
Efficient and Provably Secure Trapdoor-free
Group Signature Schemes from Bilinear Pairings

Lan Nguyen and Rei Safavi-Naini

School of Information Technology and Computer Science
University of Wollongong, Wollongong 2522, Australia

{ldn01,rei}@uow.edu.au
1

Abstract. Group signature schemes are cryptographic systems that
provide revocable anonymity for signers. We propose a group signature
scheme with constant-size public key and signature length that does not
require trapdoor. So system parameters can be shared by multiple groups
belonging to different organizations. The scheme is provably secure in the
formal model recently proposed by Bellare, Shi and Zhang (BSZ04), us-
ing random oracle model, Decisional Bilinear Diffie-Hellman and Strong
Diffie-Hellman assumptions. We give a more efficient variant scheme and
prove its security in a formal model which is a modification of BSZ04
model and has a weaker anonymity requirement. Both schemes are very
efficient and the sizes of signatures are approximately one half and one
third, respectively, of the sizes of the well-known ACJT00 scheme. We
will show that the schemes can be used to construct a traceable signa-
ture scheme and identity escrow schemes. They can also be extended to
provide membership revocation.
Keywords: Group signatures, traceable signatures, membership revo-
cation, identity escrow, privacy and anonymity, cryptographic protocols.

1 Introduction

Group signature schemes, introduced by Chaum and Van Heyst [15], allow a
group member to sign a message on behalf of the group without revealing his
identity and without allowing the message to be linkable to other signed messages
that are verifiable with the same public key. Participants in a group signature
scheme are a set of group members and a group manager. The role of the group
manager is to register new users by issuing membership certificates that contain
registration details, and in case of dispute about a signed message, revoking
anonymity of the signed message by ‘opening’ the signature. In some schemes
the functions of the group manager can be split between two managers: an issuer
and an opener. This is a desirable property that allows distribution of trust. It
is required that no collusion of the issuer and the opener can frame a group
member.
1 An extended abstract of this paper is in Advances in Cryptology - Asiacrypt 2004,

Springer-Verlag.

2 Lan Nguyen and Rei Safavi-Naini

Group signatures are among the most important cryptographic primitives
for providing privacy and have been used for applications such as anonymous
credentials [2], identity escrow [24], voting and bidding [1], and electronic cash
[26]. Group signature schemes are the non-interactive counterpart of identity
escrow systems [23].

In early group signature schemes [10, 15, 16] the size of the public key and the
signature grew with the size of the group and so the schemes were impractical
for large groups. Schemes with fixed size group public key and signature length
have been first proposed in [14] and later extended in [13, 1, 2]. In Crypto 2000,
Ateniese et al. (ACJT00) [1] proposed an efficient group signature scheme with
very short length and low computation cost. This scheme is also the only scheme
that has been proved to satisfy the informal list of security requirements of group
signature schemes.

Ateniese and de Medeiros (AdM03) proposed an efficient group signature
scheme [2] that is ‘without trapdoor’ in the sense that none of parties in the
system including the group manager need to know the trapdoor. That is the
system trapdoor is only used during the initialisation and to generate system
parameters. The advantage of this property is that the same trapdoor informa-
tion can be used to initiate different groups. The importance and usefulness of
this property in real-world applications, for example when the group signature
scheme is used as a building block of an anonymous credential system among
a number of organizations that need to communicate and transfer information
about users while protecting their privacy, have been outlined in [2]. A drawback
of AdM03 scheme is that it has a single group manager who is responsible for
registration of users and opening of signatures, and it is not possible to separate
the two functionalities. In AdM03 scheme, the group manager stores the certifi-
cate (r, s) of each member. The signature of a group member contains elements
χ and E1 satisfying the equation E1 = χr, and so, to revoke a signature, the
group manager (or any party with the knowledge of the certificates) can try all
certificates to find the one satisfying the equation. This is an computationally
expensive process. The security proof (corrected version) is for the informal list
of security requirements, and is given in the generic model [3].

Security of a group signature scheme has been traditionally proved by show-
ing that it satisfies a list of informally defined requirements. Bellare et al. [4]
gave a formal security model for group signature schemes for static groups
and reduced the number of requirements to three, correctness, full anonymity
and full traceability, hence simplifying security goals and analysis. This model
(referred to as BMW03 model) was later extended [5] to (partially) dynamic
groups with four security requirements (Correctness, Anonymity, Traceability
and Non-frameability). Kiayias et al. [22] independently proposed a second for-
mal model (KY04 model) for group signature with four requirements, Correct-
ness, Anonymity, Misidentification and Framing, that shares many features of
BSZ04 model. Both models use various oracles including an Open oracle that
takes a signed message and reveals the identity of the signer. The ACJT00
scheme although satisfies the conventional list of requirements but cannot be

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 3

proved secure in either of the two formal models mainly because of the inclusion
of the Open oracle in these models. Kiayias et al. [22] proposed an extension
(KY04 scheme) of ACJT00 scheme that is proved secure in their formal model.

A new direction in constructing group signature schemes is to use bilinear
pairings to shorten the lengths of the signature and key. Boneh et al. [8] proposed
a short group signature scheme (BBS04) based on the Strong Diffie-Hellman as-
sumption and a new assumption called the Decisional Linear assumption. The
scheme is provably secure in a variant of BMW03 model where the Opening
oracle is not available and the Non-frameability property is not required, in
comparison with the BSZ04 model. They also showed how to construct an ex-
tension, which provides Non-frameability (exculpability). Based on the LRSW
assumption [25], Camenisch and Lysyanskaya [12] proposed a group signature
scheme (CL04) derived from a signature scheme which allows an efficient zero-
knowledge proof of the knowledge of a signature on a committed message, and
used it to construct an efficient anonymous credential system.

Our contribution
In this paper, we first propose a new efficient group signature scheme with a num-
ber of attractive properties and prove its security in the BSZ04 model under the
Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman assumptions, using
random oracle model. We then give an efficient variant of this scheme and prove
its security in the reduced version of BSZ04 model. The only difference between
the original BSZ04 model and the reduced version is in modelling anonymity
property in the reduced version, the adversary does not have access to the Open
oracle. This is a plausible model for all cases that the opener is a highly trusted
entity and cannot be accessed by the adversary.

The main difference between our two schemes is that in the first scheme the
opener uses an encryption scheme that is indistinguishably secure against adap-
tively chosen ciphertext attack, whereas in the variant scheme the encryption
scheme is indistinguishably secure against adaptively chosen plaintext attack.
The difference between the anonymity requirement and the weak anonymity re-
quirement is similar to the difference in modelling chosen ciphertext attack and
chosen plaintext attack in encryption schemes. That is in the anonymity and
weak-anonymity security requirement games, the identity is encrypted and ac-
cess to the open oracle is similar to access to the decryption oracle. As the open
oracle is not used in the informal list of security requirements, using the same
arguments as in [4, 5], we can conclude that the weak anonymity, traceability
and non-frameability properties are sufficient to capture the conventional list
of requirements for group signature schemes. We also show that the ACJT00
scheme provides weak anonymity and under Strong RSA and Decisional Diffie-
Hellman assumptions in the random oracle model. We note that the relationship
between ACJT00 and KY04 is the same as the one between our two schemes.

In the following we outline attractive features of our schemes in comparison
with previous schemes and point out the relationship between them. Both pro-
posed schemes have fixed lengths for group public key and signature, and so can
be used for large size groups. The schemes are trapdoor-free. All previous efficient

4 Lan Nguyen and Rei Safavi-Naini

constant-size group signature schemes, except for the BBS04 and CL04 schemes,
are based on the Strong RSA assumption which allows many user keys be issued
using the same composite modulus. Mitsunari, Sakai and Kasahara [27] intro-
duced a new computational assumption that was later strengthened by Boneh
and Boyen [6] and referred to as q-Strong Diffie-Hellman (q-SDH) assumption.
Our proposed group signature schemes are based on the q-SDH assumption and
are without a trap-door.

The only other trap-door free scheme is the AdM03 scheme, which uses a
trapdoor in the initialisation of the system and assumes that the initialising
party “safely forgets” the trapdoor. An advantage of our schemes over AdM03
scheme is that they allow separation of issuer and the opener, hence distribution
of trust.

Using elliptic curve cryptography in our schemes results in shorter lengths
for signatures and keys. For example, for a comparable level of security as the
ACJT00 scheme with 1024 bit composite modulus, our schemes require elliptic
curve groups of order 170 bit prime, resulting in the sizes of signatures in our
two schemes to be one third and one half, respectively, of the size in ACJT00
scheme. For higher security levels this ratio will be smaller.

Finally in our schemes, the interactive protocol underlying the signature
scheme achieves perfect zero-knowledge without any computational assumption
whereas in the ACJT00 and KY04 schemes, the corresponding protocols achieve
statistical zero-knowledge under the Strong RSA assumption. We note that all
these zero-knowledge proofs including ours, are in honest verifier model. Also,
our schemes achieve higher level of unconditional security. That is, given a sig-
nature of our schemes, an adversary with unlimited power but without access
to the registration table of group members can compute only one part of the
signer’s private signing key. However in ACJT00 and KY04 schemes, an unlim-
ited adversary can construct the whole private signing key of the signer.

Related Primitives
Group signature schemes are closely related to a number of other cryptographic
primitives. They are known to be the non-interactive counterpart of identity
escrow systems. In an identity escrow system a user can prove his membership
of a group without revealing his identity and anonymity is revocable if a dispute
occurs. Most identity escrow systems can be converted into a group signature
scheme using the Fiat-Shamir heuristic [17]. Recently, it was shown [21] that
traitor tracing schemes can be converted into a group signature scheme [21].
Kiayias et. al. [20] also introduced the Traceable Signature primitive, which is
basically the Group Signature system with added properties allowing a variety
of levels for protecting user privacy.

