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Abstract

We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy
Identity-Based Encryption. A Fuzzy IBE scheme allows for a private key for an identity, I, to
decrypt a ciphertext encrypted with another identity, I ′, if and only if the identities I and I ′

are close to each other as measured by some metric such as Hamming distance or set overlap.
A Fuzzy IBE scheme can be applied to enable encryption using biometric measurements as
identities. The error-tolerance of a Fuzzy IBE scheme allows for the use of biometric identities,
which inherently will have some noise each time they are sampled.

In this paper we present a construction of a Fuzzy IBE scheme that uses groups with effi-
ciently computable bilinear maps. Additionally, our construction does not use random oracles.
We prove the security of our scheme under the Selective-ID security model.

1 Introduction

There has been recent interest about the challenge of generating cryptographic keys from bio-
metric inputs. The primary difficulty in generating a strong key from a biometric input is that
the measured value of a biometric can change slightly upon each sampling. This effect can
be explained by differences in sampling devices, environmental noise, or small changes in the
human trait itself. This inherent non-determinism makes it difficult to extract a cryptographic
key from a biometric input.

Recent work has produced techniques to derive cryptographic keys from biometric inputs
for symmetric key applications. For example, Monrose et al. [14, 13, 12] develop techniques
to extract secrets from keyboard typing dynamics and, later, voice prints by using a form of
error-tolerant secret sharing. Other work by Davida et al. [4] and Juels and Wattenberg [9] use
error-correcting codes to compensate for the noise in the biometric input.

These techniques are useful for symmetric key cryptography applications such as password
authentication and symmetric key encryption. However, there does not seem to be a clear way
to move these techniques into the realm of public key cryptography. In particular, the work
above seems does not fit into the paradigm of Identity-Based Encryption.

We propose a new type of Identity-Based Encryption that we call Fuzzy Identity-Based
Encryption. In a Fuzzy Identity-Based Encryption scheme a user with secret key for the identity
I is able to decrypt a ciphertext encrypted with the public key I ′ if and only if I and I ′ are
within a certain distance of each other as judged by some metric. For the remainder of this
paper we view identities as a set of n elements and we use the set overlap between two identities
to measure their similarity. (If we restrict ourselves to equal size sets we could view the set
difference as the distance between two identities.)

Motivating Example The existence of a practical Fuzzy Identity-Based Encryption scheme
would allow for the encryption of data using a biometric input as the public key. This could be
useful in the following scenario. Consider a patient that is rushed into an emergency medical
visit. A collection of medical data will be created from the visit including possibly the results of
tests that will not be ready until days later. The patient would like to be able to conveniently
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access this data later by retrieving it from a public storage server. However, since the privacy
of medical information is considered to be very important, the data would need to be encrypted
in such a way that only the patient could access it.

Given the urgency of the initial visit it is unrealistic to require that the patient has on his
person a device that can store a cryptographic key or to require that he remember a unique
identifier (as might be required if we were to use Identity-Based Encryption in the traditional
manner). However, the medical staff would be able to measure an inherent biometric identity
from the patient. Using a Fuzzy IBE scheme the medical staff could use this biometric identity
to encrypt information for the patient so that he could later retrieve at his convenience.

Advantages of biometric-based IBE over traditional IBE In many situations,
using biometric-based IBE would have a number of important advantages over “traditional” IBE.
We argue that the use of biometric identities fits the framework of Identity-Based Encryption
very well and is a very valuable application of it.

First, the process of obtaining a secret key from an authority is very natural and straight-
forward. In traditional Identity-Based Encryption schemes a user with a certain identity, for
example “Bob Smith”, will need to go to an authority to obtain the private key corresponding
to the identity. In this process the user will need to “prove” to the authority that he is indeed
entitled to this identity. This will typically involve presenting supplementary documents or cre-
dentials. The type of authentication that is necessary is not always clear and robustness of this
process is questionable (the supplementary documents themselves could be subject to forgery)
Typically, there will exist a tradeoff between a system that is expensive in this step and one
that is less reliable.

In contrast, if a biometric is used as an identity then the verification process for an identity
is very clear. The user must demonstrate ownership of the biometric under the supervision of a
well trained operator. If the operator is able to detect imitation attacks, for example playing the
recording of a voice, then the security of this phase is only limited by the quality of the biometric
technique itself. We emphasize that the biometric measurement for an individual need not be
kept secret (indeed it won’t be if it is to be used as a public key). We must only guarantee that
an attacker cannot fool the human attendee that delegates private keys into believing that an
attacker owns a biometric identity that he does not.

