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Abstract

Several efforts to put forward a set of cryptographic primitives for public key
encryption, suitable to be standardized, have been taken recently. In two of them
(in first place the NESSIE project, already finished, and in second place ISO/IEC
18033), the methodology by Victor Shoup for hybrid encryption, known as Key
Encapsulation Method-Data Encapsulation Mechanism (KEM-DEM), has been
accepted. In this work we re-evaluate the elliptic curve based KEMs studied
to become standards, which are called ACE-KEM, ECIES-KEM and PSEC-
KEM. We analyse both their security properties and performance when pairing
curves are used. It turns out that these KEMs present a very tight security
reduction to the CDH problem over pairing curves; moreover, one can even
relate their security to the DL problem in certain pairing curves with a small
security loss. It is also shown that ECIES-KEM arises as the best option among
these KEMs when pairing curves are used. This is remarkable, since NESSIE
refused ECIES-KEM over a general curve to be proposed as a standard. It is
concluded that for medium security level applications, which is likely the case for
many embedded systems (e.g. smart cards), ECIES-KEM should be considered
the best candidate.

Keywords: public-key cryptography, key encapsulation mechanisms, pairings, stan-
dards, smart cards.

1 Introduction

A key encapsulation mechanism (KEM) is a probabilistic algorithm that produces a
random symmetric key and an asymmetric encryption of that key. When properly
combined with a symmetric encryption scheme it gives a secure encryption of arbi-
trary long messages (cf. [CS]). As far as we know, there are three elliptic curve based
KEMs that have been considered for standardization (in particular in ISO/IEC 18033
[Sho04] and NESSIE [Nes03]), namely, ACE-KEM, ECIES-KEM and PSEC-KEM.
Their security rely on different problems related to the discrete logarithm on elliptic
curves (DL). PSEC-KEM and ECIES-KEM use the Random Oracle (RO) heuristic
[BR93] in their security proofs, while ACE-KEM is proven secure in the standard
model but based on a decisional assumption. They were first proposed as KEMs in
[Sho01], the ISO standard draft for public key encryption by Victor Shoup, while
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in its original form they were submitted by IBM, Certicom and NTT corporations,
respectively.

The hardness of these DL problems closely depends on the elliptic curve used.
Indeed, special families of elliptic curves with easy point-counting, such as supersin-
gular curves or anomalous curves, turned out to be insecure (as shown, among others
works, in [MTV93] and [Sma99]). How these results must be interpreted is a quite
debatated question. The conservative approach is to avoid special families of curves:
maybe future developments may show inherent weaknesses in particular curves. The
proposal is then to generate curves at random. A more efficient approach is to build
curves with known order using complex multiplication techniques [LZ94], but then
some randomness is losen in the way. Finally, the most appealing approach from a
practical point of view is that any curve which has not been proven insecure can be
used.

In [Jou00] a special family of curves, namely, elliptic curves with a non-trivial
bilinear map (which will be hereafter referred as pairing curves), were found a pos-
itive application in cryptography, designing a one-round tripartite Diffie-Hellmann
protocol. A breakthrough in this constructive direction was made in [BF01], present-
ing the most complete and practical identity-based encryption scheme to the date.
Since then, pairings have been found a lot of applications in cryptography, mainly
in the identity based framework, but also for designing special signature schemes,
non-interactive protocols or new paradigms going beyond traditional public key in-
frastructure (see [DBS04] for a comprehensive account).

But in [Jou00] was also pointed out that in such curves the Decisional Diffie-
Hellman (DDH) problem becomes easy. This could be interpreted as an inherent
weakness of these curves, and therefore one should avoid them following the conser-
vative approach. However, in [JN03] pairing elliptic curves were presented for which
the DL is believed to be hard, and the Computational Diffie-Hellman problem is
equivalent to the DL. Currently, pairing curves are being given more and more con-
fidence by the cryptographic community.