The paper is organized as follows. The BSZ04 model of group signature is
given in section 2 and other related background is given in section 3. Section 4
describes our group signature scheme and its security proofs. Section 5 gives a
modification of BSZ04 formal model and a variant group signature scheme and
proves that the variant scheme and the ACJT00 scheme are secure in the mod-
ified model. Section 6 provides extensions of the proposed schemes to traceable

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 5

signatures, schemes with membership revocation and identity escrow and section
7 provides efficiency comparison with ACJT00 scheme. Section 8 concludes the
paper.

2 The Model of Group Signature Schemes

We use the BSZ04 formal model. We first describe participants and procedures in
this model, then describe oracles accessible to the adversaries and finally define
formal security requirements.

2.1 Participants and Procedures

A group signature scheme consists of a trusted party for initial set-up, two group
managers (the issuer and the opener), and users with unique identities i ∈ N
(the set of positive integers). Each user can join the group and become a group
member. The scheme is specified as a tuple GS = (GKg, UKg, Join, Iss, GSig,
GVf, Open, Judge) of polynomial-time algorithms described as follows.

– GKg: In the setup phase where the trusted party runs the group-key genera-
tion algorithm GKg that takes as input a security parameter 1l and outputs
a triple of keys (gpk, ik, ok), where ik is given to the issuer, and ok is given to
the opener. The group public key gpk for signature verification is published.

– UKg: A user i runs the user-key generation algorithm UKg that takes as
input a security parameter 1l and outputs a personal public and private key
pair (upk[i], usk[i]). The table upk is published.

– Join, Iss: These interactive algorithms are performed by a user, who has a
personal public and private key pair, and the issuer as two sides of a group-
joining protocol. Each party takes as input an incoming message (unless the
party is initiating the protocol) and a current state, and outputs an outgoing
message, an updated state, and a decision which is one of accept, reject, cont.
The communication is assumed to be secure (i.e., private and authenticated),
and the user i is assumed to send the first message. If the issuer accepts, it
makes an entry reg[i] for i, in a registration table reg, and fills this entry
with a new membership certificate, which is the final state output by Iss. If
i accepts, it stores the final state output by Join as its membership secret
key gsk[i].

– GSig: A group member i runs the group signing algorithm GSig that takes
as input the user’s signing key gsk[i] and a message m ∈ {0, 1}∗ and returns
a signature on m.

– GVf: Anyone can run the deterministic group signature verification algorithm
GVf on inputs gpk, a message m, and a candidate signature ω for m, to
obtain a bit. The signature ω is valid for m with respect to gpk if this bit is
1 (accept).

– Open: The opener, has read-access to the registration table reg, and can run
the deterministic opening algorithm Open that takes as input the opening

6 Lan Nguyen and Rei Safavi-Naini

key ok, the registration table reg, a message m, and a valid signature ω of
m under gpk and returns a pair (i, τ), where i is a non-negative integer. If
i ≥ 1, the algorithm is claiming that the group member i produced ω and
τ is a proof of this claim, and if i = 0, it is claiming that no group member
produced ω.

– Judge: Anyone can run the deterministic judge algorithm Judge that takes
as input the group public key gpk, an integer j ≥ 1, the public key upk[j] of
the user j (this is an empty string if this user has no public key), a message
m, a valid signature ω of m, and a proof-string τ . It aims to check that τ is
a proof that j produced ω. Note that the judge will base its verification on
the public key of j.

2.2 The Oracles

The security requirements are formulated via experiments in which an adversary
capabilities are modelled by providing it access to certain oracles. It is assumed
that each experiment has run GKg on input 1l to obtain keys gpk, ik, ok that
are used by the oracles, and all entries of the tables upk, reg are assumed ini-
tially to be empty strings. It is also assumed that the experiment maintains the
following sets which are initially empty and manipulated by the oracles: a set
HU of honest users; a set CU of corrupted users; a set GSet of message-signature
pairs. Different experiments will provide the adversary with different subsets
of the following set of oracles. The oracles are: add user AddU(·), corrupt user
CrptU(·, ·), send to issuer SndToI(·, ·), send to user SndToU(·, ·), user secret keys
USK(·), read registration table RReg(·), write registration table WReg(·, ·), sign-
ing oracle GSig(·, ·), challenge oracle Ch(b, ·, ·, ·) and open oracle Open(·, ·). Their
descriptions are provided in Appendix A.

2.3 Security Requirements

The security requirements are modelled by experiments. We briefly recall the
requirements and formulas of experiments and refer the reader to [5] for further
detail. A group signature scheme must satisfy the following security require-
ments:

– Correctness: In this experiment the adversary is not computationally re-
stricted and has access to AddU(·) and RReg(·) oracles. The adversary returns
a message and the identity of an honest group member and the group mem-
ber produces a signature of the message. The correctness condition holds if
the probability that one of the following steps fails is 0: given the message
and signature, GVf algorithm accepts the signature; Open algorithm returns
the correct group member; and Judge algorithm accepts the proof returned
by Open algorithm.

– Anonymity: The anonymity experiment involves a polynomial-time adver-
sary, who knows the issuing key ik and has access to Ch(b, ·, ·, ·), Open(·, ·),

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 7

SndToI(·, ·), SndToU(·, ·), WReg(·, ·), USK(·) and CrptU(·, ·) oracles. The ad-
versary provides the Ch(b, ·, ·, ·) oracle identities of two honest members and
a message and is returned a signature of the message generated by one of the
members (according to bit b). The anonymity condition holds if the proba-
bility that the adversary can correctly guess the bit b is negligible. Note that
the adversary can not send the challenge signature to Open(·, ·) oracle and
the opener is uncorrupt.

– Traceability: The traceability experiment involves a polynomial-time adver-
sary, who knows the opening key ok and has access to AddU(·), RReg(·),
SndToI(·, ·), USK(·) and CrptU(·, ·) oracles. The adversary returns a message
and a signature. The traceability condition holds if the probability that all
of the following steps succeed is negligible: given the message and signa-
ture, GVf algorithm accepts the signature; Open algorithm can not return
the identity of the signer, or Open algorithm can return the identity of the
signer but Judge algorithm rejects the proof returned by Open algorithm.
Note that the issuer is uncorrupt and the opener is at worst partially cor-
rupted, that means he performs correctly but his secret key is available to
the adversary.

– Non-frameability: The non-frameability experiment involves a polynomial-
time adversary, who knows the opening key ok and the issuing key ik, and
has access to SndToU(·, ·), WReg(·, ·), GSig(·, ·), USK(·) and CrptU(·, ·) ora-
cles. The adversary returns a message, a signature, an identity of an honest
group member and a proof of an opening claim. The non-frameability con-
dition holds if the probability that the following steps succeed is negligible:
GVf algorithm accepts the signature; and Judge algorithm accepts the proof
returned by the adversary, who claims that the honest group member is the
signer. Note that the adversary can not send the challenge member identity
and the challenge message to USK(·) and GSig(·, ·).

3 Preliminaries

In this section, we first briefly describe groups from bilinear pairing, their prop-
erties and then present two bilinear pairing versions for El Gamal public key sys-
tem (El GamalBP1 and El GamalBP2), one provides Indistinguishability against
adaptive Chosen Plaintext Attack (IND-CPA) and the other provides Indistin-
guishability against adaptive Chosen Ciphertext Attack (IND-CCA).

Appendix B presents the well-known Forking Lemma [30], the random oracle
model and complexity assumptions that are used to prove security of our group
signature schemes. Descriptions of Public-key Encryption and Digital Signature
Primitives and their security requirements, including IND-CPA and IND-CCA
for Public-key Encryption schemes and Unforgeability against Chosen Message
Attack (UNF-CMA) for Digital Signature schemes, can be founded in [19].

8 Lan Nguyen and Rei Safavi-Naini

3.1 Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1 and P2, respectively, both
with order p, a prime, and GM be a cyclic multiplicative group with the same
order. Suppose there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1. Let
e : G1 ×G2 → GM be a bilinear pairing with the following properties:

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P ∈ G1, Q ∈ G2, a, b ∈ Zp

2. Non-degeneracy: e(P1, P2) 6= 1
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P ∈ G1, Q ∈ G2

For simplicity, hereafter, we setG1 = G2 and P1 = P2 but our group signature
schemes can be easily modified for the case when G1 6= G2. For a group G of
prime order, hereafter, we denote the set G∗ = G\{O} where O is the identity
element of the group.

We define a Bilinear Pairing Instance Generator as a Probabilistic Polynomial
Time (PPT) algorithm G that takes as input a security parameter 1l and returns
a uniformly random tuple t = (p,G1,GM , e, P) of bilinear pairing parameters,
including a prime number p of size l, a cyclic additive group G1 of order p, a
multiplicative group GM of order p, a bilinear map e : G1×G1 → GM and a gen-
erator P of G1. Hereafter, unless stated otherwise, we assume all computations
of elements in Zp are in modulo p.

3.2 Bilinear Pairing versions of El Gamal public key system

El GamalBP1

Key generation: Let p,G1,GM , e be bilinear pairing parameters, as defined above,
and G be a generator of G1. Suppose x ∈R Z∗p and Θ = e(G,G)x. The public
key pk = (G,Θ) and the secret key is sk = x.
Encryption: Plaintext ∆ ∈ GM can be encrypted by choosing an t ∈R Z∗p and
computing the ciphertext (E, Λ) = (tG,∆Θt).
Decryption: Ciphertext (E, Λ) can be decrypted as ∆ = Λ/e(E,G)x.
Security: The security of El GamalBP1 system is stated in Theorem 1. The first
statement can be proved exactly the same way as the proof for the El Gamal
encryption scheme [33], except that it is based on DDHV assumption (see Ap-
pendix B) instead of DDH assumption. The second statement can be seen as a
result of the first statement and Theorem 10.

