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Abstract

We present a provably secure authenticated tree based key agreement protocol. The protocol is
obtained by combining Boneh et al.’s aggregate signature with an unauthenticated ternary tree based
multi-party extension of Joux’s key agreement protocol. The security is in the standard model as
formalized by Bresson et al.. The proof is based on the techniques used by Katz and Yung in proving
the security of their key agreement protocol.
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1 Introduction

Key agreement protocols are important cryptographic primitives. These protocols allow two or more parties
to exchange information among themselves over an insecure channel and agree upon a common key. Diffie-
Hellman proposed the first two-party single-round key agreement protocol in their seminal paper [22]. In
one of the breakthroughs in key agreement protocols, Joux [25] proposed a single-round three party key
agreement protocol that uses bilinear pairings. These protocols are unauthenticated in the sense that an
active adversary who has control over the channel can mount a man-in-the-middle attack to agree upon
separate keys with the users without the users being aware of this. Burmester and Desmedt [19] proposed a
multi-party two-round key agreement protocol, a variant of which has shown to be secure against a passive
adversary in the standard model under decision Diffie-Hellman assumption by Katz and Yung [26].

Tree based key agreement protocols have applications in cryptography. They provide modularity and
also enable different user sets to have different sets of keys. Achieving multiple keys and modularity makes
tree based authenticated key agreement protocols desirable in cryptography. Barua, Dutta and Sarkar [5]
presented a ternary tree key agreement protocol by extending the basic Joux protocol to multi-party setting
with a proof of security against a passive adversary.

Authenticated key agreement protocols are cryptographic protocols by which two or more parties that
communicate over an adversarially controlled network can generate a common secret key (session key).
These protocols are essential for enabling the use of symmetric key cryptography to protect transmitted
data over insecure network and are crucial to construct secure communications in modern cryptography.
Authenticated group key agreement protocols are the basic tools for group-oriented and collaborative
applications such as, distributed simulation, multi-user games, audio or video-conferencing, electronic
notebooks and also peer-to-peer applications that are likely to involve a large number of users.

Recently, Katz and Yung [26] proposed the first scalable, constant round, authenticated group key
agreement protocol with forward secrecy. The protocol is a variant of Burmester and Desmedt(BD) [19]
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key agreement protocol. Katz and Yung [26] provided a detailed proof of security in the security model
formalized by Bresson et al. [17].

1.1 Our contribution

The main contribution of this paper is to obtain a provably secure authenticated tree based group key
agreement protocol from the unauthenticated protocol of Barua, Dutta and Sarkar [5]. This unauthenti-
cated protocol is a multi-party extension of Joux’s three-party key agreement protocol. We use the bilinear
pairing based aggregate signature scheme introduced by Boneh et al. [12] to provide authentication. The
security model formalized by Bresson et al. [17] is adopted. Modifying the proof technique used by Katz
and Yung [26] and making use of bilinear aggregate signature [12], we authenticate the unauthenticated
tree based group key agreement protocol specified in [5]. This completes the work to extend Joux’s
three-party key agreement protocol to multi-party setting with a concrete security analysis against active
adversaries in a formal security model. Moreover, a similar construction can be used to make any tree
based unauthenticated group key agreement protocol to authenticated group key agreement.

1.2 Related Work

Till a few years ago, a trial and error approach has been taken to provide informal security analysis of
key agreement protocols. An extensive work have been considered to extend the two-party key agreement
protocols to multi-party setting [3, 6, 19, 24, 27, 28, 32] and consequently, a number of group key agreement
protocols have been suggested. However, some of these protocols have flaws that come to light years after
its proposal. There are very few key agreement protocols that have concrete security proofs against active
adversaries in a well defined formal security model.

Bellare and Rogaway [9] proposed a formal model for proving provable security of protocols in two-
party setting. A modular approach is presented by Bellare, Canetti and Krawczyk [7] to design and
analyze key agreement protocols. The modularity is achieved by applying a protocol translation tool,
called an authenticator/compiler to protocols proven secure in a much simplified adversarial setting where
authentication of communication links is not required.

Based on these works, Bresson et al. [17] defined a sound formalization for the authenticated group
Diffie-Hellman key agreement and provide provably secure protocols within this model. This is an important
step and has been used to analyze group key agreement protocols [16, 17, 18].

