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Abstract

We introduce a new type of Identity Based Encryption (IBE) scheme that we call Fuzzy
Identity Based Encryption. A Fuzzy IBE scheme allows for a private key for an identity id to
decrypt a ciphertext encrypted with another identity id′ if and only if the identities id and id′

are close to each other as measured by some metric (e.g. Hamming distance). A Fuzzy IBE
scheme can be applied to enable encryption using biometric measurements as identities. The
error-tolerance of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities,
which inherently contain some amount of noise during each measurement.

In this paper we present a construction of a Fuzzy IBE scheme that uses groups with effi-
ciently computable bilinear maps. Additionally, our construction does not use Random Oracles.
We prove the security of our scheme under the Selective-ID security model.

1 Introduction

There has been recent interest about the challenge of generating cryptographic keys from bio-
metric inputs. The primary difficulty in generating a strong key from a biometric input is that
the measured value of the a biometric can change slightly upon each sampling. This effect can
be explained by differences in sampling devices, environmental noise, or small changes in the
human trait itself. This inherent non-determinism makes it difficult to extract a cryptographic
key from a biometric input.

Recent work has produced techniques to derive cryptographic keys from biometric inputs
for symmetric key applications. For example, Monrose et al. [11, 10, 9] develop techniques
to extract secrets from keyboard typing dynamics and later voice prints by using a form of
error-tolerant secret sharing. Other work by Davida et al. [4] and Juels and Wattenberg [7] use
error-correcting codes to compensate for the noise in the biometric input.

These techniques are useful for symmetric key cryptography applications such as password
authentication and symmetric key encryption. However, there does not seem to be a clear way
to move these techniques into the realm of public key cryptography. In particular the work
above seems does not fit into the paradigm of Identity Based Encryption.

We propose a new type of Identity Based Encryption that we call Fuzzy Identity Based
Encryption. In a Fuzzy Identity Based encryption scheme a user with secret key for the identity
id is able to decrypt a ciphertext encrypted with the public key id′ if and only if id and id′

are within a certain distance of each other as judged by some metric. For the remainder of this
paper we view identities as n bit vectors and use the Hamming distance between them as the
metric of distance. However, a Fuzzy Identity Based Encryption scheme could be built using
some other metric.

Motivating Example The existence of a practical Fuzzy Identity Based Encryption scheme
would allow for the encryption of data using a biometric input as the public key. This could be
useful in the following scenario. Consider a patient that is rushed into an emergency medical
visit. A collection of medical data will be created from the visit including possibly the results of
tests that will not be ready until days later. The patient would like to be able to conveniently
access this data later by retrieving it from a public storage server. However, since the privacy
of medical information is considered to be very important the data would need to be encrypted
in such a way that only the patient could access it.
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Given the urgency of the initial visit it is unrealistic to require that the patient has on his
person a device that can store a cryptographic key or to require that he remember a unique
identifier (as might be required if we were to use Identity Based Encryption in the traditional
manner). However, the medical staff would be able to measure an inherent biometric identity
from the patient. Using a Fuzzy IBE scheme the medical staff could use this biometric identity
to encrypt information for the patient so that he could later retrieve at his convenience.

Advantages of biometric-based IBE over traditional IBE In many situations,
using biometric-based IBE would have a number of important advantages over “traditional” IBE.
We argue that the use of biometric identities fits the framework of Identity Based Encryption
very well and is a very valuable application of it.

First, the process of obtaining a secret key from an authority is very natural and straight-
forward. In traditional Identity Based Encryption schemes a user with a certain identity, for
example “Bob Smith”, will need to go to an authority to obtain the private key corresponding
to the identity. In this process the user will need to “prove” to the authority that he is indeed
entitled to this identity. This will typically involve presenting supplementary documents or cre-
dentials. The type of authentication that is necessary is not always clear and robustness of this
process is questionable (the supplementary documents themselves could be subject to forgery)
Typically, there will exist a tradeoff between a system that is expensive in this step and one
that is less reliable.

In contrast if a biometric is used as an identity then the verification process for an identity
is very clear. The user must demonstrate ownership of the biometric under the supervision of
a well trained operator. If the operator is able to detect imitation attacks, for example playing
the recording of a voice, then the security of such this phase is only limited by the quality of
the biometric technique itself. We emphasize that the biometric measurement for an individual
need not be kept secret (indeed it won’t be if it is to be used as a public key). We must only
guarantee that an attacker cannot fool the human attendee that delegates private keys into
believing that an attacker owns a biometric identity that he does not.

