
The CS2 Block Cipher?

Tom St Denis

Secure Science Corporation
tom@securescience.net

Abstract. In this paper we describe our new CS2 block cipher which
is an extension of the original CS-Cipher. Our new design inherits the
efficiency of the original design while being upgraded to support a larger
block size, key size as well as use a slightly improved substitution box. We
prove that our design is immune to differential and linear cryptanalysis
as well as argue it resists several other known attacks.

Keywords. Secret Key-Cryptography, Pseudo-Hadamard Transform.

1 Introduction

In [2] the CS–Cipher was introduced. It is a 64–bit block cipher designed for
efficiency on 8–bit processors as well as in hardware. In their design they intro-
duced the use of multipermutations [4] as a design construct as well as a very
non-linear round transform. In a subsequent paper [3] Vaudenay claimed that
the active substitution box “sbox” count is at least 72 over the full cipher, thus
concluding the design is immune to differential and linear cryptanalysis. As of
yet no full cryptanalysis of the CS–Cipher is known to exist.

In this paper we extend the CS–Cipher using the results of [5] and [7] to
produce an efficient 128–bit block cipher with a 128–bit secret key. We show
how our design can be implemented efficiently as well as explain the hardware
rationale. We also prove that our design is immune to both differential and
linear cryptanalysis. We further argue that our design resists several other known
attacks.

2 Design

The CS2 block cipher is a substitution–permutation network (SPN) which ac-
cepts a 128–bit plaintext P and produces a 128–bit ciphertext C. It accepts a
128–bit keyK which is processed by our key schedule to produce the thirty–three
round keys K0..32 required.

? Moniker used with permission from Serge Vaudenay.



2.1 Non-Linear Substitution γ

The non-linear substitution γ is by far the most critical part of our design because
its size and delay greatly affect the cipher as a whole. We had to strike a balance
between efficiency and security to ensure the overall design was both efficient,
practical and secure. Ultimately we decided to use a 4× 4 sbox γ̂ in a SPN like
construction similar to the designs of Twofish and WHIRLPOOL.

x 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
γ̂(x) 8x 4x 0x Dx Ax 7x 6x 2x Bx 5x 3x 9x 1x Fx Cx Ex

Fig. 1. Non-Linear Substitution γ̂(x)

Let H1 represent the FPHT over GF (2)[x]/(x4 + x3 + 1).

a0, b0 = bx/16c, x mod 16
a1, b1 = γ̂(a0), γ̂(b0)
a2, b2 = H1 ◦ 〈a1, b1〉
a3, b3 = γ̂(a2), γ̂(b2)

y = 16a3 + b3

Fig. 2. Non-Linear Substitution y = γ(x)

2.2 Non-Linear Multipermutation θ(x)

As in the CS-Cipher we have used a (2, 3)−multipermutation with two differ-
ences. We applied the non-linear substitution before the linear transform and we
use the H1 transform over GF (2)[x]/(x8 + x4 + x3 + x + 1) instead of a linear
transform over Z16

2 . The overall concept and purpose remains the same.

a0, b0 = bx/256c, x mod 256
a1, b1 = γ(a0), γ(b0)
a2, b2 = H1 ◦ 〈a1, b1〉

y = 256a2 + b2

Fig. 3. Non-Linear Multipermutation y = θ(x).



2.3 Round Transform ζ(P, r,K)

The round transform ζ is the H4 transform implemented in a network mode (fig.
4). The H1 transforms have been replaced by the non-linear multipermutation
θ. Before layer l of the network the round key K4r+l is exclusively or’ed against
the block. To describe the transform we shall make use of the coordinate pairing
tables ρ0..3 (fig. 5). Let ρp,q,r represent the p’th ρ table, q’th pair and the r’th
value of the pair. For example, ρ3,7,0 = 7.

Fig. 4. The Round Transform Network



ρ0 0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15

ρ1 0, 2 1, 3 4, 6 5, 7 8, 10 9, 11 12, 14 13, 15

ρ2 0, 4 1, 5 2, 6 3, 7 8, 12 9, 13 10, 14 11, 15

ρ3 0, 8 1, 9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 15

Fig. 5. Coordinate Pairings Tables ρ

1. for k = 0 to 3 do
1.1 x← x⊕K4r+k

1.2 for m = 0 to 7 do
1.2.1 y ← θ(256xρk,m,0 + xρk,m,1)
1.2.2 xρk,m,0 ← by/256c, xρk,m,1 ← y mod 256

2. return x.