Boyd and Nieto [15] proposed a constant round authenticated group key agreement protocol that is
proven to be secure in the random oracle model. This protocol does not achieve forward secrecy. More
recently, Katz and Yung [26] presented a rigorous proof of security of two round group key agreement
protocol (unauthenticated) of Burmester and Desmedt (BD) [19] in the standard model under the decision
Diffie-Hellman (DDH) assumption. They also provide a compiler construction, application of which makes
the unauthenticated BD protocol to a provably secure constant round authenticated group key agreement
that achieves forward secrecy. Their security model is in the standard model of Bresson et al. [17].

The literature has a vast collection of key agreement protocols most of which does not have a proper
security proof in formal security model. The discussion of all of them is beyond the scope of this paper.

2 Preliminaries

2.1 Cryptographic Bilinear Maps

Let G1, G2 be two groups of the same prime order q. We view G1 as an additive group and G2 as a
multiplicative group. Let P be an arbitrary generator of G1. (aP denotes P added to itself a times).
Assume that discrete logarithm problem (DLP) is hard in both G1 and G2. A mapping e : G2

1 → G2



satisfying the following properties is called a cryptographic bilinear map:
Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗

q .
Non-degeneracy : If P is a generator of G1, then e(P, P ) is a generator of G2. In other words, e(P, P ) 6= 1.
Computable : There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.
Modified Weil Pairing [11] and Tate Pairing [4, 23] are examples of cryptographic bilinear maps.

2.2 Decision Hash Bilinear Diffie-Hellman (DHBDH) problem in (G1, G2, e)

Instance : (P, aP, bP, cP, r) for some a, b, c, r ∈ Z∗
q and a one way hash function H : G2 → Z∗

q .
Solution : Output yes if r = H(e(P, P )abc) mod q and output no otherwise.

The DHBDH problem [5] in (G1, G2, e) is a combination of bilinear Diffie-Hellman(BDH) problem [11] and
hash Diffie-Hellman(HDH) problem [1]. The advantage of any probabilistic, polynomial time, 0/1-valued
algorithm A in solving DHBDH problem in (G1, G2, e) is defined to be :
AdvDHBDH

A = |Prob[A(P, aP, bP, cP, r) = 1] −Prob[A(P, aP, bP, cP, H(e(P, P )abc)) = 1] : a, b, c, r∈RZ∗
q |.

DHBDH assumption : There exists no probabilistic, polynomial time, 0/1-valued algorithm which
can solve the DHBDH problem with non-negligible probability of success. In other words, for every
probabilistic, polynomial time, 0/1-valued algorithm A, AdvDHBDH

A < 1
ML for every fixed L > 0 and

sufficiently large integer M .

3 Adversarial Model

Let P = {U1, . . . , Un} be a set of n (fixed) users. At any point, any subset of P may decide to establish
a session key. A user can execute the protocol several times with different partners. The adversarial
model consists of allowing each user an unlimited number of instances with which it executes the protocol.
Throughout the paper, we will use some notations defined below :

– Πi
U : i-th instance of user U

– ski
U : session key after execution of the protocol by user U in it’s i-th instance.

– pidi
U : partner identity for instance Πi

U which consists of the users, including U itself, with whom Πi
U

intends to establish a session key.
– sidi

U : session identity for instance Πi
U which consists of all instances Πj

U ′ , U ′ ∈ pidi
U and U ′ has j-th

instance while U is executing the protocol with its i-th instance Πi
U .

– acci
U : 0/1-valued variable which is set to be 1 by Πi

U upon normal termination of the session and 0
otherwise.

We assume that the adversary has complete control over all communications in the network. All informa-
tion that the adversary gets to see is written in the transcript. So a transcript consists of all the public
information flowing across the network. The following oracles model an adversary’s interaction with the
users in the network :

– Send(U, i,m) : This sends message m to instance Πi
U and outputs the reply generated by this instance.

The adversary is allowed to prompt the unused instance Πi
U to initiate the protocol with partners U2, . . . , Ul,

l ≤ n, by invoking Send(U, i, 〈U2, . . . , Ul〉).

