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Abstract. This paper first positively answers the previously open question of whether it was
possible to obtain an optimal security reduction for an identity based signature (IBS) under a
reasonable computational assumption. We revisit the Sakai-Ogishi-Kasahara IBS that was recently
proven secure by Bellare, Namprempre and Neven through a general framework applying to a large
family of schemes. We show that their modified SOK-IBS scheme can be viewed as a one-level
instantiation of Gentry and Silverberg’s alternative hierarchical IBS the exact security of which
was never considered before. We also show that this signature is as secure as the one-more Diffie-
Hellman problem. As an application, we propose a modification of Boyen’s ”Swiss Army Knife”
identity based signature encryption (IBSE) that presents better security reductions and satisfies
the same strong security requirements with a similar efficiency.
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1 Introduction

Identity based cryptography has become a very fashionable topic in the last couple of years. The
motivation of this concept, introduced by Shamir in 1984 ([49]), was to simplify key manage-
ment and avoid the use of digital certificates. The trick was to let a public key be publicly and
uniquely derivable from a human-memorizable binary sequence corresponding to an information
non-ambiguously identifying its owner (e-mail address, IP address combined to a user name,
social security number,...) while the associated private keys can only be computed by a trusted
Private Key Generator (PKG) thanks to a master secret. This paradigm allows bypassing the
trust problems that arise in traditional certificate-based public key infrastructures (PKIs). In-
deed, since a public key ’is’ its owner’s identity, it becomes useless to bind them by a digital
certificate. Although a PKG’s public key still has to be certified, the need of digital certificates
is really reduced as reasonably many users may depend on the same PKG.

Since the concept’s appearance in 1984, several practical identity based signature schemes
(IBS) have been devised in the late 80’s ([25], [27]) and also after 2001 ([16],[30],[48],[44]).
On the other hand, finding a practical identity based encryption scheme (IBE) remained an
open challenge until 2001 when Boneh and Franklin ([12]) proposed to use bilinear maps over
algebraic curves to elegantly solve the challenge. After that, these fashionable bilinear maps
provided plenty of other applications (that are not listed here but their references can be found
in [3]) including various particular kinds of signatures: blind, ring, undeniable, proxy,etc.

Along the evolution of public key cryptography from 1976, there has been a graduate evolu-
tion tending to a necessity to provide security proofs for asymmetric cryptosystems in the sense
that the existence of an attacker against them would imply a probabilistic polynomial time
algorithm to solve a hard number theoretic problem. In 1993, motivated by the perspective to
achieve provable security for efficient protocols, Bellare and Rogaway introduced the random
oracle model ([7]) that was previously implicitly suggested in [25] and in which hash functions
are used as black box by attackers for whom they are also indistinguishable from perfectly ran-
dom functions. Although it is well known that security in the random oracle model does not
imply security in the real world as shown by several papers ([15],[4]) exhibiting pathological
cases of provably secure schemes for which no secure implementation exists, it still seems to be
a good principle to give security proofs ’at least’ in the random oracle model when proposing a



new asymmetric cryptosystem.
In the area of provable security, the last couple of years saw the rise of a new trend con-

sisting of providing tight security reductions for asymmetric cryptosystems ([8],[45],etc.): the
security of a cryptographic protocol is said to be tightly related to a hard number theoretic
problem if an attacker against the scheme implies an efficient algorithm solving the problem
with roughly the same advantage. This led several authors to provide search for new security
proofs for systems that were already well known to be secure in the random oracle model or for
some of their variants ([20],[21],[40]) or to devise new schemes that, although appearantly less
efficient than existing ones at first sight, provide much better security guarantees for the same
security parameters and are then eventually more efficient for a similar desired level of security
([28],[32],etc.).

Although concerned with the provable security of identity based signatures, the research
community did not really focus on providing really strong security arguments for the various
IBS proposed in the literature up to now. Indeed, Paterson’s IBS still has no formal security
proof while Hess and Cha-Cheon gave proofs under the Diffie-Hellman assumption for their
respective scheme but these proofs were both obtained through Pointcheval and Stern’s forking
lemma ([46],[47]) which does not yield tight security reductions as already argued in several
previous papers ([28],[32]). Libert and Quisquater ([35]) recently proposed a scheme that may
be viewed as an identity based transformation of the Goh-Jarecki Diffie-Hellman based signa-
ture ([28]). Unfortunately, their scheme is computationally expensive and its security relies on
the Bilinear Diffie-Hellman assumtion instead of the weaker Computational Diffie-Hellman one.

At Eurocrypt 2004, Bellare, Namprempre and Neven ([5]) defined a framework to provide
security proofs for a large family of IBS by considering the security against passive, active
and concurrent attacks of underlying ’convertible’ identifications schemes (i.e. that can be con-
verted into identity based identification schemes (IBI)). Unfortunately, as mentioned in [42],
their framework does not end up with explicitly tight security bounds for the resulting family
of IBS that includes the schemes originally described [30],[16],[50],[27],. . . and a variant of the
one in [48]. We think the latter is of particular interest since it is possible to prove its security
without considering the underlying identification scheme: in fact, explicitly tight reductions can
be obtained without using the BNN framework in a black-box fashion. That is one of the con-
cerns of the present paper.

Another security result was recently achieved by Kurosawa and Heng ([33]) for the Cha-
Cheon scheme by also considering the underlying identity based identification scheme. They
exhibited a polynomial time reduction from the Diffie-Hellman problem to a chosen-message
attacker that avoids the use of the forking technique but their reduction is still quite loose:
an attacker with a given advantage ǫ is used to build an algorithm to solve the Diffie-Hellman
problem with probability O(c · ǫ2/qEqH) where c is a constant, qE denotes a bound on the
number of identities corrupted by the adversary and qH is the number of hash queries.

In the present work, we show that Bellare et al.’s modifed Sakai-Ogishi-Kasahara identity
based signature ([48]), denoted SOK-IBS in this paper, has an even tighter security proof under
the Diffie-Hellman assumption: from an attacker with advantage ǫ, we build a polynomial time
algorithm for the Diffie-Hellman problem with an advantage O(c · ǫ/qE) and we show how the
qE degradation factor can be removed form the bound at negligible cost. We also stress that a
fully optimal reduction from a potentially stronger but reasonable assumption exists.

A second contribution of this paper is to revisit Boyen’s ”Swiss Army Knife” identity based
signature-encryption (IBSE) protocol by depicting a scheme achieving the same functionalities
and satisfying the same strong security requirements while having much better security reduc-
tions than Boyen’s IBSE (indeed, the only drawback of the latter construction is to have a poor
exact security). Our IBSE follows a construction almost similar to Boyen’s one. For applications
requiring authentication and privacy without necessitating all of IBSE’s features, we describe a
slightly more efficient ’monolithic’ identity based signcryption (IBSC) based on SOK-IBS that
is also provably secure in a strong security model.

Before starting with showing our proofs for the modified SOK-IBS, we first recall the prop-
erties of bilinear maps that turned out to be (almost) unavoidable tools in the design of identity
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based cryptosystems. The next section gives formal definitions of presumed hard computational
problems from which our reductions are made and then recalls an extended security model for
identity based signatures. The improved security analysis of the modified SOK-IBS is given in
paragraph 3.2. Finally, its application to identity based signature/encryption is presented in
section 4.