Our contribution. We revisit the security proof of the elliptic curve based KEMs
when they are performed over pairing curves. As a result, we show that all these
KEMs can be proven secure in the RO heuristic with respect to the Computational
Diffie-Hellman assumption in a pairing curve, and with a very tight reduction, im-
proving then the concrete security claimed over a random curve. This enables to
use as smaller key sizes in the schemes as possible, and therefore make these KEMs
suitable to be implemented in constrained memory devices. It is worthwhile to note
that, although the schemes are implemented over a pairing curve and we use efficient
pairing computations to obtain the concrete security, no pairing computation is in-
volved in a real implementation. The crucial point is that DDH problem is solvable
in these groups.

Since ECIES-KEM has the best perfomance, we conclude ECIES-KEM is prefer-
able among the others if pairing curves are used. This is noticeable, since when using
a randomly generated curve an opposite result is obtained. In fact, ECIES-KEM has
not been accepted to be proposed for standardization in NESSIE, while ACE-KEM
and PSEC-KEM have been positively evaluated. We argue that for a medium level
of security, which is likely the case for smart cards applications, ECIES-KEM over
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pairing curves should be considered the best option, in terms of efficiency and security,
among the elliptic curve based KEMs.

On the other hand, using [Mau94] there are elliptic curves where DL can be
reduced to CDH. Then, it is possible to give an exact security result relating the
IND-CCA security of these KEMs to the DL problem. The good news is that they
are closely related, due to small security losses in the reduction. From a theoretical
point of view, this gives more confidence on the security of these KEMs over pairing
curves. In particular, we show that for the current security level (that is, 280),
breaking ECIES-KEM is equivalent to solving the DL problem on a pairing curve
with a prime order subgroup with a 2121 security of the DL. We point out that such a
concrete estimation with respect to the DL is rarely found in the literature. Finally,
taking into account the state of the art in pairings, we give some examples of pairing
curves where the schemes can be implemented.

2 Security properties of existing elliptic curve based KEMs

We first summarize some notation. If p is a positive integer, then |p| denotes the
length of its binary representation. If A is a non-empty set, then x, y ← A denotes
that x, y have been uniformly and independently chosen in A. On the other hand,
if A is a probabilistic polynomial time (PPT) algorithm, then x ← A denotes that
x is the output of A. Hash and KDF denote a hash function and a key derivation
function, respectively (cf. [CS]).

IND-CCA security of a KEM. A KEM consists of three algorithms:
– A key generation algorithm K, a probabilistic algorithm which takes as input a

security parameter 1` and outputs a public/secret-key pair (pk, sk).
– A encapsulation algorithm E , a probabilistic algorithm taking as inputs a secu-

rity parameter 1` and a public key pk and returning an encapsulated key-pair
(K, C), with K ∈ {0, 1}p(`), C ∈ {0, 1}q(`), for some polynomials p, q ∈ Z[`].

– A decapsulation algorithm D, a deterministic algorithm that, on inputs a se-
curity parameter 1`, an encapsulation C and a secret key sk; outputs a key
K.

It is required to be sound, that is, for almost all (pk, sk) ← K(1`), and almost all
(K, C)← E(1`, pk) we have that K = D(1`, C, sk).

Here follows the description of the attack game used to define the IND-CCA
security of a KEM:

1. The adversary queries a key generation oracle, which computes (pk, sk)← K(1`)
and returns pk.

2. The adversary makes a sequence of calls to a decryption oracle, submitting
encapsulations C of its choice, for which the decryption oracle responds with
D(1`, C, sk).

3. The adversary queries an encryption oracle, which computes:

(K0, C
∗)← E(1`, pk); K1 ← {0, 1}p(`); b← {0, 1}
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and returns the pair (Kb, C
∗).

4. The adversary issues new calls to the decryption oracle, subject only to the
restriction that a submitted ciphertext C 6= C∗.

5. The adversary outputs b′ ∈ {0, 1}.

For a PPT adversary AKEM we define

AdvKEM,A(`) :=
∣∣∣Pr

[
AKEM(1`) = 1 b = 0

]
− Pr

[
AKEM(1`) = 1 b = 1

]∣∣∣ .

We say that a KEM is IND-CCA secure if for all PPT adversaries A the function
AdvKEM,A(`) grows negliglibly in `.