Secondly, using a biometric as an identity has the advantage that identities are unique if the
underlying biometric is of a good quality. Some types of traditional identities such as the name
“Bob Smith” will clearly not be unique and this could lead to problems, although the advent of
Hierarchial Identity Based Encryption does alleviate this problem.

Finally, the fact that a biometric identity is an inherent trait and therefore is always with a
person is useful. In several situations such as our medical example the user might not have the
foresight to carry an cryptographic devices or even obtain a unique traditional identity.

Our Contributions We formalize the notion of Fuzzy Identity Based Encryption and pro-
vide a construction for a Fuzzy Identity Based Encryption scheme. Our construction uses groups
for which an efficient bilinear map exists, but for which the Computational Diffie-Hellman prob-
lem is assumed to be hard. We achieve our result by applying the techniques of Shamir Secret
Sharing [12] where the a polynomial can be reconstructed in the exponent of a group.

We prove our scheme secure under an adapted version of the Selective-ID security model first
proposed by Canetti et al. [3]. Additionally, our construction does not use Random Oracles.
We reduce the security of our scheme to an assumption that is similar to the Bilinear Decisional
Diffie-Hellman assumption.

1.1 Related Work

Shamir [13] first proposed the concept of Identity Based Encryption. Boneh and Franklin [2]
presented the first Identity Based Encryption scheme that was both practical and secure. Their
solution made use of groups for which there was an efficiently computable bilinear map, but for
which the Computational Diffie-Hellman problem is believed to be hard.

Canetti et al. [3] proposed the first construction for IBE that was provably secure outside
the Random Oracle model. To prove Security they described a slightly weaker model of Security
known as the Selective-ID model, in which the adversary declares which identity he will attack
before the global public parameters are generated. Since their construction views identities as
bit strings a Bilinear map computation is required for each bit in the identity.
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Boneh and Boyen [1] describe two IBE scheme that are also proven to be secure in the
Selective-ID model. Additionally, their constructions only require respectively two and one
pairing computations per decryption and are thus significantly more efficient.

It is interesting that our work can be viewed as a new method for a standard IBE scheme that
is secure without Random Oracles in the Selective-ID model. Our Fuzzy IBE scheme becomes a
standard one when the error-tolerance parameter, d, is set to 0. However, since the decryption
phase requires a pairing computation for every bit of the identity it would serve as a much less
efficient standard IBE scheme than that of Boneh and Boyen [1].

Other work in applying biometrics to cryptography has focused on the derivation of a secret
from a biometric. This secret can be then used for operations such as encryption or UNIX style
password authentication.

Monrose et al. [11, 10, 9] examined the use of keystroke dynamics and later voice prints as
biometrics for this purpose. The authors use a type of secret sharing in which the biometric
would decided which keyshares from a stored set to use in reconstructing the secret. Some
stored shares are bogus to prevent someone with the wrong biometric from unlocking the secret.
Their scheme provides error-tolerance by storing two valid secrets for points in the biometric
measurement that are not reliable for a particular user.

Davida et al. [4] proposed a scheme where they store the check bits for an error correcting
code of a biometric input along with the hash of the input. The check bits are used to compute
the original input from one that is reasonably close. Juels and Wattenberg [7] improve upon this
work using a novel technique in which the biometric input is treated as a corrupted codeword.

Juels and Sudan [8] presented a scheme that uses set overlap as the measurement between
biometric templates instead of Hamming distance. Dodis, Rezyin, and Smith [5] describe a
general primitive for extracting uniform randomness from biometric inputs. Additionally, they
give constructions for the metrics of Hamming distance, set overlap, and edit distance.

The primary distinguishing feature of our work from the other related work on biometrics
above is that we view the biometric input as public identity as opposed to a secret that the
human poses. Our only physical requirement is that the biometric cannot be imitated such that
a trained human operator would be fooled.

Finally, the use of polynomial interpolation within the exponents was discussed with Philippe
Golle and Jessica Staddon [6] during while working on the problem of conjunctive keyword search
on encrypted data.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define a Fuzzy Identity
Based Encryption scheme including the Selective-ID security model for one. In Section 3 we
describe the security assumption our scheme reduces to. In Section 4 we describe our construc-
tion of a Fuzzy Identity Based Encryption scheme. In Section 5 we prove the security of our
scheme. Finally, we conclude in Section 6.