2 Preliminaries

2.1 Bilinear maps and Diffie-Hellman problems

Let k be a security parameter and q be a k−bit prime number. Let us consider groups G1 and
G2 of the same prime order q. For our purposes, we need a bilinear map ê : G1 × G1 → G2

satisfying the following properties:

1. Bilinearity: ∀ P,Q ∈ G1, ∀ a, b ∈ Z
∗
q, we have ê(aP, bQ) = ê(P,Q)ab.

2. Non-degeneracy: for any P ∈ G1, ê(P,Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: there is an efficient algorithm to compute ê(P,Q) ∀ P,Q ∈ G1.

As shown in [12], such non-degenerate admissible maps over cyclic groups can be obtained from
the Weil or the Tate pairing over supersingular elliptic curves or abelian varieties.

We now recall the definitions of the Computational Diffie-Hellman problems and of one of
its variants.

Definition 1. Let us consider cyclic group G1 of prime order q,
- The Computational Diffie-Hellman problem (CDH) in G1 is, given 〈P, aP, bP 〉 for un-
known a, b ∈ Zq, to compute abP ∈ G1.

- The one more CDH problem (1m-CDH) is, given 〈P, aP 〉 ∈ G1 for an unknown a ∈ Zq,
and access to a target oracle TG1

returning randomly chosen elements Yi ∈ G1 (for i = 1, . . . , qt,
qt being the exact number of queries to this oracle) as well as a multiplication oracle HG1,a(.)
answering aW ∈ G1 when queried on an input W ∈ G1, to produce a list ((Z1, j1), . . . , (Zqt , jqt))
of qt pairs such that Zi = aYji

∈ G1 for all i = 1, . . . , qt, 1 ≤ ji ≤ qt and qh < qt where qh

denotes the number of queries made to the multiplication oracle.

The one more CDH problem was introduced in [9] to prove the security of a Blind signature
([17]) obtained from the BLS signature ([13]). Its commonly assumed intractability was more
recently used in [33] and [5] to prove the security of identification schemes built on top of identity
based signatures. In the upcoming sections, we will sometimes refer to this assumption as the
”one more CDH assumption”.

2.2 Security notions for identity based signatures

We consider the notion of strong existential unforgeability already considered in [1] and [10]
that is slightly stronger than the usual notion of existential unforgeability under chosen-message
attacks introduced in [29].

Definition 2. An identity based signature scheme is said to be strongly existentially un-

forgeable under chosen-message attacks if no probabilistic polynomial time (PPT) adversary
has a non-negligible advantage in this game:

1. The challenger runs the setup algorithm to generate the system’s parameters and sends them
to the adversary.

2. The adversary F performs a series of queries:
- Key extraction queries: F produces an identity ID and receives the private key dID

corresponding to ID.
- Signature queries: F produces a message M and an identity ID and receives a signature

on M that was generated by the signature oracle using the private key corresponding to
the identity ID.
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3. After a polynomial number of queries, F produces a tuple (ID∗,M∗, σ∗) made of an iden-
tity ID∗, whose corresponding private key was never asked during stage 2, and a message-
signature pair (M∗, σ∗) such that σ∗ was not returned by the signature oracle on the input
(M∗, ID∗) during stage 2 for the identity ID∗.

The forger F wins the game if the signature verification algorithm outputs 1 when it is run on
the tuple (ID∗,M∗, σ∗). The forger’s advantage is defined to be its probability of producing a
forgery taken over the coin-flippings of the challenger and F .

The above security notion was not considered in previous papers tackling with identity based
signatures but it is interesting to notice that the schemes proposed in [16] and [30] are also
provably secure in this strengthened model.

3 An identity based signature with tight security reductions

The present section revisits the modified Sakai-Ogishi-Kasahara signature ([5]) by considering
it as a one level instantiation of a (randomized) version of Gentry and Silverberg’s alternative
hierarchical IBS ([26]). This scheme is the same as the one obtained by applying Bellare et al.’s
extended Fiat-Shamir heuristic ([5]) to the SOK identity based identification scheme (that is
only secure against passive attacks as shown in [5]).

3.1 The scheme

The signature that was commonly called SOK-IBS in ([5]) (for Sakai-Ogishi-Kasahara Identity
Based Signature) is made of four algorithms that are depicted on figure 1.

Setup: given a security parameter k, the PKG chooses groups G1 and G2 of prime order q > 2k,
a generator P of G1, a randomly chosen master key s ∈ Z

∗

q and the associated public key
Ppub = sP . It also picks cryptographic hash functions of same domain and range H1, H2 :
{0, 1}∗ → G

∗

1. The system’s public parameters are

params = (G1, G2, ê, P, Ppub, H1, H2).

Keygen: given an user’s identity ID, the PKG computes QID = H1(ID) ∈ G1 and the
associated private key dID = sQID ∈ G1 that is transmitted to the user.

Sign: in order to sign a message M ,

1. picks r
R← Zq and computes U = rP ∈ G1 and then H = H2(ID, M, U) ∈ G1.

2. Compute V = dID + rH ∈ G1.

The signature on M is the pair σ = 〈U, V 〉 ∈ G1 ×G1.

Verify: to verify a signature σ = 〈U, V 〉 ∈ G1 × G1 on a message M for an identity ID, the
verifier first takes QID = H1(ID) ∈ G1 and H = H2(ID, M, U) ∈ G1. He then accepts the
signature if ê(P, V ) = ê(Ppub, QID)ê(U, H) and rejects it otherwise.

Fig. 1. The SOK-IBS scheme

From an efficiency point of view, the signature issuing algorithm has the same complexity
as Cha and Cheon’s one ([16]) while the verification algorithm is slightly more expensive: it
requires 3 pairing computations against only two for the verification algorithms of the schemes
described in [16] and [30]. As will be shown in the next subsection, the advantage of the present
scheme over the previously cited ones is to yield much better security guarantees in the random
oracle model for similar security parameters.

Interestingly, although derived from an identity based identification scheme (IBI) that is only
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secure against passive attacks, the modified SOK-IBS has better reductions than other IBS for
which the underlying IBI is secure against stronger attacks. In fact, it can also be regarded as
an identity based extension of a randomized version of Boneh et al.’s short signature ([13]).
That is the reason why so tight security reductions can be obtained.

3.2 The exact security of SOK-IBS

This security analysis first presents a security reduction from the Diffie-Hellman problem to a
chosen-message attacker against SOK-IBS that is more efficient than any other known security
reduction (including those given in [33],[5]) for existing identity based signatures ([16],[30],etc.).
In a second step, we explain how to achieve an almost optimal reduction from the Diffie-Hellman
problem and an optimal reduction from the one more Diffie-Hellman problem.

Theorem 1. In the random oracle model, if a PPT forger F has an advantage ǫ in forging a
signature in an attack modelled by the game of definition 2 when running in a time t and asking
qHi

queries to random oracles Hi (i=1,2), qE queries to the key extraction oracle and qS queries
to the signature oracle, then the CDH problem can be solved with an advantage

ǫ′ >
ǫ−

(

qS(qH2
+ qS) + 1

)

/2k

e(qE + 1)

within a time t′ < t + (qH1
+ qH2

+ qE + 2qS)tm + (qS + 1)tmm where e denotes the base of the
natural logarithm, tm is the time to compute a scalar multiplication in G1 and tmm is the time
to perform a multi-exponentiation in G1.