Secondly, using a biometric as an identity has the advantage that identities are unique if the
underlying biometric is of a good quality. Some types of traditional identities such as the name
“Bob Smith” will clearly not be unique and this could lead to problems, although Hierarchial
Identity-Based Encryption [6, 8] does alleviate this problem.

Finally, the fact that a biometric identity is an inherent trait and therefore is always with
a person is useful. In several situations, such as our medical example, the user might not have
the foresight to carry an cryptographic devices or even obtain a unique traditional identity.

Our Contributions We formalize the notion of Fuzzy Identity-Based Encryption and pro-
vide a construction for a Fuzzy Identity-Based Encryption scheme. Our construction uses groups
for which an efficient bilinear map exists, but for which the Computational Diffie-Hellman prob-
lem is assumed to be hard. We achieve our result by applying the techniques of Shamir Secret
Sharing [17] where a polynomial can be reconstructed in the exponent of a group.

We prove our scheme secure under an adapted version of the Selective-ID security model
first proposed by Canetti et al. [3]. Additionally, our construction does not use random oracles.
We reduce the security of our scheme to an assumption that is similar to the Decisional Bilinear
Diffie-Hellman assumption.

1.1 Related Work

Shamir [18] first proposed the concept of Identity-Based Encryption. Boneh and Franklin [2]
presented the first Identity-Based Encryption scheme that was both practical and secure. Their
solution also made use of groups for which there was an efficiently computable bilinear map,
but for which the Computational Diffie-Hellman problem is believed to be hard.

Canetti et al. [3] proposed the first construction for IBE that was provably secure outside
the random oracle model. To prove Security they described a slightly weaker model of security
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known as the Selective-ID model, in which the adversary declares which identity he will attack
before the global public parameters are generated. Since their construction views identities as
bit strings a bilinear map computation is required for each bit in the identity.

Boneh and Boyen [1] describe two IBE scheme that are also proven to be secure in the
Selective-ID model. Additionally, their two constructions only require respectively two and one
pairing computations per decryption and are thus significantly more efficient.

Our work can be viewed as a new method for a standard IBE scheme that is secure without
random oracles in the Selective-ID model. Our Fuzzy IBE scheme becomes a standard one when
the error-tolerance parameter, d, is set to 0. However, since the decryption phase requires a
pairing computation for every bit of the identity it would serve as a much less efficient standard
IBE scheme than that of Boneh and Boyen [1].

Other work in applying biometrics to cryptography has focused on the derivation of a secret
from a biometric. This secret can be then used for operations such as encryption or UNIX style
password authentication.

Monrose et al. [14, 13, 12] examined the use of keystroke dynamics and later voice prints
as biometrics for this purpose. The authors use a type of secret sharing in which the biometric
would decided which keyshares from a stored set to use in reconstructing the secret. Some
stored shares are bogus to prevent someone with the wrong biometric from unlocking the secret.
Their scheme provides error-tolerance by storing two valid secrets for points in the biometric
measurement that are not reliable for a particular user.

Davida et al. [4] proposed a scheme where they store the check bits for an error correcting
code of a biometric input along with the hash of the input. The check bits are used to compute
the original input from one that is reasonably close. Juels and Wattenberg [9] improve upon this
work using a novel technique in which the biometric input is treated as a corrupted codeword.

Juels and Sudan [10] presented a scheme that uses set overlap as the measurement between
biometric templates. Dodis, Rezyin, and Smith [5] describe a general primitive for extracting
uniform randomness from biometric inputs. Additionally, they give constructions for the metrics
of Hamming distance, set overlap, and edit distance.

The primary distinguishing feature of our work from the other related work on biometrics
above is that we view the biometric input as public identity instead of a secret. Our only physical
requirement is that the biometric cannot be imitated such that a trained human operator would
be fooled.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define a Fuzzy Identity-
Based Encryption scheme including the Selective-ID security model for one. In Section 3 we
describe the security assumption our scheme reduces to. In Section 4 we show why two naive
approaches do not work. We follow with our the description of our construction in Section 5.
In Section 6 we prove the security of our scheme. We describe some extensions to our scheme
in Section 7. Finally, we conclude in Section 8.

2 Definitions

In this section we define two Selective-ID models of security for Fuzzy Identity Based Encryp-
tion. The Basic Fuzzy Selective-ID game is very similar to the standard Selective-ID model for
Identity-Based Encryption with the exception that the adversary is only allowed to query for
secret keys for identities which have less than d overlap with the target identity.