Elliptic curve discrete logarithm problems. Let Ea,b(Fq) denote the group of
points of the elliptic curve

Ea,b : y2 = x3 + ax + b

over the prime finite field Fq, q > 3. Let Gp = 〈P 〉 be a cyclic group of prime order
p, where P ∈ Ea,b(Fq). Then:

– The discrete logarithm (DL) is the problem of finding u when given (P, uP ).
– The computational Diffie-Hellman problem (CDH) is the problem of finding

uvP when given (P, uP, vP ).
– The decisional Diffie-Hellman problem (DDH) is the problem of distinguishing

(P, uP, vP, uvP ) from (P, uP, vP, wP ).
– The gap Diffie-Hellman problem (gap-CDH) is the problem of finding uvP

when given (P, uP, vP ) and an oracle O that correctly solves the decisional
Diffie-Hellman problem.

It is assumed that u, v, w ← Fq. Notice that all three KEMs are intended to be per-
formed on random elliptic curves, so all these problems are assumed to be intractable.
All of them are well established, except for the gap-DH problem, which was formally
introduced in [OP01]. It is an open problem to establish the relations between them.
In fact, we know little more than the obvious reductions, which are DDH infeasible
⇒ CDH infeasible ⇒ DL infeasible. Thus, the better way known to attack these
problems in a general elliptic curve is to solve DL. The fastest method for solving DL
on a random elliptic curve is the Pollar ρ method [Pol78], which runs in exponential
time

√
πq/2 for a group with q elements. It is unknown whether there exist groups

for which the CDH problem is substantially easier than the DL problem, while the
DDH problem appears to be easier than the CDH problem in general. We refer the
reader interested in the state of the art to [MW00].

Concrete security. The efficiency a the reduction is the relationship between an
attacker who breaks the cryptosystem with probability at least ε in time t, doing less
than qD calls to a decryption oracle, and less than qK calls to an oracle for hash
or a KDF function; and the implied (t′, ε′) solver against the corresponding trusted
cryptographic assumption. Such an attacker is referred as a (t, ε, qD, qOi) attacker
for short. Then, the security reduction is tight if t′

ε′ ≈ t
ε , and not tight if t′

ε′ > qD
t
ε .

It is also stated that a scheme is very tight if ε ≈ ε′ and t′ is equal to t plus a linear
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quantity in the number of oracle calls. The tighter is the reduction, the smaller is the
gap between the computational efforts needed to break the scheme and to solve the
underlying problem. This has a great impact in the efficiency of the scheme, since a
tight security reduction allows to use smaller security parameters.
To be consistent with the time units commonly used in the literature, we use the
sentence a problem P has a 2t security level to say that, an attacker against P, run-
ning in time less than 2t 3-DES encryptions (cf. [LV01]), has a “negligible” success
probability.

Known results about elliptic curve based KEMs. The first step of the key
generation algorithm in the three schemes studied is to build a suitable curve E,
together with a point P that generates a secure cyclic subgroup Gp of E with prime
order p. Moreover, p is of size `, where ` is the security parameter. So we will assume
that the key generation algorithm takes the group parameters (E,P, p) as input.

We summarize now the security properties of the KEMs discussed, as well as
their performance and the evaluation presented in the NESSIE project. A schematic
description of these algorithms can be found in appendix A.

In table 2 we summarize the exact security results known for the KEMs we are
interested in, along with the reference where these results come from. In these ex-
pressions, qK denotes the number of queries made to the KDF oracle, LGp is the time
needed to check a Diffie-Hellman triple in Gp and SRq is the time needed to compute
a square root modulo q. We point out that in the ECIES-KEM security reduction
claimed in [Den02] lacks the time to compute a square root in Fq, which is needed in
order to obtain the two points in E(Fq) that have a given x-coordinate.