Proof. We start by describing how a forger F can be used by a probabilistic polynomial time
algorithm B to solve the CDH problem. Let (X = xP, Y = yP ) ∈ G1 × G1 be a random
instance of the CDH problem taken as input by B. The latter initializes F with Ppub = X as a
system’s overall public key. The forger F then starts performing queries such as those described
in definition 2. These queries are answered by B as follows (without loss of generality, we assume
that, for any key extraction query or signature query involving an identity, a H1 oracle query
was previously issued for the same identity):

- queries on oracle H1: when an identity ID is submitted to the H1 oracle, as in Coron’s
proof technique ([20]), B flips a coin T ∈ {0, 1} that yields 0 with probability δ and 1 with

probability 1 − δ. B then picks u R← Z
∗
q. If T = 0 then the hash value H1(ID) is defined as

being uP ∈ G1. If T = 1, then B returns uY ∈ G1. In both cases, B inserts a tuple (ID, u, T )
in a list L1 to keep track of the way it answered the query.

- Key extraction queries: when F requests the private key associated to an identity ID, B
recovers the corresponding (ID, u, T ) from L1 (recall that such a tuple must exist because
of the aforementioned assumption). If T = 1, then B outputs ”failure” and halts because it
is unable to coherently answer the query. Otherwise, it means that H1(ID) was previously
defined to be uP ∈ G1 and uPpub = uX ∈ G1 is then returned to F as a private key
associated to ID.

- queries on oracle H2: when a tuple (ID,M,U) is submitted to the H2 oracle, B first scans
a list L2 to check whether H2 was already defined for that input. If it was, the previously
defined value is returned. Otherwise, B picks a random v R← Z

∗
q, stores the tuple (ID,M,U, v)

in the list L2 and returns vP ∈ G1 as a hash value to F .
- Signature queries: when F queries the signature oracle on a message M for an identity ID,
F first recovers the previously defined value QID = H1(ID) ∈ G1 from L1. It then chooses

t, ν R← Z
∗
q before setting V = tPpub = tX ∈ G1, U = νPpub = νX ∈ G1 and defining the

hash value H2(ID,M,U) as ν−1(tP −QID) ∈ G1 (B halts and outputs ”failure” if H2 turns
out to be already defined for the input (ID,M,U)). The pair (U, V ) is returned to F and
appears as a valid signature from the latter’s point of view.
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Eventually, the forger F produces a message M∗, an identity ID∗ and a fake signature 〈U∗, V ∗〉
for the pair (M∗, ID∗) and B then recovers the triple (ID∗, u∗, T ∗) from L1. If T ∗ = 0, then
B outputs ”failure” and stops. Otherwise, it goes on and the list L2 must contain an entry
(ID∗,M∗, U∗, v∗) with overwhelming probability (otherwise, B stops and outputs ”failure”).
Hence, since H∗ = H2(ID∗,M∗, U∗) was defined to be v∗P ∈ G1, if F succeeded in the game
with the view it was provided with, B knows that

ê(P, V ∗) = ê(X,QID∗)ê(U∗,H∗)

with H∗ = v∗P ∈ G1 and QID∗ = u∗Y ∈ G1 for some known elements u∗, v∗ ∈ Z
∗
q. Then, it also

knows that
ê(P, V ∗ − v∗U∗) = ê(X,u∗Y )

and that u∗−1(V ∗ − v∗U∗) ∈ G1 is the solution to the CDH instance (X,Y ) ∈ G1 ×G1.
When assessing B’s probability of failure, one readily checks that its probability to fail in

handling a signing query because of a conflict on H2 is at most qS(qH2
+ qS)/2k (as L2 never

contains more than qH2
+ qS entries) while the probability for F to output a valid forgery

〈U∗, V ∗〉 on M∗ without asking the corresponding H2(ID∗,M∗, U∗) query is at most 1/2k.
Finally, by an analysis similar to Coron’s one ([20]), the probability δqE (1− δ) for B not to fail
in a key extraction query or because F produces its forgery on a ’bad’ identity ID∗ is greater
than 1 − 1/e(qE + 1) when the optimal probability δopt = qE/(qE + 1) is used when handling
key extraction queries. Eventually, it comes that B’s advantage is at most

ǫ−
(

qS(qH2
+ qS) + 1

)

/2k

e(qE + 1)
. �

Efficiency of the reduction. We note that the obtained reduction is tighter than for any
previously known ID-based signature scheme: at this stage, our bound on ǫ′ is already much
better than Kurosawa and Heng’s one ([33]) that was O(ǫ2/eqEqH). As an example, for k = 160,
if we allow qH1

, qH2
< 260 and qE, qS < 230, we have qS(qH2

+qS)/2k < 2×290/2160 = 2−69. If we
assume that the advantage of an attacker in solving CDH is at most ǫ′ < 2−60, we obtain that
(ǫ− 2−69)/232 ≤ ǫ′ < 2−60 and the probability for an attacker to break SOK-IBS is bounded by
ǫ ≤ 2−28 + 2−69 < 2× 2−28 = 2−27 1.

A IBS (almost) as secure as the Diffie-Hellman problem. A technique inspired from
Katz and Wang’s one ([32]) allows avoiding the security degradation of qE. We consider that
a PKG initially chooses a secret random seed SK and that the private key dID associated
to an identity ID is given by dID = sH(bID||ID) where the identity dependent bit bID =
H ′(SK, ID) ∈ {0, 1} is obtained through a random oracle H ′. By doing so, someone wanting
to use an identity ID for verifying a signature never knows which of Q0||ID = H1(0||ID) ∈ G1

or Q1||ID = H1(1||ID) ∈ G1 must be used as an effective public key. The verification algorithm
must then be modified to accept a message when the verification equation holds for Q0||ID or
Q1||ID and up to 4 pairings might have to be computed at each verification.

In the security proof, when the simulator is asked for a hash value H1(bIDi
||IDi), it returns

uP ∈ G1 in such a way that it can subsequently return a valid private key uPpub, where u R← Z
∗
q,

for the identity IDi. When the forger F asks the hash value H1(bIDj
||IDj), the simulator then

returns u(yP ) where yP ∈ G1 is a part of the CDH. When answering a signature query, the

simulator flips a coin d R← {0, 1}∗ and mimics the signing oracle as in the proof of theorem
1 with the public key Qd||ID. This provides F with a consistent view since it has absolutely
no information on the identity dependent bit. Everything is just as if two private keys were
associated to each identity but, when F , decides to corrupt an identity, it always receives the

1 We have to mention that the upper bound on B’s probability to fail in simulating the signing oracle could
be improved by using another proof technique due to Coron ([21]) but, in the present situation, this would
degrade the bound t′ on B’s running time.
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private key corresponding to the identity dependent bit.
When the adversary produces a forgery 〈U∗, V ∗〉 on a message M∗ and an identity ID∗, there

is a probability of 1/2 that the signature verification algorithm accepts the signature for the
public key QbID∗ ||ID∗ and that this forgery then allows the simulator solving the CDH instance.

The bound on the simulator’s advantage against CDH is then (ǫ −
(

qS(qH2
+ qS) + 1

)

/2k)/2.
We end up with a verification algorithm that is twice as expensive as in the Cha-Cheon scheme
but we can avoid the fourth pairing evaluation by appending a single bit to each signature to
indicate which of Q0||ID or Q1||ID must be used to check the verification equation.

Achieving an optimal reduction. The theorem below shows that an optimal reduction
exists from the potentially stronger one more CDH assumption. The advantage in solving the
one more CDH problem is, up to a negligible term, as large as the forger’s advantage.

Theorem 2. In the random oracle model, if a PPT adversary F has an advantage ǫ against
the strong unforgeability of SOK-IBS in a chosen-message attack when running in a time t,
asking qHi

queries to random oracles Hi (i=1,2), qE key extraction queries and qS queries to
the signature oracle, then there is an algorithm B to solve the one more CDH problem with an
advantage ǫ′ > ǫ−

(

qS(qH2
+qS)+1

)

/2k in a time t′ < t+(qH2
+2qS)tm+(qS+1)tmm where tm is

the cost of a scalar multiplication in G1 and tmm is the time to perform a multi-exponentiation
in G1.