– Execute(V1, . . . , Vl) : Here {V1, . . . , Vl} is a non empty subset of P. This executes the protocol between
unused instances of players V1, . . . , Vl ∈ P and outputs the transcript of the execution. The adversary is



allowed to choose the group members and their identities.

– Reveal(U, i) : This outputs session key ski
U .

– Corrupt(U) : This outputs the long-term secret key (if any) of player U .

– Test(U, i) : This query is allowed only once, at any time during the adversary’s execution. A random
coin ∈ {0, 1} is generated; the adversary is given ski

U if coin = 1, and a random session key if coin = 0.

The adversary given access to the Execute, Reveal, Corrupt and Test oracles, is considered to be passive
while an active adversary is given access to the Send oracle in addition. We say that an instance Πi

U is
fresh unless either the adversary, at some point, queried Reveal(U, i) or Reveal(U ′, j) with U ′ ∈ pidi

U or
the adversary queried Corrupt(V ) (with V ∈ pidi

U ) before a query of the form Send(U, i, ∗) or Send(U ′, j, ∗)
where U ′ ∈ pidi

U having j-th instance.

Let Succ denote the event that an adversary A queried the Test oracle to the protocol XP on a fresh
instance Πi

U for which acci
U = 1 and correctly predicted the coin used by the Test oracle in answering this

query.

We define
AdvA,XP := |2 Prob[Succ]− 1|

to be the advantage of the adversary A in attacking the protocol XP. The protocol XP is said to be a secure
unauthenticated group key agreement (KA) protocol if there is no polynomial time passive adversary with
non-negligible advantage. In other words, for every probabilistic, polynomial-time, 0/1 valued algorithm
A, AdvA,XP < 1

ML for every fixed L > 0 and sufficiently large integer M . We say that protocol XP is a
secure authenticated group key agreement (AKA) protocol if there is no polynomial time active adversary
with non-negligible advantage. For the sake of convenience, we use the notations UP and AP for the unau-
thenticated and authenticated protocol respectively. Next we define

AdvKA
XP(t, qE) := the maximum advantage of any passive adversary attacking protocol XP, running in time

t and making qE calls to the Execute oracle.
AdvAKA

XP (t, qE , qS) := the maximum advantage of any active adversary attacking protocol XP, running in
time t and making qE calls to the Execute oracle and qS calls to the Send oracle.

The unauthenticated key agreement protocol UP proposed in [5] executes a single Execute oracle. Since
it does not involve any long term public/private keys, Corrupt oracles may simply be ignored and thus
the protocol achieves the forward secrecy. This protocol UP has been proved to be secure against passive
adversary [5] under DHBDH assumption. All communications in the protocol UP are done by representa-
tives. This proof can be extended for the case of multiple Execute oracles without affecting the tightness
of the security reduction making use of standard hybrid arguments : if AdvKA

UP(t, 1) is the advantage of the
protocol UP for single Execute oracle, then with qE(> 1) Execute oracles, the advantage of UP is

AdvKA
UP(t, qE) ≤ qE AdvKA

UP(t, 1).

4 Protocol

4.1 Basic Protocol Requirements

Suppose a set of n users {1, 2, . . . , n}, with user i having secret key si ∈ Z∗
q , wish to agree upon a common

key. Let US be a subset of {1, 2, . . . , n} with consecutive integers. Let us call US to be a user set. Each



user set US has a representative. We denote this representative by Rep(US). For convenience, we take
Rep(US) = min(US). Let us use the notation A[1, . . . , n] for an array of n elements A1, . . . , An and write
A[i] and Ai interchangeably.

We take two groups G1, G2 of some large prime order q and a cryptographic bilinear map e : G1×G1 → G2.
Let P be an arbitrary generator of G1. We choose a hash function H : G2 → Z∗

q . The public parameters
are params = (G1, G2, e, q, P,H).

4.2 Aggregate Signature

In the construction of our authenticated protocol AP, any aggregate signature can be used. To be specific,
we use the bilinear aggregate signature scheme introduced by Boneh et al. [11], secure against existential
forgery in the aggregate chosen key model under computational co-Diffie-Hellman assumption. This scheme
works in Gap Diffie-Hellman (GDH) groups. We denote this scheme by ASig.