Fig. 6. Round function y = ζ(x, r,K)

2.4 Key Schedule

The key schedule (fig.7) is responsible for accepting a 128–bit input key and
producing the thirty–three required round keys. Let KA represent the secret key
and KA,j represent the j’th octet of the secret key. Let σi represent the i’th
128–bit constant and σi,j represent the j’th octet of the i’th constant defined by
(1).

σi,j = γ(γ(i)⊕ j), 0 ≤ i < 32, 0 ≤ j < 16 (1)

In this design the we use consecutive values of σ as the layer keys for the round
function ζ in order to produce the round keys. For the purposes of efficiency we
create a modified version of ζ called ζ̂ which emits the intermediate outputs of
every layer as round keys.

1. for k = 0 to 7 do

1.1 {K4k+0, K4k+1, K4k+2, K4k+3} ← ζ̂(KA, σ4k)
1.2 KA ← K4k+3

2. K32,j ← γ(KA,j), 0 ≤ j ≤ 15

Fig. 7. Key Scheduler



2.5 Block Cipher

The entire cipher is simply eight rounds of the ζ round function followed by a
final post-whitening key step.

1. for k = 0 to 7 do
1.1 x← ζ(x, k,K)

2. return x⊕K32.

Fig. 8. CS2 Block Cipher

We note that no decryption routine is described. While the cipher is a bi-
jection a decryption routine was not deemed necessary since many useful modes
of operations such as CTR, OMAC and EAX only make use of the forward
direction of the cipher.

3 Design Rational

This cipher has been designed primarily with hardware and embedded software
in mind. Most of the design choices have been related to the gate depth of the
round function as well as the code size on the typical 8-bit processor (such as
the Intel 8051). There are a variety of implementation options as well.

3.1 Non-Linear Substitution γ

The non-linear substitution γ was designed to have an efficient hardware imple-
mentation while still having ideal cryptographic properties. The function γ̂ can
be written as the following multivariate equations.

y0 = x0x1 ⊕ x0x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x1x2x3

y1 = x2 ⊕ x3 ⊕ x0x3

y2 = x0 ⊕ x1x2 ⊕ x0x1x3

y3 = 1⊕ x0 ⊕ x1 ⊕ x0x1x2 ⊕ x2x3

(2)

The H1 function can be written easily as well.

y0 = x3 ⊕ x4

y1 = x0 ⊕ x5

y2 = x1 ⊕ x6

y3 = x2 ⊕ x7 ⊕ x3

y4 = x4 ⊕ x0

y5 = x5 ⊕ x1

y6 = x6 ⊕ x2

y7 = x7 ⊕ x3

(3)



The function was also designed to have the following cryptographic proper-
ties.

1. An DPmax(γ) of 10
256 ≈ 2−4.67

2. An LPmax(γ) of 16
256 = 2−4

3. An algebraic degree of six.

4. No fixed (γ(x) = x) or points of involution (γ(γ(x)) = x).

The low differential and linear profiles help prevent high probability trails
(and hulls) from forming. Even though the design primarily relies on the wide–
trail design philosophy it was still thought important to minimize such charac-
teristics. The algebraic degree has been raised to the maximum value of six for
such a function to help prevent trivial algebraic style attacks. Even though no
such attacks against CS–Cipher are known it was another design consideration.
Finally fixed points and points of involution were avoided to prevent fixed points
in the round transform. They also guarantee that K31 and K32 are distinct.

In hardware the most practical design implementation would be to compute
γ as a function of γ̂ and H1. This will result in a very low gate count compared to
what an 8× 8 ROM would require and have a reasonable gate delay. In software
γ is best implemented as an array placed in ROM.

CS2-Cipher CS-Cipher

DPmax 2−4.67 2−4

LPmax 2−4 2−4

Algebraic Degree 6 3

Nonlinear Order 3 3

Fig. 9. Comparison between substitution boxes of CS2-Cipher and CS-Cipher.