Proof. Let 〈P,X = aP,TG1
,HG1,a(.)〉 be an instance of the one more CDH problem. To solve

it, the simulator B runs F with the domain-wide key Ppub = aP ∈ G1. The forger F then starts
querying the various oracles that are simulated as follows:

- queries on oracle H1: when a new identity IDi is submitted to this oracle, B queries the
target oracle TG1

(recall that this oracle takes no input) and forwards the obtained random
element Yi ∈ G1 as an answer to F . The pair (IDi, Yi) is stored in a list L1. If the same
identity is submitted to H1 again, the stored answer is returned.

- Private key queries on identities IDi: we assume IDi was previously submitted to the H1

oracle. The corresponding Yi ∈ G1 that was obtained from TG1
is recovered from L1 and

sent by B to the multiplication oracle HG1,a(.) whose output aYi ∈ G1 is returned to F as
a private key for IDi. The elements (IDi, Yi, aYi) are stored in a list LE .

- H2 queries and signing queries are dealt with exactly as in the proof of theorem 1.

Since F is assumed to produce a forgery for an uncorrupted identity ID∗, and since we can
assume that H1(ID∗) was asked during the game, it follows that the number qH1

of target
oracle queries made by B is strictly smaller than the number qE of queries to HG1,a(.). Further-
more, the private key dID∗ = V ∗ − v∗U∗ associated to the uncorrupted identity ID∗ can be
extracted from the outputted forgery (M∗, 〈U∗, V ∗)〉 and from the content of the list L2 (where
H2(ID∗,M∗, U∗) was defined to be v∗P ∈ G1) since we have the equality ê(P, V ∗ − v∗U∗) =
ê(X,Y ∗) and Y ∗ is the value of H1(ID∗) fixed by TG1

. The final output of B thus consists of
dID∗ together with the qh = qE answers of HG1,a(.) stored in LE.

�

We now obtain an excellent exact security: with k = 160 and the previously given values of
qHi

, for i = 1, 2 and qS, assuming that the one more CDH problem cannot be solved with a
probability ǫ′ greater than 2−60, then no attacker can break the scheme with a better advantage
than ǫ < 2−60+2−69 < 2−59. Finding a so tight security reduction for an identity based signature
appeared as an open problem before this work.

4 Identity based signcryption schemes with tighter security reductions

Since 2002, a couple of identity based protocols jointly performing signature and encryption
have been studied ([14],[18],[37],[34],[41]). In 2003 ([14]), Boyen proposed a nice two-layer de-
sign of signature/encryption (IBSE) that provably satisfies strong security notions among which
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chosen-ciphertext security, signature non-repudiation, ciphertext authentication and ciphertext
anonymity. This scheme also provides detachable signatures that cannot be linked to the origi-
nal ciphertext (this property was called ciphertext unlinkability in [14]). The only drawback of
Boyen’s IBSE is not to have tight security reductions, especially in the proof of unforgeability
that relies on Pointcheval and Stern’s forking lemma. In fact, none of the previously known iden-
tity based signcryption schemes (IBSC) can be proved to be unforgeable with a tight reduction.
Improvements for the schemes in [37] and [34] are possible by using intermediate reductions
from the underlying signature’s unforgeability (that are in turn derived from the security of an
underlying identity based identification protocol by similar arguments to those given in [33])
but the new bounds are still not as tight as those obtained for the scheme described in this
section.

SOK-IBS provides a very natural construction based on a randomness re-use to perform
encryption. This construction results in an identity based signature/encryption that provably
satisfies the same security requirements as Boyen’s scheme with a similar efficiency and much
better reductions (especially for the non-repudiation aspect). In the security analysis, because
of space limitation, we restricted ourselves to only detail proofs of CCA-security (even against
”insider” attacks as for the schemes in [14] and [18]) and signature strong unforgeability but
our scheme can also be shown to be also anonymous (i.e. a ciphertext conveys no information
on its intended recipient nor about who its originator is) and to allow detachable signatures
that are unlinkable to their associated ciphertexts.

By some parameter’s adjustment, this construction can be turned into a somewhat more
efficient monolithic identity based signcryption (IBSC) that offers better security guarantees
than other previous IBSC proposals ([37],[34]) and that is also provably anonymous (unlike the
solution proposed in [36]). It is useful for applications that do not require to extract signed
message from ciphertexts in such a way that extracted signatures cannot be linked to the orig-
inal ciphertext they are embedded in. A strengthened security model for such monolithic IBSC
schemes is presented in an extended version of the paper.

Before presenting our solution, let us first recall definitions of underlying hard problems on
which the security of our scheme is shown to rely.

4.1 Underlying hard problems

Definition 3. Given groups G1 and G2 of prime order q, a bilinear map ê : G1×G1 → G2 and
a generator P of G1,

- The Bilinear Diffie-Hellman problem (BDH) is, given 〈P, aP, bP, cP 〉 for unknown
a, b, c ∈ Zq, to compute ê(P,P )abc ∈ G2.

- The Decision Bilinear Diffie-Hellman problem (DBDH) is, given P, aP, bP, cP ∈ G1

and h ∈ G2 to decide whether h = ê(P,P )abc or not. According to the terminology of [43],
tuples of the form 〈P, aP, bP, cP, ê(P,P )abc〉 ∈ G

4
1 × G2 are called Bilinear Diffie-Hellman

tuples.
- The Gap Bilinear Diffie-Hellman problem (GBDH) is, given 〈P, aP, bP, cP 〉, for un-

known a, b, c ∈ Z
∗
q, to compute ê(P,P )abc with the help of a DBDH oracle that is able

to decide within a unit time whether a tuple 〈P, a′P, b′P, c′P, h′〉 ∈ G
4

1 × G2 is such that

h′ = ê(P,P )a
′b′c′ or not.

The DBDH problem was recently used in [11] to prove the security of an identity based encryp-
tion scheme in a standard computational model. Its was previously considered in [35] where
the GBDH problem (whose denomination emanates from a terminology due to Okamoto and
Pointcheval ([43])) was considered for the first time.

4.2 The SOK-IBSE scheme

We call this new scheme SOK-IBSE (for SOK-like Identity Based Signature-Encryption). The
protocol is given by the six algorihtms depicted on figure 2. As done in [14], we assume the
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receiver of a ciphertext has no a priori knowledge on the sender’s identity that is thus encrypted
together with the plaintext.

A random salt τ of length δ is also encrypted together with the message and the sender’s
identity at the encryption operation. This random string, that is hashed with the sender and
receiver’s identities when computing the X component of the ciphertext from the U component
of the signature, aims at providing the ciphertext unlinkability property by preventing someone
observing a signed message (M, 〈U, V 〉) for a signer’s identity IDA to know how this message-
signature pair should be encrypted into a ciphertext intended to some receiver IDB . That is
why it is also encrypted into one of the ciphertext’s components to allow the receiver to detach
the signature.

Setup: is identical to its counterpart in SOK-IBS except that five hash functions are
needed: H1 : {0, 1}∗ → G1, H2 : {0, 1}n0+n1+ℓ → G1, H3 : G

2
1 × G2 → {0, 1}ℓ,

H4 : G1 → {0, 1}λ and H5 : {0, 1}2n1+δ → Z
∗

q where ℓ is the bitlength of G1’s
elements. The space of plaintexts is M := {0, 1}n0 , and the ciphertext space
is C := G1 × {0, 1}ℓ × {0, 1}n0+n1+δ where n1 denotes the maximum length of
identifiers and δ is another security parameter explained below. A symmetric
cipher (E ,D) of keylength λ is also chosen.