2 Definitions

We define a Fuzzy Identity Based encryption scheme with identities represented as n bit vectors
and we use the Hamming distance ,d, between identities as our error-tolerance threshold. A
Fuzzy Identity Based encryption scheme will have a Setup phase in which the public parameters
and master secret key are generated. In the Key Generation algorithm the master secret holder
generates a private key corresponding to an identity id. The encryption algorithm uses the public
parameters to encrypt a message with a public key id′. There is a corresponding decryption
algorithm where private key for id can decrypt a ciphertext encrypted with id′ if and only if
the Hamming distance between ID and id′ is less than or equal to d.

We define the scheme to be semantically secure in the Selective-ID model if the following
game is difficult for all computationally bounded adversaries.

Init The adversary declares the identity α that he wishes to be challenged upon.

Setup The challenger runs the setup phase of the algorithm and tells the adversary the public
parameters.
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Phase 1 The adversary is allowed issue queries private keys for an identity γ where the Ham-
ming distance between α and γ is greater than d.

Challenge The adversary submits two equal length messages m0,m1. The challenger flips a
random coin b and encrypts mb. The ciphertext is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is Pr[b′ = b]− 1
2 .

3 Complexity Assumption

Let G1 be a group of prime order p with an admissible bilinear map into G2 and g be a generator
of G1 and h be a generator of G2 where e(g, g) = h. Our assumption follows.

3.1 Modified Decisional Bilinear Diffie-Hellman (BLDDH) Assump-
tion

The simulator chooses a, b, c, z ∈ Zp at random. The goal of the adversary is to be able to
distinguish the tuple

A = ga, B = gb, C = gc, Z = h
ab
c

from
A = ga, B = gb, C = gc, Z = hz

with more than a negligible advantage.

4 Our Construction

4.1 Description

Let G1 be bilinear group of prime order p, g be a generator of G1, and h be a generator of G2. We
let the security parameter, k, determine the size of the group. Additionally let e : G1×G1 → G2

denote the bilinear map where e(g, g) = h. The security parameter κ will determine the size of
the groups.

We construct a Fuzzy Identity Based Encryption scheme with identities of length n and
error-tolerance d in the following manner.

Setup(n, d) To generate the public parameters first select x0, (x1,0, x1,1) . . . (xn,0, xn,1) ∈ Zp

so that all x values are distinct.
Next, choose (t1,0, t1,1) . . . (tn,0, tn,1) uniformly at random from Zp. Finally, choose y0 uni-

formly at random in Zp. The published public parameters are:

(T1,0 = gt1,0 , T1,1 = gt1,1), . . . , (Tn,0 = gtn,0 , Tn,1 = gtn,1), (x1,0, x1,1), . . . , (xn,0, xn,1), Y = hy0 .

The master key is:
(t1,0, t1,1), . . . , (tn,0, tn,1), y0.

Key Generation To generate a private key for identity id the following steps are taken. A
(n− 1)− d degree polynomial q is randomly chosen such that q(x0) = y0. Let id(j) denote the
jth bit of id. The private key is

D1 = g

q(x1,id(1))
t1,id(1) , . . . , Dn = g

q(xn,id(n))
tn,id(n) .
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Encryption Encryption with the public key id′ and message m ∈ G2 proceeds in the follow-
ing way.

First, a random value r ∈ Zp is chosen. The ciphertext is then published as

(id′, E0 = mY r = mhry0 , E1 = (T1,id′(1))r = grt1,id′(1) , . . . , En = (T1,id′(1))r = grtn,id′(n)).

Decryption A private key for identity id can decrypt a ciphertext encrypted with id′ when
the Hamming distance between id and id′ is less than or equal to d.

The intuitive idea behind decryption is to compute the bilinear map between Ei and Di

when id(i) = id′(i). The t values will cancel out and we will have (at least) n − d points of
the polynomial rq(x) in the exponent. Since the x values are publicly known, the polynomial
can be interpolated in the exponent to evaluate it at x0 to get rq(x0) = ry0 (in the exponent).
Once hry0 is calculated it can be divided out from the ciphertext to get the message. A detailed
description follows.