Formally the aggregate signature scheme ASig = (G,K,S,V, AS, AV) consists of six algorithms, where
DSig = (G,K,S,V) is a standard digital signature scheme, called the base signature scheme. Here G is
the randomized system parameters generator algorithm, K is the randomized key generation algorithm,
S is the (possibly) randomized signing algorithm and V is the deterministic verification algorithm. The
aggregation algorithm and the aggregation verification algorithm are respectively AS and AV.

The base signature scheme DSig used for this aggregate signature is the co-GDH signature scheme [12],
which allows to produce short signatures existentially unforgeable under an adaptive chosen message attack
in the random oracle model.

Let PKi,SKi be the public and private key respectively for player i, 1 ≤ i ≤ n, for the scheme DSig. The
aggregate signature is generated as follows :

AS(PK1, . . . ,PKn,m1, . . . ,mn, σ1, . . . , σn) = σ

where σ =
∏n

i=1 σi. Each signature σi is valid for message mi relative to public key PKi and σ is the single
aggregate signature. The messages mi are all distinct. The verification is done by checking whether
AV(PK1, . . . ,PKn,m1, . . . ,mn, AS(PK1, . . . ,PKn,m1, . . . ,mn,S(SK1,m1), . . . ,S(SKn,mn))) = 1.

Note that the aggregate signature verification holds if and only if the individual signature verification in
DSig holds. i.e. V(PKi,mi,S(SKi,mi)) = 1 holds for all i, 1 ≤ i ≤ n.

4.2.1 Security of Aggregate Signature

Next we describe the security model of aggregate signature : the aggregate chosen key model. Informally,
the goal of the aggregate forger F in attacking ASig is to existentially forge an aggregate signature given
access to a single challenge public key and a signing oracle on this challenge key. The other public keys
are of adversary’s choice. Consider the following game that formalizes this idea :

– A public key PK1, generated at random, is provided to the aggregate forger F which in addition has
also given the power to access the signing oracle corresponding to PK1.

– F requests adaptively signatures with PK1 on messages of his choice.



– At the end, F outputs n− 1 additional public keys PK2, . . . ,PKn where n ≥ 1 is the number of users
participating in the generation of aggregate signature, a sequence of distinct messages m1, . . . ,mn and an
aggregate signature σ for these messages.

The forger F wins the game if σ is a valid aggregate signature on messages m1, . . . ,mn under public keys
PK1, . . . ,PKn with the restriction that F did not submit m1 to the signing oracle. The advantage of the
forger F is defined to be the probability of success of F in the above game where probability is over coin
tosses of the key generation and of F . The aggregate signature scheme ASig is said to be secure if there is
no probabilistic, polynomial-time forger with non-negligible advantage.

We denote by SuccDSig(t) the maximum advantage of any adversary running in time t in forging a new
message/signature pair for the signature scheme DSig and SuccASig(t) is the same for the aggregate signa-
ture scheme ASig.

4.3 Description of the Unauthenticated Key Agreement Protocol

First we describe an informal idea of the n-party key agreement protocol of Barua, Dutta and Sarkar [5]
which is an extension of Joux’s three-party single-round key agreement protocol to multi-party setting. The
multi-party protocol KeyAgreement recursively invokes two subroutines CombineThree and CombineTwo –
a three group Diffie-Hellman protocol and a two group Diffie-Hellman protocol respectively.

Let p = bn
3 c and r = n mod 3. Informally the set of users {1, 2, . . . , n} is partitioned into three user sets

US1,US2,US3 with cardinality p, p, p respectively if r = 0 or with cardinality p, p, p + 1 respectively if
r = 1 or with cardinality p, p + 1, p + 1 respectively if r = 2. This top down procedure is used recursively
for further partitioning. Essentially a ternary tree structure is obtained. The lower level 0 consists of
singleton users having a secret key. Key agreement is done by invoking CombineTwo for two user sets and
CombineThree for three user sets in the key tree.