Keygen: is the same as in SOK-IBS.

Sign: given a message M and the Decrypt: given a ciphertext
sender’s private key dIDA

, 〈X, W, Z〉 and the private key dIDB
,

1. pick r
R← Z

∗

q , compute U = rP 1. compute V = W ⊕H3(X, QIDB
, g′)

and H = H2(IDA, M, U) ∈ G1, with g′ = ê(X, dIDB
) and then

2. set V = dIDA
+ rH ∈ G1, (M ||IDA||τ ) = Dκ(Z) with

3. return 〈M, r, U, V, IDA〉. κ = H4(V ) ∈ {0, 1}λ,
to Encrypt 2. compute QIDA

= H1(IDA) ∈ G1,
U = x−1X ∈ G1 with
x = H5(IDA, IDB, τ ) ∈ Z

∗

q .
3. return 〈M, IDA, U, V 〉 to Verifiy

Encrypt: given 〈M, r, U, V, IDA〉 Verify: given 〈M, IDA, U, V 〉,
and the recipient’s identity
QIDB

= H1(IDB) ∈ G1, Return 1 if
1. compute x = H5(IDA, IDB, τ ) ∈ Zq ê(P, V ) = ê(Ppub, QIDA

)ê(U, H).

for τ
R← {0, 1}δ and X = xU ∈ G1, where H = H2(IDA, M, U) ∈ Z

∗

q

2. set W = V ⊕H3(X, QIDB
, gxr), and QIDA

= H1(IDA) ∈ G1

with g = ê(Ppub, QIDB
) and 0 otherwise.

3. compute Z = Eκ(M ||IDA||τ ),
with κ = H4(V ) ∈ {0, 1}λ, and
the final ciphertext is 〈X, W,Z〉.

Fig. 2. The SOK-IBSE Signature/Encryption scheme

We re-use Boyen’s construction ([14]) but, in order to achieve better security reductions, we
also hash the ciphertext’s X component and the recipient’s public key QIDB

together with the
pairing’s result at the encryption operation.

Efficiency discussions. From an efficiency point of view, for a given security parameter k,
SOK-IBSE has exactly the same cost as Boyen’s scheme while ciphertexts produced by the
latter are δ bits shorter. A naive composition of SOK-IBS with the Boneh-Franklin IBE or with
any of its variants (e.g. the one in [2]) could not have final ciphertexts shorter than 4ℓ+n0 +n1

(indeed, the whole signature would need to be encrypted with the message and the sender’s
identity for ciphertext unlinkability purposes) while those of SOK-IBSE are no longer than
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3ℓ + n0 + n1 in the worst case (we can assume δ ≤ ℓ as explained below).

Other comparisons with Boyen’s IBSE. The size δ of the random seed, that is exactly
the difference between the length of ciphertexts in Boyen’s scheme and their size in SOK-IBSE,
is flexible: it is an unlinkabilitiy parameter depending on the specific application: if detached
signatures are required to be computationally unlinkable to their ciphertexts, it is recommended
to take δ = 160. If senders only need to be able to deny having created any ciphertext from a
third party’s view and to discourage anyone to try and link their detached signatures to any
ciphertext, a short seed of 20 bits is sufficient. Finally, if a user does not need his/her signatures
to be unlinkable to the ciphertext they are embedded in, one can set δ = 0 and x = 1 to obtain
a monolithic single-layer identity based signcryption (IBSC). It is then recommended to hash
the recipient’s identity IDB together with the sender’s one in the evaluation of H ∈ G1 upon
the ciphertext’s construction in order for the notion of ciphertext strong unforgeability to be
satisfied in the monolithic security model (which is described in an extended version of this
paper). The resulting efficient IBSC is described in appendix C.

We must conceed that this method to achieve ciphertext unlinkabiltiy is not practical for
multi-recipient signature/encryption purposes (unless one is not concerned with the leakage
of the information that all components of the multi-recipient ciphertext hide the same signed
message) but, in such a scenario, one can easily use Boyen’s method (that consists of setting
x = H5(ê(dIDA

, QIDB
)) = H5(ê(QIDA

, dIDB
)) instead of using a hidden random seed τ) without

being concerned with the irreflexivity assumption (i.e. the assumption that a ciphertext’s sender
and receiver are always distinct entities) that causes a further degradation when dropped in [14]
(indeed the use of a decision BDH oracle helps in achieving a perfect simulation).

Interestingly, the use of a random seed to handle unlinkability concerns allows the sender
and the receiver not to depend on the same PKG since the hash value of the sender’s identity
is never paired with the receiver’s private key (and vice versa). As a result, if all users have
confidence in the public keys of all PKGs (this could be achieved by the use of PKG certificates),
a sender can be imagined to append a tag indicating which PKG he/she depends on to his/her
identity when completing the encryption operation. A tradeoff between identity and certificateful
public key cryptography is then obtained: digital certificates are again necessary but their use
is much more moderate than in traditional PKIs (since only PKGs public keys need to be
certified) and, for large scale applications requiring both privacy and authentication, this is much
more flexible than a sequential composition of hierarchical ID-based signature and encryption.
What is more, this new certificate-and-identity based signature/encryption solution preserves
the anonymity of ciphertexts unlike hierarchical schemes (recall that, in Gentry and Silverberg’s
ones, a ciphertext’s length reveals the depth of its intended recipient in the hierarchy).

The security proofs presented in the next section only consider the case of a single authority
but they can be easily adapted to the multi-authority setting.

4.3 Security analysis of SOK-IBSE

We refer to appendix A for a recall of the security models of chosen-ciphertext security and
signature non-repudiation defined by Boyen ([14]) for IBSE schemes. The following theorems,
for which the proofs can be found in appendix, claim that SOK-IBSE satisfies these two notions
with tighter security bounds than the original IBSE. It can also be shown to satisfy the other
notions of ciphertext authentication and ciphertext anonymity that are also formally described
in [14].

Theorem 3. In the random oracle model, if a chosen-ciphertext adversary A has an advantage
ǫ against SOK-IBSE when running in a time t, making qHi

queries to the random oracles Hi

(i = 1, . . . , 4), qSE signature/encryption queries and qDV decryption/verification queries, then
there exists a PPT algorithm B solving the GBDH problem with an advantage

ǫ′ ≥
1

e(qE + 1)

(

ǫ− qSE
qSE + qH2

2k
− qDV (

qH4

2ℓ
+

1

2k
)
)
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within a time t′ ≤ t + (qH1
+ qE + 3qSE)tm + qDV texp + 2qDV tp + qH3

O(1) where e denotes the
base of the natural logarithm, tp is the time to perform a pairing evaluation, tm is the cost of a
multiplication in G1 and texp is the time to perform an exponentiation in G2.

Proof. given in appendix. �

We observe that the reduction is much tighter than for any previously known identity based
authenticated encryption scheme: for common security parameters k = ℓ = 160, if we allow
qHi
≤ 260 for i = 1, . . . , 4 and qSE, qDV ≤ 230, we have ǫ′ ≥ 2−32ǫ− 2−100. Unfortunately, unlike

what happens with SOK-IBS, an optimal reduction cannot be obtained from a previously studied
problem and we still have a loss of 230 in the security bound. A solution to this problem would be
to apply the Katz-Wang trick as explained in section 3.2 and to compute an additional pairing
at encryption (see [32] for more details) but this would unfortunately increase the ciphertext
size and the computational overhead.