Theorem 1. El GamalBP1 encryption scheme is IND-CPA if and only if DDHV
assumption holds. El GamalBP1 encryption scheme is IND-CPA if DBDH as-
sumption holds.

El GamalBP2

We next present an extension, El GamalBP2, which is IND-CCA in the random
oracle model. This is the bilinear pairing version of the scheme presented and
proved by Fouque and Pointcheval [18], that uses the twin-encryption paradigm
of [28] and a simulation-sound proof of equality of plaintexts.

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 9

Key generation: Let p,G1,GM , e be bilinear pairing parameters, as defined above,
and G be a generator of G1. Suppose xa, xb ∈R Z∗p and Θa = e(G,G)xa and Θb =
e(G,G)xb . The public key pk = (G,Θa, Θb) and the secret key is sk = (xa, xb).
Choose a hash function H1 : {0, 1}∗ → Zp (a random oracle).
Encryption: Plaintext ∆ ∈ GM can be encrypted by choosing ta, tb ∈R Z∗p
and computing (Ea, Λa) = (taG,∆Θta

a), (Eb, Λb) = (tbG,∆Θtb

b) and a non-
interactive zero-knowledge proof ς = (c, ρa, ρb) of equality of plaintexts between
(Ea, Λa) and (Eb, Λb). The proof ς can be computed by choosing wa, wb ∈R Zp

and computing c = H1(G||Θa||Θb||Ea||Λa||Eb||Λb||waG||wbG||Θwa
a Θwb

b), ρa =
wa − tac and ρb = wb + tbc. The ciphertext is (Ea, Λa, Eb, Λb, ς).
Decryption: Given a ciphertext (Ea, Λa, Eb, Λb, ς), first check the validity of ς by
verifying

c
?= H1(G||Θa||Θb||Ea||Λa||Eb||Λb||ρaG + cEa||ρbG− cEb||Θρa

a Θρb

b (Λa/Λb)c)

then compute the plaintext ∆ = Λa/e(Ea, G)xa = Λb/e(Eb, G)xb .
Security: The security of El GamalBP2 system is stated in Theorem 2. The proof
of the first statement is the same as the proof in [18], except that it is based on
DDHV assumption instead of DDH assumption. The second statement can be
seen as a result of the first statement and Theorem 10.

Theorem 2. El GamalBP2 encryption scheme is IND-CCA if DDHV assump-
tion holds, in the random oracle model. El GamalBP2 encryption scheme is IND-
CCA if DBDH assumption holds, in the random oracle model.

4 The Group Signature scheme

4.1 Overview

Our group signature scheme is built upon two ordinary signature schemes. The
first one is used in the Join, Iss protocol for the issuer to generate a signature
(ai, Si) for each xi, which is randomly generated by both a member and the
issuer, but known only to the member. The second ordinary signature scheme
is used in the GSig algorithm as the non-interactive version of a zero-knowledge
protocol, that proves the signer’s knowledge of (ai, Si) and xi. The security of
the two signature schemes underlies the security of the group signature scheme.

Our group signature scheme is constructed in cyclic groups with bilinear
mappings. For simplicity, we present the scheme when the groups G1 and G2 are
the same, however, it can be very easily modified for the general case when G1 6=
G2. The users do not perform any pairing operation when signing, but pairing
operation play an important role in the verification algorithm GVf. Intuitively,
bilinear pairings allow a party, given A,B, C, D ∈ G1, to prove that logAB =
logCD without knowing logAB or logAC. This is not possible in cyclic groups
without bilinear pairings and where the DDH assumption holds.

10 Lan Nguyen and Rei Safavi-Naini

4.2 Descriptions

Our group signature scheme uses a trusted party in the initial set-up, two group
managers (the issuer and the opener), and users, each with a unique identity
i ∈ N, that may become group members. The scheme is a tuple GS1 =(GKg,
UKg, Join, Iss, GSig, GVf, Open, Judge) of polynomial-time algorithms which are
defined as follows. We assume that the group size and the number of queries
asked by the adversary are polynomially-bounded by the security parameter l.

GKg: Suppose l is a security parameter and the Bilinear Pairing Instance Gen-
erator G generates a tuple of bilinear pairing parameters t = (p,G1,GM , e, P) ←
G(1l), that is also the publicly shared parameters. Choose a hash function
H2 : {0, 1}∗ → Zp, which is assumed to be a random oracle in the security
proofs.
Choose P0, G, H ∈R G1, x, x′a, x′b ∈R Z∗p and compute Ppub = xP , Θa =
e(G,G)x′a and Θb = e(G,G)x′b . The group public key is gpk =(P, P0, Ppub,H, G,
Θa, Θb), the issuing key is ik = x, and the opening key is ok = (x′a, x′b).

UKg: This algorithm generates keys that provide authenticity for messages sent
by the user in the (Join, Iss) protocol. This algorithm is the key generation algo-
rithm KS of any digital signature scheme (KS , Sign, V er) that is unforgeable
against chosen message attacks (UNF-CMA). A user i runs the UKg algorithm
that takes as input a security parameter 1l and outputs a personal public and
private signature key pair (upk[i], usk[i]). Public Key Infrastructure (PKI) can
be used here. Although any UNF-CMA signature scheme can be used, but using
schemes, whose security is based on DBDH or SDH assumptions, will reduce
the underlying assumptions of our group signature scheme. One example of such
scheme is in [6].

Join, Iss: In this protocol, a user i and the issuer first jointly generate a random
value xi ∈ Z∗p whose value is only known by the user. The issuer then generates
(ai, Si) for the user so that e(aiP + Ppub, Si) = e(P, xiP + P0). The user uses
usk[i] to sign his messages in the protocol. Note that the formal model assumes
the communication to be private and authenticated. We also assume that the
communication is protected from replay attacks. The protocol is as follows.

1. user i −→ issuer: I = yP + rH, where y, r ∈R Z∗p.
2. user i ←− issuer: u, v ∈R Z∗p.
3. The user computes xi = uy + v, Pi = xiP .
4. user i −→ issuer: Pi and a proof of knowledge of (xi, r

′) such that Pi = xiP
and vP + uI − Pi = r′H (see [13] for this proof).

5. The issuer verifies the proof, then chooses ai ∈R Z∗p different from all corre-
sponding elements previously issued, and computes Si = 1

ai+x (Pi + P0).
6. user i ←− issuer: ai, Si.
7. The user computes ∆i = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP +

P0), and stores the private signing key gsk[i] = (xi, ai, Si,∆i). Note that
only the user knows xi. The issuer also computes ∆i and makes an entry in
the table reg: reg[i] = (i,∆i, 〈Join, Iss〉 transcript).

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 11

GSig: A group signature of a user i shows his knowledge of (ai, Si) and a secret
xi such that: e(aiP + Ppub, Si) = e(P, xiP + P0). The signature does not reveal
any information about his knowledge to anyone, except for the opener, who can
compute ∆i by decrypting an encryption of that value. The algorithm for a user
i to sign a message m ∈ {0, 1}∗ is as follows.

1. Encrypt ∆i by El GamalBP2 with public key (G, Θa, Θb) as (Ea = tG,Λa =
∆iΘ

t
a, Eb, Λb, ς).

2. Perform the non-interactive version of a protocol, which we call the Signing
protocol, as follows.
(a) Generate r1, ..., r3, k0, ..., k5 ∈R Z∗p and compute:

U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + P0); X = r2U + r3H;
T1 = k1P + k2Ppub + k0H; T2 = k3P + k2P0; T3 = k4U + k0H;
T4 = k5G− k4Ea; Π = Θk5

a Λ−k4
a

(b) Compute c = H2(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X
||T1||...||T4||Π||m)

(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;
s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t

3. Output the signature (c, s0, ..., s5, U, V, W,X, Ea, Λa, Eb, Λb, ς) for message
m.

GVf : The verification algorithm for m, (c, s0, ..., s5, U, V, W,X,Ea, Λa, Eb, Λb, ς)
outputs accept if and only if verifying the proof ς outputs accept and the following
two equations hold.

e(U, V) = e(P, W) (1)
c = H2(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X||

s1P + s2Ppub + s0H − cX||s3P + s2P0 − cW ||
s4U + s0H − cX||s5G− s4Ea||Θs5

a Λ−s4
a e(P, cV)||m) (2)

Open: To open m and its valid signature (c, s0, ..., s5, U, V, W,X, Ea, Λa, Eb, Λb,
ς) to find the signer, the opener performs the following steps.

1. Use GVf algorithm to check the signature’s validity. If the algorithm rejects,
return (0, ε), where ε denotes an empty string.

2. Compute ∆i = Λae(Ea, G)−x′a and find the corresponding entry i in the
table reg. If no entry is found, return (0, ε).

3. Return reg[i] and a non-interactive zero-knowledge proof % of knowledge of
x′a so that Θa = e(G,G)x′a and Λa/∆i = e(Ea, G)x′a (see [13] for this proof).

Judge: On an output by the Open algorithm for a message m and its signature
ω, the Judge algorithm is performed as follows:

1. If Open algorithm outputs (0, ε), run GVf algorithm on m, ω. If GVf rejects,
return accept; otherwise, return reject.

12 Lan Nguyen and Rei Safavi-Naini

2. If Open algorithm outputs (reg[i], %), return reject if one of the following
happens: (i) on m,ω, GVf algorithm rejects; (ii) verification of the proof
% rejects; (iii) the 〈Join, Iss〉 transcript is invalid with regard to upk[i]; (iv)
∆i 6= e(P, Si) where Si is extracted from the 〈Join, Iss〉 transcript. Otherwise,
return accept.

