
On the Ambiguity of Concurrent Signatures

Yi Mu1, Fangguo Zhang2, and Willy Susilo1

1 School of Information Technology and Computer Science,

University of Wollongong, Wollongong, NSW 2522, Australia

2 Department of Electronics and Communication Engineering,

Institute of Information Security Technology,

Sun Yat-Sen University,

P.R.China Guangzhou, 510275, China

Email: {ymu,wsusilo}uow.edu.au, isdzhfg@zsu.edu.cn

Abstract

We point out that the notion of ambiguity introduced in the concurrent signatures

proposed in [4] is incorrect. Any third party who observed two signatures can

differentiate who has/have produced the signatures by performing the verification

algorithm. We note that the model proposed in [4] is sound, but the concrete scheme

does not really provide what is required in the model.

1 Introduction

The issue of fair exchange of digital signatures is a fundamental problem in cryptography.

Fair exchange of digital signatures has many applications such as fair contract signing,

fair exchange of digital goods, etc. Fairness in exchanging signatures is normally achieved

with the aid of a trusted third party (TTP) (e.g., [3, 2]). Recently, Chen, Kudla, and

Paterson in Eurocrypt 2004 [4] introduced a new notion called “concurrent signature”.

The concurrent signature scheme allows two parties to produce two signatures in such

a way that, from any third party’s point of view, both signatures are ambiguous with

respect to the identity of the signer until a keystone is released by one of the parties. Upon

releasing the keystone, both signatures become binding to their true signers concurrently.

Actually, the current signature scheme falls just short of solving the full TTP problem in

fair exchange of signatures. In concurrent signatures, the participants’ public keys must

1



be certified by a TTP beforehand, but the TTP can be inactive afterwards. Moreover,

there is no requirement that TTP will help solving the problem in the case of dispute (c.f.

optimistic fair exchange constructions in [3, 2, 5]).

We note that the notion of concurrent signature is novel and sound. As pointed out

in the original concurrent signature paper, concurrent signatures can be constructed by

using a variant of the ring signature scheme by Abe et. al. [1]. Conceptually, they are

two-party ring signatures with extra information (so-called the “keystone”). Both signers

sign with a ring signature scheme, respectively. Due to the signer’s ambiguity of ring

signatures, the signer’s identity is ambiguous to any third party. It is claimed in [4],

such ambiguity can be removed and the signer’s identity becomes clear by releasing the

keystone. This model is very attractive and in fact, this would provide a good mechanism

for providing an optimistic fair exchange (although it has some additional requirements

namely the certification of the public keys by the TTP at the initialization phase).

Chen et. al. provides a concrete concurrent scheme in their seminal paper in [4].

Unfortunately, as we shall show in this paper, the concrete scheme does not provide the

signer’s ambiguity as required by their model. Any third party can distinguish who the

actual signer is by performing the verification algorithm.

2 Concurrent Signatures

In this section, we briefly review the concrete concurrent signature scheme proposed by

Chen, Kudla, and Paterson [4]. We omit the formal model introduced in [4], and we refer

the reader to [4] for more complex account. The protocol consists of four phases: SETUP,

ASIGN, AVERIFY, VERIFY.

• SETUP is probabilistic algorithm that sets up all parameters including keys. It

selects two large primes p, q for q|p − 1 and a generator g ∈ Z∗p of order q. It also

generates two cryptographic hash functions H1, H2 : {0, 1}∗ → Zq. Say, Alice and

Bob are two parties involved in the system. Upon completion of the setup, Alice

obtains her private key xA ∈ Zq and the corresponding public key XA = gxA mod p

and Bob obtains xB ∈ Zq, XB = gxB mod p as his private key and public key.

• ASIGN is a probabilistic algorithm that takes as input (XA, XB, xi, f), where i ∈
(A,B) and f = H1(k) for the keystone k ∈ {0, 1}∗ and outputs an ambiguous

signature σi. To sign a message MA, Alice picks a random r ∈ Zq and a keystone k

and then computes f = H1(k) and

h = H2(g
rXf

B mod p‖MA),

2



hA = h− f mod q,

sA = r − hAxA mod q.

The output from the algorithm is the signature on M : σA = (sA, hA, f), which is

then sent to Bob.

• AVERIFY is an algorithm that takes as input Si = (σi, Xi, Xj,Mi) and outputs

accept or reject. Given SA = (σA, XA, XB, M), Bob checks the equality:

hA + f
?
= H2(g

sAXhA
A Xf

B mod p‖MA) mod q. (1)

If it holds, accept; otherwise, reject. If the signature is accepted, Bob signs message

MB by using (XA, XB, xB, f). The resulting signature is σB = (sB, hB, f), where

h′ = H2(g
rXf

A mod p‖MB),

hB = h′ − f mod q,

sB = r′ − hBxB mod q.

r′ is a random number selected from Zq. He then sends σB to Alice. Upon receiving

σB, Alice checks whether or not f is the same as the one used by herself. If not,

abort. Otherwise, Alice checks the equality:

hB + f
?
= H2(g

sBXhB
B Xf

A mod p‖MB) mod q. (2)

If it holds, Alice sends k to Bob.