3.2 Non-Linear multipermutation θ

The non-linear multipermutation was also designed to be efficient in hardware
to implement. Assuming that the two γ substitutions are implemented in par-
allel the overall gate depth is not much higher than that of the substitutions
themselves. The following equations give the H1 function as it applies to this
transform.



y0 = x8 ⊕ x7

y1 = x0 ⊕ x9 ⊕ x7

y2 = x1 ⊕ x10

y3 = x2 ⊕ x11 ⊕ x7

y4 = x3 ⊕ x12 ⊕ x7

y5 = x4 ⊕ x13

y6 = x5 ⊕ x14

y7 = x6 ⊕ x15

y8 = x8 ⊕ x0

y9 = x9 ⊕ x1

y10 = x10 ⊕ x2

y11 = x11 ⊕ x3

y12 = x12 ⊕ x4

y13 = x13 ⊕ x5

y14 = x14 ⊕ x6

y15 = x15 ⊕ x7

(4)

3.3 Round Function ζ

The round function ζ was chosen for its efficient implementation which yields
a gate delay of four times the gate delay of the θ function. As a result the
round function has a relatively low gate delay. The coordinate pairings table
was designed to create a Fast pseudo-Hadamard Transform (FPHT) [5] so that
it has a provable branch and two round trail weight.

Our choice of the FPHT was motivated by the fact that like the SHARK
[6] design it resists the saturation and truncated differential attacks very well.
That is, since every output coordinate is a non-null function of all of the input
coordinate diffusion is optimal. However, unlike the SHARK design our round
transform has a more efficient O(log n) time implementation and nearly twice
as many active coordinates over two rounds.

In hardware the best approach in terms of space and time complexity would
be to implement ζ as a pipeline. The transform network has four layers which
could accommodate up to four blocks at a time (suitable for CTR mode) with
only a modest addition to the design. In each layer the eight θ transforms could
be implemented in parallel since they are very small.

In software the ideal approach in terms of space would be to implement the
four layers of the transform network as separate subroutines that could be called
both by ζ̂ and ζ. In terms of speed it would be ideal to inline the layers to save
on index pointer setup and stack operation time.

3.4 Key Schedule

The key schedule has also been designed with both platforms in mind. The
original key schedule designs allowed up to a 256–bit key, had round constants



based off of the sine function and used a full call to ζ to produce a single 128–
bit round key word. Not only did this severely penalize on–the–fly round key
computation but it also made the design larger and hindered cryptanalysis.

Our original 256–bit key designs were designed to use the round function to
lower the design, implementation and cryptanalysis time. However, all of our
attempts were either weak against reduced round related keys attacks or were
too inefficient for on–the-fly computation. As a result for this design we reduced
the key size to 128–bits.

The round constants can both be computed easily on–the–fly from γ and also
stored in ROM for quick access. The nested nature (eqn. 1) of the round keys
allows a minimal 17 table lookups by first computing γ(i) and using it for the
other octets of the i’th round key constant.

The round keys are extracted after every layer of ζ̂ so that they can computed
on–the–fly with just over the cost of one encryption (with pre–computed round
keys). In hardware, the round keys can be computed within each pipeline stage
just before they are required. That is, each pipeline stage would have two buffers.
One buffer stores the round key to be used in that stage against the plaintext and
the other holds the computed (at the same time as the plaintext is encrypted)
round key for the next round. At the end of each pipeline stage the plaintext
and new round key are forwarded to the next pipeline stage. As a result, with
over twice the gate count and a single pipeline cycle penalty per plaintext the
circuit can encrypt up to four plaintexts under up to four different keys at once.

4 Cryptanalysis

4.1 Linear and Differential Cryptanalysis

In [7] it was proved that two rounds of ζ will have at least twenty-four active
coordinates. As a result both linear and differential cryptanalysis become inef-
fective quickly. With six rounds any four round trail will have a probability far
too low to be useful. Eight rounds provides a large margin of security from both
attacks.

Rounds in Attack Differential Cryptanalysis Linear Cryptanalysis
2 2112 273

4 2224 2145

6 2336 2216

Fig. 10. Plaintext Requirements for Linear and Differential Cryptanalysis.



