ê(P, P )t without
knowing both y and z.
4 Note that if the BDH assumption is true so is the DL assumption.



Corollary 1 Based on the DL assumption, the problem, given 〈q,G1,G2, ê, P, yP,
zP, z〉 where y is a random integer in Z∗q and z ∈ Z∗q , to find integer b, c and t

such that ê(P, P )t = ê(P, P )by+cz is hard.

Proof: If there exists a randomized polynomial algorithm A to find the integer
b, c and t, we can construct an algorithm B to solve the BEQ problem. Given the
BEQ challenge 〈q, ê, P, yP 〉, B randomly chooses an integer z ∈ Z∗q and passes
〈q, ê, P, yP, zP, z〉 to A as the challenge. When B gets the result b, c, t from A ,
it returns v = t − cz and b as the response to the BEQ challenge. Obviously, if
A solves the problem successfully, so does B . ¤
Hence although obviously there are more solutions to the alternative check equa-
tion than to the equation of the original check step, Corollary 1 indicates that the
intractability to solve both equations are the same. The security of the protocol
is based on the following theorem. The proof of the theorem is straightforward.

Theorem 2 Based on the BDH assumption, the problem, given 〈q, ê,G1,G2, P, aP,
bP, cP, xP, yP, zP, axP, byP, czP 〉 with a, b, c, x, y, z ∈ Z∗q , to compute ê(P, P )axbycz

without knowing one pair of 〈a, x〉, 〈b, y〉 or 〈c, z〉 is hard.

Note that the above proofs only indicate that the used primitives in the
protocol have foundations, but this does not guarantee that the protocol is secure
and achieves the desirable attributes in section 1. There are some formalized
security models of tripartite and group key agreement protocols used to prove
the security, e.g. [1][2]. Basically these models are the extensions of Bellare and
Rogway’s work [4] (B-R’s model). As analyzed in [8], B-R’s model does not
fully address the formalization problem of AK’s, especially for those which use
only commutative computation on random flips in the agreed key generation
functions. So these extension models for tripartite AK protocols are not mature
either. Hence we do not try to prove the security of our proposal in one security
model, but heuristically evaluate the security by attempting a list of attacks. In
fact we can find that all the existing pairing-based one-round tripartite protocols
are broken by one or more of following attacks. We list these attacks known in
literature even though some of them are not feasible in our proposal and hope
that this list as a reference would help to design more secure protocols.

1. The Man-In-The-Middle Attack. E replaces the broadcast messages
with new ones by choosing its own integers a

′
, b
′
, c
′ ∈ Z∗q .

A → B, C : T 1
A = aP, T 2

A = a(xP ), CertA (1) T 1
′

A = a
′
P, T 2

′

A = a
′
(xP ), CertA (1

′
)

B → A,C : T 1
B = bP, T 2

B = b(yP ), CertB (2) T 1
′

B = b
′
P, T 2

′

B = b
′
(yP ), CertB (2

′
)

C → A,B : T 1
C = cP, T 2

C = c(zP ), CertC (3) T 1
′

C = c
′
P, T 2

′

C = c
′
(zP ), CertC (3

′
)

After verification, each party computes the session key respectively. E cannot
compute any of them although it knows a

′
, b
′
and c

′
.

KA = ê(T 2
′

B , T 2
′

C )ax = ê(P, P )axb
′
yc
′
z

KB = ê(T 2
′

A , T 2
′

C )by = ê(P, P )a
′
xbyc

′
z

KC = ê(T 2
′

A , T 2
′

B )cz = ê(P, P )a
′
xb
′
ycz



2. The Key-Compromise Impersonation Attack.
• Case 1. E knows A’s long-term private key x and it impersonates B to

A and C by generating message (2).

A → EB , C : T 1
A = aP, T 2

A = a(xP ), CertA (1)
EB → A,C : T 1

B = bP, T 2
B = b(yP ), CertB (2)

C → A,B : T 1
C = cP, T 2

C = c(zP ), CertC (3)

E cannot compute the session key: K = ê(P, P )axbycz although it knows
x and b.

• Case 2. E knows A’s long-term private key x and it impersonates B and
C to A by generating message (2) and (3).