With this tree structure, CombineTwo is never invoked above level 1. The formal description of the three
procedures are given below. The representative for a user set USi is denoted by Rep(USi) which is set to
be min(USi). The symbols $∗, describing the steps needed to authenticate the unauthenticated protocol, are
presented in the next subsection. These are executed for the authenticated version.

procedure CombineThree(US[1, 2, 3], s[1, 2, 3])
i = 1 to 3 do

Let {j, k} = {1, 2, 3}\{i};
Rep(USi) sends siP to all members of both USj ,USk;

end do;
i = 1 to 3 do

Let {j, k} = {1, 2, 3}\{i};
each member of USi computes H(e(sjP, skP )si);

end do;
end CombineThree

Common agreed key of user sets US1,US2,US3 is H(e(P, P )s1s2s3);

procedure CombineTwo(US[1, 2], s[1, 2])



Rep(US1) generates s ∈ Z∗
q at random and sends sP to the rest of the users;

Rep(US1) sends s1P to all members of US2;
Rep(US2) sends s2P to all members of US1;
each member of US1 computes H(e(s2P, sP )s1);
each member of US2 computes H(e(s1P, sP )s2);

end CombineTwo

Common agreed key of user sets US1,US2 is H(e(P, P )s1s2s);

procedure KeyAgreement(l,US[i + 1, . . . , i + l])
if (l = 1) then

KEY = s[i + 1];
end if
if (l = 2) then

call CombineTwo(US[i + 1, i + 2], s[i + 1, i + 2]);
$1;
$5;
Let KEY be the agreed key between user sets USi+1,USi+2;

end if
n0 = 0; n1 = b l

3c; n3 = d l
3e; n2 = l − n1 − n3;

j = 1 to 3 do
call KeyAgreement(nj ,US[i + nj−1 + 1, . . . , i + nj−1 + nj ]);
ÛSj = US[i + nj−1 + 1, . . . , i + nj−1 + nj ]; ŝj = KEY ; nj = nj−1 + nj ;

end do;
call CombineThree(ÛS[1, 2, 3], ŝ[1, 2, 3]);
$1;
$5;
Let KEY be the agreed key among user sets ÛS1, ÛS2, ÛS3;

end KeyAgreement

The start of the recursive protocol KeyAgreement is made by the following statements:

1. $2;
USj = j for 1 ≤ j ≤ n;
$3;
$4;

2. call KeyAgreement(n, US[1, . . . , n]);

4.4 Description of the Authenticated Key Agreement Protocol

We provide the description by describing the annotations $1, . . . $5 in the algorithms of section 4.3.

$1 The j-th message m sent by an instance Πi
U has the form U |j|m|USF |UST where USF denotes the user

set with representative U at this instance who sends the message m as its j-th message; UST denotes the
collection of the user sets to whom user U sends its jth message m as a representative of the user set USF .

$2 P = {1, . . . , n}.



$3 Each user U ∈ P generates the verification, signing keys PKU ,SKU respectively according to key-
generation of DSig.

$4 Each user U ∈ P, in every session, generates its nonce value rU ∈ {0, 1}p for a fixed integer p.

$5 The members of the group then execute UP with the following modifications :

– Suppose at instance Πi
U the message U |j|m|USF |UST (U being the representative of the user set USF

at this instance) is sent as part of protocol UP. Note that according to the protocol UP, the message m is
known to all users in USF . Instead of this action, the following sequence of actions are to be performed.

– each user Uk in USF computes σUk
= S(SKUk

, k|j|m|rUk
);

– each user Uk 6= U in USF sends Uk|σUk
|rUk

|{Uk}|{U}|j|m, m being the j-th message of user U ;
– user U (representative) computes the aggregate signature σ = AS({PKUk

, k|j|m|rUk
, σUk

: Uk ∈
USF }) and sends U |j|m|σ|USF |UST |{rUk

: Uk ∈ USF }. The signature from user Uk 6= U is not verified by
U . If such signature is invalid, this will be detected at the time of aggregate signature verification. Note
that the message signed by Uk ∈ USF is k|j|m|rUk

. Hence for k1 6= k2, the messages signed by Uk1 and Uk2

are distinct.

So in the protocol AP, two different forms of messages are transmitted depending on the role of the user :
whether it is representative or not in the specified instance.

