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Abstract. A blind signature scheme is a protocol for obtaining a digital signature from a
signer, but the signer can neither learn the messages he/she sign nor the signatures the recipients
obtain afterwards. Such schemes are very important technologies in privacy oriented e-commerce
applications. Followed by the first scheme introduced by Chaum [8], a number of new schemes
based on different difficult problems and with new properties were proposed. One of the examples
is the partially blind signature scheme introduced by Abe and Fujisaki [1]. Unlinkability is one of
the key properties of a secure blind signature scheme. In this paper, we present a security analysis
of a threshold blind signature scheme [32] and a partially blind signature scheme [40]1. By
identifying the reason why the randomness introduced during the blinding phase can be removed,
we show that their scheme is indeed linkable. In addition, we also modify the identity-based (ID-
based) blind signature scheme by Zhang and Kim [38] elegantly to spawn an unlinkable partially
blind signature scheme and an ID-based unlinkable partially blind signature scheme. The schemes
are provably secure in the random oracle model [3]. To the best of authors’ knowledge, our scheme
is the first ID-based partially blind signature scheme.

Key words: blind signature, partially blind signature, identity-based signature, bilinear pairings,
cryptanalysis, unlinkability

1 Introduction

1.1 Background

A blind signature scheme is a protocol for obtaining a signature from a signer, but the signer
can neither learn the messages he/she sign nor the signatures the recipients obtain afterwards.
Blind signatures scheme is one of the examples of cryptographic schemes that have been
employed extensively in privacy oriented e-services such as untraceable electronic cash[10],
anonymous multiple choice electronic voting [18], unlinkable credentials [9], oblivious keyword
search [23] or even in steganographic protocol [20] and anonymous fingerprinting protocol [35].

The basic idea of most existing blind signature schemes is as follows. The requester (of
the signature) randomly chooses some random factors and embeds them to the message to be
signed. The random factors are kept in secret so the signer cannot recover the message. Using
the (blinded) signature returned by the signer, the requester can remove the random factors
associated with the signature and hence get a valid signature for the message to be signed.
The property that requesters can ask the signer to blindly sign any message is undesirable
in some situations. For example, expiry date information should be embedded in the e-cash
issued in order to prevent the possible unlimited growth of the e-cash database kept in the
1 Zhang et al. have revised their scheme to avoid the attack in this paper. [40]
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bank for double-spending checking. Hence the message to be signed cannot be “completely
blind” and some agreed information should be included in the blind signature. To address
this problem, partially blind signatures are introduced [1].

Recently, a partially blind signature from bilinear pairings (ZSS scheme) was proposed [40].
Comparing with previous partially blind signature schemes based on other difficult problems,
their work is better in both time complexities and space complexities In this paper, we review
the security of this scheme and propose two unlinkable schemes.

1.2 Related Work

Blind signature schemes were classified into four main classes by [17], namely, the hidden, the
weak blind, the interactive blind and the strong blind. Examples of hidden and weak blind
signature were given in [17] too. In another criterion [16], hidden signature was further divided
into message hidden signatures and parameter hidden signatures. Several hidden and weak
blind signature schemes had been discussed in [16] as well. Pointcheval and Stern presented
the formal definition and security notion for blind signature in [25]. Unfortunately, [28] showed
an inherent weakness in their result and presented a novel parallel one-more signature forgery
attack.

Another line of research efforts were done in combining the properties of other classes
of cryptographic schemes into blind signatures, such as proxy signatures, forward secure
signatures, group oriented signatures and signcryption. In proxy blind signature schemes ([43]
and [39]) the signer delegates his/her signing power to a proxy, who blindly signs a message
on behalf of the original signer. In [13] and [12], forward-secure blind signature scheme were
proposed to address key exposure problem, in which all previously generated signatures are
still considered to be valid even the secret key is compromised. Unfortunately, [13] was shown
to be insecure by [21]. Group oriented blind signatures have been studied as well. Blind
threshold signature that enables any t out of n legitimate signers to give a blind signature,
was considered in [19] and [32]. Blind threshold-ring signature providing signer-ambiguity was
considered in [7]. Blind multisignature was proposed in [11] and group blind signature was
proposed in [22]. ID-based blind signcryption was proposed in [37].

As an alternative to conventional public key infrastructure (PKI), Shamir introduced
identity-based (ID-based) signature schemes [30] and the design of ID-based schemes have
attracted a lot of attention recently (e.g. [11, 36–38]). The distinguishing property of ID-
based cryptography is that a user’s public key can be any string, such as an email address,
that can identify the user. This removes the need for users to look up the signer’s public key
before the verification of signature. Utilizing bilinear pairings, an ID-based blind signature
scheme was proposed by Zhang and Kim in [38]. A blind signature scheme using bilinear
pairings for conventional public key infrastructure was proposed in [4].