Scheme Assumption Reduction Random Reference
Oracle

ACE-KEM DDH very tight No [CS]
Gap-CDH ε′ ≈ ε Yes [Sho01]

t′ ≈ t + qK(2LGp
+ SRq) [Den02]

CDH Not tight Yes [Sho00]
ECIES-KEM Gap-CDH ε′ ≈ ε Yes [Den02]

t′ ≈ t + qK(2LGp
+ SRq)

PSEC-KEM CDH ε′ ≈ 1
qD+qK

ε Yes [Sho01]
t′ ≈ t

Table 1: IND-CCA KEMs concrete security over a random curve

As we can see, ACE-KEM offers several possible concrete security estimates, de-
pending on which problem its security is based. In the case of the NESSIE evaluation
the emphasis is put on the DDH problem, since the claimed security is achieved in
the standard model. On the other hand, ECIES-KEM presents a very tight re-
duction to the gap-CDH problem, while PSEC-KEM has a not tight reduction to
the CDH problem. Both schemes are analysed with the RO heuristic. In table 2
we have the parameters length in bytes for a 280 IND-CCA security bound in each
scheme. To compute them, it is assumed that DDH, Gap-CDH and CDH problems
have comparable security to the DL problem in a random curve. Although this is



6

widely believed, we emphasize that these are extra assumptions. Both ACE-KEM
and ECIES-KEM use a group Gp with a p ≈ 2160 cardinality, while PSEC needs
p ≈ 2280. This important difference arises from the not tight reduction in the secu-
rity proof of PSEC-KEM. We notice that NESSIE parameter length estimation for
PSEC is not exact (it is stated that a 160-bit prime is enough), and we argue it in
appendix B.

Scheme Operations Operations (K, C) length Public key Secret key

in Enc in Dec 16-Byte Keys length length

ACE-KEM 5 3 76 80 80
ECIES-KEM 2 1 36 20 20
PSEC-KEM 2 2 67 35 35

Table 2: Performance features over random curves (lengths using a point compression tech-
nique)

In terms of performance, ECIES is clearly the best option. Not only presents
the smallest computation time, but also the smallest parameter length. However,
since its security is based on a quite new assumption, NESSIE refused to propose
standardizing ECIES-KEM, while accepted ACE-KEM and PSEC-KEM, since these
schemes base its security in well studied assumptions. In the next section we argue
that, if pairing curves are used, this conclusion is no longer valid. Moreover, we
provide evidences that in this case ECIES-KEM arises as the best candidate.

3 Security analysis over pairing curves

Let Ea,b(Fq) be the group of points of an elliptic curve over the prime finite field Fq.
Let Gp = 〈P 〉 be a cyclic subgroup of Ea,b(Fq) with p elements, where p is a large
prime. Let G be a cyclic group with p elements. We say that E is a pairing curve
over Fq with respect to Gp if there exists a map e : Gp ×Gp → G with the following
properties:

1. Bilinear: that is, e(aP, bQ) = e(P,Q)ab, for all P,Q ∈ Gp and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in Gp ×Gp to the identity in
G.

3. Computable: There is an efficient algorithm to compute e(P,Q) for any P,Q ∈
Gp.

We call them pairing curves because the usual way to implement the map e is using
the Weil or Tate pairings [Men93]. In this case, the group G is the multiplicative
group of a certain finite extension Fqk . The number k is called the embedding degree
and is the smallest positive integer such that p|(qk − 1).

With such a map, the DDH problem is solvable in Gp. The non-degeneracy prop-
erty of the Weil and Tate pairings implies that e(P, P ) is p-th root of unity, and then
(P, aP, bP, cP ) is a valid Diffie-Hellman quadruple if and only if e(aP, bP ) = e(P, cP ).
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It turns out then that the gap-CDH and CDH problems are polynomial time equiva-
lent in Gp, since there exists a polynomial time algorithm replacing the DDH oracle
solver. We use this fact positively to tightly relate the security of ACE-KEM, ECIES-
KEM and PSEC-KEM to the CDH problem in these curves.

Another consequence of the map e is that solving DL problem in Gp can be
transformed into solving the DL problem over the finite field Fqk , which can be com-
puted using an index calculus algorithm running in subexponential time. This have
been applied to attack the DL problem over supersingular curves in [MTV93, FR94].
We should have to take this into account when computing secure key sizes for each
scheme.