Remarks:

– Our scheme is trapdoor-free. This improves efficiency and manageability, and
various groups can share the same initial set-up p,G1,GM , e, P, P0, G, H.

– In most previous schemes, including the ACJT00 and KY04 schemes, the
protocol underlying the GSig algorithm is statistically zero-knowledge (un-
der the Strong RSA assumption). Our Signing protocol is perfectly zero-
knowledge and does not rely on any complexity assumption. This indicates
a higher level of unconditional security: from a signature, an adversary with
unlimited power (but without access to the reg table) can compute only a
part of the signer’s registration information (Si), whereas, in the ACJT00
and KY04 schemes, the adversary can find all parts of the signer’s private
signing key.

– In the GVf algorithm, the verifier can check Equations (1) and (2) concur-
rently.

– Threshold Open is also possible by using a Threshold Encryption scheme
similar to the scheme in [18].

4.3 Security Proofs

Security of the group signature scheme GS1 is stated in Theorems 3, 4, 5 and
6. Proofs of Theorems 4, 5 and 6 are provided in Appendix C. Theorem 3 can
easily be proved by checking equations.

Theorem 3. The group signature scheme GS1 provides Correctness.

Theorem 4. The group signature scheme GS1 provides Anonymity in the ran-
dom oracle model if the Decisional Bilinear Diffie-Hellman assumption holds.

Theorem 5. The group signature scheme GS1 provides Traceability in the ran-
dom oracle model if the q-Strong Diffie-Hellman assumption holds, where q is
the upper bound of the group size.

Theorem 6. The group signature scheme GS1 provides Non-frameability in the
random oracle model if the Discrete Logarithm assumption holds over the group
G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

5 Variations

In this section, we propose Weak Anonymity requirement as an alternative for
Anonymity requirement. We then present a second group signature scheme, GS2,
and prove that it provides Weak Anonymity, Traceability and Non-Frameability.
We also prove that the ACJT00 scheme provides the same properties. We also
discuss the possibility that the ACJT00 and GS2 schemes provide Anonymity.

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 13

5.1 Weak Anonymity requirement

We introduce this security requirement to account for a class of group signa-
ture schemes, including ACJT00 scheme, which can not be proved to achieve
Anonymity requirement.

Weak Anonymity requirement is defined exactly the same as Anonymity re-
quirement, except that the adversary does not have access to the Open(·, ·) ora-
cle. In practice, when the opener is assumed to be uncorrupted as in Anonymity
requirement, it could be hard for the adversary to have access to the Open or-
acle. As Open oracle is not used in the conventional list of requirements, the
same argument as in [4, 5] shows that Weak anonymity, Traceability and Non-
frameability are sufficient to imply the conventional list of requirements. For a
group signature scheme GS, an adversary A, a bit b ∈ {0, 1} and a security
parameter l ∈ N , the experiment for Weak Anonymity is as follows.

Experiment Expweak.anon-b
GS,A (l) // b ∈ {0, 1}

(gpk, ik, ok) ← GKg(1l); CU ← ∅; HU ← ∅; GSet ← ∅
d ← A(gpk, ik : Ch(b, ·, ·, ·), SndToI(·, ·), SndToU(·, ·), WReg(·, ·), USK(·),

CrptU(·, ·))
Return d

The group signature scheme GS provides Weak Anonymity if the following func-
tion Advweak.anon

GS,A (l) is negligible.

Advweak.anon
GS,A (l) = |Pr[Expweak.anon-1

GS,A (l) = 1]− Pr[Expweak.anon-0
GS,A (l) = 1]|

5.2 A Variant Group Signature scheme, GS2

The scheme GS2 is the same as GS1, except that in the signature, ∆i is encrypted
by El GamalBP1 encryption scheme instead of El GamalBP2. So in GKg, x′b and
Θb are not generated and in GSig, ∆i is encrypted by El GamalBP1 public key
(G,Θa) as (Ea = tG,Λa = ∆iΘ

t
a). So there is no Eb, Λb or ς in the signature

and in the executions of GSig, GVf, Open and Judge algorithms. Security of GS2
is stated in Theorem 7, whose proof is shown in Appendix C.

Theorem 7. GS2 provides Correctness. GS2 provides Weak Anonymity if the
Decisional Bilinear Diffie-Hellman assumption holds. GS2 provides Traceability
in the random oracle model if the q-Strong Diffie-Hellman assumption holds,
where q is the upper bound of the group size. GS2 provides Non-frameability in
the random oracle model if the Discrete Logarithm assumption holds over the
group G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

5.3 Do ACJT00 and GS2 schemes provide Anonymity?

We first state the security of the ACJT00 scheme in Theorem 8. The ACJT00
scheme refers to the scheme proposed in [1], plus some simple extensions to
accommodate the Judge algorithm (defining the UKg algorithm as in our scheme,

14 Lan Nguyen and Rei Safavi-Naini

using usk[i] to sign messages in the Join, Iss protocol, and verifying signatures
in the Open and Judge algorithms). The methodology of the proof for Theorem
8 is very similar to the proof of Theorem 7, and the exact details of each step
can be extracted from the proofs in [22].

Theorem 8. The ACJT00 scheme provides Correctness; Weak Anonymity if
the DDH-Compo-KF assumption holds; Traceability in the random oracle model
if the Strong RSA assumption holds; Non-frameability in the random oracle
model if the Discrete Logarithm assumption holds over the quadratic residues
group of a product of two known large primes, and the digital signature scheme
for UKg is UNF-CMA. (See [22] for assumptions used in this theorem).

It is an open question if the ACJT00 and GS2 schemes provide Anonymity,
in line with the open problem whether a combination of an El Gamal encryption
(IND-CPA) and a Schnorr proof of knowledge of the plaintext can provide IND-
CCA. This combination has been proved to provide IND-CCA in the random
oracle model, but the proof has required either another very strong assumption
[33] or is in generic model [31]. In ACJT00 and GS2 signatures, the identity-
bound information is encrypted by variations of El Gamal encryption and the
other part of the signatures proves knowledge of the information. The Open
oracle plays a similar role as the Decryption oracle in the model of IND-CCA.

5.4 Variants based on the DDH assumption

We can build variants of GS1 and GS2, whose security is based on the DDH as-
sumption over the group GM instead of the DBDH (DDHV) assumption. Specif-
ically, ∆i will be encrypted by the normal El Gamal encryption scheme or the
twin-paradigm extension of El Gamal encryption scheme (proposed in [18]). The
Open algorithm in these variant schemes requires one less pairing operation than
in GS1 and GS2.

We can actually provide a group signature with 4 options, where the users,
the issuer and the opener use the same keys for all options. The first two options
are GS1 and GS2, offering smaller signature size and more efficient signing and
verification. The last two options are the variant schemes based on the normal
DDH assumption, with more efficient opening.

6 Extensions

6.1 A Traceable Signature scheme

We extend GS2 to be a traceable signature scheme T S =(Setup, Join, Sign, Verify,
Open, Reveal, Trace, Claim, Claim-Verify) with similar advantages over the only
other traceable signature scheme [20]. We provide background about Traceable
signatures in Appendix A.

Setup: This is the same as GKg for GS2, but the group public key also includes
a Q ∈R Z∗p. The group public key is gpk = (P, P0, Ppub, Q, H,G, Θa), the issuing

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 15

key is ik = x, and the opening key is ok = x′a. Choose a hash function H3 :
{0, 1}∗ → Zp (a random oracle).

Join: This protocol is very similar to the Join, Iss protocol in Section 4.2 and
described as follows:

1. user i −→ GM: I = yP + rH, where y, r ∈R Z∗p.
2. user i ←− GM: u, v ∈R Z∗p.
3. The user computes xi = uy + v, Pi = xiP .
4. user i −→ GM: Pi and a proof of knowledge of (xi, r

′) such that Pi = xiP
and vP + uI − Pi = r′H (see [13] for this proof).

5. The GM verifies the proof, then chooses ai, x̄i ∈R Z∗p so that ai is differ-
ent from all corresponding elements previously issued, and computes Si =

1
ai+x (Pi + x̄iQ + P0).

6. user i ←− GM: ai, Si, x̄i.
7. The user computes ∆i = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP +

x̄iQ+P0), and stores the private signing key gsk[i] = (xi, x̄i, ai, Si,∆i). Note
that only the user knows xi. The GM also computes ∆i and stores it with
the protocol’s transcript.

Sign: The algorithm for an user i to sign a message m ∈ {0, 1}∗ is as follows.

1. Compute Ea = tG, Λa = ∆iΘ
t
a, Υ1 = Θx̄ir

a , Υ2 = Θr
a, Υ3 = Θxir

′
a and

Υ4 = Θr′
a , where t, r, r′ ∈R Z∗p.