Some schemes were devised to solve the perfect crime resulting from the unconditional
anonymity provided by the blind signature [33], such as fair blind signature in [31], indirect
discourse proofs in [15] and “magic ink” signature in [36]. For partially blind signatures,
a number of schemes based on different difficult problems were proposed. For examples,
RSA-based scheme by Abe and Fujisaki [1], discrete logarithm based scheme by Abe and
Okamoto [2] and quadratic residues based scheme by Fan and Lei [14].

Apart from blind signature schemes, there are other primitives that provide anonymity by
cryptographic means. An example is “blind auditable membership proofs” [27], in which the
problem of achieving anonymity and audibility at the same time is addressed. In verifiably
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encrypted signature (for examples, [5] and [40]), the signature is encrypted so that any
recipient cannot get the signature, yet the recipient is convinced that its decryption gives
a valid signature on a given message and there exists a trusted third party that is able to
decrypt the encrypted signature.

1.3 Our Contribution

Our contribution is two-fold. First, we present a security analysis of a existing threshold blind
signature scheme [32] and an existing partially blind signature scheme [40]. By identifying
the reason why randomness introduced during the blinding phase can be removed, we show
that the schemes are indeed linkable. Second, we propose two new blind signature schemes
that achieve unlinkability. One is a partially blind signature scheme in conventional PKI
while another one is an ID-based partially blind signature scheme. To the best of authors’
knowledge, our scheme is the first ID-based partially blind signature scheme.

1.4 Organization

The rest of the paper is organized as follows. The next section contains some preliminaries
about the formal definitions of a partially blind signature scheme, an ID-based partially blind
signature scheme, bilinear pairing as well as the Gap Diffie-Hellman group. Formal definitions
of security describing the adversary’s capabilities are presented in Section 3. We review and
analyze the security of an existing threshold blind signature scheme and a partially blind
signature scheme in Section 4. In Section 5, an ID-based partially blind signature scheme
and a partially blind signature scheme in conventional public key infrastructure are proposed.
The security and efficiency analysis of our schemes are given in Section 6. Finally, Section 7
concludes our paper.

2 Preliminaries

2.1 Framework of Partially Blind Signature Schemes

A partially blind signature scheme consists of four algorithms: Setup, KeyGen, Issue, and
Verify. Issue is an interactive protocol between the signer and the requester which consists
of four sub-algorithms: Agree, Blind, Sign and Unblind.

– Setup: On an unary string input 1k where k is a security parameter, it produces the
common public parameters params, which include a description of a finite signature space,
a description of a finite message space together with a description of a finite agreed
information space.

– KeyGen: On a random string x input, it outputs the signer’s secret signing key sk and its
corresponding public verification key pk.

– Issue: Suppose the requester wants a message m to be signed, after the execution of four
sub-algorithms, a signature σ will be produced. The agreed information c will be produced
too if it is not given as an input.
• Agree: If the negotiated information c is not given as an input, the requester and the

signer interacts and finally come up with the agreed information c.
• Blind: On a random string r, a message m and agreed information c as the input, it

outputs a string h to be signed by the signer, h is sent to the signer by this algorithm.
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• Sign: On a string h and the signer’s private signing key sk as the input, it outputs a
blind signature σ̄ to be unblinded by the requester, σ̄ is sent to the requester by this
algorithm.

• Unblind: On a signature σ̄ and the previous used random string r, it outputs the
unblinded signature σ.

– Verify: On an unblinded signature σ, a message m, an agreed information c and the
signer’s public verification key pk as the input, it outputs > for “true” or ⊥ for “false”,
depending on whether σ is a valid signature signed by the signer with the corresponding
private key pk on a message m and agreed information c.

These algorithms must satisfy the standard consistency constraint of partially blind signature
scheme, i.e. if (σ, c) = Issue(m, r, sk), Verify(pk,m, c, σ) = >must hold. Security requirements
will be described in Section 3.

2.2 Framework of ID-based Partially Blind Signature Schemes

The framework of ID-based partially blind signature schemes is similar to that of partially
blind signature schemes. The differences are described below.

– Setup: On an unary string input 1k where k is a security parameter, it produces the
common public parameters params, which include a description of a finite signature space,
a description of a finite message space together with a description of a finite agreed
information space. The master secret s is the output as well, which is kept secret by
the Private Key Generator (PKG)

– KeyGen: On an arbitrary string input ID , it computes the private signing key SID and the
corresponding public verification key QID , with respect to (params, s). This algorithm is
to be used by PKG as well.

– Verify: On an unblinded signature σ, a message m, an agreed information c and the
signer’s identity ID as the input, it outputs > for “true” or ⊥ for “false”, depending on
whether σ is a valid signature

Again, these algorithms must satisfy the standard consistency constraint of partially blind
signature, i.e. if (σ, c) = Issue(m, r, SID), we must have the equality Verify(pk,m, c, σ) = >
holds.