In the second game, which we call Multiple Fuzzy Selective-ID the adversary chooses several
identities that are simultaneously targets. This model of security captures how an attack against
a biometric identity will occur in a practice. The attacker will want to target a certain biometric
identity, but the identities with which the ciphertexts are encrypted will deviate slightly from
the original identity. These deviations in practice will be from environmental noise and therefore
will be independent of the public parameters. This game captures the case where a set of target
identities are small random deviations from one identity.
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We describe the two security games below and show that the security of the Multiple Fuzzy
Selective-ID game reduces to the Basic Fuzzy Selective-ID game in Section A of the Appendix.

Basic Fuzzy Selective-ID
Init The adversary declares the identity α that he wishes to be challenged upon.
Setup The challenger runs the setup phase of the algorithm and tells the adversary the public

parameters.
Phase 1 The adversary is allowed to issue queries for private keys for an identity γ where

|γ ∩ α| < d.
Challenge The adversary submits two equal length messages m0,m1. The challenger flips a

random coin b and encrypts mb with α. The ciphertext is passed to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

Definition 1 (Basic Fuzzy Selective-ID). A scheme is secure in the Basic Fuzzy Selective-
ID model of security if all computationally bound adversaries have at most a negligible advantage
in the above game.

Multiple Fuzzy Selective-ID
Init The adversary declares l identities α1, . . . , αl that he wishes to be challenged upon where

l is bounded by a polynomial of the security parameter κ.
Setup The challenger runs the setup phase of the algorithm and tells the adversary the public

parameters.
Phase 1 The adversary is allowed to issue queries for private keys for an identity γ where

|γ ∩ αi| < d for all i.
Challenge The adversary submits 2l messages m1,0, . . . ,ml,0 and m1,1, . . . ,ml,1 where mi,0,mi,1

are of equal length for all i. The challenger flips a random coin b and encrypts m1,b, . . . ,ml,b

with the respective identities α1, . . . , αl. The ciphertexts are passed to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is Pr[b′ = b]− 1
2 .

3 Complexity Assumption

Let G1 be a group of prime order p with an admissible bilinear map, e, into G2 and g be a
generator of G1. We define two assumptions.

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) Assumption). Suppose a chal-
lenger chooses a, b, c, z ∈ Zp at random. The Decisional BDH assumption is that no adversary
is to be able to distinguish the tuple

(A = ga, B = gb, C = gc, Z = e(g, g)abc)

from the tuple
(A = ga, B = gb, C = gc, Z = e(g, g)z)

with more than a negligible advantage.

Definition 3 (Decisional Modified Bilinear Diffie-Hellman (BDDH) Assumption).
Suppose a challenger chooses a, b, c, z ∈ Zp at random. The Decisional Modified BDH assump-
tion is that no adversary is to be able to distinguish the tuple

(A = ga, B = gb, C = gc, Z = h
ab
c )

from
(A = ga, B = gb, C = gc, Z = hz)

with more than a negligible advantage.
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4 Other Approaches

Before describing our scheme we first show describe two naive approaches to building a Fuzzy
Identity-Based Encryption scheme and show why they fall short. This discussion will addition-
ally motivate our approach to the problem.

The first possible method we examine is to “correct” the errors of a biometric measurement
and then use standard Identity-Based Encryption to encrypt a message under the corrected
input. If the biometric input measured when creating the private key is corrected to the same
value then the private key will be able to decrypt the ciphertext.

While, it is possible to correct some errors upon reading an input this approach relies upon
the faulty assumption that each biometric input measurement is slightly deviated from some
“true” value and that these “true” values are well known. In practice the only reasonable
assumption is that two measurements sampled from the same person will be within a certain
distance of each other.

This intuition is captured by previous work. Dodis, Rezyin, and Smith [5] use what they
call a fuzzy sketch that contains information of a first sampling of a biometric that allows
subsequent measurements to be corrected to it. If the correction could be done without any
other information then we could simply do away with the fuzzy sketch.

The second naive approach we consider is for an authority to give a user an Identity-Based
Private key for each of the n separate attributes that describe the user. Such a system easily
falls prey to simple collusion attacks where multiple users combine their keys to form identities
that are a combination of their attributes.

5 Our Construction

5.1 Intuition

Our approach is motivated by providing resistance to collusion attacks of multiple users. When
an authority is creating a private key for a user he will associate a random d−1 degree polynomial
q with each user with the restriction that each polynomial have the same valuation at point 0,
that is q(0) = y.

For each of a user’s n attributes the authority will give him a private key component that is
of a generator, g, of a bilinear group raised to the user’s polynomial at a certain point divided
by a secret blinding factor. If the ciphertext components match the private key at at least d
places the user is able to interpolate and decrypt a message. However, due since each user’s
private key is derived from a random polynomial, no two users are able to combine their private
key components. We now describe our scheme.

5.2 Description

Let G1 be bilinear group of prime order p and g be a generator of G1. Additionally, let e :
G1 × G1 → G2 denote the bilinear map. A security parameter, κ, will determine the size of the
groups.