2. Generate r1, ..., r3, k0, ..., k6 ∈R Z∗p and compute
(a) U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + x̄iQ + P0); X = r2U +

r3H; T1 = k1P +k2Ppub+k0H; T2 = k3P +k6Q+k2P0; T3 = k4U +k0H;
T4 = k5G− k4Ea; Π = Θk5

a Λ−k4
a ; Ψ1 = Υ−k2

1 Υ k6
2 ; Ψ2 = Υ−k2

3 Υ k3
4

(b) c = H3(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X||T1||...||T4

||Π||Ψ1||Ψ2||m)
(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;

s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t; s6 = k6 + cr1r2x̄i

3. Output the signature (c, s0, ..., s6, U, V, W,X,Ea, Λa, Υ1, Υ2, Υ3, Υ4) for mes-
sage m.

Verify: The verification algorithm for m, (c, s0, ..., s6, U, V,W,X, Ea, Λa, Υ1, Υ2,
Υ3, Υ4) outputs accept if and only if the following two equations hold: (i) e(U, V) =
e(P, W) and (ii) c = H3(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X
||s1P +s2Ppub +s0H−cX||s3P +s6Q+s2P0−cW ||s4U +s0H−cX||s5G−s4Ea

||Θs5
a Λ−s4

a e(P, cV)||Υ−s2
1 Υ s6

2 ||Υ−s2
3 Υ s3

4 ||m)

Open: To open m and its valid signature (c, s0, ..., s5, U, V,W,X, Ea, Λa, Υ1, Υ2,
Υ3, Υ4) to find the signer, the GM computes ∆i = Λae(Ea, G)−x′a and finds the
corresponding entry i in the table of stored Join transcripts. The GM returns i
and a non-interactive zero-knowledge proof % of knowledge of x′a so that Θa =
e(G,G)x′a and Λa/∆i = e(Ea, G)x′a (see [13] for this proof).

16 Lan Nguyen and Rei Safavi-Naini

Reveal and Trace: Given the Join transcript of user i, the GM recovers the
tracing trapdoor tracei = x̄i. Given tracei and a message-signature pair, a des-
ignated party recovers Υ1 and Υ2 and checks if Υ1 = Υ x̄i

2 . If the equation holds,
the tracer concludes that user i has produced the signature.

Claim and Claim-Verify: Given a message-signature pair, a user i can claim
that he is the signer by recovering Υ3 and Υ4 and producing a non-interactive
proof of knowledge of the discrete-log of Υ3 base Υ4. Any party can run Claim-
Verify by verifying the signature and the proof.

Security The security of T S is stated in Theorem 9. The proof of this theo-
rem uses techniques similar to those in [20] and arguments similar to those in
Appendix C.

Theorem 9. In the random oracle model, T S provides (i) security against
misidentification attacks based on the q-SDH and the DDH assumptions, where
q is the upper bound of the group size; (ii) security against anonymity attacks
based on the DBDH and DDH assumptions; (iii) security against framing attacks
based on the DL assumption.

6.2 Group Signature schemes with Membership Revocation

As shown in [29], our group signature schemes can be extended to support effi-
cient membership revocation. That means the issuer can remove members from
the group and the cost of removing does not depend on the size of the group. It
is also possible to use the accumulator scheme in [11] to provide membership re-
vocation. More specifically, at step 5 of the Join, Iss protocol, the issuer generates
a prime a′i in the range of values accumulatable by the dynamic accumulator, so
that the value ai = a′i mod p (ai ∈ Z∗p) is different from all corresponding ele-
ments previously issued. The value to be accumulated is a′i. Security of the new
schemes also depends on Strong-RSA assumption that underlies the security of
the dynamic accumulator.

6.3 Identity Escrow schemes

Identity escrow schemes can be derived directly from the group signature schemes.
Specifically, the GSig and GVf algorithms are replaced by the corresponding in-
teractive protocol between a group member and a verifier, where the random
challenge c is generated by the verifier instead of being computed from the hash
function. Note that in this protocol, verification can start right after the first
round by checking e(U, V) = e(P,W) and it can be done concurrent with the
next rounds.

7 Efficiency

The sizes of signatures and keys in our schemes are much shorter than those used
in the Strong-RSA-based schemes at a similar level of security. This difference

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 17

grows when higher level of security is required. In this section, we compare sizes
in our new group signature schemes with those in ACJT00 scheme.

We assume that our scheme is implemented using an elliptic curve or hy-
perelliptic curve over a finite field. p is a 170-bit prime, G1 is a subgroup of an
elliptic curve group or a Jacobian of a hyperelliptic curve over a finite field of
order p. GM is a subgroup of a finite field of size approximately 21024. A possible
choice for these parameters can be found in [9], where G1 is derived from the
curve E/GF (3ι) defined by y2 = x3−x+1. We assume that system parameters
in ACJT00 scheme are ε = 1.1, lp = 512, k = 160, λ1 = 838, λ2 = 600, γ1 = 1102
and γ2 = 840. We summarize the result in Table 1.

Table 1. Comparison of sizes (in Bytes)

Signature gpk gsk ik ok Security

ACJT00 1087 768 370 128 128 Weak Anonymity

GS1 597 363 192 22 44 Anonymity

GS2 384 235 192 22 22 Weak Anonymity

8 Conclusions

We proposed new group signature schemes from bilinear pairings and proved
their security in BSZ04 formal model. The new schemes have shorter sizes for
signatures and keys, are trapdoor-free and provide higher level of unconditional
security for signers. We also extended the schemes to achieve membership revo-
cation and constructed a traceable signature scheme and identification escrow
systems.

Acknowledgements. Authors thank anonymous referees of Asiacrypt 2004 for
constructive comments and Fangguo Zhang for helpful discussions.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. CRYPTO 2000, Springer-Verlag, LNCS
1880, pp. 255-270.

2. G. Ateniese, and B. de Medeiros. Efficient Group Signatures without Trapdoors.
ASIACRYPT 2003, Springer-Verlag, LNCS 2894, pp. 246-268.

3. G. Ateniese, and B. de Medeiros. Security of a Nyberg-Rueppel Signature Variant.
Cryptology ePrint Archive, Report 2004/093, http://eprint.iacr.org/.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. EUROCRYPT 2003, Springer-Verlag, LNCS 2656, pp. 614-629.

18 Lan Nguyen and Rei Safavi-Naini

5. M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. Cryptology ePrint Archive: Report 2004/077.

6. D. Boneh, and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer-Verlag, LNCS 3027, pp. 56-73.

7. D. Boneh, and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp.
223-238.

8. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. CRYPT0 2004,
Springer-Verlag, LNCS, to appear.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
ASIACRYPT 2001, Springer-Verlag, LNCS 2248, pp.514-532.

10. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT 1997,
Springer-Verlag, LNCS 1233, pp. 465-479.

11. J. Camenisch, and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. CRYPTO 2002, Springer-Verlag,
LNCS 2442, pp. 61-76.

12. J. Camenisch, and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. CRYPTO 2004, Springer-Verlag, LNCS, to appear.

13. J. Camenisch, and M. Michels. A group signature scheme with improved efficiency.
ASIACRYPT 1998, Springer-Verlag, LNCS 1514.

14. J. Camenisch, and M. Stadler. Efficient group signature schemes for large groups.
CRYPTO 1997, Springer-Verlag, LNCS 1296.

15. D. Chaum, and E. van Heyst. Group signatures. CRYPTO 1991, LNCS 547,
Springer-Verlag.

16. L. Chen, and T. P. Pedersen. New group signature schemes. EUROCRYPT 1994,
Springer-Verlag, LNCS 950, pp. 171-181.

17. A. Fiat, and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. CRYPTO 1986, Springer-Verlag, LNCS 263, pp. 186-194.

18. P. Fouque and D. Pointcheval, Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks, Asiacrypt 2001. LNCS 2248.

19. O. Goldreich. Foundations of Cryptography, Basic Applications. Cambridge Uni-
versity Press 2004.

20. A. Kiayias, Y. Tsiounis and M. Yung. Traceable Signatures. EUROCRYPT 2004,
Springer-Verlag, LNCS 3027, pp. 571-589.

21. A. Kiayias, and Moti Yung. Extracting Group Signatures from Traitor Tracing
Schemes. EUROCRYPT 2003, Springer-Verlag, LNCS 2656, pp. 630-648.

22. A. Kiayias, and Moti Yung. Group Signatures: Provable Security, Efficient Con-
structions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archive: Re-
port 2004/076.

23. J. Killian, and E. Petrank. Identity escrow. CRYPTO 1998, Springer-Verlag, LNCS
1642, pp. 169-185.

24. S. Kim, S. Park, and D. Won. Convertible group signatures. ASIACRYPT 1996,
Springer-Verlag, LNCS 1163, pp. 311-321.

25. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. SAC 1999,
Springer-Verlag, LNCS 1758.

26. M. Michels. Comments on some group signature schemes. TR-96-3-D, Department
of Computer Science, University of Technology, Chemnitz-Zwickau, Nov. 1996.

27. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Vol.
E85-A, No.2, pp.481-484, 2002.

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 19

28. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen
Ciphertexts Attacks. In Proc. of the 22nd STOC, pages 427-437. ACM Press. New
York, 1990.

29. L. Nguyen. Accumulators from Bilinear Pairings and Applications. CT-RSA 2005,
Springer-Verlag, LNCS, to appear.

30. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361396, March 2000.

31. P. Schnorr and M. Jakobsson. Security of signed El Gamal encryption. ASI-
ACRYPT 2000, pages 73-89, LNCS 1976, 2000.

32. V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear
map. DRM Workshop 2003.

33. Y. Tsiounis and M. Yung. On the security of El Gamal based encryption. First
International Workshop on Practice and Theory in Public Key Cryptography -
PKC ’98, pages 117-134, LNCS 1431, 1998.

34. F. Zhang, R. Safavi-Naini and W. Susilo. An Efficient Signature Scheme from
Bilinear Pairings and Its Applications. PKC 2004, Springer-Verlag, LNCS 2947,
pp.277-290.

A Model

A.1 Oracles in the BSZ04 model

– AddU(·): The add user oracle with argument i ∈ N, an identity, allows the
adversary to add i to the group as an honest user. The oracle adds i to the
set HU of honest users, and picks a personal public and private key pair
(upk[i], usk[i]) for i. It then executes the group-joining protocol by running
Join (on behalf of i, initialized with gpk, upk[i], usk[i]) and Iss (on behalf of
the issuer, initialized with gpk, ik, i, upk[i]). When Iss accepts, its final state is
recorded as entry reg[i] in the registration table. When Join accepts, its final
state is recorded as the private signing key gsk[i] of i. The calling adversary
is returned upk[i], but not the transcript of the interaction generated by the
oracle.