2.3 Bilinear Pairing and Gap Diffie-Hellman Groups

Bilinear pairing is an important cryptographic primitive (see [4, 5, 11, 12, 32, 36–42]). Here, we
describe some of its key properties.

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing is given
as ê : G1 ×G1 → G2, which satisfies the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P + Q,R) = ê(P,R)ê(Q,R), and ê(P,Q + R) =
ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) ∀P,Q ∈ G1.

Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the Decisional
Diffie-Hellman problem (DDH problem) is to decide whether c = ab.
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Definition 2. Given a generator P of a group G, (P, aP, bP, cP ) is defined as a valid Diffie-
Hellman tuple if c = ab.

Definition 3. Given a generator P of a group G and a 2-tuple (aP, bP ), the Computational
Diffie-Hellman problem (CDH problem) is to compute abP .

Definition 4. If G is a group such that DDH problem can be solved in polynomial time
but no probabilistic algorithm can solve CDH problem with non-negligible advantage within
polynomial time, then we call G a Gap Diffie-Hellman (GDH) group.

We assume the existence of a bilinear map ê : G1×G1 → G2 that one can solve Decisional
Diffie-Hellman Problem (DDH problem) in polynomial time.

3 Formal Security Model

Let G1 be a GDH group, H(·) and H1(·) are two cryptographic hash functions where H :
{0, 1}∗ → G1 and H1 : {0, 1}∗ → Z

∗
q .

3.1 Signature Non-Repudiation of ID-based Partially Blind Signature

Signature non-repudiation of an ID-based partially blind signature scheme is formally defined
in terms of the existential unforgeability of ID-based partially blind signature under adaptive
chosen-message-and-identity attack (EUF-IDPB-CMIA2) game played between a challenger C
and an adversary A.

EUF-IDPB-CMIA2 Game:
Setup: The challenger C takes a security parameter k and runs the Setup to generate

common public parameters param and also the master secret key s. C sends param to A.
Attack: The adversary A can perform a polynomially bounded number of queries in an

adaptive manner (that is, each query may depend on the responses to the previous queries).
The types of queries allowed are described below.

– Hash functions queries: A can ask for the value of the hash function H(·) and H1(·) for
the requested input.

– KeyGen: A chooses an identity ID . C computes Extract(ID) = SID and sends the result
to A. The corresponding public verification key QID can be calculated by using the hash
function H(·).

– Issue: A chooses an identity ID , a plaintext m and an negotiated information c. C issues
the signature by computing σ = Issue (m, c, SID) and sends σ to A.

Forgery: The adversary A outputs (σ, ID ,m, c) where (ID ,m, c) and ID were not used in
any of the Issue and Extract queries, respectively, in the Attack phase. The adversary wins
the game if the response of the Verify on (ID ,m, c, σ) is not equal to ⊥.

The advantage of A is defined as the probability that it wins.

Definition 5. An ID-based partially blind scheme is said to have the existential unforgeability
against adaptive chosen-message-and-identity attacks (EUF-IDPB-CMIA2 secure) if no adversary
has a non-negligible advantage in the EUF-IDPB-CMIA2 game.
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3.2 Signature Non-Repudiation of Partially Blind Signature in Conventional
PKI

Signature non-repudiation of partially blind signature is formally defined in terms of the
existential unforgeability of partially blind signature under adaptive chosen-message attack
(EUF-PB-CMA2) game played between a challenger C and an adversary A.

EUF-PB-CMA2 Game:
Setup: The challenger C takes a security parameter k and runs the Setup to generate

common public parameters param. C sends param to A.
Attack: The adversary A can perform a polynomially bounded number of queries in an

adaptive manner (that is, each query may depend on the responses to the previous queries).
The types of queries allowed are described below.

– Hash functions queries: A can ask for the value of the hash function H(·) and H1(·) for
the requested input.

– Issue: A chooses a public key pk, a plaintext m and an negotiated information c. C issues
the signature by computing σ = Issue (m, c, sk) and sends σ to A.

Forgery: The adversary A outputs (σ, pk,m, c) where (pk,m, c) did not appear in any
Issue query in the Attack phase. It wins the game if the response of the Verify on (pk,m, c, σ)
is not equal to ⊥.

The advantage of A is defined as the probability that it wins.

Definition 6. An partially blind scheme is said to be existential unforgeable against adaptive
chosen-message attacks property (EUF-PB-CMA2 secure) if no adversary has a non-negligible
advantage in the EUF-PB-CMA2 game.

3.3 Partial Blindness

In the normal sense of blindness, the signer can learn no information on the message to be
signed. If the signer can link the signature to the instance of the signing protocol, then the
blindness is lost. In partially blind signature, a piece of information must be agreed by both
the signer and the requester. If the signer embed an unique piece of agreed information c
in each message to be signed, it is easy to see that the signer can link the signature to the
instance of the signing protocol by using the agreed information as an index, and hence the
blindness property will be lost.