We also define the Lagrange coefficient 4i,S for i ∈ Zp and a set, S, of elements in Zp:

4i,S(x) =
∏

j∈S,j 6=i

x− j

i− j
.

Identities will be n element sets where the elements are members of Z∗
p ∈ U where U is the

universe of elements defined by the master-key holder. In practice, a biometric measurement
will be a set of attributes and each attribute will be associated with some element of U . Our
construction follows:

Setup(n, d) First, define the Universe, U of elements. For simplicity, we can take the first
|U| elements of Z∗

p to be the universe. Namely, the integers 1, . . . , |U| (mod p).
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Next, choose t1, . . . , t|U| uniformly at random from Zp. Finally, choose y uniformly at random
in Zp. The published public parameters are:

T1 = gt1 , . . . , T|U| = gt|U| , Y = e(g, g)y.

The master key is:
t1, . . . , t|U|, y.

Key Generation To generate a private key for identity I ⊂ U the following steps are taken.
A d− 1 degree polynomial q is randomly chosen such that q(0) = y. The private key consists of

n components, Di, for all i ∈ I. The private key is: ∀i ∈ I : Di = g
q(i)
ti .

Encryption Encryption with the public key I ′ and message m ∈ G2 proceeds as follows.
First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (I ′, E′ = mY s, {Ei = T s
i }∀i ∈ I ′).

Decryption Suppose that a ciphertext, E, is encrypted with a key for identity I ′ and we
have a key for identity I, where |I ∩ I ′| ≥ d. Choose an arbitrary d-element subset, S, of I ∩ I ′.

Then, the ciphertext can be decrypted as:

E′/
∏
i∈S

(e(Di, Ei))
4i,S(0)

= me(g, g)y/
∏

i∈I∩I′

(
e(g

q(i)
ti , gsti)

)4i,S(0)

= me(g, g)y/
∏

i∈I∩I′

(
e(g, g)sq(i)

)4i,S(0)

= m.

The last equality is derived from using polynomial interpolation in the exponents. Since, the
polynomial sq(x) is of degree d− 1 it can be interpolated using d points.

5.3 Computational Cost

Encryption of a message will consist of n exponentiations in the group G1. The cost of decryption
will be dominated by d bilinear map computations.

6 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to the hardness of
the Decisional Modified BDH assumption.

Lemma 1. If an adversary can break our scheme in the Basic Fuzzy Selective ID Model, then
a simulator can be constructed to play the Decisional Modified BDH game with a non-negligible
advantage.

Proof. Suppose there exists a computationally efficient adversary, A, that can attack our scheme
in the Selective-ID model with advantage ε. We build a simulator B that can play the Decisional
Modified BDH game with advantage ε

2 .
The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear map, e and

generator g. The challenger flips a fair binary coin µ outside of B’s view. If µ = 0, the challenger
sets (A,B,C, Z) = (ga, gb, gc, e(g, g)

ab
c ); otherwise it sets (A,B,C, Z) = (ga, gb, gc, e(g, g)z) for

random a, b, c, z. The parameters of the universe of elements U and size of identities n are given
as the correctness of the proof does not depend upon the sizes of identities nor the universe size.
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Setup The simulator B runs A and receive the challenge identity, α, an n element subset of
U .

The simulator assigns the public key parameters as follows. It sets the parameter Y = A =
ga. For all i ∈ α it chooses random βi ∈ Zp and sets Ti = Cβi = gcβi . For all i ∈ U − α it
chooses random wi ∈ Zp and sets Ti = gw

i .
It then gives the public parameters to A. Notice that from the view A all parameters are

chosen at random as in the construction.

Phase 1 A makes requests for private keys where the identity set overlap between the iden-
tities for each requested key and α is less than d.

Suppose A asks a private key γ where |γ ∩ α| < d. We first define three sets Γ,Γ′, S in the
following manner:

Γ = γ ∩ α,

Γ′ be any set such that Γ ⊆ Γ′ ⊆ γ and |Γ′| = d− 1, and

S = Γ′ ∪ {0}.

Next, we define the decryption key components, Di, for i ∈ Γ′ as:

If i ∈ Γ : Di = gsi where si is chosen randomly in Zp.

If i ∈ Γ′ − Γ : Di = g
λi
wi where λi is chosen randomly in Zp.

The intuition behind these assignments is that we are implicitly choosing a random d − 1
degree polynomial q(x) by choosing its value for the d−1 points randomly in addition to having
q(0) = a. For i ∈ Γ we have q(xi) = cβisi and for i ∈ Γ′ − Γ we have q(xi) = λi.