– When instance Πi
V (V ∈ UST ) receives message U |j|m|σ|USF |UST |{rUk

: Uk ∈ USF }, it checks that :

– U ∈ pidi
V ;

– j is the next expected sequence number (in the unauthenticated protocol) for message from U ;
– AV({PKUk

: Uk ∈ USF }, {k|j|m|rUk
: Uk ∈ USF }, σ) = 1.

Πi
V aborts the protocol if any of these are violated and sets acci

U = 0, ski
U = null. Otherwise, Πi

V

continues as it would in UP upon receiving message U |j|m|USF |UST .

– Each non-aborted instance computes the session key as in UP.

This completes the description of line $5 and the description of the authenticated protocol.
Note that in the protocol AP, upon receiving a message of the form Uk|σUk

|rUk
|{Uk}|{U}|j|m, an instance

Πi
V (V ∈ UST ) need not verify the co-GDH signature σUk

on k|j|m|rUk
. If such a signature is invalid,

then the corresponding aggregate signature verification will fail and accordingly instance Πi
V will abort the

protocol as above by setting acci
U = 0 and ski

U = null.

5 Security Analysis

A secure key agreement should regist both passive and active attacks. The scheme is shown to be secure
against a passive adversary in [5] under DHBDH assumption. Here we will analyze the security against an
active adversary.

The goal is to show that the protocol UP, secure against a passive adversary, can be transformed into a
group key agreement protocol AP secure against an active adversary. For this the first modification used in
the protocol UP is $1. The security of the modified protocol against a passive adversary follows from that
of the protocol UP. We denote this modified protocol by UP itself. Then we have the following theorem.



Theorem 5.1 The protocol AP given above is a group key agreement protocol secure against active adver-
sary achieving the following inequality :
AdvAKA

AP (t, qE , qS) ≤ AdvKA
UP(t1 + t2, qE + qS/2) + q2

S+qEqS

2p + |P| SuccDSig(t1) + |P| SuccASig(t2)
where t1 + t2 ≤ t + (|P|qE + qS)tAP, tAP being the time required for execution of AP by any party.

Proof : Given an active adversary A′ attacking AP, we will construct a passive adversary A attacking UP.
Before defining A, let us first define two events R and F and bound their respective probabilities:

Claim 1 : Let R be the event that a nonce repeats. Then

Prob[R] ≤ qSqE + q2
S

2p
.

Proof of Claim 1 : A nonce used by any user in response to Send query was used previously by that user in
response to either an Execute query or a Send query. The claim follows immediately from this statement.
(of Claim 1)

Claim 2 : Let F be the event that a signature is forged. Then

Prob[F ] ≤ |P| SuccASig(t2) + |P| SuccDSig(t1).

Proof of Claim 2 : Let E1 be the event that A′ makes a query of the type Send(V, i,X) where X has the
form :

X = U |j|m|σ|USF |UST |{rUk
: Uk ∈ USF }

with AV({PKUk
, k|j|m|rUk

: Uk ∈ USF }, σ) = 1

and E2 be the event that A′ makes a query of the type Send(V, i, Y ) where Y has the form

Y = Uk|σUk
|rUk

|{Uk}|{U}|j|m

with V(PKUk
, k|j|m|rUk

, σUk
) = 1.

Then clearly F = E1 ∨ E2.

First consider the event E2. Using A′, we may construct an algorithm F that forges a signature with
respect to the standard digital signature scheme DSig as follows :

Given a public key PK, algorithm F chooses a random U ∈ P and sets PKU = PK. The other public keys
and private keys for the system are generated honestly by F . The forger F simulates all oracle queries
of A′ by executing protocol AP itself, obtaining the necessary signatures with respect to PKU , as needed,
from its signing oracle. Thus F provides a perfect simulation for A′. So if A′ ever outputs a new valid
message/signature pair with respect to PKU = PK, then F outputs this pair as its forgery. The success
probability of F is equal to Prob[E2]

|P| which immediately implies that

Prob[E2] ≤ |P| SuccDSig(t1)

Next consider the event E1. Using A′, we may construct an algorithm F that forges an aggregate signature
in the aggregate chosen key model with respect to the aggregate signature scheme ASig as follows :



