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Abstract. In this paper we present batch signature verification schemes
for identity and non-identity signatures schemes based on bilinear maps.
We examine some signature schemes and exploit their properties so that
we can batch process the verification of these signatures in an efficient
manner. Batch verification of message signatures is useful in real world
applications. Most email clients are predominantly offline and so do not
download emails one at a time. Instead the mails arrive at an online
mail server individually, where they are collected together and stored.
It is only after some period of time that any mails on the server are
downloaded in bulk. It is not unreasonable to have 5 - 10 emails download
into your inbox in any one transaction with the mail server. Say these
mails were all signed, then this would be an ideal time to do batch
signature verification. We show that we can make substantial savings
over the naïve approach of verifying one message signature at a time.
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1 Background

Online personal messaging systems are one of the oldest and most popular inter-
net applications. It is predicted that there will be in excess of 36 billion emails
sent every day in 2005 [11]. This number is added to by SMS “txt messaging”
and other services. A large amount of these messages are downloaded in bulk by
the end user, as they are not online all of the time. They may have to make an
expensive telephone call to dial-up to their ISP’s server or they may have their
mobile phone turned off when the SMS message is sent. Whatever the reason, it
is common to download more than one message in a single transaction with the
mail server.
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Traditionally for pairing based signature schemes verification is substantially
more computationally expensive than signing (verification requires pairing op-
erations - signing does not). This bulk downloading gives us an opportunity to
perform batch signature verification, and so somewhat lessen the impact of this
computationally expensive process.

Of course, batch processing is not a new idea. There have been several pa-
pers published on the subject, for example [7,5]. Batch verification of signatures
has attracted particular attention since signatures are generated once and may
be verified often. There are also particular instances in the “real world” where
many signatures have to be checked sequentially. Examples include checking Cer-
ificate Authority certificate chains or checking batch transactions such as the
bulk downloading of email mentioned above [1,8,13]. Until now, there has been
no research into the efficient batch verification of signatures based on bilinear
maps.

We suggest batch verification schemes to work with both identity based and
non-identity based signature schemes. In an identity based cryptosystem the
public key can be any arbitrary value. For convenience we make the public key
the online identity or identifier of the entity. The identifier can be anything that
uniquely identifies an entity in a given context. This is convenient, as every online
computer already has a unique identifier as part of IPv4 and IPv6. Everyone
with email has a unique address and every phone number in the world is unique.
Therefore to send an encrypted mail we only have to know the persons email
address, to check an identity based signature we only have to know the email
address that the message was sent from.

2 Mathematical Preliminaries

An elliptic curve E(Fqk) is the set of solutions (x, y) over the field Fqk to an
equation of the form y2 = x3 + Ax + B, together with an additional point at
infinity, denoted O. There exists an abelian group law on E. There are explicit
formulas for computing the coordinates of a point P3 = P1 + P2 from the coor-
dinates of P1 and P2 . Scalar multiplication of a point is defined as the repeated
addition of a point to itself n times, e.g. 3P1 = P1 + P1 + P1 .

The number of points of an elliptic curve #E(Fqk) is called the order of
the curve over the field Fqk . A point P has order r if rP = O for the smallest
possible positive integer value of r. The set of all points of order r in E is denoted
E[r]. This is arranged as cyclic subgroups of prime order r. The order of a point
always evenly divides the curve order. A subgroup G of an elliptic curve is said
to have embedding degree (a.k.a security multiplier) k if its order r divides qk−1
for the smallest possible integer value of k. We assume k > 1. [9]

2.1 Properties of Bilinear Maps

Our batch verification system can be implemented using any pairing algorithm
(Tate, Weil, modified Weil or modified Tate) on which the original signature



schemes can be based. While we realise that the Tate pairing is preferable to the
Weil pairing in terms of performance we will use the Weil pairing in this paper for
clarity of exposition. The modified Weil pairing ê(P, Q) is e(P,Φ(Q)) where e(., .)
is the Weil pairing and Φ(.) is an efficiently computable group automorphism
[12,9]. The modified Weil pairing is an example of a bilinear map of the form e:
G0×G0 → G1 where G0 and G1 are groups of order r. We will assume thoughout
the rest of this paper that we are using the modified Weil pairing.