The simulator can calculate the other Di values where i /∈ Γ′ since the simulator knows the
discrete log of Ti for all i /∈ α. The simulator makes the assignments as follows:

If i /∈ Γ′ : Di = (
∏
j∈Γ

C
βjsj4j,S(i)

wi )(
∏

j∈Γ′−Γ

g
λj4j,S(i)

wi )Y
40,S(i)

wi

Using interpolation the simulator is able to calculate Di = g
q(xi)

ti for i /∈ Γ′ where q(x) was
implicitly defined by the random assignment of the other d−1 variables Di ∈ Γ′ and the variable
Y .

Therefore, the simulator is able to construct a private key for the identity γ. Furthermore,
the distribution of the private key for γ is identical to that of the original scheme.

Challenge The adversary, A, will submit two challenge messages m1 and m0 to the simulator.
The simulator flips a fair binary coin ν and returns an encryption of mν . The ciphertext is output
as:

E = (α, E′ = mνZ,E′′ = C, {Ei = Bβi}∀i ∈ α).

If µ = 0, then Z = g
ab
c . If we let r′ = b

c , then we have E0 = mνZ = mνg
ab
c = mνgar′ =

mνY r′ and Ei = Bβi = gbβi = g
b
c cβi = gr′cβi = (Ti)r′ . Therefore, the ciphertext is a random

encryption of the message mν under the public key α.
Otherwise, if µ = 1, then Z = gz. We then have E′ = mνgz. Since z is random, E′ will

be a random element of G2 from the adversaries view and the message contains no information
about mν .

Phase 2 The simulator acts exactly as it did in Phase 1.
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Guess A will submit a guess ν′ of ν. If ν = ν′ the simulator will output µ′ = 0 to indicate
that it was given a Modified BDDH-tuple otherwise it will output µ′ = 1 to indicate it was given
a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters and private
keys is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have
Pr[ν 6= ν′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν′, we have Pr[µ′ = µ|µ =
1] = 1

2 .
If µ = 0 then the adversary sees an encryption of mν . The adversary’s advantage in this

situation is ε by definition. Therefore, we have Pr[ν = ν′|µ = 0] = 1
2 + ε. Since the simulator

guesses µ′ = 0 when ν = ν′, we have Pr[µ′ = µ|µ = 0] = 1
2 + ε.

The overall advantage of the simulator in the Modified Decisional BDH game is 1
2Pr[µ′ =

µ|µ = 0] + 1
2Pr[µ′ = µ|µ = 1]− 1

2 = 1
2 ( 1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε.

Theorem 1. Our scheme is Secure in the Multiple Fuzzy Selective-ID model.

Proof. The proof follows immediately from Lemmas 2 and 1.

6.1 Chosen-Ciphertext Security

Our security definitions and proofs have been in the chosen-plaintext model. Our scheme can be
extended to the chosen-ciphertext model by applying the technique of using simulation-sound
NIZK proofs to achieve chosen-ciphertext security [15, 16, 11] as described by Canetti et al. [3].

6.2 Security in Standard IBE Model

While our main security proof is in the slightly weaker Selective-ID model we conjecture that our
scheme is secure in the standard IBE model of security. In this model the adversary commits to
the identity that he will attack after seeing the public parameters and receiving chosen private
keys. We assert that our scheme can be reduced to a much stronger (non-standard) assumption
in which the adversary makes interactive queries to an oracle.

7 Extensions

In this section we discuss how our scheme can be extended to allow for a variable number of
attributes, have more error-tolerance flexibility, and have draw attributes from a large universe.

Variable Number of Attributes Up to this point for simplicity we restricted all identities
to be of consist of the same number of attributes. However, we observe that this need not be
the case. Our proof technique only relied on the fact that the set overlap between the challenge
identity and any given private keys was less than some parameter d. Our scheme could easily
accommodate identities of varying sizes for both encryption identities and private key identities.

Flexible Error-Tolerance In our scheme the error-tolerance is set to a value d. However,
in practice a party constructing a ciphertext might want more flexibility. For example, if a
biometric input device happens to be less reliable it might be desirable to relax the set overlap
parameters.

The most obvious way to allow flexible error-tolerance is for the master secret holder to
create multiple systems, each one with a different error-tolerance parameter. A party encrypting
a message can choose which system he wants to encrypt under.

Unfortunately, for m different systems the size of the public parameters and private keys
both increase by a factor of m. A more clever way to allow for flexible error-tolerance would
be for the private key holder to reserve some attributes that it will issue to every key-holder.
The party encrypting the message can increase the error-tolerance by increasing the number of
these “default” attributes it includes in the encryption identity.
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Large Universe Sizes In the construction we provided the size of the public parameters
grow linearly with the number of possible attributes in the universe. We provide a more advanced
version of our scheme which uses all elements of Z∗

p as the universe, yet the public parameters
only grow linearly in, n, the size of identities.