For the remainder of this section we leave out the second subscript where it is obvious and
define it to be relative to the identity id (e.g. x1 indicates x1,id(1)).

We first define the Lagrangian multiplier 4i,S,id for index i relative to a set S and identity
id.

4i,S,id(x) =
∏

j∈S,j 6=i

x− xj

xi − xj

To decrypt we first define S as a set of the first n− d indices i for which id(i) = id′(i).
In the first phase of the decryption the variable u is calculated as

u =
∏
i∈S

e(Di, Ei)4i,S,id(x0) =
∏
i∈S

e(g
q(xi)

ti , grti)4i,S,id(x0) =
∏
i∈S

hrq(xi)4i,S,id(x0) = hrq(x0)

In this step the (n − 1) − d degree polynomial rq(x) is interpolated (in the exponent) to be
evaluated at the point x0. The interpolation is possible since the (n− 1)− d degree polynomial
rq(x) is known at n− d points.

Finally, the message m is recovered as

E0

u
=

mhry′

hry′
= m.

4.2 Computational Cost

Encryption of a message will consist of n + 1 exponentiations. The cost of decryption will be
dominated by the n− d bilinear map computations.

4.3 Flexible Error-Tolerance

In the scheme described above the error-tolerance d is set as a global system parameter. However,
in some situations it is desirable for the error-tolerance to be set by the party encrypting the
message. This could be useful if the encrypting party had a less accurate biometric reader and
wanted to raise the error-tolerance to compensate (this would of course come at the expense of
a greater risk in security).

In the construction described above the dealer generated 2n public T -values where the sub-
scripts corresponded to the values of an identity. For example, T2,0 corresponds to the second
bit of an identity being 0 and the encrypter will raise T2,0 to r if and only if the public key id′

has a 0 for its second bit.
We can achieve a more flexible solution to error-tolerance. In the setup phase we add n

more T -values Tn+1, . . . T2n where these values have no correspondence to the identity and n
more x-values xn+1 . . . x2n If the encrypter wishes to encrypt with a chosen error-tolerance d′

he will produce E1, . . . En in an identity dependent manner as before. Additionally, he will
generate En+1, . . . , En+d′ as (Tn+1)r, . . . , (Tn+d′)r in an identity independent manner. That is
the encrypter will raise d′ extra points to the r power.

For the private key the dealer will now choose a random n− 1 degree polynomial so that n
points are needed to interpolate. In an analogous fashion the dealer will give D1, . . . , Dn key
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parts that are related to the secret key identity and Dn+1, . . . , D2n that are not. A holder of
a secret key can decrypt the ciphertext by computing the bilinear map between Di and Ei at
least n − d′ indices, i, where the identities agree in addition to computing the bilinear map at
the d′ indices that are independent of the identity.

5 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to the hardness of
our Modified Bilinear Decisional Diffie-Hellman assumption.

Suppose there exists a computationally efficient adversary A that can attack our scheme in
the Selective-ID model with advantage ε. We build a simulator B that can play the Modified
BLDDH game with advantage ε

2 .
The steps in the simulation are as follows.

• The challenger flips a fair binary coin µ outside of B’s view. If µ = 0 the challenger
gives (A,B,C, D) = (ga, gb, gc, h

ab
c ), otherwise if µ = 1 (A,B,C, D) = (ga, gb, gc, hz) for

random a, b, c, z.

• Next, B will run A and receive the challenge identity α, an n-bit vector.

• B then generates the public parameters as follows. First, the groups G1,G2 of prime order
p are chosen based on the security parameter and the generators g ∈ G1 and h = e(g, g)
are chosen. Then the simulator assigns Y = A = ga. Next, for all integers i between 1
and n the simulator chooses wi, βi ∈ Zp uniformly at random in Zp. The simulator then
assigns Ti,αi = Cβi = gcβi and Ti,αi = gwi . Finally, all x values are assigned to be distinct
members in Zp.
Since a,w1, . . . wn, β1 . . . βn are chosen at random the distribution of the public parameters
in the simulation is identical to that of the actual construction.

• In the next step A makes requests for private keys where the identity of the private keys
are greater than d Hamming Distance from α.
Suppose A asks for such a private key γ. We first define three sets of indices Γ,Γ′, S ⊆
{1 . . . n} in the following manner.