So the normal sense of blindness is not applicable in our situation. The extended notion
of partial blindness is defined in terms of the Unlinkability Game (UL) played between a
challenger C and an adversary A.

Unlinkability Game:
Setup: The adversary A takes a security parameter k and runs the Setup to generate

common public parameters param (and also the master secret key s in ID-based case). A
sends param to C.

Preparation: The adversary A chooses two distinct messages m0 and m1, together with
the agreed information c. For the ID-based case, the adversary A also chooses its own identity
ID and sends it to the challenger C.

Challenge: The challenger C chooses a random bit b secretly, and then ask the adversary
A to partially sign on the message mb with agreed information c and m1−b with the same
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piece of agreed information c. After the challenger C unblinds both signatures, it presents the
signature of mb to A.

Response: The adversary A returns the guess b′ and wins the game if b′ = b.
The advantage of A is defined as Adv(A) = |2P [b′ = b] − 1| where P [b′ = b] denotes the

probability that b′ = b.

Definition 7. An (ID-based) partially blind scheme is said to have the perfect partial blindness
property if any adversary only has zero advantage in the above game.

Notice that for the scheme to be practical, we should require the cardinality of the finite
agreed information space to be small compared with the anticipated number of total Issue
requests.

4 Review and Analysis of Existing Schemes

In this section we give the review and the analysis of the threshold blind signature scheme
proposed by Vo, Zhang and Kim (VZK) and the partially blind signature scheme proposed by
Zhang, Safavi-Naini and Susilo. Define G1,G2, ê as in previous section, the system parameters
of these schemes are params = {G1,G2, ê(·, ·), q, λ, P,H(·),H0(·)}, where |q| ≥ λ ≥ 160.
H(·) and H0(·) are two cryptographic hash functions where H0 : {0, 1}∗ → {0, 1}λ and
H : {0, 1}∗ → G1.

4.1 VZK’s Scheme

VZK’s threshold blind signature scheme can been seen as a combination of distributed key
generation protocol in [24] and a simplified version of the blind signature scheme proposed in
[4]. For the sake of brevity, we omit the part on the distributed key generation and keep the
focus on their simplified blind signature scheme.

KeyGen: The signer randomly selects x ∈R Z∗q and computes Ppub = xP as his/her public
verification key. The signing key is x and is kept in secret.

Issue: Suppose the requester now wants to get the signature of message m. The interaction
between the requester and the signer is as follows:

– Blind: The requester randomly picks r ∈R Z∗q and computes U = r ·H(m). U is sent to
the signer.

– Sign: The signer computes V = xU and returns V to the requester.
– Unblind: Upon the recipient of V , the requester unblinds it by S = r−1V .

(S,m) is the blind signature of message m.

Verify: Any verifier (including the signature requester) can verify the blind signature by
checking whether ê(Ppub,H(m)) = ê(P, S) is true. If so, the blind signature is accepted as
valid.

4.2 ZSS’s Scheme

ZSS’s partially blind scheme is basically a combination of their efficient signature scheme in
[41] and a modified version of the blind signature scheme proposed in [4].
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KeyGen: The signer randomly selects x ∈R Z∗q and computes Ppub = xP as his/her public
verification key. The signing key is x and is kept in secret.

Issue: Suppose the requester now wants to get the signature of message m and the requester
has already negotiated with the signer on the agreed information c to be attached to the
message. The interaction between the requester and the signer is as follows:

– Blind: The requester randomly picks r ∈R Z∗q and computes U = r · H(m||c), where ||
denotes concatenation. U is sent to the signer.

– Sign: The signer computes V = (H0(c) + x)−1U and returns V to the requester.
– Unblind: Upon the recipient of V , the requester unblinds it by S = r−1V .

(S,m, c) is the partially blind signature of message m and agreed information c.

Verify: Any verifier (including the signature requester) can verify the partially blind signature
by checking whether ê(H0(c)P + Ppub, S) = ê(P,H(m||c)) is true. If so, the partially blind
signature is accepted as valid.

4.3 Analysis

In both schemes, the authors argued that the scheme is unlinkable due to the randomness
introduced during the blinding phase. However, we show that the randomness introduced can
be removed actually by using the following Link algorithms, which are able to check whether
a given signature is produced by a given instance of the protocol.