The next theorem claims the strong existential unforgeability of SOK-IBSE.

Theorem 4. In the random oracle model, if an adversary F has an advantage ǫ against the
strong existential unforgeabiltiy (ESUF-IBSC-CMCA) of SOK-IBSE when running in a time t,
making qHi

queries to the random oracles Hi (i = 1, . . . , 4), qSE signature/encryption queries
and qDV decryption/verification queries, then there exists an algorithm B to solve the GBDH
problem in a time with an advantage

ǫ′ ≥
1

e(qE + 1)

(

ǫ− qSE
qSE + qH2

2k
− qDV (

qH4

2ℓ
+

1

2k
)− 2−ℓ − 2−k − 2n0+n1+δ−2λ

)

within a time t′ ≤ t + (qH1
+ qE + 3qSE)tm + qDV texp + 2(qDV + 1)tp + qH3

O(1) where e is the
base of the natural logarithm, tp is the time to perform a pairing evaluation, tm denotes the cost
of a multiplication in G1 and texp is the time to perform an exponentiation in G2.

Proof. given in appendix �

5 Conclusions

In this paper, we showed that optimal security reductions are also achievable for identity based
signatures. We showed that the variant of the Sakai-Ogishi-Kasahara IBS proposed by Bellare
et al. ([5]) has an improved but still loose reduction. Our proof does not make use of the forking
lemma ([46],[47]) and bypasses the BNN framework ([5]) to directly achieve a reduction from
scratch.

Interestingly, Bellare et al.’s modified SOK-IBS, that can be viewed as derived from the
Gentry-Silverberg second hierarchical scheme, has an efficiency comparable to other existing
IBS proposals such as those described in [16] or [30] and much stronger security guarantees
for similar security parameters since it can be made essentially as secure as the Diffie-Hellman
problem and an even tighter reduction exists w.r.t. the one more CDH problem. We think that,
beside their interest for identity based cryptography, these results can also find application to
key evolving signatures that were shown to be somewhat related to IBS schemes ([22],[51]).

As an application of our results, we showed that SOK-IBS could be turned into an identity
based signature encryption (IBSE) similar to Boyen’s one ([14]) but providing much better
security guarantees or into a strongly secure monolithic identity based signcryption scheme
(IBSC) depicted in appendix C. The obtained reductions are not optimal for SOK-IBSE: recall
that we still have a loss of qE in our bound, where qE is a bound on the number of corrupted
identities. Nevertheless, we think it is a real breakthrough in terms of provable security for
identity based cryptosystems. Finally, one of our scheme’s advantage over the first IBSE is that
it can be scaled up into a multi-authority signature encryption protocol.
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Appendix

A. Formal security model for identity based signature/encryption (IBSE)

In [14], Boyen gives formal definitions for the security of two-layer identity based signature/encryption
schemes. For the chosen-ciphertext security of his scheme, he considers ”insider attacks” (i.e.
attacks led by attackers that learn the private key of the challenge ciphertext’s sender at some
moment of the game). We recall this definition as well as the one of ”encrypted signature non-
repudiation”. These definitions can be skipped by the reader who is familiar with the model of
[14].

Definition 4. An identity based signature/encryption scheme (IBSE) is said to be adaptively

chosen-ciphertext secure (IND-IBSE-CCA) if no PPT adversary has a non-negligeable ad-
vantage in the following game.

1. The challenger runs the Setup algorithm on input of a security parameter k and sends the
domain-wide parameters to the cca-adversary A.

2. In a find stage, A starts to adaptively query the following oracles:
- Key extraction oracle: given an identity ID, it returns the extracted private key associated

to it.
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- Signature/encryption oracle: given a sender and a receiver’s identities IDS, IDR and a
plaintext M , it returns an encryption under the receiver’s identity IDR of the message
M signed in the name of the sender IDS.

- Decryption/verification oracle: given a receiver’s identity IDR and a ciphertext σ, it
generates the private key dIDR

= Keygen(IDR) and returns either a triple (M,s, IDS)
made of a valid message-signature pair (M,s) for the sender’s identity IDS or the ⊥
symbol if σ does not decrypt into a valid message-signature pair.

3. After the find stage, A produces two equal-length plaintexts M0,M1 ∈M and two identities
ID∗

S and ID∗
R on which it wishes to be challenged. It may not have corrupted the private

key corresponding to ID∗
R in the find stage.

4. The challenger picks a bit b R← {0, 1} and computes C = Sign/Encrypt(Mb, dID∗

S
, ID∗

R)
which is sent to A.

5. In the guess stage, A asks new queries as in the find stage. This time, it may not issue a
key extraction request on ID∗

R and it cannot submit C to the decryption/verification oracle
for the target identity ID∗

R.
6. Finally, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Adv(A) :=
∣

∣2× Pr[b′ = b]− 1
∣

∣.

In the following definition, the forger is allowed to corrupt the receiver’s identity IDR. The
motivation for this is to really achieve the non-repudiation property: a dishonest recipient cannot
send a ciphertext to himself on behalf of Alice and to try and convince a third party that Alice
was the author of the signed-message embedded in it.

Definition 5. An identity based signature/encryption scheme (IBSE) is said to be strongly

existentially signature-unforgeable against adaptive chosen messages and ciphertexts at-
tacks (ESUF-IBSE-CMCA) if no PPT adversary can succeed in the following game with a
non-negligible advantage:

1. the challenger runs the Setup algorithm on input k and gives the system-wide public key to
the adversary F .

2. F starts querying the oracles as in the previous definition.
3. Finally, F outputs a pair (σ∗, ID∗

R) and wins the game if Decrypt/verify(σ∗, d∗IDR
) (i.e.

the result of the decryption/verification oracle on the ciphertext σ∗ under the private key
associated to ID∗

R) is a valid message-signature (M∗, s∗) pair for an uncorrupted sender’s
identity ID∗

S such that no signature/encrytion query involved M∗, ID∗
S and some receiver

ID′
R (possibly different from ID∗

R) and resulted in a ciphertext σ′ whose decryption under
the private key dID′

R
is the alleged forgery (M∗, s∗, ID∗

S).

The adversary’s advantage is its probability of victory.

This notion is called ”strong unforgeability” because the forger is allowed to produce a ci-
phertext decrypting into a triple (M∗, s∗, ID∗

S) such that a signature/encryption query in-
volved M∗, ID∗

S and ID′
R 6= ID∗

R but resulted into a ciphertext σ′ such that the oracle call
Decrypt/verify(σ′, dID′

R
) produces a triple (M∗, s, IDS) 6= (M∗, s∗, ID∗

S).

B. Security proofs for SOK-IBSE

B.1 Proof of theorem 3

Let (P, aP, bP, cP ) be a random instance of the GBDH problem taken as input by a simulator
B and let ODBDH

P (.) be an oracle deciding within a short and constant time whether a given
tuple (a′P, b′P, c′P, h′) ∈ G

3
1 ×G2 is a correct BDH one or not. We show how B uses a chosen-

ciphertext attacker A against SOK-IBSE to solve this problem. To achieve this, it first pre-
computes α = ê(cP, bP ) and β = ê(cP, P ) and initializes A under the system-wide public key
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Ppub = cP ∈ G1. In order to coherently answer A’s requests, B maintains lists Li to keep track
of answers given to queries on random oracles Hi (for i = 1, . . . , 4). Without loss of generality,
we may assume that any key extraction query, signature/encryption or decryption/verification
query involving an identity is preceded by a H1 query on the same identity. We also assume
that A never submits to the decryption/verification oracle a ciphertext-identity pair obtained
from the signature/encryption oracle. Indeed, since the decryption/verification algorithm is
deterministic, B would be able to answer such a request by simply keeping in memory the
plaintexts and the random coins used when simulating any signature/encryption query.