– The modified Weil pairing of elements of the group G0

ê(P, Q) = ê(Q,P )

– Bilinearity of the Pairing
ê(xP, yQ) = ê(P, Q)xy

3 The Proposed Signature Scheme

We propose an efficient “batch short signature scheme” that incoporates elements
of the BLS short signature scheme [2] and Zhang et al’s short signature scheme
[15]. We also propose an efficient batch verification process for Cha & Cheon’s
[4] and Yi’s [14] Identity based signature schemes. First we will recap briefly on
these schemes in order to refamiliarise the reader with them. We do not go into
detail here and suggest the interested reader consult the original papers for a
full description and proof of security.

3.1 The BLS Short Signature Scheme

It is assumed that there exists a hash function h(.) : {0, 1}∗ → {G1\O} which
maps arbitrary bit strings onto elements of the group G1 , but not to the identity
element (the point at infinity). This hash function should have the same proper-
ties as that described by Boneh and Franklin to map identities to points in their
paper on identity based encryption [3].

Setup: The entity generates a random secret key x ∈ Z∗r . The public key is
calculated as xP , for some publicly known group generator point P of the
group G0 . Obviously calculating the private key from the public key is the
Elliptic Curve Discrete Logarithm Problem. This is believed to be hard in
groups appropriate for cryptographic use. The public key is made public and
its legitimacy assured by a top level certificate authority.

Signature: The message is hashed to a point on the curve, M , using the func-
tion hash described above. The signature is calculated as xM .

Verification: The BLS signature is verified using a bilinear map as follows:



ê(public key, h(message)) ?= ê(group generator point, signature)

To see that this is so, consider the following:

ê(public key, h(message)) =
ê(xP, M) =
ê(P, M)x =
ê(P, xM) =
ê(group generator point, signature)

3.2 The Zhang et al Short Signature Scheme

Setup: In the Zhang et al short signature scheme the entity again generates a
random secret key x ∈ Z∗r .The corresponding public key is xP , again P is a
publicly known generator of the group G0 .

Signature: The message is hashed using the hash function hash(.) : {0, 1}∗ →
Z∗r . The signature on the message is

– h = hash(message)
– S = (x + h)−1P

Verification: The signature is now verified as follows:

– h = hash(message)
– ê(S, hP + public key) ?= ê(P, P )

To see that this is so:

ê(S, hP + public key) =
ê(S, hP + xP ) =
ê((h + x)−1P, (h + x)P ) =
ê(P, P )

3.3 The new Batch Short Signature Scheme

We alter this signature scheme very slightly. Instead of calculating the public key
as xP as described above, we calculate the public key as x−1P . The message is
signed as xM . The reason of this alteration will be explained in the next section.

The signature is verified iff the following equality holds:
ê(public key, signature) ?= ê(group generator point, h(message))

To see that this is so, consider the following:



ê(public key, signature) =
ê(x−1P, xM) =
ê(P, M)xx−1

=
ê(P, M) =
ê(group generator point, h(message))

Proof of Security of the Batch Short Signature Scheme

The proof of security of the Batch Short Signature Scheme is surprisingly sim-
ple. It is the definition of a believed to be hard cryptographic problem known as
the “Bilinear Pairing Inversion Problem” (BPI). A reduction from this problem
to the Discrete Logarithm Problem in the group G2 is shown by Yacobi in [12].

The bilinear pairing inversion problem, as defined by Yacobi is:

BPI: Given P ∈ G0 , ê(P, Q) ∈ G2 find Q.

Rewriting this problem using our own notation we have:

BPI: Given x−1P ∈ G0 , ê(P,M) ∈ G2 find xM .

So forging a signature is as hard as solving the BPI problem.

3.4 Cha & Cheon’s Identity Based Signature Scheme

Bilinear maps such as the Weil and Tate pairing allow us to quickly solve the
Decision Diffie Hellman problem in appropriate groups. The Cha & Cheon iden-
tity based signature [4] essentially constructs two points and we can use Decision
Diffie Hellman to establish if one point is a particular multiple of the other, even
if we do not know the exact value of the multiplier. In common with most other
identity based system both these schemes use the services of a Key Generation
Centre (KGC).