Γ = {i : γi = αi}

Γ′ be any set such that Γ′ ∩ Γ = ∅ and |Γ′ ∪ Γ| = (n− 1)− d

S = Γ ∪ Γ′ ∪ {0}

Next, we define the decryption key components Di for i ∈ Γ ∪ Γ′ as follows.

If i ∈ Γ : Di = gsi where si is chosen randomly in Zp.

If i ∈ Γ′ : Di = g
λi
wi where λi is chosen randomly in Zp.

The intuition behind these assignments is that we are implicitly choosing a random (n−1)d
degree polynomial q(x) by choosing its value the (n− 1)− d points randomly in addition
to having q(x0) = y0. For i ∈ Γ we have q(xi) = cβisi and for i ∈ Γ′ we have q(xi) = λi.
The simulator can calculate the other Di values where i /∈ Γ∪Γ′ since the simulator knows
the discrete log of Ti,αi . Again, we omit the second subscript for clarity and define it
relative to the private key identity γ. The simulator makes the assignments as follows.

If i /∈ Γ ∪ Γ′ : Di = (
∏
j∈Γ

C
βjsj4j,S(xi)

wi )(
∏
j∈Γ′

g
λj4j,S(xi)

wi )Y
40,S(xi)

wi

Using interpolation the simulator is able to calculate Di = g
q(xi)

ti for i /∈ Γ∪Γ′ where q(x)
was implicitly defined by the random assignment of the other n−d−1 Di ∈ Γ∪Γ′ and Y .
Therefore, the simulator is able to construct a private key for the identity γ. Furthermore,
the distribution of a the private key for a γ is identical to that of the original scheme.
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• The adversary, A, will submit two challenge messages m1,m0 to the simulator. The
simulator flips a fair binary coin ν and returns an encryption of mν . The encryption is
performed as follows. We let E0 = Zmν and Ei = Bβi = gbβi .
If µ = 0 then Z = g

ab
c . If we let r′ = b

c then we have E0 = Zmν = g
ab
c = gar′ = Y r′ and

Ei = Bβi = gbβi = g
b
c cβi = gr′cβi = (Ti)r′ . Therefore, the ciphertext is an encryption of

the message mν under the public key α.
Otherwise, if µ = 1 then Z = gz. We then have E0 = mνgz since z is random E0 will be a
random element of G2 from the adversaries view and the message contains no information
about mν .

• A will then ask for more private keys. The simulator will respond to these requests exactly
as before.

• A will submit a guess ν′ of ν. If ν = ν′ the simulator will output µ′ = 0 to indicate that
it was given a Modified BLDDH-tuple otherwise it will output µ′ = 1 to indicate it was
given a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters and private
keys is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have
Pr[ν 6= ν′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν′ we have Pr[µ′ = µ|µ =
1] = 1

2 .
If µ = 0 then the adversary sees an encryption of mν . The adversary’s advantage in this

situation is ε by definition. Therefore, we have Pr[ν = ν′|µ = 0] = 1
2 + ε. Since the simulator

guesses µ′ = 0 when ν = ν′ we have Pr[µ′ = µ|µ = 0] = 1
2 + ε.

The overall advantage of the simulator in the Modified BLDDH game is 1
2Pr[µ′ = µ|µ =

0] + 1
2Pr[µ′ = µ|µ = 1] = 1

2 ( 1
2 + ε) + 1

2
1
2 = 1

2 + 1
2ε.

5.1 Security in Standard IBE Model

While our main security proof is in the slightly weaker Selective-ID model we conjecture that our
scheme is secure in the standard IBE model of security. In this model the adversary commits to
the identity that he will attack after seeing the public parameters and receiving chosen private
keys. We assert that our scheme can be reduced to a much stronger (non-standard) assumption
in which the adversary makes interactive queries to an oracle.

6 Conclusion

We introduced the concept of Fuzzy Identity Based Encryption, which allows for error-tolerance
between the identity of a private key and the public key used to encrypt a ciphertext. Fuzzy
Identity Based Encryption has a direct application to Identity Based Encryption using a bio-
metric as a public key.

We presented a construction of a Fuzzy IBE scheme that uses Hamming distance as the dis-
tance metric between identities. Finally, we proved our scheme under the Selective-ID model by
reducing it to an assumption that can be viewed as a modified version of the Bilinear Decisional
Diffie-Hellman assumption.
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