A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA (1)
EB → A,EC : T 1

B = bP, T 2
B = b(yP ), CertB (2)

EC → A,EB : T 1
C = cP, T 2

C = c(zP ), CertC (3)

E cannot compute the session key: K = ê(P, P )axbycz although it knows
x, b and c.

• Case 3. E knows A’s long-term private key x and it impersonates B by
randomly choosing u to generate a valid message (2), so to compute the
session key K = ê(T 2

A, T 2
C)u = ê(P, P )axucz. This attack presented in

[20] is feasible to Shim’s protocol in [17], but infeasible to our protocol,
because given an integer v, it is hard to find bP satisfying ê(bP, yP ) =
ê(vP, P ) (Theorem 1).

A → EB , C : T 1
A = aP, T 2

A = a(xP ), CertA (1)
EB → A,C : T 1

B = vP, T 2
B = uP, CertB (2)

C → A,EB : T 1
C = cP, T 2

C = c(zP ), CertC (3)

3. The Known-Key Attack.
• Case 1. E tries to use the knowledge of the session key of a previous

session to attack a following session. E knows A’s long-term private key
x and it impersonates B and C to A by generating message (2) and (3).

A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA (1)
EB → A,EC : T 1

B = bP, T 2
B = b(yP ), CertB (2)

EC → A,EB : T 1
C = cP, T 2

C = c(zP ), CertC (3)

E recovers the agreed key K = ê(P, P )axbycz of this session by some
means, but this does not help E to get any meaningful information,
even it knows x, b and c, to launch further attacks. For example in the
following attack, the session key K

′
= ê(P, P )a

′
xbycz cannot be recovered

by E even with knowing K = ê(P, P )axbycz, b, c and x.

A → EB , EC : T 1
′

A = a
′
P, T 2

′

A = a
′
(xP ), CertA (1)

EB → A,EC : T 1
B = bP, T 2

B = b(yP ), CertB (2)
EC → A, EB : T 1

C = cP, T 2
C = c(zP ), CertC (3)



• Case 2. E tries to use the knowledge of the session key(s) of a (or some)
session(s) to attack a precedent session. For example a known-key con-
spiracy attack to TAK-2 [1] is presented in [19]. But this attack is not
feasible in our protocol.

• Case 3. As commented in [1][6] and [8], for those AK’s which use only
commutative computation on random flips in the agreed key generation
functions, two attacks, the concatenation attack and the general con-
catenation attack, are possibly feasible. For example the concatenation
attack is feasible to TAK-1 [1]. But this attack is not applicable in our
protocol. However the general concatenation attack can be launched by
E as follows. Assuming there are two concurrent sessions among A,B
and C, E replaces B’s broadcast in session 1 with B’s message in session
2 and replaces A and C’s broadcast in session 2 with the one of session
1 respectively.

session1 =





A → B,C : T 1
A = aP, T 2

A = a(xP ), CertA (1)
B → A, C : T 1

B = bP, T 2
B = b(yP ), CertB (2) T 1

′

B , T 2
′

B , CertB
C → A,B : T 1

C = cP, T 2
C = c(zP ), CertC (3)

session2 =





B → A, C : T 1
′

B = b
′
P, T 2

′

B = b
′
(yP ), CertB (1)

A → B,C : T 1
′

A = a
′
P, T 2

′

A = a
′
(xP ), CertA (2) T 1

A, T 2
A, CertA

C → A,B : T 1
′

C = c
′
P, T 2

′

C = c
′
(zP ), CertC (3) T 1

C , T 2
A, CertC

After exchanging messages, A’s session key in session 1 is K1
A = ê(T 1

′

B , T 1
C)ax

= ê(P, P )axb
′
ycz which is the same as B’s session key in session 2 K2

B =
ê(T 1

A, T 1
C)b

′
y = ê(P, P )axb

′
ycz. So if E reveals K2

B , it knows A’s agreed
key in another session. Similar attacks can be performed to B and C.