Revisiting concrete security with respect to CDH. We already know that
in pairing curves gap-CDH and CDH problems are equivalent. According to the
results summarized in table 1, this implies that ACE-KEM and PSEC-KEM are
straightforward secure with respect to the CDH problem. Indeed, they present a
very tight reduction to the CDH, and the concrete security estimation is obtained
by replacing LGp by doubling the time needed to compute the map e, which will be
denoted by Te.

In the case of the PSEC-KEM security proof in [Sho01], the solver of the CDH
problem takes profit of a (t, qD, qK , ε) adversary against the IND-CCA security of
PSEC-KEM to generate a list of qD +qK elements containing the solution abP to the
instance (P, aP, bP ) with probability roughly ε. Since in a random curve the DDH
problem is assumed to be intractable, we were forced to output an element of the list
chosen uniformly at random, so the probability was decreased by a factor qD + qK .
The reduction was then not tight. Since in a pairing curve DDH is efficiently solvable,
we can find the correct value abP testing the entries on the list, obtaining thus a solver
of CDH with probability roughly ε within time t + 2(qK + qD)Te. Therefore, PSEC-
KEM presents a very tight security reduction, allowing the use of shorter ciphertexts
for the same level of security in a random curve, as we shall see in the next section.
In table 3 these concrete security results are summarized.

Scheme Assumption Reduction

ACE-KEM CDH ε′ ≈ ε
t′ ≈ t + qK(4Te + SRq)

ECIES-KEM CDH ε′ ≈ ε
t′ ≈ t + qK(4Te + SRq)

PSEC-KEM CDH ε′ ≈ ε
t′ ≈ t + 2(qK + qD)Te

Table 3: Security results over a pairing curve

Hardness of the CDH problem over pairing curves. When working with
pairing curves we are restricting the set from which the elliptic curves are drawn, and
then “some randomness” is lost with respect to the original key generation algorithm
in these KEMs. Therefore, we obtain a new CDH problem, which can be called
CDH-pairing (CDHP) problem, and that could be easier to solve than the CDH
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problem. Must we trust the hardness of the CDHP problem? We will ask positively
to this question from two points of view. On the one hand, we take into account
the current status of pairing curves in cryptography research. As the survey [DBS04]
shows, they are being intensively applied by the cryptographic community to design
new appealing protocols. The new assumptions arising in these protocols are at least
stronger than the assumption that CDHP problem is hard. As a consequence, the
trustness on these new assumptions implies trustness on the CDHP assumption.

On the other hand, using a technique due to Maurer [Mau94], it is possible to
generate certain pairing elliptic curves with a cyclic group Gp for which CDH and DL
problems are equivalent. The basic idea is to transport computing DL in Gp to com-
puting DL in an auxiliary group whose number of points has a suitable smoothness
bound B. In the latter, the computation of DL can be carried out with a generic algo-
rithm on subgroups of small size. The running time of this reduction is O(B ·(log(p)2)
group operations in Gp and field operations in Fp and O(log(p)3) calls to the CDH
solver for Gp [MW00]. Since no attacks (different from Pollard ρ method) against
the DL over pairing curves with a suitable embedding degree have been found, this
theoretical equivalence gives a good taste about the hardness of the CDHP problem.

4 Efficiency analysis over pairing curves

Computing the security parameter. Let us assume that the IND-CCA security of
any of these KEMs is (t, qD, qK , ε)-broken by some adversary A. Since this adversary
can be run repeatedly (with the same input and indepedent internal coin tosses),
the expected time to distinguish a real encapsulation from random with advantage
roughly 1 is t/ε. Thus, the security parameter of the scheme is nKEM = log(t/ε) =
n + m, where n = log t and m = log(1/ε).