Setup: The KGC generates a random master secret key s ∈ Z∗r . The KGC
publishes the points P and sP , P is a group generator element of the group
G0 . Again, calculating the private key from the public key is the Elliptic
Curve Discrete Logarithm Problem.

Extract: The KGC authenticates a user for a particular online identifier (i.e.
checks that that user has a valid claim to that online identity). Once this has
been established the private key is generated as sID where the users identity
hashes to the point ID under some publicly known hash algorithm. Let’s say
for convenience in notation that Alices identifier “alice@company.com” maps
to the point A, and her private key is sA.

Signature: Alice generates a random challenge R. She hashes the message and
R to obtain h ∈ Z∗r . Alice signs the message by producing the value S below.
The signature is the pair of points R and S.



– R = rA
– h = hash(message, R)
– S = (r + h)sA

Verification: The signature is verified using a bilinear map as follows:

– h = hash(message, R)
– Q = R + hA

– ê(Q, sP ) ?= ê(S, P )

We are basically checking to see that S is sQ and since we know Q contains
Alices public key then S must contain her private key. However it is interesting
to note that once we have constructed Q for any signer / message combination
the relationship between S and Q is constant, i.e. S is sQ.

The importance of the hash function in Cha & Cheon’s identity based
scheme

We now examine the importance of the hash function in this signature scheme.
Consider a scheme where only the message is hashed and not the message and
the random challenge R. In this scenario the following attack would be possible
on the signature scheme. Say that S and R represent a genuine signature on a
message that hashes to m and we would like to forge a signature on m′.

– R = rA
– S = (r + m)sA
– m = m′ + a, for some new message which hashes to m′

– S = (r + m′ + a)sA

rewrite S

– S = ((r + a) + m′)sA
– R′ = R + aA = (r + a)A

Where (R′, S) is a valid signature on m′. However the inclusion of R in the
hash function of the real Cha & Cheon signature scheme forces the creation of
R before S and therefore taking a valid S (which requires the private key to
construct) and reconstructing a value R for a particular message, as was done
above, is not possible.

3.5 Yi’s Identity Based Signature

Yi’s signature relies on the same Decision Diffie Hellman problem [14]. His sig-
nature is essentially the following, though he uses point compression to save
on bandwith. The setup and extract algorithms are the same as for the Cha &
Cheon scheme above.



Signature: Alice generates a random challenge R. She hashes the message and
R to obtain h ∈ Z∗r . Alice signs the message by producing the value S below.
Again the signature is the pair of points R and S.

– R = rP
– h = hash(message, R)
– S = hsA + rsP

Verification: The signature is verified using a bilinear map as follows:

– h = hash(message, R)
– Q = hA + R

– ê(Q, sP ) ?= ê(S, P )

4 The verification process for the Batch Short Signature
Scheme

We have previously shown the batch short signature scheme which verifies as

– ê(xM, x−1P ) ?= ê(M, P )

As you can see from the above equation each signature verification requires
two pairings - we have to calculate both the right hand side (RHS) and the
left hand side (LHS) of the above equation. However we can make this process
much simpler. We note the RHS is a pairing that contains a constant point P ,
this is the basis of our efficiency gain. Now consider that we have the following
signatures from Alice, Bob and Carol. Alice’s private key is a, Bob’s private key
is b and Carol’s private key is c.

– Alice produces the signature aM and her public key is a−1P .
– Bob produces the signature bM ′ and her public key is b−1P .
– Carol produces the signature cM ′′ and her public key is c−1P .

These three signatures can be verified to give

– ê(aM, a−1P ) ?= ê(M,P )
– ê(bM ′, b−1P ) ?= ê(M ′, P )
– ê(cM ′′, c−1P ) ?= ê(M ′′, P )

But, these verification values multiplied together give

– ê(M + M ′ + M ′′, P )

Therefore we can batch verify these signatures as

– B = M + M ′ + M ′′



– if B = O quit (this will happen with negligible probability for an appropriate
hash function - perhaps remove one signature and batch verify most of the
signatures)

– ê(aM, a−1P )× ê(bM ′, b−1P )× ê(cM ′′, c−1P ) ?= ê(B, P )

In this way we can reduce the number of pairings needed to verify n BLS signa-
tures from 2n to n + 1.