Besides the obvious efficiency benefits, having a large universe allows us to apply a collision-
resistant hash function H : {0, 1}∗ → Z∗

p and use arbitrary strings as attributes. This in turn
has the advantage that attributes can be used that were not necessarily considered during the
public key setup. For example, suppose instead of a biometric we were to describe people by
some general set of criteria. Then we could use add any verifiable attribute such as “Ran in
N.Y. Marathon 2005” to some user’s private key.

Our large universe construction is built using similar concepts to the ones provided and uses
an algebraic technique of Boneh and Boyen [1]. This scheme also has the advantage that we
reduce the security of this scheme to the more standard Decisional BDH problem. Due to space
restrictions we placed the scheme and its proof in the Appendices B and C.

Using Other Distance Metrics A Fuzzy Identity-Based Encryption scheme could in
principal be built from other distance metrics. With many of these metrics, it is difficult to see
how a to construct a Fuzzy IBE scheme that supports them and leave the construction of new
schemes with different distance metrics as future work. However, we note that a construction
that uses the Hamming Distance metric is implied by a construction that uses the set overlap
metric.

8 Conclusion

We introduced the concept of Fuzzy Identity Based Encryption, which allows for error-tolerance
between the identity of a private key and the public key used to encrypt a ciphertext. Fuzzy
Identity Based Encryption has a direct application to Identity Based Encryption using a bio-
metric as a public key.

We presented a construction of a Fuzzy IBE scheme that uses Hamming distance as the dis-
tance metric between identities. Finally, we proved our scheme under the Selective-ID model by
reducing it to an assumption that can be viewed as a modified version of the Bilinear Decisional
Diffie-Hellman assumption.
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A Security Game Reduction

Lemma 2. If a Fuzzy IBE scheme is secure according to the Multiple Fuzzy Selective-ID model
of security then it is also secure in the Basic Fuzzy Selective-ID model of security.

Proof. Suppose we have an adversary A that is successful with advantage ε in the Multiple
Fuzzy Selective-ID game for a certain scheme. Furthermore, suppose A picks at most l target
identities in the first phase. We can then build a simulator B that is successful with advantage
at least ε

2l in the Basic Fuzzy Selective-ID game.
We first define hybrid experiments for the Multiple Fuzzy Selective-ID game.
For 0 ≤ i ≤ l we define Hi as a game in which the adversary A is given an encryption of

a random message for the first i ciphertexts (encrypted under the respective first i identities)
and the rest of the ciphertexts are determined by the coin flip b as in the defined game. A’s
advantage in H0 is ε by our assumption and A’s advantage in Hl is 0 since the ciphertexts will
be completely independent of b from the adversary’s point of view. Therefore, by the triangle
inequality there exists a 0 ≤ j < l such that A has a greater advantage in Hj than Hj+1 by at
least ε

l .
We construct an adversary B that plays the Basic Fuzzy Selective-ID game in the following

way:

Setup B will first run A and get l′ ≤ l target identities α1, . . . , αl′ . B will then submit αj+1

as the target identity for its game. B then receives the public parameters for its scheme and
passes these on to A.

Phase 1 B responds to private key queries of A by passing the same private key queries to
the challenger and passing the results back to A. The only private key queries that B is not
allowed to make are within d Hamming distance of αj+1. These are also not allowed by A.
Therefore, B can respond to all legal queries made by A.
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Challenge In the challenge phase A will submit m1,0, . . . ,ml′,0 and m1,1, . . . ,ml′,1. B will
select a random message, R, and flip a coin b. B then submits m0 = R and m1 = mj+1,b as the
ciphertexts it wishes to be challenged on in its game. The challenger will flip a coin β outside
B’s view. B will then receive back the ciphertext C which is an encryption of mβ with the key
αj+1 from the challenger.

B then assigns ciphertexts c1, . . . , cl′ int the following way. It creates c1, . . . , cj as the message
R encrypted under the respective identities α1, . . . , αj . It assigns cj+1 = C. Finally, it creates
cj+2, . . . , cl′ by encrypting mj+2,b, . . . ,ml′,b under αj+2, . . . , αl′ respectively. (If j ≥ l′ then only
the first step needs to be taken.) The ciphertexts are then passed to A.

Phase 2 Subsequent private key queries are then satisfied as in Phase 1.

Guess A then outputs its guess b′. If b = b′ then B outputs its guess β′ = 1, otherwise it
outputs β′ = 0.