• Case 4. The following attack is extremely unlikely in practice and has
only theoretical meaning. In a session, after A and C generate and broad-
cast message (1) and (3) respectively, B generates and sends its own
message (2) upon receiving message (1), (3). E intercepts message (2)
and at the same time successfully discloses B’s long-term private key y
somehow. E randomly chooses integer m ∈ Z∗q and tempts B’s broadcast
message with the new one as shown in (2

′
).

A → B,C : T 1
A = aP, T 2

A = a(xP ), CertA (1)
B → A,C : T 1

B = bP, T 2
B = b(yP ), CertB (2)

EB → A,C : T 1
′

B = T 1
B + mP, T 2

′

B = T 2
B + m(yP ), CertB (2

′
)

C → A,B : T 1
C = cP, T 2

C = c(zP ), CertC (3)

Obviously the transcript of B for the session is different from the ones
of A and C. Moreover obviously this session have been accepted by B
before long-term key y is exposed. Hence we can deem B is in a different



session from the one that A and C had engaged in. At least in the
existing indistinguishability-based model of AK, this is the case. Now
E reveals A’s session key KA = ê(P, P )axbycz ê(P, P )axmycz by some
means. Then E can compute B’s session key KB = ê(P, P )axbycz =
KA · ê(axP, czP )−my. In this protocol, it is required that E must know
B’s long-term private key to launch the attack. While in many other
protocols, E can launch the attack successfully without knowing this
information. For example, in tripartite case, the attack is feasible to
TAK-2, TAK-3 [1] and for two-party case examples can be found in [8].
We simply present the attack to TAK-2 as follows.

A → B,C : T 1
A = aP (1)

B → A,C : T 1
B = bP (2)

EB → A,C : T 1
′

B = T 1
B + mP, (2

′
)

C → A,B : T 1
C = cP (3)

After revealing B’s session key KB = ê(aP, zP )bê(xP, cP )bê(aP, cP )y,
E can compute A and C’s session key by KA = KC = KB · ê(aP, zP )m ·
ê(xP, cP )m.

4. The Unknown Key-Share Attack. In [1] the authors presented so called
the second source substitution attack to TAK-2 and TAK-3. Assume in some
way E successfully obtains its certification CertE = (IE‖yE‖P‖SCA(IE‖yE‖P ))
using yE = δ2xP as its public key. Note that yA = xP is A’s public key and
E does not know its private key δ2x. E launch the following attack.

A → EB , EC : T 1
A = aP, T 2

A = a(xP ), CertA (1)
E → B,C : T 1

′

A = T 1
A = aP, T 2

′

A = δ2T 2
A = aδ2xP,CertE (1

′
)

B → E,C : T 1
′

B = bP, T 2
′

B = b(yP ), CertB (2
′
)

C → E, B : T 1
′

C = cP, T 2
′

C = c(zP ), CertC (3
′
)

EB → A : T 1
B = δT 1

′

B = δbP, T 2
B = δT 2

′

B = δb(yP ), CertB (2)
EC → A : T 1

C = δT 1
′

C = δcP, T 2
C = δT 2

′

C = δc(zP ), CertC (3)

The session key of B and C shared with E is KBE = KCE = ê(P, P )aδ2xbycz

and the session key of A shared with B and C is KAEB
= KAEC

= ê(P, P )axδ2bycz

= KBE = KCE . Now E forwards A’s messages encrypted under key KAEB
=

KAEC
to B and C and fools them into believing that A’s messages come from

E. We can add the extra exponent ê(P, P )xyz into the session key genera-
tion function as K = ê(P, P )axbyczê(P,P )xyz

to prevent this attack. But we do
not adopt this operation and we will analyze the reason in the following part.

5. Perfect Forward Secrecy. If the long-term private key x, y and z are dis-
closed, the session key K = ê(P, P )abcxyz is still secure if a, b and c are kept
secret or are eradicated immediately after the session when we ignore the
case 4 of known-key attacks.



6. The Impersonation Attack. In some cases party C requires that it would
talk to B only when A engages in the session. No normal one-round protocol
can provide such security assurance. B can simply replay A’s message of
a previous session to cheat C. To prevent this attack, three parties should
negotiate a session related unique information, e.g. a session counter, and
securely bind the negotiated unique session information with messages.