4.2 Truncated Differentials

In truncated differential attacks the goal is to predict only part of the output
difference or more importantly predict a pattern of difference propagation. For
example, the pattern ∆x → ∆y : 〈a, b〉 → 〈0, c〉 for non–zero a, b, c is a valid
truncated differential for the θ function. In the attack a truncated differential
that does not have uniform probability is exploited to create a key distinguishing
attack on the last round of the cipher.

For example, in the case of the two point pseudo-Hadamard Transform over
the integers modulo 256 the input difference 〈128 + a, 0〉 causes the output dif-
ference 〈0, b〉 for 0 < a < 128 and any non–zero b with a probability of one. For
a truly random permutation you would expect this to occur with a probability
of 1

256 and such a bias can be exploited.
In the case of CS2 we used a (2, 3)−multipermutation which achieves close to

ideal properties. The difference 〈a, b〉 for non–zero a, b shall behave as expected
for a random function. It shall emit differences of 〈0, c〉 and 〈d, 0〉 for the appro-
priate 2

√
#θ − 2 as would be expected from a random function. The only flaw

is that an input difference with one zero shall always emit an output with two
non–zero coordinates. As of yet no known exploit of this property is known to
exist.

4.3 Higher Order Differential Cryptanalysis

The nonlinear order of the γ function is three which means there exists third
order derivatives which produce a constant output. It is thought that this attack
cannot defeat more than three rounds of the design due to the fact that the γ
function has been placed within the ζ round transform not just at the edge.

4.4 Slide and Boomerang Attacks

The slide attack is not applicable as every round and every layer have their
own round keys. Also during the key scheduling every emitted key is based on a
unique grouping of σ constants. The constants also help prevent fixed points in
the key schedule from emitting short periodic round keys.

While the decryption routine is not defined in this paper it can be shown to
have the same two round trail weight as the forward direction. Therefore, it does
not seem likely that the boomerang attack applies to this design.

4.5 Related Key Attacks

In a related key attack the attacker attempts to learn information about the
key through known or chosen plaintext and a relationship between two keys. It
is unlikely that such an attack would prove useful since the key schedule uses
the non-linear mixing network ζ̂ . Any two rounds are guaranteed to have at
least 24 active key coordinates. Therefore, it is unlikely that a related key attack
combined with known or chosen plaintext could work effectively.



5 Conclusion

A simple, efficient and secure block cipher has been proposed. It was designed
after the CS block cipher as well as the research into FPHT transforms of [5] and
[7]. We feel that the design is a reasonable alternative to Rijndael for hardware
platforms since it is equally as efficient and does not rely on a highly algebraic
non-linear transform.

References

[1] J. Daemen and L. Knudsen and V. Rijmen, “The Block Cipher SQUARE”,
Fast Software Encryption, v.1267 of Lecture Notes in Computer Science, pp.
149–165. Springer-Verlag, 1997

[2] J. Stern and S. Vaudenay. CS-Cipher. In Fifth International Workshop on Fast
Software Encryption, Berlin, Germany, March 1998. Springer-Verlag.

[3] S.Vaudenay, “On the Security of the CS-Cipher”, Fast Software Encryption,
March 1999, Springer-Verlag, pp. 260-274

[4] S. Vaudenay, “On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER”, LIENS - 94 - 23, November 1994

[5] T. St Denis, “Fast Pseudo-Hadamard Transforms”, Cryptology ePrint Archive,
Report 2004-010

[6] A. Bossalaers, J. Daemen, B. Preneel, V. Rijmen, E. De Win, “The Cipher
SHARK”, Fast Software Encryption, pp. 99–111, 1996.

[7] T. St Denis, “The CSQUARE Transform”, Cryptology ePrint Archive, Report
2004-026

Appendix A - Test Vectors

KEY: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

PT : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

CT : 58 70 f4 0b d1 57 00 ff 1e 66 bb b7 0b c3 6e 50

KEY: 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

PT : 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

CT : ca f2 58 81 d8 da fa 5f 16 a1 8a 0e f5 92 e3 f8

This article was processed using the LATEX macro package with LLNCS style