LinkVZK:
Information available from an instance of the protocol: U = rH(m), V = xU .
Signature: S = r−1V and m.
Any party can accept the blind signature (S,m) as the one produced by the instance of the
Issue protocol (U, V ) if and only if

ê(S,U) = ê(V,H(m))

The completeness of the LinkVZK algorithm can be justified by the equation:

ê(S,U) = ê(r−1V, r ·H(m)) = ê(V,H(m))

LinkZSS:
Information available from an instance of the protocol: U = rH(m||c), V = (H0(c) + x)−1U .
Signature: S = r−1V , m and c.
Any party can accept the partially blind signature (S,m, c) as the one produced by the
instance of the Issue protocol (U, V ) if and only if

ê(S,U) = ê(V,H(m||c))

The completeness of the LinkZSS algorithm can be justified by the equation:

ê(S,U) = ê(r−1V, r ·H(m||c)) = ê(V,H(m||c))

The above algorithms show that for these two schemes, the signer can make a linkage
between it and the previous invocation of the blind signature issuing protocol (U, V ) without
defeating the protocol. Therefore, the schemes do not achieve the unlinkability property.

The reason why their analysis of the unlinkability go wrong is that they have not considered
the fact that the randomness introduced during the blinding phase can be removed easily by
the bilinearity of the pairing operations.
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5 Our Proposed Schemes

In this section, we show how to extend the ID-based blind signature in [38] in an elegant
way to spawn an unlinkable partially blind signature scheme and an ID-based unlinkable
partially blind signature scheme. Define G1,G2, ê as in the previous section where G1 is a
GDH group. H(·) and H1(·) are two cryptographic hash functions where H : {0, 1}∗ → G1

and H1 : {0, 1}∗ → Z
∗
q .

5.1 ID-based Partially Blind Signature

Setup: The Private Key Generator (PKG) randomly chooses s ∈R Z∗q . The system parameters
are params = {G1,G2, ê(·, ·), q, P, Ppub,H(·),H1(·)}. The master secret key is s.

KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to PKG. PKG sets the signer’s
public key QID to be H(ID) ∈ G1, computes the signer’s private signing key SID by SID =
sQID Then PKG sends the private signing key to the signer.

Issue: Suppose the requester now wants to get the signature of message m and the requester
has already negotiated with the signer of identity ID on the negotiated information c to be
attached to the message. The interaction between the requester and the signer is as follows:

– Sign (Part 1): The signer randomly chooses r ∈R Z∗q , computes C = rP , Y = rQID and
sends (Y,C) to the requester. Notice that the Sign algorithm has not finished yet.

– Blind: The requester randomly picks α, β and γ ∈R Z∗q , computes Y ′ = αY + αβQID −
γH(c), C ′ = αC + γPpub, h = α−1H1(m,Y ′) + β and sends h to the signer.

– Sign (Part 2): The signer computes S = (r+h)SID + rH(c) and sends it to the requester.
Now the Sign algorithm has been finished.

– Unblind: Upon the recipient of S, the requester unblinds it by S′ = αS.

Finally (Y ′, C ′, S′,m, c) is the partially blind signature of message m and agreed information
c.

Verify: Any verifier (including the signature requester) can verify the partially blind signature
by verifying ê(S′, P ) = ê(Y ′+H1(m,Y ′)QID , Ppub)ê(H(c), C ′) holds. If so, the partially blind
signature is accepted as valid.

5.2 Partially Blind Signature in Conventional PKI

Setup: The system parameters are params = {G1,G2, ê(·, ·), q, P,H(·),H1(·)}.

KeyGen: The signer randomly selects s ∈R Z∗q and computes Ppub = sP as his/her public
verification key. The signing key is s and is kept in secret.

Issue: Suppose the requester now wants to get the signature of message m and the requester
has already negotiated with the signer with public key Ppub on the agreed information c to be
attached to the message. The interaction between the requester and the signer is as follows:

– Sign (Part 1): The signer randomly chooses r ∈R Z∗q , computes Z = H(c), Y = rZ and
sends Y to the requester. Notice that the Sign algorithm has not finished yet.

– Blind: The requester randomly picks α ∈R Z∗q and β ∈R Z∗q , computes Y ′ = α Y + αβ H(c),
h = α−1H1(m, Y ′) + β and sends h to the signer.



10 Sherman S.M. Chow et al.

– Sign (Part 2): The signer computes S = (r+h)sZ and sends it to the requester. Now the
Sign algorithm has been finished.

– Unblind: Upon the recipient of S, the requester unblinds it by S′ = αS.

Finally (Y ′, S′,m, c) is the partially blind signature of message m and agreed information c.

Verify: Any verifier (including the signature requester) can verify the partially blind signature
by checking whether ê(S′, P ) = ê(Y ′ +H1(m,Y ′)H(c), Ppub) is true. If so, the partially blind
signature is accepted as valid.