Security Evaluation
From the above evaluation, we find that the protocol is vulnerable to the at-
tacks in case 3 (the general concatenation attack) and case 4 of the known-key
attack and the second source substitution attack. Through the analysis in [8],
the general concatenation attack is feasible to all AK protocols which use only
commutative operation on random flips in the agreed key generation function.
In fact case 4 attack is also feasible to this kind of protocol in the tripartite
case. As Shim and Zhang et al.’s identity-based protocols also use only com-
mutative computation, the attacks are also applicable in these protocols even
the messages are signed by the senders. Hence to design a protocol that is se-
cure against these attacks, we have to introduce some nonlinear computation
on random flips in the key generation functions. A simple way to introduce the
nonlinear computation is to apply a hash operation on the agreed secret and
messages of a session to generate the session key (so called session key deriva-
tion mechanism). Note that there is a slight difference in the tripartite case
from the two party protocol to apply a hash operation on messages, because
in the tripartite case each party’s received messages could be in different or-
ders. Fortunately parties can use many ways to unify the message order, so as
to obtain the same transcript. For example, parties can treat the message as
multi-precision numbers and sort the messages according to the numbers’ value,
or can sort the messages according to the lexicographical order of the parties’
identifer. After introducing the hash operation to generate the session key, e.g.
K = H2(ê(P, P )axbycz,message1‖message2‖message3), the attacks feasible to
the original protocol are no longer applicable. Hence we do not need to add an
extra component ê(P, P )xyz in the exponent of the key generation function to
prevent the second source substitution attack and this will save a pairing com-
putation which is very expensive. Note that the extra hash operation does not
improve the protocol’s security to defend the key-compromise impersonation at-
tack and the man-in-the-middle attack. Hence protocol TAK-1, TAK-2, TAK-3,
TAK-4 in [1] and the protocol in [17] are still insecure even with the new hash
operation.

3.2 Two Identity-Based Protocols

Based on Shim and Zhang et al.’s work we present two variants of the identity-
based tripartite protocol.



Protocol 2

A → B,C : T 1
A = aP, T 2

A = aQA, T 3
A = aSA (1)

B → A, C : T 1
B = bP, T 2

B = bQB , T 3
B = bSB (2)

C → A,B : T 1
C = cP, T 2

C = cQC , T 3
C = cSC (3)

After exchanging the messages, party A verifies ê(T 1
B , QB) = ê(P, T 2

B), ê(T 2
B , Ppub)

= ê(T 3
B , P ), ê(T 1

C , QC) = ê(P, T 2
C) and ê(T 2

C , Ppub) = ê(T 3
C , P ). An alternative

way is to check ê(T 3
B +T 3

C +T 2
B +T 2

C , P ) = ê(T 2
B +T 2

C , Ppub)ê(QB , T 1
B)ê(QC , T 1

C).
And if the check step is passed, A computes the session key K = ê(T 1

B , T 1
C)a =

ê(P, P )abc. Party B and C perform similar operations. Note that adversary E can
tempt the messages by doing addition or deduction on each element of messages
of the same party.
Protocol 3

A → B, C : T 1
A = aPpub, T

2
A = H(T 1

A)SA (1)
B → A,C : T 1

B = bPpub, T
2
B = H(T 1

B)SB (2)
C → A,B : T 1

C = cPpub, T
2
C = H(T 1

C)SC (3)

After exchanging the messages, party A verifies ê(Ppub,H(T 1
B)QB) = ê(P, T 2

B)
and ê(Ppub, H(T 1

C)QC) = ê(P, T 2
C). An alternative way is to check ê(P, T 2

B +
T 2

C) = ê(Ppub,H(T 1
B)QB + H(T 1

C)QC). And if the check step is passed, A com-
putes the session key K = ê(T 1

B , T 1
C)a = ê(P, P )abcs2

. Party B and C perform
the similar operations. If an adversary E wants to generate message (2) to pass
the verification, it should be able to solve equation ê(P, QB)sn1 = ê(P, P )n2 or
ê(P, QB)sn1 = ê(P, QB)n3 to compute n1 and n2 or n3, which is hard according
to Theorem 1. Based on the same analysis, Shim and Zhang et al’s identity-based
protocols can be simplified too.