Given a public key PK1, algorithm F chooses a random U ∈ P, sets PKU = PK1 and honestly generates all
other public/private keys for the system. The forger F simulates all oracle queries of A′ in the natural way
by executing protocol AP itself, obtaining the necessary signatures with respect to PKU , as needed, from
its signing oracle and thus providing a perfect simulation for A′. Now, if A′, in some session ever outputs a
valid aggregate signature σ on distinct messages m1, . . . ,ml, l ≤ |P| under public keys PK1, . . . ,PKl where
m1 is a new message with respect to PK1, then F outputs messages m1, . . . ,ml, public keys PK2, . . . ,PKl

and σ as its forgery. The success probability of F is equal to Prob[E1]
|P| ; this immediately implies that

Prob[E1] ≤ |P| SuccASig(t2).

Then Prob[F ] = Prob[E1 ∨ E2] ≤ Prob[E1] + Prob[E2] ≤ |P| SuccASig(t2) + |P| SuccDSig(t1), yielding the
result of Claim 2. (of Claim 2)

Now we describe the construction of the passive adversary A attacking UP that uses adversary A′ attacking
AP as a subroutine and simulates the oracle queries of A′. Adversary A generates the verification/signing
keys PKU ,SKU for each user U ∈ P and gives {PKU}U∈P to A′. Then A runs A′ as a subroutine and
simulates the oracle queries of A′ as follows using its own queries to the Execute oracle. A aborts and
outputs a random bit if F or R occur. Otherwise, A outputs whatever bit is eventually output by A′.
(During this simulation, A maintains a list Nlist) :

Execute queries : Suppose A′ makes a query Execute(U1, . . . , Ul), l ≤ |P|. Adversary A sends the
same query to its Execute oracle, receives in turn a transcript T of an execution of UP. Next, A chooses
r1, . . . , rl ∈ {0, 1}p, sets nonces = ((U1, r1), . . . , (Ul, rl)) and stores (nonces, T ) in Nlist.
To simulate the transcript T ′ of an execution of AP, for each message U |j|m|USF |UST in transcript T ,
adversary A computes signatures

σUk
= S(SKUk

, k|j|m|rUk
)

for each user Uk ∈ USF and the aggregate signature

σ = AS({PKUk
, k|j|m|rUk

, σUk
: Uk ∈ USF }).

A places {Uk|σUk
|rUk

|{Uk}|{U}|j|m : Uk ∈ USF , Uk 6= U} concatenated with
U |j|m|σ|USF |UST |{rUk

: U ∈ USF } in T ′. When done, the complete transcript T ′ is given to A′.

Send queries : Since A′ can not forge signatures with respect to any other users and nonces do not repeat
with high probability, A′ is “limited” to send messages already contained in T ′.

– The initial Send queries to be sent to each participants. For any particular instance Πi
U , the initial

send query has the form Send0(U, i, 〈U2, . . . , Ul〉). On a query Send0(U, i, ∗) of A′, A chooses at random
rU ∈ {0, 1}p. After completion of all Send0 queries in a particular session, A sets

noncesi
U = ((U, rU ), (U2, rU2), . . . , (Ul, rUl

))

where rUk
is the nonce generated by user Uk, 2 ≤ k ≤ l. Send0 query has no output to A′.

– In response to a Send1 query to an instance Πi
Uk

, the value pidi
Uk

and nonces have already been de-
fined. A looks in Nlist for an entry of the form (nonces, T ); if no such entry, then A queries Execute(pidi

Uk
),

receives in return a transcript T , and stores (nonces, T ) in Nlist. In either case, A now has a transcript T
associated with the value nonces. Next A finds the (unique) message of the form Uk|1|m|{Uk}|UST in T ,
computes the signature σUk

= S(SKUk
, k|1|m|rUk

) and returns Uk|1|m|σUk
|{Uk}|UST |rUk

to A′.



– In response to any other Send query to an instance Πi
U , A first verifies the correctness of the current

incoming message(s) as in the specification of AP and terminates the instance if verification fails. Assuming
verification succeeds, A finds an entry (nonces, T ) in Nlist, locates the appropriate message U |j|m|USF |UST

in transcript T , computes the signature σUk
= S(SKUk

, k|j|m|rUk
) for each user Uk ∈ USF and the aggregate

signature
σ = AS({PKUk

, k|j|m|rUk
, σUk

: Uk ∈ USF })

and replies to A′ with
{Uk|σUk

|rUk
|{Uk}|{U}|j|m : Uk ∈ USF , Uk 6= U}

concatenated with
U |j|m|σ|USF |UST |{rUk

: Uk ∈ USF }.