• VERIFY is an algorithm that takes as input (k, Si) and checks if H1(k) = f . It not,

it terminates the process. Otherwise, it runs AV ERIFY (Si).

In the original paper, it was claimed that both σA and σB hold ambiguity and after k is

released by one of parties, the ambiguity is removed. Therefore, the goal of the protocol

is achieved.

3 On the Identity Ambiguity of the Concrete Con-

current Signatures

Firstly, we show that that the following statement from [4] is not satisfied in the concrete

scheme provided.

3



“Signer identities of exchanged signatures are ambiguous to any third party

before releasing the key stone.”

Proof. Assume that Alice has constructed her signature σA on MA and sent it to Bob.

We show that Bob can prove to any third party that Alice has indeed signed MA without

any aid of the keystone. In other words, the ambiguity will be broken after Alice has sent

her signature to Bob. We observe that

• hA 6= hB.

• The verification equation (1) shows that Xf
B has to be computed for the verifica-

tion of Alice’s signature. Similarly to that, equation (2) shows that Xf
A has to be

computed for the verification of Bob’s signature.

In order to prove that Alice has indeed constructed σA = (sA, hA, f), Bob signs a

random message M , which could be given by a third party, to construct σB = (s′B, hB, f),

where s′B is Bob’s signature on M . Following the observation above, the third party is

sure that σB was signed by Bob and σA was signed by Alice because f now becomes clear.

In other words, if Xf
B is used in the verification, the related signature must be constructed

by Alice; otherwise, if Xf
A is used, the signature must be constructed by Bob. 2

We would also like to point out that the following statement provided in [4] is not

satisfied by their concrete scheme.

“From a third party point of view, before the keystone is released, both par-

ties could have produced both signatures, so the signatures are completely

ambiguous.”

Proof. Assume that Alice has constructed two signatures σ1A = (s1A, h1A, f) and σ2A =

(s2A, h2A, f), then the verifications of both signatures require to compute Xf
B. This there-

fore reveals the identity of the signer without using the keystone.

We note that there is nothing wrong when a single signature is constructed from a

ring signature scheme, since hi and f are undistinguishable to the verifier. The problem

main appears when two signatures are constructed. Observe that f is the hash value

of the keystone. If f is associated with the public key of the other party during the

verification, then k must also be associated with the same public key. Since f is made

public, revealing k becomes redundant. If f does not break ambiguity as claimed in [4]

(i.e., f is not associated with any public key in the verification), then revealing k will only

reveal f and will not help to break the ambiguity of signer’s identity. 2

4



We also note that in the concrete scheme proposed in [4], the keystone is redundant.

In fact, the keystone can be treated as a confirmation key. That is, the signatures are

valid only when the keystone is revealed (say, after Alice has verified Bob’s signature).

However, this clearly was not the original idea. In fact, such signature confirmation can

be achieved by using a second signature. Namely, Alice signs σA after she has verified

Bob’s signature.

Theorem 1 The proposed scheme provided in [4] does not satisfy the identity ambiguity

as required in their model.

Proof. Can be deduced from our arguments above. 2

Another issue in the concurrent signature scheme is that the signer, either Alice or

Bob, can produce multiple signatures by using the same keystone. Taking Alice as an

example, she can generate two signatures, σA = (sA, hA, f) on mA and σ′A = (s′A, h′A, f)

on m′
A. She sends only σA to Bob. After the keystone is released, she can claim that she

actually commit to σ′A. The same method also applies to Bob. A multiple signing can be

done, even if the keystone has been released. It really makes the situation worse that any

signature can be claimed to be legitimate.

4 Conclusion

We showed that the concrete scheme in [4] does not satisfy the model provided in their

paper, namely the identity ambiguity. The model of concurrent signatures is novel and

sound, but the construction remains as an open problem at this stage.

References

[1] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures from a variety of keys,”

in Advances in Cryptology–ASIACRYPT 2002, LNCS 2501, pp. 415–432, Springer-

Verlag, Berlin, 2002.

[2] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signa-

tures,” IEEE Journal on Selected Areas in Communications, vol. 18, 2000.

[3] F. Bao, R. Deng, and W. Mao, “Efficient and practical fair exchange protocols,” in

Proceedings of 1998 IEEE Symposium on Security and Privacy, Oakland, pp. 77–85,

1998.

5



[4] L. Chen, C. Kudla, and K. G. Paterson, “Concurrent signatures,” in Advances in

Cryptology, Proc. EUROCRYPT 2004, LNCS, Springer-Verlag, Berlin, pp.287–305,

2004.

[5] Y. Dodis and L. Reyzin. Breaking and Repairing Optimistic Fair Exchange from

PODC 2003. ACM Workshop on Digital Rights Management (DRM), 2003.

6