– CrptU(·, ·): The corrupt user oracle with arguments i ∈ N, an identity, and a
string upk, allows the adversary to corrupt user i and set its personal public
key upk[i] to the value upk chosen by the adversary. The oracle initializes
the issuer’s state in anticipation of a group-joining protocol with i.

– SndToI(·, ·): Having corrupted user i, the adversary can use this send to issuer
oracle to engage in a group-joining protocol with the honest issuer, itself
playing the role of i and not necessarily executing the interactive algorithm
Join prescribed for an honest user. The adversary provides the oracle with
i and a message Min to be sent to the issuer. The oracle, which maintains
the issuer’s state (the latter having been initialized by an earlier call to
CrptU(i, ·)), computes a response as per Iss, returns the outgoing message
to the adversary, and sets entry reg[i] of the registration table to Iss’s final
state if the latter accepts.

– SndToU(·, ·): In some definitions we will want to consider an adversary that
has corrupted the issuer. The send to user oracle can be used by such an

20 Lan Nguyen and Rei Safavi-Naini

adversary to engage in a group-joining protocol with an honest user, itself
playing the role of the issuer and not necessarily executing the interactive
algorithm Iss prescribed for the honest issuer. The adversary provides the
oracle with i and a message Min to be sent to i. The oracle maintains the
state of user i, initializing it the first time it is called by choosing a personal
public and private key pair for i, computing a response as per Join, returning
the outgoing message to the adversary, and setting the private signing of i
to Join’s final state if the latter accepts.

– USK(·): The adversary can call this user secret keys oracle with argument the
identity i ∈ N of a user to expose both the private signing key gsk[i] and the
personal private key usk[i] of this user.

– RReg(·): The adversary can read the contents of entry i of the registration
table reg by calling the read registration table oracle with argument i ∈ N.

– WReg(·, ·): In some definitions we will allow the adversary to write/modify
the entry i of the registration table reg by calling the write registration table
oracle with argument i ∈ N.

– GSig(·, ·): This signing oracle enables the adversary to specify the identity i
of a user and a message m, and obtain the signature of m under the private
signing key gsk[i] of i, as long as i is an honest user whose private signing
key is defined.

– Ch(b, ·, ·, ·): A challenge oracle is provided to an adversary against anonymity,
and depends on a challenge bit b set by the experiment. The adversary
provides a pair i0, i1 of identities and a message m, and obtains the signature
of m under the private signing key of ib, as long as both i0, i1 are honest users
with defined private signing keys. The oracle records the message-signature
pair in GSet to ensure that the adversary does not later call the Open oracle
on it.

– Open(·, ·): The adversary can call this oracle with arguments a message m
and signature ω to obtain the output of the opening algorithm on m,ω,
computed under the opener’s key ok, as long as ω was not previously returned
in response to a query to Ch(b, ·, ·, ·).

A.2 Traceable Signatures

Kiayias et. al. [20] introduced Traceable Signature primitive, which is the Group
Signature system with two added properties: (i) User Tracing means given a
group member, all his signatures can be traced by a designated party, called
tracer, without using the Open procedure; (ii) Signature Claiming means a given
signature can be provably claimed by its signer. Compared with the traditional
group signature mechanism, traceable signatures allow a variety of privacy levels
for users. For example, tracing all signatures of a misbehaving user can be done
without opening signatures and revealing identities of other users in the system.
In [20], a traceable signature scheme was defined with a single group manager
(GM) and a tuple (Setup, Join, Sign, Verify, Open, Reveal, Trace, Claim, Claim-
Verify), where Setup, Join, Sign, Verify and Open are the same as GKg, (Join,

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 21

Iss), GSig, GVf and Open, respectively, in a Group Signature scheme. Other
procedures are:

– Reveal The GM runs this PPT algorithm that takes as input the Join tran-
script of a user i and outputs the tracing trapdoor tracei of that user.

– Trace The Tracer runs this deterministic polynomial time (DPT) algorithm
that takes as input the group public key, a message-signature pair and the
tracing trapdoor of a user, and checks if the signature was signed by the
user.

– Claim Any user, who wants to claim a signature of a message, runs this PPT
algorithm that takes the group public key, his private signing key and the
message-signature pair and outputs a proof that he produced the signature.

– Claim-Verify A party can run this DPT algorithm that takes the group public
key, a message-signature pair and a claim proof and checks if the proof holds.

Kiayias et al. [20] defined security of a traceable signature scheme in terms of
providing Correctness, and also security against three types of attacks: Misiden-
tification, Anonymity and Framing. Security against misidentification attacks is
similar to the Traceability requirement in BSZ04 model, but it also requires that
the adversary not be able to produce a signature that does not trace to any
of the users controlled by the adversary. Security against anonymity attacks is
similar to the Anonymity requirement in BSZ04 model, except that there is no
Open oracle for the adversary. Security against framing attacks is similar to the
Non-frameability requirement in BSZ04 model, but it requires that the adver-
sary not be able to produce a signature that traces to an honest user, or claim
a signature that was generated by an honest user.

B Preliminaries

B.1 Forking Lemma and Random Oracle model

The Forking Lemma, introduced by Pointcheval and Stern [30], is related to
the Random Oracle model. The Random Oracle model assumes an oracle that
generates a perfectly random value for each new query, and produces the same
answer for two identical queries. We can assume the oracle maintains a query-
answer table, which is initially empty. When receiving a query, the oracle first
looks up the table to find if the query has been asked before. If it has, the oracle
returns the answer in the table. Otherwise, it generates a new random value as
the answer and appends the new query-answer pair in the table.

The Forking Lemma was originally stated in a specific model of signature
schemes, where the signer needed to query the random oracle. Kiayias and Yung
generalized the lemma so that it can be used for different primitives [22]. We
present the General Forking Lemma as follows.

The General Forking Lemma Consider a PPT P, a PPT predicate Q and a
random oracle H with output range {0, 1}l. The predicate Q satisfies the property
Q(x) = 1 ⇒ (x = 〈ρ1, c, ρ2〉) ∧ (c = H(ρ1)). R is a process that given (t, c)

22 Lan Nguyen and Rei Safavi-Naini

appends or overwrites H’s table so that H(t) = c. P is allowed to ask queries
on H and on R. Moreover, it is assumed that P behaves in such a way so that
queries (t, c) submitted by P to R adhere to the following conditions:

– The component c is uniformly distributed over {0, 1}l.
– The component t follows a probability distribution so that the probability of

occurrence of a specific t0 is bounded by 2/2l.

Assume now that PH,R(param) returns output x such that Q(x) = 1 with non-
negligible probability ε ≥ 10(s + 1)(s + q)/2l, where q is the number of H-queries
performed by P, and s is the number of R-queries. Then, there exists a PPT P ′
so that if y ← P ′(param) it holds with probability 1/9 (i) y = (ρ1, c, ρ2, c

′, ρ′2),
(ii) Q(〈ρ1, c, ρ2〉) = 1, (iii) Q(〈ρ1, c

′, ρ′2〉) = 1, (iv) c 6= c′. The probabilities are
taken over the choices for H, the random coin tosses of P and the random choice
of the public-parameters param.

B.2 Complexity Assumptions

For a function f : N→ R+, if for every positive number α, there exists a positive
integer l0 such that for every integer l > l0, it holds that f(l) < l−α, then f
is said to be negligible. If there exists a positive number α0 such that for every
positive integer l, it holds that f(l) < lα0 , then f is said to be polynomial-bound.

The q-SDH assumption originates from a weaker assumption introduced by
Mitsunari et. al. [27] to construct traitor tracing schemes [32] and later used by
Zhang et al. [34] and Boneh et al. [6] to construct short signatures. It intuitively
means that there is no PPT algorithm that can compute a pair (c, 1

x+cP), where
c ∈ Zp, from a tuple (P, xP, . . . , xqP), where x ∈R Z∗p.
q-Strong Diffie-Hellman (q-SDH) Assumption. For every PPT algorithm

A, the following function Adv
q-SDH
A (l) is negligible.

Adv
q-SDH
A (l) = Pr[(A(t, P, xP, . . . , xqP) = (c,

1
x + c

P)) ∧ (c ∈ Zp)]

where t = (p,G1,GM , e, P) ← G(1l) and x ← Z∗p.
Intuitively, the DBDH assumption [7] states that there is no PPT algo-

rithm that can distinguish between a tuple (aP, bP, cP, e(P, P)abc) and a tuple
(aP, bP, cP, Γ), where Γ ∈R G∗M (i.e., chosen uniformly random from G∗M) and
a, b, c ∈R Z∗p. It is defined as follows.
Decisional Bilinear Diffie-Hellman (DBDH) Assumption. For every PPT
algorithm A, the following function AdvDBDH

A (l) is negligible.

AdvDBDH
A (l) = |Pr[A(t, aP, bP, cP, e(P, P)abc) = 1]−

Pr[A(t, aP, bP, cP, Γ) = 1]|

where t = (p,G1,GM , e, P) ← G(1l), Γ ← G∗M and a, b, c ← Z∗p.

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 23

It is easy to see that if the q-SDH assumption or the DBDH assumption holds,
then DL assumption (see Appendix B) holds. We also present a Decisional Diffie-
Hellman Variant assumption and show that it is weaker than DBDH assumption
in Theorem 10. This assumption is very similar to the DDH assumption, but it
works over groups G1 and GM .
Decisional Diffie-Hellman Variant (DDHV) Assumption. For every PPT
algorithm A, the following function AdvDDHV

A (l) is negligible.