Usually, qD ≤ 230 (that is, up to one billion decryption queries are allowed), and
qK ≤ t = 260. We also consider that evaluating a KDF function is a unit operation
(that is, takes the same time as a 3-DES encryption). Using Miller’s algorithm,
computing a pairing in Ea,b(Fq) with embedding degree k can be done in O(k log q)
multiplications in Fq (cf. [Men93]), while computing a square root modulo q takes at
most O(log2 q) multiplications in Fq (cf. [Coh93]). Assuming that a multiplication
in Fq takes 10 times longer than one hash query, and that k is small, we obtain

t′ECIES ≈ t + 260 · 10 · (4 log q + log2 q) ≈ 2n + 263 · log2 q

for ACE and ECIES-KEM, and

t′PSEC ≈ t + 261 · 10 · log q ≈ 2n + 264 · log q

for PSEC-KEM. In the following, we compute the exact security only for t = 280 for
ECIES-KEM and PSEC-KEM, since the result for ACE-KEM is equal to the former.
Setting e = 0 and n = 80, we obtain nECIES = 80 (respectively nPSEC = 80), that is,
a 280 security level in each scheme. Let us compute the minimal parameter length
to obtain this security level. An advantage roughly 1 in the IND-CCA game implies
that the solver computes CDH succesfully with probability roughly 1 in time t′ECIES

(respectively t′PSEC). Assuming that |q| ≈ 200, then

t′ECIES ≈ 280 + 263 · 215 and t′PSEC ≈ 280 + 264 · 28.
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Both reductions are pretty meaningful and then, to get a 280 security level on any
of these KEMs it is enough a group Gp with at least a 280 security of the CDH
problem. If we make the additional assumption that the CDH and DL problems have
comparable security, then we need a group Gp with |p| ≈ 160. In the case of PSEC
this is a great improvement, compared to a length of roughly 280 bits needed over a
random curve.

On the other hand, using a technique due to Maurer [Mau94], one can build
certain pairing elliptic curves with a cyclic group Gp for which CDH and DL problems
are equivalent. As it was claimed in the previous section, the running time of this
reduction is O(B · (log(p)2) group operations in Gp and field operations in Fp and
O(log(p)3) calls to the CDH solver for Gp [MW00]. Since in our case the computation
of CDH instances is by far the most expensive operation, the reduction to the DL
problem can be carried out with a 222 factor decrease in security for all three schemes,
therefore with a total time of 280 ·222. Due to this somewhat small factor, the security
of the scheme and the DL problem are tightly related. This allows to conclude that
all three KEMs achieve provable security in the RO model, with the 280 IND-CCA
bound, in a group Gp with a 2102 security of the DL problem, provided that the DL
to CDH reduction of [Mau94] holds for this group.

Curves Related Assumptions Minimal
Problem security level

Pairing curves CDH RO 280

Maurer paring cirves DL RO 2102

Table 4: Discrete log KEMs for the 280 security bound

Performance. It is the turn now to study the performance of each scheme over
pairing curves. Since all three security reductions are very tight, we have seen that a
280 IND-CCA security is achieved under a 280 security level for the CDHP problem.
Assuming that CDH and DL problems have comparable security in a pairing curve,
and that the embedding degree is large enough to keep the DL infeasibility in Fqk (in
which case, the best attack known is to use the Pollard ρ method in Gp), a pairing
curve Ea,b(Fq) with a group Gp with |p| ≈ 160 is needed. However, as explained in
the next section, the state of the art in pairing curves doesn’t enable to claim that
|p| ≈ |q| , but |p| ≤ |q| ≤ 2 |p| . The performance comparison among the three KEMs
will be state then in bit units and in terms of the size of q. The results are presented
in table 5.

Scheme Operations Operations (K, C) length Public key Secret key

in Enc in Dec 16-Byte Keys length length

ACE-KEM 5 3 128 + 3 |q| 4 |q| 4 |q|
ECIES-KEM 2 1 128 + |q| |q| |q|
PSEC-KEM 2 2 128 + 2|q| |q| |q|

Table 5: Performance features over pairing curves with 280 security (lengths using a point
compression technique)

We present in the next section some pairing curves where |p| ≈ |q| ≈ 160. With
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these values, the performance features of ACE-KEM and ECIES-KEM are equiva-
lent to those of table 2, while in PSEC-KEM (K, C) length is reduced from 67 to
56 bytes, and public/secret keys are reduced from 35 to 20 bytes, thus obtaining a
great improvement. From these values, we easily see that ECIES-KEM presents in
every feature the best performance. Since all three KEMs base its security in the
same problem, that is, CDHP problem, we conclude that ECIES-KEM should be
considered the best option among these KEMs over pairing curves.