Reveal/Test queries : Transcript T ′ is defined when A′ makes the query Reveal(U, i) or Test(U, i) for
an instance for which acci

U = 1. We “strip” the signatures, nonce values and “omit” the messages of the
form {Uk|σUk

|rUk
|{Uk}|{U}|j|m : Uk ∈ USF does not represent the user set USF } and denote the resulting

transcript by T . Assuming that events R and F do not occur, at least one query must exist which A made
to its own Execute oracle resulting in transcript T . Then A makes the appropriate Reveal or Test query to
one of the instances involved in this query and returns the result to A′.

Let Invd = F ∨ R. As long as Invd do not occur, the above simulation for A′ is perfect. Whenever Invd
occurs, adversary A aborts and outputs a random bit. So

ProbA′,AP[Succ|Invd] =
1
2
.

Now

AdvA,UP := 2 |ProbA,UP[Succ]− 1
2
|

= 2 |ProbA′,AP[Succ ∧ Invd] + ProbA′,AP[Succ ∧ Invd]− 1
2
|

= 2 |ProbA′,AP[Succ ∧ Invd] + ProbA′,AP[Succ|Invd] ProbA′,AP[Invd]− 1
2
|

= 2 |ProbA′,AP[Succ ∧ Invd] +
1
2
ProbA′,AP[Invd]− 1

2
|

= 2 |ProbA′,AP[Succ]− ProbA′,AP[Succ ∧ Invd] +
1
2
ProbA′,AP[Invd]− 1

2
|

≥ |2 ProbA′,AP[Succ]− 1| − |ProbA′,AP[Invd]− 2 ProbA′,AP[Succ ∧ Invd]|
≥ AdvA′,AP − Prob[Invd]

The adversary A can make at most qE + qS/2 queries to its Execute oracle and since
AdvA,UP ≤ AdvKA

UP(t1 + t2, qE + qS/2) by assumption, we obtain :

AdvAKA
AP ≤ AdvKA

UP(t1 + t2, qE + qS/2) + Prob[F ] + Prob[R].

This yields the statement of the theorem.

6 Efficiency

Efficiency of a protocol is measured by communication and computation cost. Communication cost in-
volves counting total number of rounds needed and total number of messages transmitted through the



network during a protocol execution. Computation cost counts total scalar multiplications, pairings, group
exponentiations etc..

Let Y be the total number of singleton user sets in level 1 and set R(n) = dlog3 ne.

For the unauthenticated protocol [5], number of rounds required is R(n) and total messages sent is
< 5

2(n− 1). The computation cost of this protocol is as follows :
total number of scalar multiplications in G1 is < 5

2(n−1), total pairings required is nR(n) and total group
exponentiations in G2 is nR(n).

Note that in the authenticated protocol, the representative of a user set with more than one user creates an
aggregate signature after it collects the basic signatures from the other users in that user set. This makes
the representative to wait for accumulating the basic signatures. In the first round of the authenticated
protocol, no aggregation of signatures is required because each user set is a singleton set with a user itself
being the representative and only a basic signature on the transmitted message is sent by the representa-
tive. The authenticated protocol additionally requires the followings :

The number of rounds increases by R(n)− 1.
Total number of basic signatures computed is nR(n).
Total number of additional messages (basic signatures) communicated is n[R(n)− 1]− 3

2(3R(n)−1 − 1).
Total bilinear aggregate signatures computed, communicated and verified is 3

2(3R(n)−1 − 1)− Y .

This protocol involves no basic signature verification, only verification of bilinear aggregate signatures are
required.

7 Conclusion

We have described an authentication mechanism to authenticate the protocol proposed by Barua, Dutta
and Sarkar [5] in a standard fomalized security model. The bilinear pairing based aggregate signature
by Boneh et al. [12] is used and the formal security model of Bresson et al. [17] is adopted. Using the
proof technique of Katz and Yung [26], we get a provably secure authenticated tree based key agreement
protocol.
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