In the simulation, the H3 oracle needs to be simulated in a somewhat special fashion. Namely,
an auxiliary list L′

3 is also used and the decision oracle ODBDH
P (.) is called upon each H3 query.

In more details,

- H1 queries are dealt with as in the proof of theorem 1. Namely, when an identity ID is
submitted to the H1 oracle, B flips a coin T taking the value 0 with probability ξ and the
value 1 with probability 1− ξ where ξ = qE/(qE + 1). B then picks u R← Z

∗
q before returning

uP ∈ G1 if T = 0 and u(bP ) ∈ G1 otherwise. The entry (ID, u, T ) is then inserted into the
list L1.

- H2 queries on input (IDA,i,Mi, Ui): B returns a randomly sampled element h2,i
R← G1.

The whole tuple (IDA,i,Mi, Ui, h2,i) is then inserted into L2. B must of course answer the
previously stored h2,i if an entry of this form was already present in L2.

- H3 queries on an input (Xi, Qi, gi) ∈ G
2

1 × G2: if the list L3 already contains an entry
(Xi, Qi, gi, h3,i, .), then B returns h3,i. Otherwise, B checks whether L′

3 contains an entry of
the form (Xi, Qi, ., h3,i) such that, when queried on (P,Ppub,Xi, Qi, gi), the oracle ODBDH

P (.)
returns 1. If it does, B returns h3,i and stores the pair (Xi, Qi, gi, h3,i, 1) in L3. If no entry of

the above form is found in L′
3, a random h3,i

R← {0, 1}ℓ is returned to A and the information
(Xi, Qi, gi, h3,i, ti), where ti = ODBDH

P (P,Ppub,Xi, Qi, gi), is stored in L3.
- H4 and H5 queries are handled in the usual fashion by returning a randomly sampled element

in the appropriate range ({0, 1}λ or Zq) and updating the corresponding list.

The other kinds of queries are tackled with as follows:

- Key extraction query: when A asks for the private key associated to an identity ID, B looks
at the corresponding entry (ID, u, T ) that must exist in L1. If T = 1, it aborts and outputs
”failure”. Otherwise, it returns uPpub = u(cP ) ∈ G1.

- Signature/encryption query: for a plaintext M and a pair of identities (IDA, IDB) submitted
to the signature/encryption oracle, B first recovers QIDA

= H1(IDA) and QIDB
= H1(IDB)

from L1. It then picks t, ν R← Zq, computes U = νPpub, V = tPpub before setting the
hash value H2(IDA,M,U) to ν−1(tP − QIDA

). It aborts and outputs ”failure” if H2 is
already defined at the point (IDA,M,U). Otherwise, it runs the H5 simulation algorithm

to obtain x = H5(IDA, IDB , τ) ∈ Zq, for a random τ R← {0, 1}δ , and then calculates
X = xU ∈ G1. At this point, depending on whether L3 contains an entry (X,QIDB

, g, h3, 1),
two cases can be distinguished: if it does, B sets W = V ⊕ h3 for the corresponding h3 and
returns the ciphertext 〈X,W, EH4(V )(M ||IDA||τ)〉 where the value of H4 is obtained through
simulation. If no entry of the aforementioned form exists in L3, B picks a random string
h3

R← {0, 1}ℓ and stores the tuple (X,QIDB
, ., h3) in L′

3 before defining W = V ⊕h3 ∈ {0, 1}
ℓ,

κ = H4(V ) ∈ {0, 1}λ (obtained by simulation) and Z = Eκ(M ||IDA||τ). The ciphertext
〈X,W,Z〉 is finally returned to A.

- Decryption/verification query: for a ciphertext σ = 〈X,W,Z〉 and a recipient’s identity
IDB submitted to the decryption/verification oracle, B starts by recovering the correspond-
ing QIDB

from the list L1. With overwhelming probability, a unique entry (X,QIDB
, g, h3, 1)

must exist in L3, for some h3 ∈ {0, 1}
ℓ, if σ was correctly formed. B then looks into

L4 for the unique entry (V, h4), for some string V ∈ {0, 1}ℓ representing a point on the
curve, such that h3 = V ⊕ W ∈ {0, 1}ℓ (h3 being the output of H3(X,QIDB

, g) where
ODBDH

P (P,Ppub,X,QIDB
, g) = 1). The only possible pair of such entries in L3 and L4
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is further examined as follows: if (M ||IDA||τ) = Dh4
(Z) is such that the hash value

h2 = H2(M, IDA, U) ∈ G1 satisfies ê(P, V ) = ê(Ppub, QIDA
)ê(U, h2), where U = x−1X ∈ G1

for an x = H5(IDA, IDB , τ) obtained by H5 simulation (note that this condition can be
checked by only computing two pairings and one exponentiation since ê(Ppub, QIDA

) can
be obtained by raising α or β to a known power), B returns the message-identity pair
(M ||IDA) together with the appended signature (U, V ). The ⊥ symbol is returned if the
appropriate H3 query was not asked or if no entry of L4 satisfies the aforementioned condi-
tions (i.e. V ⊕W matches the right output of H3 and ê(P, V ) = ê(Ppub, QIDA

)ê(U, h2) with
h2 = H2(Dh4

(Z), IDB , U)).

Once A decides that the find stage is over, it outputs a pair (M0,M1) of plaintexts that will be
ignored by the simulator B and an uncorrupted recipient’s identity IDB . If T = 0 for the corre-
sponding entry (IDB , u, T ) of L1, then B fails. Otherwise, it sends the challenge σ = 〈aP,W,Z〉,

where W R← {0, 1}ℓ and Z R← {0, 1}n0+n1+δ are random strings, to A. The latter will be unable to

realize that σ is not an actual ciphertext unless it asks the hash value H3(aP, u(bP ), ê(P,P )(abc)u)
during the simulation. This would provide B with the solution to the GBDH problem since it
knows u and the ODBDH

P oracle can decide whether a candidate (P, aP, u(bP ), cP, g) is a valid
BDH tuple or not.

During the guess stage, A keeps on issuing new queries that are handled as in the find stage
but, this time, for any query (aP, u(bP ), g) with g ∈ G2 made to the H3 oracle, B submits
(P, aP, u(bP ), cP, g) to the ODBDH

P (.) oracle. If the latter returns 1, B then stops and outputs

g1/u ∈ G2 as a result. Since A is assumed to have a non-negligible advantage ǫ in the IND-
IDSC-CCA game, one can easily show (as done in many papers in the literature, see [12] for
example) that it must ask the hash value H3(aP, u(bP ), ê(P,P )(abc)u) with a probability at least
ǫ during the game provided the simulation is perfect.