AdvDDHV
A (l) = |Pr[A(t, P, rP, e(P, P)x, e(P, P)xr) = 1]−

Pr[A(t, P, rP, e(P, P)x, e(P, P)s) = 1]|
where t = (p,G1,GM , e, P) ← G(1l) and x, r, s ← Z∗p.

Theorem 10. If the DBDH assumption holds then the DDHV assumption also
holds.

Proof. To prove the theorem, we show that if a PPT algorithm A has non-
negligible AdvDDHV

A (l) (i.e., DDHV assumption does not hold), then we can
build an algorithm B that has non-negligible AdvDBDH

B (l) (i.e., DBDH assump-
tion does not hold). Suppose a, b, c ∈ Z∗p and Γ ∈ G∗M , we observe that if a and b
are uniformly distributed in Z∗p, then x = ab is also uniformly distributed in Z∗p
and if Γ is uniformly distributed in G∗M , then s is also uniformly distributed in
Z∗p, where Γ = e(P, P)s. So to distinguish between (aP, bP, cP, e(P, P)abc) and
(aP, bP, cP, Γ), the algorithm B can simply return the outputs by A when it
takes as input (t, P, cP, e(aP, bP), e(P, P)(ab)c) or (t, P, cP, e(aP, bP), Γ).

The Discrete Logarithm assumption in the group G1 is as follows.
Discrete Logarithm (DL) Assumption. For every PPT algorithm A, the
following function AdvDL

A (l) is negligible.

AdvDL
A (l) = Pr[A(t, Q, xQ) = x]

where t = (p,G1,GM , e, P) ← G(1l), Q ← G∗1 and x ← Z∗p.
We now present the Decisional Diffie-Hellman assumption in the group GM .

It can also be stated in many other cyclic groups of prime order, such as the
subgroup of order p of group Zp′ , where p and p′ are large primes and p | p′− 1.
Decisional Diffie-Hellman (DDH) Assumption. For every PPT algorithm
A, the following function AdvDDH

A (l) is negligible.

AdvDDH
A (l) = |Pr[A(t, Γ, Γ r, Γ x, Γ xr) = 1]− Pr[A(t, Γ, Γ r, Γ x, Γ s) = 1]|

where t = (p,G1,GM , e, P) ← G(1l), Γ ← G∗M and x, r, s ← Z∗p.

C Security Proofs for the Group Signature schemes GS1
and GS2

Before proving security of GS1 and GS2, we prove the Zero-knowledge property
of the Signing protocol in GSig algorithm and the Coalition-Resistance of GS1

24 Lan Nguyen and Rei Safavi-Naini

and GS2. In our definition, Coalition-Resistance intuitively means that a collud-
ing group of signers, with the knowledge of the opening key and access to some
oracles, should not be able to generate a new valid user private signing key. For
a group signature scheme GS, a PPT adversary A, a PPT predicate U that can
determine the validity of a user private signing key, and any security parameter
l ∈ N, the formula of the experiment for Coalition-Resistance is as follows.

Experiment Expcoal.re
GS,A,U (l)

(gpk, ik, ok) ← GKg(1l); CU ← ∅; HU ← ∅
gsk′ ← A(gpk, ok : CrptU(·, ·), SndToI(·, ·), AddU(·), RReg(·), USK(·))
If gsk′ ∈ {gsk[i]| i ∈ CU ∪ HU} then return 0 else return U(gpk, gsk′)

The group signature scheme GS provides Coalition-Resistance if the following
function Advcoal.re

GS,A,U (l) is negligible.

Advcoal.re
GS,A,U (l) = Pr[Expcoal.re

GS,A,U (l) = 1]

Lemma 1. The interactive Signing protocol underlying the GSig algorithm is a
(honest-verifier) perfect zero-knowledge proof of knowledge of (ai, Si), xi and t
such that e(aiP + Ppub, Si) = e(P, xiP + P0), Ea = tG and Λa = e(P, Si)Θt

a.

Proof. The proof for completeness is straightforward. The proofs of Soundness
and Zero-knowledge property are as follows.
Soundness: If the protocol accepts with non-negligible probability, we show that
the prover must have the knowledge of (ai, Si), xi and t satisfying the rela-
tions stated in the theorem. Suppose the protocol accepts for the same commit-
ment (U, V, W,X, T1, ..., T4,Π), two different pairs of challenges and responses
(c, s0, ...s5) and (c′, s′0, ..., s

′
5). Let fi = si−s′i

c−c′ , i = 0, ..., 5, then

X = f1P + f2Ppub + f0H; W = f3P + f2P0

X = f4U + f0H; Ea = f5f
−1
4 G; e(P, V) = Θ−f5

a Λf4
a

so U = f1f
−1
4 P + f2f

−1
4 Ppub.

Let ai = f1f
−1
2 , Si = f−1

4 V , xi = f3f
−1
2 , t = f5f

−1
4 , then Ea = tG, Λa =

e(P, Si)Θt
a and e(aiP +Ppub, Si) = e(P, xiP +P0), as e(U, V) = e(P,W). So the

prover have the knowledge of (ai, Si), xi and t satisfying the relations.
Zero-knowledge: The simulator chooses c, s0, ...s5 ∈R Zp, b ∈R Z∗p, X, V ∈R G1

and compute U = bP , W = bV , T1 = s1P + s2Ppub + s0H − cX, T2 = s3P +
s2P0− cW , T3 = s4U + s0H − cX, T4 = s5G− s4Ea and Π = Θs5

a Λ−s4
a e(P, cV).

We can see that the distribution of the simulation is the same as the distribution
of the real transcript.

Lemma 2. If the q-SDH assumption holds, then the group signature schemes
GS1 and GS2, whose group sizes are bounded by q, provide Coalition-Resistance,
where the predicate U is defined as:
U(〈P, P0, Ppub, ...〉, 〈xi, ai, Si,∆i〉) = 1 ⇔ e(aiP + Ppub, Si) = e(P, xiP + P0).

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 25

Proof. We prove the lemma for both GS1 and GS2. Suppose there is a PPT
adversary A that can break the Coalition-Resistance property of GS1 or GS2
with respect to the predicate U defined above. Let the set of private signing keys
generated during A’s attack be {(xi, ai, Si,∆i)}q

i=1 and let his output be a new
private signing key (x∗, a∗, S∗,∆∗) with non-negligible probability (that means
(a∗, S∗) /∈ {(ai, Si)}q

i=1). We show a construction of a PPT adversary B that can
break the q-SDH assumption. Suppose a tuple challenge = (Q, zQ, . . . , zqQ) is
given, where z ∈R Z∗p; we show that B can compute (c, 1/(z+c)Q), where c ∈ Zp

with non-negligible probability. We consider two cases.
Case 1: This is a trivial case, where A outputs S∗ ∈ {S1, ..., Sq} with non-
negligible probability. In this case, B chooses x, x′a, x′b ∈R Z∗p and G,H ∈R G1,
gives A the group signature public key (P = Q,P0 = zQ, Ppub = xP, H,G, Θa =
e(G,G)x′a , Θb = e(G,G)x′b) and the opening key (x′a, x′b) (no x′b, Θ

′
b in case of

GS2), and simulates a set of possible users. Then B can simulate all oracles
that A needs to access. Suppose a set of private signing keys {(xi, ai, Si,∆i)}q

i=1

is generated and A outputs a new (x∗, a∗, S∗, ∆∗) with non-negligible proba-
bility such that S∗ ∈ {S1, ..., Sq}. Suppose S∗ = Sj , where j ∈ {1, ..., q}, then

1
a∗+x (x∗P +P0) = 1

aj+x (xjP +P0), so (aj−a∗)P0 = (a∗xj−ajx
∗+xjx−x∗x)P .

Therefore, z is computable by B from this, and so is (c, 1/(z + c)Q), for any
c ∈ Zp.
Case 2: This is when the first case does not hold. That means A outputs S∗ /∈
{S1, ..., Sq} with non-negligible probability. Then B plays the following game:

1. Generate α, ai, xi ∈R Z∗p, i = 1, ..., q, where ais are different from one an-
other, then choose m ∈R {1, ..., q}.

2. Let x = z − am (B does not know x), then the following P, Ppub, P0 are
computable by B from the tuple challenge.

P =
q∏

i=1,i6=m

(z + ai − am)Q

Ppub = xP = (z − am)
q∏

i=1,i6=m

(z + ai − am)Q

P0 = α

q∏

i=1

(z + ai − am)Q− xm

q∏

i=1,i 6=m

(z + ai − am)Q

3. Generate x′a, x′b ∈R Z∗p and G,H ∈R G1 and give A the group signature pub-
lic key (P, P0, Ppub, H, G, Θa = e(G,G)x′a , Θb = e(G, G)x′b) and the opening
key (x′a, x′b) (no x′b, Θ

′
b in case of GS2) and simulates a set of possible users.