Note that the above two protocols also suffer from the known-key attacks
addressed in the above section. Hence a hash operation is necessary to introduce
a nonlinear computation in the key generation functions. Moreover, because the
agreed key generated are purely based on the random flips, the random flips
of each messages are extremely important to the protocols’ security and should
be protected as the long-term private keys. If the random flips of a message
generated by a party are leaked, adversary E can impersonate the party. If the
random flips of two messages of two parties are exposed, adversary E can launch
the man-in-the-middle attack. For example, if E knows the random flips of two
messages: msg1

B generated by B and msg1
C generated by C (two messages are not

necessary from the same session), in another session, it can launch the following
attack and compute the session keys of A,B and C in session 2.

A → EB , EC : msg2
A (1) msg1

B ,msg1
C : A ← E

B → EA, EC : msg2
B (2) msg2

A,msg1
C : B ← E

C → EA, EB : msg2
C (3) msg2

A,msg1
B : C ← E

For this reason, the security notion of this kind of protocols based on signature is
essentially different from the security notions of signature, authenticated encryp-
tion and signcryption. To counter this attack, one possible way is to introduce
session counter or time related information to messages securely. This can be
done relatively easily in protocol 3.



4 The Protocol Evaluation

Apart from the security consideration, when designing key agreement proto-
cols the computation and communication cost are also of great concern. The
pairing-based protocols need to take three different basic operations, i.e. pair-
ing, scalar and exponent computation. Pairing computation is the most expen-
sive one among the three and normally scalar points of an elliptic curve is faster
than the exponent operation in the corresponding multiplicative number group.
As we have addressed, the hash operation is always necessary to design secure
protocols at least for use as the secret derivation function. For the protocols
using certifications to provide implicit authentication, the verification operation
of CA’s signature in certifications is needed. The existing bilinear pairings, i.e.
Weil pairing and Tate pairing, map the torsion points5 of an elliptic curve to the
elements of a subgroup of a multiplicative group and it is normally recommended
to use multiplicative groups with orders of at least 1024 bit size to guarantee the
hardness of the discrete logarithm problem in the groups. The pairing and scalar
operations are in torsion point groups with orders decided by the embedding de-
gree of the elliptic curve and the order of the multiplicative group. If we treat
the signature in a certification as a point in the torsion group, then a message of
a protocol consists of the sender’s identifier and some points of an elliptic curve.
We do not consider the overhead of compressing and recovering the points. The
computation and communication complexity of our proposals, Shim and Zhang
et al.’s protocols are listed in Table 1. We do not try to compare the complexity

Pairing Scalar Exponent Hash(iii) SigVeriv Bandwidth

Proposal 1 4 2 1 1 2 (2/n)(i) 5 points + 1 identifer

Proposal 2 5 3 1 1 0 3 points + 1 identifer

Proposal 3 3 4 1 3+1 0 2 points + 1 identifer

Shim 3 5 1 3+1 0 2 points + 1 identifer

Zhang 5 (8/8)(ii) 6 (6/8) 1 (8/8) 3+1 (3/8+1) 0 3 points + 1 identifer

i : the signature of a certification needs to be verified once.
ii : one run of Zhang et al.’s protocol can establish eight session keys.

iii : an extra hash operation is introduced in the key generation function.
iv : all protocols need to check whether public keys or certifications are revoked.

Table 1. The Complexity of Protocols

of certification-based protocols with identity-based protocols because these two
categories of protocols have their own different application scenarios. For the
four identity-based protocols, if the party groups are relatively fixed and agreed
keys are established regularly in the fixed groups, Zhang et al.’s protocol is a

5 In fact one element of the Tate pairing is a normal subset of the used torsion group.



good choice. On the other hand, proposal 3 and Shim’s protocol are favorite
ones.

5 Conclusion

To prevent the man-in-the-middle attack on Joux’s one-round tripartite key
agreement protocol, many authenticated protocols are proposed, but only a few
of them survive the attacks in the literature. We present a certification-based
protocol by fixing Shim’s work and two identity-based proposals based on Zhang
et al.’s protocol. By attempting a list of attacks known in the literature which can
be used as a reference of attacks for other protocols, we heuristically evaluate
the protocols’ security attributes. As have found that no existing one-round
tripartite achieves all the desirable attributes, we suggest that the session key
derivation mechanism should be used in protocols.