If we look at pairings in further detail we will see that they are composed
of some operation based on Millers algorithm [6], which we will call a “partial
pairing” (this differs for the Weil and Tate pairing) followed by a final expo-
nentiation by the group order r. Solinas has dubbed this “Miller lite” for the
Tate pairing when P ∈ G0 and the algorithm can be highly optimised [10]. It is
interesting to note that

– Pairing = (partial pairing)r

therefore

– Pairing × Pairing = (partial pairing)r × (partial pairing)r

and simplifying gives

– Pairing × Pairing = ((partial pairing)× (partial pairing))r

Therefore, when we are multiplying a series of pairings together we only have to
do the final exponentiation once. This allows for an additional saving.

Therefore if we consider that the total computational cost of a pairing is a
partial pairing and a final exponentiation, the computational effort for verifying
n signatures drops from ((2n× partial pairing) + (2n× final exponentiation))
to (((n + 1)× partial pairing) + (2× final exponentiation)).

– (pp(aM, a−1P )× pp(bM ′, b−1P )× pp(cM ′′, c−1P ))r ?= ê(M + M ′ + M ′′, P )

This equation can be simplified to remove a further final exponentiation.

– (pp(aM, a−1P )×pp(bM ′, b−1P )×pp(cM ′′, c−1P ))×pp(M+M ′+M ′′,−P ))r ?=
1

where pp(.) is the partial pairing operation. The overall cost is now (((n + 1)×
partial pairing) + (1× final exponentiation)).

5 The new batch verification for Cha & Cheon’s Identity
Based Signature Scheme

We have seen that Cha & Cheon’s and Yi’s identity based signature schemes rely
around constructing a point from the persons identity and being given a second
point and using Decision Diffie Hellman to verify that the relationship between



these points is that the second is the first multiplied by the master secret. Again
consider Alice, Bob and Conor, whose identities map to the points A,B and C
respectively.
Alice generates the following signature

– R = rA
– h = hash(message, R)
– S = (r + h)sA

Bob generates the following signature

– R′ = r′B
– h′ = hash(message′, R′)
– S′ = (r′ + h′)sB

Carol generates the following signature

– R′′ = r′′C
– h′′ = hash(message′′, R′′)
– S′′ = (r′′ + h′′)sC

Now consider the individual verification of these signatures.
For Alice’s signature we have

– h = hash(message, R)
– Q = R + hA

– ê(Q, sP ) ?= ê(S, P )

For Bob’s signature we have

– h′ = hash(message′, R′)
– Q′ = R′ + h′B
– ê(Q′, sP ) ?= ê(S′, P )

For Carol’s signature we have

– h′′ = hash(message′′, R′′)
– Q′′ = R′′ + h′′C
– ê(Q′′, sP ) ?= ê(S′′, P )

But if we multiply together the LHS’s of these verification equations we will get
the following:

– ê(Q + Q′ + Q′′, sP ) ?= ê(S, P )× ê(S′, P )× ê(S′′, P )

Simplifying this equation we get

– ê(Q + Q′ + Q′′, sP ) ?= ê(S + S′ + S′′, P )



And again applying the optimisation mentioned in the previous section.

– (pp(Q + Q′ + Q′′, sP )× pp(S + S′ + S′′,−P ))r ?= 1

Therefore we have reduced the computational effort required to verify n signa-
tures from 2n pairings to (2× partial pairing) + (1× final exponentiation).

This same method works for speeding up the verification of Yi’s identity
based signature scheme. However, it is also interesting to note that we can mix
both of these signature schemes in one batch verification process, provided all
private keys have been issued by the same KGC.

6 Conclusion

We have looked again at three signature schemes based on bilinear maps and
we have seen how we can use the properties of bilinear maps to speed up the
batch verification of these signature schemes. We have shown that identity based
signatures benefit most from batch verification as there is a constant relationship
between the public and private keys in identity based cryptosystems which use
pairings.
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