The simulation can be readily checked to only be non perfect if a ciphertext is wrongly
rejected by the simulator B or if the latter reaches a state of ”failure” during the game. The
probability for the second undesirable event to occur because of a ’bad’ key extraction query or
because of a ’bad’ chosen target identity IDB is bounded by 1/e(qE + 1). On the other hand,
B’s probability to fail in answering a signature/encryption query because of a hash collison is
not greater than qSE(qSE + qH2

)/2k.
Finally, the probability to incorrectly reject a ciphertext at some moment of the simulation

is bounded by qDV (qH4
/2ℓ + 1/2k). Indeed, for a given decryption/verification query on a pair

(σ = 〈X,W,Z〉, IDB), the ⊥ symbol is returned if no hash query H3(X,QID, g) was made for
the only valid BDH tuple (P,Ppub,X,QIDB

, g). In this case, if this query is subsequently asked

by B, there is a probability of qH4
/2ℓ that the answer hits W ⊕ Vi (0 ≤ i ≤ qH4

) for some
entry (Vi, h4,i) of L4. On the other hand, if the appropriate H3(X,QIDB

, g) = W ⊕V was asked
for some (V, h4) in L4 but the corresponding H2(IDA,M,U), with (M ||IDA||τ) = Dh4

(Z) and
U = x−1X for x = H5(IDA, IDB , τ), was not asked by B, the probability for this query to
be subsequently answered in the only way that renders σ valid from A’s view is at most 1/2k

(indeed, there is a single value of h2 ∈ G1 such that ê(P, V )ê(Ppub, QIDA
)−1 = ê(U, h2)).

The bound on B’s running time easily comes by noting that each H1 or key extraction query
requires one scalar multiplication in G1 while answering a signature/encryption query implies
to perform two multiplications and one computation of the type aP + bQ ∈ G1. Finally, decryp-
tion/verification queries all require two pairing evaluations as well as an exponentiation in G2

and every H3 query implies a query to the ODBDH
P oracle that takes a constant time.

�

B.2 Proof of theorem 4

Let (P, aP, bP, cP ) be a random instance of the GBDH problem given as input to B and let
ODBDH

P (.) be an oracle solving DBDH instances in short and constant time. The simulator B
runs the forger F on the system-wide key Ppub = cP ∈ G1 and answers all oracles requests
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exactly as in the proof of IND-IBSE-CCA security: the ODBDH
P (.) oracle is again necessary to

handle decryption/verification and H3 queries (this is why we have a reduction from the GBDH
problem instead of the CDH or the one more CDH ones).

At the end of the game, the forger F halts and comes up with a ciphertext σ∗ = 〈X,W,Z〉
and a possibly corrupted receiver’s identity ID∗

B . If ID∗
B is an identity for which B defined

H1(ID∗
B) as a known power of P , then the private key dID∗

B
is computable for B that can then

open σ∗ into a valid message-signature pair (M∗, s∗), with s∗ = 〈U, V 〉, for some uncorrupted
sender’s identity ID∗

A. If H1(ID∗
B) was rather defined as a power of bP , B can extract the

embedded message-signature pair (M∗, s∗) as well as the sender’s identity ID∗
A by submitting

(σ∗, ID∗
B) to its own decryption/verification oracle. As we will see, it can successfully extract

the clear triple (M∗, s∗, ID∗
A) with overwhelming probability (i.e. if the appropriate H2, H3 and

H4 queries were made by F regarding the intended forgery). If the hash value QID∗

A
was defined

to be u∗(bP ) ∈ G1 for a known u∗ ∈ Z∗
q in L1, then B can extract the solution abP to the CDH

problem (P, aP, bP ) as in the proofs of strong unforgeability of SOK-IBS (and then obtain the
solution to the easier initial GBDH problem). If the hash value QID∗

A
was rather defined to be

uP ∈ G1, then B ends and fails because the produced forgery is useless.
Let us now assess F ’s probability to successfully output an encrypted existential forgery

for an uncorrupted identity without having asked the appropriate queries to H2, H3 and H4.
First, its probability to create a pair 〈U∗, V ∗〉 such that ê(P, V ∗) = ê(Ppub, QID∗

A
)ê(U∗,H∗)

with H∗ = H2(ID∗
A,M∗, U∗) is at most 1/2k if it never asks the latter hash value. On the

other hand, given a valid fake signature 〈U∗, V ∗〉 on M∗ for an identity ID∗
A, its probability to

properly encrypt it into a valid ciphertext 〈X∗,W ∗, Z∗〉 intended to a recipient ID∗
B without

querying H3 on the input (X∗, QID∗

B
, g) such that (P,Ppub,X

∗, QID∗

R
, g) is a valid BDH tuple

is not greater than 1/2ℓ. Finally, if the appropriate H2 and H3 queries are made but no entry
of L4 allows the decryption/verification simulator to complete the extraction, F cannot turn a
given fake signature 〈U∗, V ∗〉 for a pair (M∗, ID∗

A) into a correctly encrypted message-signature

pair 〈X∗,W ∗, Z∗〉 with a probability greater than 2n0+n1−2λ.

�

C. The monolithic SOK-IBSC scheme

The protocol consists of the four algorithms on the figure below. As done in [14] and [36], we
assume the receiver of a ciphertext has no a priori knowledge about the sender’s identity that
is recovered during the de-signcryption operation.
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Setup: given a security parameter k, the PKG chooses groups G1 and G2 of prime order q > 2k,
a generator P of G1, a randomly chosen master key s ∈ Z

∗

q and the associated public key
Ppub = sP . It also chooses a symmetric encryption scheme (E ,D) and cryptographic hash
functions H1, H2 : {0, 1}n0+2n1+ℓ → G

∗

1, H3 : G
2

1 × G2 → {0, 1}ℓ and H4 : G1 → {0, 1}λ

where ℓ denotes the length of the representation of G1’s elements, λ is the length of symmetric
keys for (E ,D) while n0 and n1 are respectively the size of plaintexts and the bitlength of
identifiers. The system-wide parameters are now

params = (G1, G2, ê, P, Ppub, ℓ, n0, n1, λ, E ,D, H1, H2, H3, H4).

Keygen: as in SOK-IBS, given an identity ID, the PKG computes QID = H1(ID) ∈ G1 and
the associated private key dID = sQID ∈ G1 that is securely sent to the user.

Signcrypt: given a message, the parameters params, the sender’s private key dIDA
and the

recipient’s public key QIDB
= H1(IDB), this algorithm

1. picks r
R← Zq and computes U = rP ∈ G1 and then H = H2(M, IDA, IDB, U) ∈ G1,

2. sets V = dIDA
+ rH ∈ G1

3. hides the signature W = V ⊕H3(U, QIDB
, gr) ∈ {0, 1}ℓ where g = ê(Ppub, QIDB

),
4. encrypts the message and the sender’s identity with a hash value of V together with the

other components of the ciphertext as a symmetric key: Z = Eκ(M ||IDA) ∈ {0, 1}n0+n1

with κ = H4(V ) ∈ {0, 1}λ.

The ciphertext is σ = 〈U,W, Z〉 ∈ G1 × {0, 1}ℓ+n0+n1

De-Signcrypt: upon receiving a ciphertext σ = 〈U, W, Z〉 and given the recipient’s private key
dIDB

, this algorithm

1. first checks that U is a point on the curve on which G1 is defined and rejects σ if it is not,
2. computes V = W ⊕H3(U, QIDB

, g′) ∈ {0, 1}ℓ where g′ = ê(U, dIDB
) and rejects σ if V is

not a point on the curve,
3. computes (M ||IDA) = Dκ(Z) where κ = H4(V ) ∈ {0, 1}λ and then QIDA

= H1(IDA) ∈
G1.

4. The message-signature pair (M, 〈U,V 〉) is accepted for the sender’s identity IDA if and
only if ê(P, V ) = ê(Ppub, QIDA

)ê(U, H) where H = H2(M,IDA, IDB, U) ∈ G1.

Fig. 3. The SOK-IBSC signcryption scheme
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