References

1. S. S. Al-Riyami and K. G. Paterson, “Tripartite Authenticated Key Agreement
Protocols from Pairings,” IMA Conference on Cryptography and Coding, Lecture
Notes in Computer Science 2898, Springer-Verlag (2003), pp. 332–359. See also
Cryptology ePrint Archive, Report 2002/035.

2. E. Bresson, O. Chevassut and D. Pointcheval, “Provably authenticated group
Diffie-Hellman key exchange - the dynamic case,” In C. Boyd, editor, Advances in
Cryptology - Proceedings of AsiaCrypt 2001, pages 290-309, 2001. Springer-Verlag
- LNCS Vol. 2248.

3. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Advances in Cryptology - Crypto’2001, Lecture Notes in Computer Science Vol.
2139, pp.213-229, Springer-Verlag, Berlin, 2001.

4. M. Bellare and P. Rogaway, “Entity Authentication and Key Distribution,”
CRYPTO ’93, LNCS 773, pages 232-249. Springer-Verlag, Berlin, 1994.

5. D. Boneh and A. Silverberg, “Applications of Multilinear Forms to Cryptography,”
Contemporary Mathematics 324, American Mathematical Society, pp. 71–90, 2003.
Full version.

6. S. Blake-Wilson, D. Johnson and A. Menezes, “Key Agreement Protocols and their
Security Analysis,” the Sixth IMA International Conference on Cryptography and
Coding, Cirencester, England, 1997.

7. Z. Chen, “Security analysis on Nalla-Reddy’s ID-based tripartite authenticated key
agreement protocols,” Cryptology ePrint Archive, Report 2003/103.

8. Z. Cheng and R. Comely, “Revisit The Indistinguishability-Based Model of Key
Agreement Protocols,” manuscript, Feb. 2004.

9. R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels,” Eurocrypt 2001, LNCS Vol.2045

10. J. H. Cheon and D. H. Lee, “Diffie-Hellman Problems and Bilinear Maps,” Cryp-
tology ePrint Archive, Report 2002/117.

11. A. Joux, “A one-round protocol for tripartite Diffie-Hellman,” Algorithm Num-
ber Theory Symposium – ANTS-IV, Lecture Notes in Computer Science 1838,
Springer-Verlag (2000), pp. 385–394.



12. A. Menezes, P. van Oorschot and S. Vanstone, “Handbook of Applied Cryptogra-
phy,” CRC Press, 1996.

13. D. Nalla, “ID-based tripartite key agreement with signatures,” Cryptology ePrint
Archive, Report 2003/144.

14. D. Nalla and K. C. Reddy, “ID-based tripartite Authenticated Key Agreement
Protocols from pairings,” Cryptology ePrint Archive, Report 2003/004.

15. O. Pereira, “Modelling and Security Analysis of Authenticated Group Key Agree-
ment Protocols,” Dissertation, 2003

16. V. Shoup, “On Formal Models for Security Key Exchange,” Theory of Cryptogra-
phy Library, 1999.

17. K. Shim, “Efficient one-round tripartite authenticated key agreement protocol from
the Weil pairing,” Electronics Letters 39 (2003), pp. 208–209

18. K. Shim, “A Man-in-the-middle Attack on Nalla-Reddy’s ID-based Tripartite
Authenticated Key Agreement Protocol,” Cryptology ePrint Archive, Report
2003/115.

19. K. Shim, “Cryptanalysis of Al-Riyami-Paterson’s Authenticated Three Party Key
Agreement Protocols,” Cryptology ePrint Archive, Report 2003/122.

20. H.-M. Sun and B.-T. Hsieh, “Security Analysis of Shim’s Authenticated Key Agree-
ment Protocols from Pairings,” Cryptology ePrint Archive, Report 2003/113.

21. F. Zhang, S. Liu and K. Kim, “ID-Based One Round Authenticated Tripartite Key
Agreement Protocol with Pairings,” Cryptology ePrint Archive, Report 2002/122.