If β = 1 then C is an encryption of mj+1,b and A will be playing the hybrid game Hj .
Otherwise, if β = 0 then C is an encryption of R and A is playing the hybrid game Hj+1.
It follows that Pr[b′ = b|β = 1] − Pr[b′ = b|β = 0] ≥ ε

l . Since β′ = 1 iff b = b′, we have
Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0] ≥ ε

l . Therefore, B has an advantage of at least ε
2l in the

Basic Fuzzy Selective-ID game.

B Large Universe Construction

B.1 Description

Let G1 be bilinear group of prime order p and g be a generator of G1. Additionally, let e :
G1 × G1 → G2 denote the bilinear map. A security parameter, κ, will determine the size of the
groups.

We also define the Lagrange coefficient 4i,S for i ∈ Zp and a set, S, of elements in Zp:

4i,S(x) =
∏

j∈S,j 6=i

x− j

i− j
.

Identities will be n element sets where the elements are members of Z∗
p. Alternatively, we can

describe an identity as a collection of n strings of arbitrary length and use a collision resistant
hash function, H, to hash strings into members of Z∗

p. Our construction follows:

Setup(n, d) First, choose g1 = gy, g2 ∈ G1.
Next, choose t1, . . . , tn+1 uniformly at random from G1. Let N be the set {1, . . . , n + 1} and

we define a function, T , as:

T (x) = gxn

2

n+1∏
i=1

t
4i,N (x)
i .

We can view T as the function gxn

2 gω(x) for some n degree polynomial ω.
The public key is published as: g1, g2, t1, . . . , tn+1 and the private key is gy

2 .

Key Generation To generate a private key for identity I the following steps are taken. A
d− 1 degree polynomial q is randomly chosen such that q(0) = y. The private key will consist
of two sets. The first set, D = {Di}∀i ∈ I, where the elements are constructed as

Di = g
q(i)
2 T (i)ri ,

where ri is a random member of Zp defined for all i ∈ I.
The other set is d = {di}∀i ∈ I where the elements are constructed as

di = gri .
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Encryption Encryption with the public key I ′ and message m ∈ G2 proceeds as follows.
First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (I ′, E′ = me(g1, g2)s, E′′ = gs, {Ei = T (i)s}∀i ∈ I ′).

Decryption Suppose that a ciphertext, E, is encrypted with a key for identity I ′ and we
have a key for identity I, where |I ∩ I ′| ≥ d. Choose an arbitrary d-element subset, S, of I ∩ I ′.

Then, the ciphertext can be decrypted as:

M = E′
∏
i∈S

(
e(di, Ei)
e(Di, E′′)

)4i,S(0)

= me(g1, g2)s
∏

i∈I∩I′

(
e(gri , T (i)s)

e(gq(i)
2 T (i)ri , gs)

)4i,S(0)

= me(g, g2)ys
∏
i∈S

1
e(g, g2)q(i)s4i,S(0)

= m.

The last equality is derived from using polynomial interpolation in the exponents. Since, the
polynomial sq(x) is of degree d− 1 it can be interpolated using d points.

B.2 Computational Cost

Encryption of a message will consist of n + 2 exponentiations in the group G1. The cost of
decryption will be dominated by 2d bilinear map computations.

C Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to the hardness of
the Decisional BDH assumption.

Lemma 3. If an adversary can break our scheme in the Basic Fuzzy Selective ID Model, then a
simulator can be constructed to play the Decisional BDH game with a non-negligible advantage.

Proof. Suppose there exists a computationally efficient adversary, A, that can attack our scheme
in the Selective-ID model with advantage ε. We build a simulator B that can play the Decisional
BDH game with advantage ε

2 .
The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear map, e and

generator g. The challenger flips a fair binary coin µ outside of B’s view. If µ = 0, the challenger
sets (A,B,C, Z) = (ga, gb, gc, e(g, g)abc); otherwise it sets (A,B, C, Z) = (ga, gb, gc, e(g, g)z) for
random a, b, c, z.

Setup B will run A and receive the challenge identity, α, an n element set of members of Zp.
The simulator assigns the public parameters g1 = A and g2 = B. It then chooses a random

n degree polynomial f(x) and calculates an n−1 degree polynomial u(x) such that u(x) = −xn

for all x ∈ α and where u(x) 6= −xn for some other x. Since −xn and u(x) are two n degree
polynomials they will either agree on at most n points or they are the same polynomial. Our
construction assures that ∀x u(x) = −xn if and only if x ∈ α.

Then, for i from 1 to n the simulator sets ti = g
u(x)
1 gf(x). Note that since f(x) is a random

n − 1 degree polynomial all ti will be chosen at random from the adversaries view as in the
construction.
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Phase 1 A makes requests for private keys where the identity set overlap between the iden-
tities for the requested keys and α is less than d.