4. With the capabilities above, B can simulate oracles CrptU(·, ·), RReg(·) and
USK(·)) that A needs to access. For AddU(·) or SndToI(·, ·), B simulates the
addition of an honest or corrupted user i as follows. As playing both sides of
the Join, Iss protocol or being able to extract information fromA, B simulates
the protocol as specified so that the prepared ai, xi above are computed in
the protocol to be the corresponding parts of the user i’s private signing key.
B can compute Si as follows:

26 Lan Nguyen and Rei Safavi-Naini

– If i = m, then

Sm =
1

am + x
(xmP + P0) = α

q∏

i=1,i 6=m

(z + ai − am)Q

This is computable from the tuple challenge.
– If i 6= m, then

Si =
1

ai + x
(xiP + P0) = (xi − xm)

q∏

j=1,j 6=m,i

(z + aj − am)Q +

α

q∏

j=1,j 6=i

(z + aj − am)Q

This is computable from the tuple challenge.
5. Get the output (x∗, a∗, S∗,∆∗) from A, where

S∗ =
1

a∗ + x
(x∗P + P0)

=
1

z + a∗ − am
(αz + x∗ − xm)

q∏

i=1,i6=m

(z + ai − am)Q

We can see that the case αz+x∗−xm = α(z+a∗−am) happens with negligible
probability, as it results in S∗ = Sm. So the case αz +x∗−xm 6= α(z + a∗− am)
happens with non-negligible probability ε1. Suppose in this case, the probability
that a∗ ∈ {a1, ..., aq} is ε2. Then the probability that a∗ /∈ {a1, ..., aq}\{am} is
ε1 − q−1

q ε2 (as m ∈R {1, ..., q}), which is also non-negligible if q is polynomially
bound by the security parameter l. If αz + x∗ − xm 6= α(z + a∗ − am) and
a∗ /∈ {a1, ..., aq}\{am}, then 1

z+a∗−am
Q is computable from the tuple challenge

and S∗ and so B can compute (c, 1
z+cQ), where c = a∗ − am.

C.1 Proof of Theorem 4 and Theorem 7-Weak Anonymity

We prove Anonymity of GS1 and Weak Anonymity of GS2 at the same time.
Suppose there is a PPT adversary A that can break Anonymity property of GS1
(or Weak Anonymity of GS2). We show a construction of a PPT adversary B
that can break IND-CCA property of El GamalBP2 (or IND-CPA property of El
GamalBP1). Suppose an El GamalBP2 public key (G,Θa, Θb) and a Decryption
oracle (or only an El GamalBP1 public key (G,Θa)) are given, B constructs an
instance of GS1 (or GS2) by generating the issuing key ik = x and the group
public key gpk = (P, P0, Ppub, H, G, Θa, Θb) (no Θb for GS2 case). The opening
key ok is the private key of the El GamalBP2 (or El GamalBP1) public key,
and is unknown to B. In GSig, we assume the signer, instead of using the hash
function H, queries a random oracle, whose query-answer table can be appended
by B. Let B play the role of the issuer, simulating the set of possible users and
providing A with gpk, ik and the following simulated oracles:

Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 27

– SndToI(·, ·), SndToU(·, ·), WReg(·, ·), USK(·) and CrptU(·, ·). With the above
capabilities, B can easily simulate these oracles.

– Ch(d, ·, ·, ·). When receiving a query (i0, i1,m) from A, B finds ∆id
and asks

for an El GamalBP2 challenge encryption cip = (Ea, Λa, Eb, Λb, ς) (or an
El GamalBP1 challenge encryption cip = (Ea, Λa)) of ∆id

. From that, B
simulates c, s0, ...s5, X, V, U,W , T1, T2, T3, T4 and Π as in the Zero-knowledge
proof of Lemma 1, such that the value que = (P ||P0||Ppub||H||G||Θa||Θb||Ea

||Λa||Eb||Λb||ς||U ||V ||W ||X||T1||...||T4||Π||m) has not been queried to the
random oracle. Then B appends (que, c) to the random oracle’s table and
returns to A the challenge signature (c, s0, ..., s5, U, V, W,X,Ea, Λa, Eb, Λb, ς)
(no Θb, Eb, Λb, ς in GS2 case).

– Open(·, ·). In GS2 case, this oracle is not accessible by the adversary. In GS1
case, when receiving a query (m, ω) fromA, B answersA by extracting the El
GamalBP2 ciphertext part from ω, sending that ciphertext to the Decryption
oracle and from that finding an answer to A. We will later discuss the case
when the extracted El GamalBP2 ciphertext is the same as the challenge
ciphertext cip with non-negligible probability.

At last, B outputs the bit returned by A. As A can break Anonymity prop-
erty (or Weak Anonymity for GS2), B outputs the correct b with non-negligible
probability.

Now we discuss the case that for querying Open, A manages to find a signa-
ture (c̄, s̄0, ..., s̄5, Ū , V̄ , W̄ , X̄, Ea, Λa, Eb, Λb, ς) , whose El GamalBP2 ciphertext
part is the same as the challenge ciphertext cip with non-negligible probability
(the partly omitted part of the signature is ρ1 = (gpk, m, T1, ..., T4,Π, Ū , V̄ , W̄ ,
X̄, Ea, Λa, Eb, Λb, ς)). We observe that the General Forking Lemma is applicable
to A where GVf plays as the predicate Q. So, by applying the General Forking
Lemma, B can obtain for the same ρ1 two valid signatures (c̄, s̄0, ..., s̄5, Ū , V̄ , W̄ ,
X̄, Ea, Λa, Eb, Λb, ς) and (c̄′, s̄0

′, ..., s̄5
′, Ū , V̄ , W̄ , X̄, Ea, Λa, Eb, Λb, ς) with c̄ 6= c̄′.

Following the same arguments as in the Soundness proof of Lemma 1, B can find
t, ∆i so that Ea = tG and Λa = ∆iΘ

t
a and, thereby, output the correct b with

non-negligible probability.

C.2 Proof of Theorem 5 and Theorem 7-Traceability

We prove Traceability of GS1 and GS2 at the same time. Suppose there is a PPT
adversary A that can break Traceability property of GS1 (or GS2). We show that
there exists a PPT adversary B that can break Coalition-Resistance of GS1 (or
GS2). Suppose A can output a valid message-signature pair (m,ω) so that the
opener can not trace the identity of the signer, or the opener can find the identity
but can not prove that to the Judge. By applying the General Forking Lemma
to A where GVf plays as the predicate Q, there is a PPT adversary A′ that
can output two valid signatures ω = (c, s0, ..., s5, U, V, W,X,Ea, Λa, Eb, Λb, ς)
and (c′, s′0, ..., s

′
5, U, V, W,X, Ea, Λa, Eb, Λb, ς) with c 6= c′ for the same ρ1 =

(gpk, m, T1, ..., T4,Π, U, V, W,X,Ea, Λa, Eb, Λb, ς) (no Θb, Eb, Λb, ς in GS2 case).
Following the same arguments as in the Soundness proof of Lemma 1, B can find

28 Lan Nguyen and Rei Safavi-Naini

ai, Si, xi and t such that Ea = tG, Λa = e(P, Si)Θt
a and e(aiP + Ppub, Si) =

e(P, xiP + P0). So the opener, which is assumed to operate accurately, should
find ∆i = e(P, Si) from the signature. The issuer is assumed to be uncorrupted
and no oracle accessible by the adversaries can write on reg table or overwrite
upk[j] of a group member j (CrptU does not apply to group members). So if ∆i

can not be found on reg, B has produced a new valid user private signing key
(xi, ai, Si,∆i).

C.3 Proof of Theorem 6 and Theorem 7-Non-frameability

We prove Non-frameability of GS1 and GS2 at the same time. Suppose there is
a PPT adversary A that can break Non-frameability property of GS1 (or GS2),
we show that there exists a PPT adversary B that can break Discrete Logarithm
Assumption over G1. Suppose that B is given a challenge (P, P ∗ = zP), where
P ← G∗1 and z ← Z∗p, and B needs to compute z. B constructs an instance of
GS1 (or GS2) by generating x, x′a, x′b, d ∈R Z∗p and G,H ∈R G1 and give A the
group signature public key (P, P0 = dP, Ppub = xP,H, G, Θa = e(G, G)x′a , Θb =
e(G,G)x′b), the issuing key ik = x and the opening key (x′a, x′b) (no x′b, Θ

′
b in

case of GS2). B simulates a set of possible users {1, ..., q}, where q is the upper
bound of the group size, chooses i0 ∈R {1, ..., q} and provides A access to the
following simulated oracles:

– SndToU(i,Min). If i 6= i0, B just plays as a honest user i and executes Iss
as specified in Min. If i = i0, B simulates the Join, Iss protocol so that
Pi0 = P ∗ (by controlling the random oracle, B can simulate the proof of
knowledge in the protocol). Suppose the private signing key obtained for i0
is (xi0 , ai0 , Si0 , ∆i0), where xi0 = z is unknown to B.

– WReg(·, ·), GSig(·, ·), USK(·) and CrptU(·, ·). With the capabilities above, B
can simulate all these oracles, except the case when he gets a query USK(i0).
In this case, B fails.

If A succeeds with probability ε, then the probability that he can output
a valid message-signature pair (m,ω) of i0 is at least ε/q, as i0 ∈R {1, ..., q}.
By applying the General Forking Lemma to A where GVf plays as the predi-
cate Q, there is a PPT adversary A′ that can output two valid signatures ω =
(c, s0, ..., s5, U, V,W,X, Ea, Λa, Eb, Λb, ς) and (c′, s′0, ..., s

′
5, U, V,W,X, Ea, Λa, Eb,

Λb, ς) with c 6= c′ for the same ρ1 = (gpk,m, T1, ..., T4,Π, U, V, W,X, Ea, Λa, Eb,
Λb, ς) (no Θb, Eb, Λb, ς in GS2 case). Following the same arguments as in the
Soundness proof of Lemma 1, B can find ai1 , Si1 , xi1 and t such that Ea = tG,
Λa = e(P, Si1)Θ

t
a and e(ai1P +Ppub, Si1) = e(P, xi1P +P0). The digital signature

scheme (KS , Sign, V er) is UNF-CMA and so e(P, Si0) = e(P, Si1) or Si0 = Si1 .
So 1

ai0+x (xi0P + dP) = 1
ai1+x (xi1P + dP), from that, B can compute z = xi0 .