6 Analysis of the Proposed Schemes

6.1 Correctness Analysis

For any valid signature produced by our ID-based partially blind signature scheme:

ê(S′, P ) = ê(αS, P )
= ê((αr + αh)SID + αrH(c), P )
= ê((αr +H1(m,Y ′) + αβ)SID , P )ê(H(c), αrP )
= ê((αr +H1(m,Y ′) + αβ)QID , Ppub)ê(H(c), C ′ − γPpub)
= ê((αr + αβ)QID +H1(m,Y ′)QID , Ppub)ê(−γH(c), Ppub)ê(H(c), C ′)
= ê(αY + αβQID − γH(c) +H1(m,Y ′)QID , Ppub)ê(H(c), C ′)
= ê(Y ′ +H1(m,Y ′)QID , Ppub)ê(H(c), C ′)

Similarly, for our partially blind signature scheme in conventional PKI:

ê(S′, P ) = ê(αS, P )
= ê((α(r + h)sZ, P )
= ê((αr + αh)Z,Ppub)
= ê((αr +H1(m,Y ′) + αβ)Z,Ppub)
= ê((αr + αβ)Z +H1(m,Y ′)Z,Ppub)
= ê(αY + αβH(c) +H1(m,Y ′)H(c), Ppub)
= ê(Y ′ +H1(m,Y ′)H(c), Ppub)

6.2 Efficiency Analysis

We consider the costly operations which include point addition on G1 (G1 Add), point scalar
multiplication on G1 (G1 Mul), multiplication in Zq (Zq Mul), division in Zq (Zq Div),
hashing into the group (Hash) and pairing operation (Pairing). We used the MapToPoint
hash operation in BLS short signature scheme [6]. Table 1 shows a summary of the efficiency
of our proposed schemes. All three algorithms in our scheme in conventional PKI are more
efficient than that of ID-based version.
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Efficiency

Algorithms G1 Add G1 Mul Zq Mul Zq Div Hash Pairing

ID-based Partially Blind Signature

Issue(Signer) 1 4 0 0 1 0

Issue(Requester) 3 6 1 1 1 0

Verify 1 1 0 0 1 3

Partially Blind Signature in Conventional PKI

Issue(Signer) 0 2 1 0 1 0

Issue(Requester) 1 3 1 1 1 0

Verify 1 1 0 0 1 2
Table 1. Efficiency of our proposed schemes

6.3 Security Analysis of our ID-based Partially Blind Signature

Theorem 1 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A for an adaptively chosen message and ID attack to our scheme, with
an advantage ≥ ε = 10qI(qS + 1)(qS + qH)/2k within a time span t for a security parameter
k; and asking at most qI identity hashing queries, at most qE key extraction queries, at most
qH H1 queries, qS Issue queries and qV Verify queries. Then, there exists an algorithm C
that can solve the CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1).

Proof. See Appendix A. ut

Theorem 2 Our ID-based partially blind signature scheme satisfies the partial blindness
property.

Proof. See Appendix A. ut

6.4 Security Analysis of our Partially Blind Signature in Conventional PKI

Theorem 3 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A for an adaptively chosen message attack to our scheme, with an
advantage ≥ ε = 10qI(qS + 1)(qS + qH)/2k within a time span t for a security parameter k;
and asking at most qI H queries, at most qH H1 queries, qS Issue queries and qV Verify
queries. Then, there exists an algorithm C that can solve the CDH problem in expected time
≤ 120686qHqI2kt/ε(2k − 1).

Proof. The proof is similar to that of Theorem 1. See Appendix A. ut

Theorem 4 Our partially blind signature scheme in conventional PKI satisfies the partial
blindness property.

Proof. The proof is similar to that of Theorem 2. See Appendix A. ut
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6.5 Changing Agreed Information Attack

Changing agreed information attack is the attack in which the requester, after obtained the
signature issued by the signer, can subsequently change the agreed information c to another
one c′ on his/her wish, yet the signature remains valid. In both of our schemes, since r (in
ID-based scheme) and s (in conventional scheme) are unknown to the requester, changing
H(c) to H(c′) involves solving the CDH problem, which is computationally infeasible.

7 Conclusion

In this paper, we presented an attack that revokes the unlinkability of an existing threshold
blind signature scheme [32] and a partially blind signature scheme [40] and pointed out why
the security proof provided are incorrect. Then, we propose two modified schemes which
have the property of unlinkability. One is an improved partially blind signature scheme in
conventional PKI while another one is the first ID-based partially blind signature scheme ever
exists. The proposed schemes are provably secure in the random oracle model. Future research
directions include investigating interactive attack like the novel parallel one-more signature
forgery attack and finding a formal proof against this class of attack on our schemes.
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Appendix A

Proof of Theorem 1
We assume that the challenger C receives a random instance (P, aP, bP ) of the CDH problem
and has to compute abP . C will run A as a subroutine and act as A’s challenger in the
EUF-IDPB-CMA2 game. We will describe how C simulates the role of the challenger below,
with the assumptions that A will ask for H(ID) before ID is used in any Issue, Verify and
Extract queries; and A will not ask for Extract(ID) again if the query Extract(ID) has
been already issued before.

Public key and private key request: C gives A the system parameters Ppub = aP . Note that a
is unknown to C. This value simulates the master key value for the PKG in the game.