Suppose A asks a private key γ. We first define three sets Γ,Γ′, S in the following manner:

Γ = γ ∩ α,

Γ′ be any set such that Γ ⊆ Γ′ ⊆ γ and |Γ′| = d− 1, and

S = Γ′ ∪ {0}.

Next, we define the decryption key components Di and di for i ∈ Γ′ as:

Di = gλi
2 T (i)ri where si is chosen randomly in Zp

and we let
di = gri .

The intuition behind these assignments is that we are implicitly choosing a random d − 1
degree polynomial q(x) by choosing its value for the d−1 points randomly in addition to having
q(0) = a.

The simulator also needs to calculate the decryption key values for all i ∈ γ−Γ′. To produce
these we use an algebraic method from Boneh and Boyen [1]. The key components are calculated
as:

Di = (
∏
j∈Γ′

g
λj4j,S(i)
2 )

(
g

−f(i)
in+u(i)
1 (gin+u(i)

2 gf(i))r′i

)40,S(i)

and
di = (g

−1
in+u(i)
1 gr′i)40,S(i).

The value in + u(i) will be non-zero for all i /∈ α ,which includes all i ∈ γ − Γ′. This follows
from the our construction of u(x).

To show that these are valid keys let ri = (r′i − a
in+u(i) )40,S(i) and let q(x) be the d − 1

degree polynomial for which q(0) = a and q(i) = λi∀i ∈ Γ′. We then have:

Di = (
∏
j∈Γ′

g
λj4j,S(i)
2 )

(
(g

−f(i)
in+u(i)
1 )(gin+u(i)

2 gf(i))r′i

)40,S(i)

Di = (
∏
j∈Γ′

g
λj4j,S(i)
2 )

(
(g

−af(i)
in+u(i) )(gin+u(i)

2 gf(i))r′i

)40,S(i)

= (
∏
j∈Γ′

g
λj4j,S(i)
2 )

(
(ga

2 (gin+u(i)
2 gf(i))

−a
in+u(i) )(gin+u(i)

2 gf(i))r′i

)40,S(i)

= (
∏
j∈Γ′

g
λj4j,S(i)
2 )

(
ga
2 (gin+u(i)

2 gf(i))r′i− a
in+u(i)

)40,S(i)

= (
∏
j∈Γ′

g
λj4j,S(i)
2 )ga40,S(i)

2 (T (i))ri

= g
q(x)
2 T (i)ri

Additionally, we have:

di = (g
−1

in+u(i)
1 gr′i)40,S(i)

= (gr′i− a
in+u(i) )40,S(i)

= gri

Therefore, the simulator is able to construct a private key for the identity γ. Furthermore,
the distribution of the private key for γ is identical to that of the original scheme.
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Challenge The adversary, A, will submit two challenge messages m1 and m0 to the simulator.
The simulator flips a fair binary coin ν and returns an encryption of mν . The ciphertext is output
as:

E = (α, E′ = mνZ,E′′ = C, {Ei = Cf(i)}∀i ∈ α).

If µ = 0, then Z = gabc. Then the ciphertext is:

E = (α, E′ = mνe(g, g)abc, E′′ = gc, {Ei = (gc)f(i) = T (i)c}∀i ∈ α).

This is a vaild ciphertext for the message mν under the identity α.
Otherwise, if µ = 1, then Z = gz. We then have E′ = mνgz. Since z is random, E′ will

be a random element of G2 from the adversaries view and the message contains no information
about mν .

Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν′ of ν. If ν = ν′ the simulator will output µ′ = 0 to indicate
that it was given a BDH-tuple otherwise it will output µ′ = 1 to indicate it was given a random
4-tuple.

As shown in the construction the simulator’s generation of public parameters and private
keys is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have
Pr[ν 6= ν′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν′, we have Pr[µ′ = µ|µ =
1] = 1

2 .
If µ = 0 then the adversary sees an encryption of mν . The adversary’s advantage in this

situation is ε by definition. Therefore, we have Pr[ν = ν′|µ = 0] = 1
2 + ε. Since the simulator

guesses µ′ = 0 when ν = ν′, we have Pr[µ′ = µ|µ = 0] = 1
2 + ε.

The overall advantage of the simulator in the Decisional BDH game is 1
2Pr[µ′ = µ|µ =

0] + 1
2Pr[µ′ = µ|µ = 1]− 1

2 = 1
2 ( 1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε.

Theorem 2. Our scheme is Secure in the Multiple Fuzzy Selective-ID model.

Proof. The proof follows immediately from Lemmas 2 and 3.
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