5 Examples of pairing curves

In this section we propose some curves in which the schemes can be performed, and
we also discuss why they are suitable. Our aim is to give some examples of pairing
curves Ea,b(Fq) to perform the schemes and where the CDH problem is assumed to
be hard. We start describing the conditions that a candidate curve must hold. In
the first place, we want pairing curves with a small embedding degree k, in order to
obtain an efficient pairing computation. However, we cannot use embedding degrees
as small as possible: we must take into account that the field Fqk has to be large
enough to fit into the demmanded security level. In our case, we are looking for a
280 security level of the DL problem, which corresponds to 1024 ≤ |qk| ≤ 1464 using
the estimates by Lenstra and Verheul [LV01] and the parameters used nowadays.

Unfortunately, curves with a small embedding degree are extremely rare, as shown
in [BK98]. An exception are supersingular elliptic curves [Men93], which have k ≤ 6.
But, inasmuch as we are looking for small security parameters, only supersingular el-
liptic curves with k = 6 can fit into our purposes. However, it is not easy to generate
such curves over prime finite fields, and the popular constructions use the field F3m

(cf. [Gal01]).

Following [Gal04], an algorithm for generating curves with arbitrary k and with
a large prime factor p of any form is proposed in [CP01]. Although it solves the
embedding degree problem, it has the drawback that produces curves with q > p2.
For instance, this means that for k = 10 and |p| ≈ 160, the algorithm returns a curve
Ea,b(Fq) with |q| > 320. It is an active area of research to obtain pairing curves in
which |q| ≈ |p| and k ≥ 7. First steps in this direction have been taken, for instance,
in [DEM02, BW03, SB04]. From [SB04] we take three curves with k = 6, and from
the indications in section 4.1 in [BW03] we derive two curves with k ≥ 7, which can
be used to implement the schemes. These curves are presented in table 6.

6 Conclusions

In this paper we have studied the performance and security properties in pairing
curves of the elliptic curve KEMs proposed to be standardized. First of all, we have
summarized the previous properties claimed in the recent literature, and we have
fixed some inexact results. Our main contribution has been to show that, on the
one hand, despite their different behaviour from a security point of view in a general
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Ea,b(Fq) : y2 = x3 + ax + b; |Gp| = p

k 6
q 730996464809526906653170358426443036650700061957 (160 bits)
a −3
b 259872266527491431103791444700778440496305560566
p 730996464809526906653171213409755627912276816323 (160 bits)
k 6
q 801819385093403524905014779542892948310645897957 (160 bits)
a −3
b 237567233982590907166836683655522398804119025399
p 801819385093403524905015674986573529844218487823 (160 bits)
k 6
q 4691249309589066676602717919800805068538803592363589996389 (192 bits)
a −3
b 3112017650516467785865101962029621022731658738965186527433
p 2345624654794533338301358959942345572918215737398529094837 (192 bits)
k 12
q 92023287709027882526875031742688685992195575554407985826771/

85608987307 (233 bits)
a 9202328770902788252687503174268868433066055296961210513155893123/

268268
b 166153502257875125152959677950069761
p 91343854374875651026643947426601579968226918401 (157 bits)

k 10
q 21359906007365701929042154038677772262650043848653969045852/

74435305514681762435224264786397102081 (320 bits)
a 70368760954882
b 2923005713806642693340194162793958655650818949120
p 24519952037889827157137792820712629242745475072115343361 (185 bits)

Table 6: Curves to implement KEMs equivalent to CDH

curve, they present a very tight security reduction to the CDH problem over pairing
curves (CDHP); and, on the other hand, to suggest that ECIES-KEM should be
considered the best option among these KEMs in environments using pairing curves.
This is quite suprising, since ECIES-KEM in a random curve was refused to become
a standard.