H1 requests: C will answer H1 requests randomly, but to maintain the consistency and to
avoid collision, C keeps a list L1 to store the answers used. The same answer from the list
L1 will be given if the request has been asked before. Otherwise, a new value that does not
appear in the list will be generated as the answer to A, this new value and the corresponding
request will then be stored in the list L1 for later queries of the same request.

H requests and Extract requests: Similarly, when A asks queries on the hash values of
identities, C checks another list L2, If an entry for the query is found, the same answer will be
given to A; otherwise, a value ci from F

∗
q will be randomly generated and ciP will be used as

the answer, the query and the answer will then be stored in the list. Note that the associated
private key is ciaP which C knows how to compute.

The only exception is that C has to randomly choose one of the H queries from A, say the
i-th query, and answers H(ID i) = bP for this query. Since bP is a value in a random instance
of the CDH problem, it does not affect the randomness of the hash function H. Since both a
and b are unknown to C, an Extact request on this identity will make C fails.

Issue requests: For an Issue request on (IDj ,m, c), C first randomly generates two values
yj and zj , then simulates the value of H1(m,Y ′) and H(c) in the way as mentioned above.
(Y ′, C ′, S′,m, c) will be used as the answer, where Y ′ = yjP −H1(m,Y ′)H1(c)H(IDj), C ′ =
zjP and S′ = yj(aP ) + zjH(c).

Verify requests: For Verify request on (IDj ,m, c), C first checks the lists L1, L2 and rejects
the signature if at least one of the tuple (m,Y ′) and (c) is not found in the corresponding
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list. Assume the answer of the H1 query of (m,Y ′) is hm and that of (c) is Hc, C just checks
whether ê(S′, P ) = ê(Y ′ + hmH(IDj), aP )ê(Hc, C

′) and returns > or ⊥ accordingly.
We coalesce the signing identity ID i and message m into a “generalized” forged message

(ID i,m) so as to hide the ID-based aspect of the EUF-IDPB-CMA2 attacks, and simulate
the setting of an identity-less adaptive-CMA existential forgery for which the forking lemma
is proven. Assume the adversary A make a forged signature ((ID i,m), c, h, Y, C, S), it follows
from the forking lemma [26] that if A is a sufficiently efficient forger in the above interaction,
then we can construct a Las Vegas machineA′ that outputs two forgeries ((ID i,m), c, h, Y, C, S)
and ((ID i,m), c, h′, Y ′, C ′, S′) with h 6= h′.

Finally, to solve the CDH problem given the machine A′, we construct a machine C’ as
follows.

1. C′ runs A′ to obtain two distinct and valid forgeries:
((ID i,m), c, h, Y, C, S) and ((ID i,m), c, h′, Y ′, C ′, S′).

2. C′ derives the value of abP by (h− h′)−1(S − S′), as both of (P, aP, Y + hbP, S − rH(c))
and (P, aP, Y ′ + h′bP, S′ − rH(c)) are valid Diffie-Hellman tuples.

Now we consider the probability for C to successfully solve the given CDH problem. Since
H is a random oracle, given that A have forged a valid signature of ID i, the probability that
A knows the value of H(ID i) without making any H query of ID i is (2k − 1)/2k. Moreover,
since the index i of ID i is independently and randomly chosen, the probability of A to forge
the signature of ID i is at least 1/qI . Take both probabilities into account, C’s probability of
success is (2k − 1)/qI2k.

Based on the bound from the forking lemma [26] and the above probability of success, if
A succeeds in time ≤ t with probability ≥ ε = 10qI(qS + 1)(qS + qH)/2k, then C can solve the
CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1). ut

Proof of Theorem 2
Considering the Issue algorithm of our scheme, we can prove that the signer can learn no
information on the message to be signed similar to the proof of blindness property in [38].

Given a signature (Y ′, C ′, S′,m, c) and any view (Y,C, S, h), consider the following equations:

S′ = αS (1)
C ′ = αC + γPpub (2)

h = (α−1H1(m,Y ′) + β) (mod q) (3)
Y ′ = αY + αβQID − γH(c) (4)

For any valid signature and any view, we know that we must be able to find an unique
α′ ∈ Z∗q such that Eq (1) holds. Moreover, we can get an unique β′ ∈ Z∗q and an unique
γ′ ∈ Z∗q while the values are determined by the equations β′ = h − (α′) −1 H1(m,Y ′) and
γ′ Ppub = C ′ − α C.