We have discussed the hardness of the CDHP problem; which even though it
may be easier than the standard CDH problem, it is harder than the usual prob-
lems considered in provably secure schemes using pairings. Taking into account the
state of the art in pairing curves generation, some concrete curves to perform the
schemes for the current demmanded security levels have been presented. A major
breakthrough in the efficient implementation of these KEMs would be to find meth-
ods to generate pairing curves with embedding degree at least 7 and |q| ≈ |p| . In this
case, using ECIES-KEM over pairings curves should be suitable not only for pair-
ings cryptographic environments, but also for medium level security settings with
constrained computing and memory capabilities. This is likely the case for many
embedded systems, like smart cards.
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A Description of KEMs

(pk, sk)← K(E,P, p, `) (K, C)← E(pk) K ← D(C, sk)
1. w, x, y, z ← Zp 1. r ← Zp 1. Parse C as (C1, C2, C3)
2. W := wP, X := xP, 2. C1 := rP 2. α := Hash(C1||C2)

Y := yP, Z := zP 3. C2 := rW 3. t := x + yα
3. pk := (E,P, p,W,X, Y, Z, `) 4. Q := rZ 4. If C2 6= wC1,
4. sk := (w, x, y, z, pk) 5. α := Hash(C1||C2) output ⊥ and halt
5. Output (pk, sk) 6. C3 := rX + αrY 5. If C3 6= tC1,

7. C := (C1, C2, C3) output ⊥ and halt
8. K := KDF (C1||Q) 6. Q := zC1

9. Output (K, C) 7. K := KDF (C1||Q)
8. Output K

Description of ACE-KEM

(pk, sk)← K(E,P, p, `) (K, C)← E(pk) K ← D(C, sk)
1. s← Zp 1. r ← Zp 1. Q := sC
2. W := sP 2. C := rP 2. If Q = O
3. pk := (E,P, p, W, `) 3. Set x the output ⊥ and halt
4. sk := (s, pk) x-coordinate of rW 3. Set x
5. Output (pk, sk) 4. K = KDF (C||x) x-coordinate of rW

5. Output (K, C) 4. K = KDF (C||x)
5. Output K

Description of ECIES-KEM

(pk, sk)← K(E,P, p, `) (K, C)← E(pk) K ← D(C, sk)
1. s← Zp 1. r ← {0, 1}` 1. Parse C as (C1, C2)
2. W := sP 2. H := KDF (032||r) 2. Q := sC1

3. pk := (E,P, p,W, `) 3. Parse H as t||K 3. r := C2 ⊕KDF (132||C1||Q)
4. sk := (s, pk) 4. α := t mod p 4. H := KDF (032||r)
5. Output (pk, sk) 5. Q := αW 5. Parse H as t||K

6. C1 := αP 6. α := t mod p
7. C2 := r ⊕KDF (132||C1||Q) 7. If C1 6= αP,
8. C := (C1, C2) output ⊥ and halt
9. Output (K, C) 8. Output K

Description of PSEC-KEM

B PSEC parameter length over a random curve

We use the notation introduced in section 4. Let us assume the IND-CCA security of
PSEC-KEM is (t, qD, qK , ε)-broken by some adversary A. Then the security param-
eter of the scheme is n = log(t/ε) = n + m, where n = log t and m = log(1/ε), and
qD ≤ 230, qK ≤ 260. The concrete security reduction for PSEC-KEM over a random
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curve is t′ ≈ t and ε′ ≈ ε
qD+qK

. Setting m = 0 and n = 80 (that is, a 280 security level
in the scheme), we obtain

t′ ≈ t = 280 and ε′ ≈ 1/260 = 2−60.

From the last expression, an advantage roughly 1 in the IND-CCA game implies that
the solver computes CDH succesfully with probability roughly 2−60 in time t′ = 280.
However, an algorithm solving CDH with probability roughly 1 is needed to find
the parameter length. Running this algorithm with independent internal coin tosses
260 times and returning the most frequent answer, CDH is solved with probability
roughly 1. The computational effort needed to do this is 260 · 280 = 2140. Assuming
that CDH and DL problems have equivalent hardness over a random elliptic curve,
we conclude that PSEC-KEM needs a subgroup Gp with |p| ≈ 280, since the best
attack known is using the Pollard ρ method.