Since (Y ′, C ′, S′,m, c) is a valid signature, ê(S′, P ) = ê(Y ′+H1(m,Y ′)QID , Ppub)ê(H(c), C ′)
holds, which gives us an useful result ê(S′, P ) = ê(Y ′, Ppub)ê(H1(m,Y ′)QID , Ppub)ê(H(c), C ′)
that will be used below.
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Now we consider whether Eq (4) holds for α′ and β′ we have found:

ê(α′Y + α′β′QID − γ′H(c), Ppub)
= ê(α′Y + α′(h− (α′)−1H1(m,Y ′))QID − γ′H(c), Ppub)
= ê(α′rQID + α′hQID − γ′H(c), Ppub)ê(H1(m,Y ′)QID , Ppub)−1

= ê(α′(r + h)QID , Ppub)ê(H1(m,Y ′)QID , Ppub)−1ê(−γH(c), Ppub)
= ê(α′(r + h)QID , Ppub)ê(S′, P )−1ê(Y ′, Ppub)ê(H(c), C ′)ê(H(c),−γPpub)
= ê(α′(r + h)SID , P )ê(S′, P )−1ê(Y ′, Ppub)ê(H(c), αC)
= ê(α′(r + h)SID , P )ê(α′rH(c), P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′S, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(S′, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(Y ′, Ppub)

The above equation is valid since we can always find r such that rQID = Y and we must
have S = (r + h)SID + rH(c) for any valid view of the protocol signing on a certain message
with agreed information c.

By the non-degeneracy of bilinear pairing, we know that

ê(Y ′, Ppub) = ê(α′Y + α′β′H(c), Ppub)⇔ Y ′ = α′Y + α′β′H(c)

Hence the blind factors α, β and γ always exist which lead to the same relation defined in
Issue, so any view of the Issue protocol is unlinkable to any valid signature.

Consider again the Unlinkability Game, the signature of mb is associated with the instance
of the signing protocol that produces the signature of mb and that of m1−b with equal
probability since we can always find the corresponding blind factors α and β, we therefore
claim that the advantage of A in the game is negligible. ut

Proof of Theorem 3
We assume that the challenger C receives a random instance (P, aP, bP ) of the CDH problem
and has to compute the value of abP . C will run A as a subroutine and act as A’s challenger
in the EUF-PB-CMA2 game. C simulates the role of challenger as described below.

Public key and private key of the signer: C gives A the system parameters with its public key
Ppub = aP . Note that a is unknown to C. This value simulates the private key value in the
game.

H1 requests: C will answer each H1 requests randomly. Similar to the proof in Theorem 1, C
keeps a list L1 of the answers with the corresponding queries to maintain the consistency and
to avoid collision.

H requests: Similarly, A keeps a list L2 for answering H request. The only exception is that
C has to randomly choose one of the H queries from A, say the i-th query, and answers
H(ci) = bP for this query. Since bP is a value in a random instance of the CDH problem, it
does not affect the randomness of the hash function H.

Issue requests: For an Issue request on (m, c), C first randomly generates a value yj , then
simulates the value of H1(m,Y ′) and H(c) in the way as mentioned above. (Y ′, S′,m, c) will
be used as the answer, where Y ′ = yjP −H1(m,Y ′)H(c) and S′ = yj(aP ).
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Verify requests: For Verify request on (Ppub,m, c), C first checks the list L1 and rejects the
signature if at least one of the tuple (m,Y ′) and (c) is missing. Then C just checks whether
ê(S′, P ) = ê(Y ′ +H1(m,Y ′)H(c), aP ) and returns > or ⊥ accordingly.

It follows from the forking lemma [26] that if A is a sufficiently efficient forger in the above
interaction, then we can construct a Las Vegas machine A′ that outputs two signed messages
(h, Y, S,m, c) and (h′, Y ′, S′,m, c) with h 6= h′.

Finally, to solve the CDHP given the machine A′, we construct a machine C′ as follows.

1. C′ runsA′ to obtain two distinct forgeries, suppose they are (h, Y, S,m, c) and (h′, Y ′, S′,m, c).
2. C′ derives the value of abP by (h − h′)−1(S − S′), as both of (P, aP, Y + hbP, S) and

(P, aP, Y ′ + h′bP, S′) are valid Diffie-Hellman tuples.

Now we consider the probability for C to successfully solve the given CDH problem. Since
H is a random oracle, given that A have forged a valid signature of a certain message with
agreed information ci attached, the probability that A knows the value of H(c) without
making any H query of c is (2k − 1)/2k. Moreover, since the index i of ci is independently
and randomly chosen, the probability of A to forge the signature of a certain message with
negotiated information ci attached is at least 1/qI . Take both probabilities into account, C’s
probability of success is (2k − 1)/qI2k.

Based on the bound from the forking lemma [26] and the above probability of success, if
A succeeds in time ≤ t with probability ≥ ε = 10qI(qS + 1)(qS + qH)/2k, then C can solve the
CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1). ut

Proof of Theorem 4
Considering the Issue algorithm of our scheme, we can prove that the signer can learn no
information on the message to be signed similar to the proof of theorem 2.

Given a valid signature (Y ′, S′,m, c) and any view (Y, h, S), consider the following equations:

S′ = αS (5)
h = (α−1H1(m,Y ′) + β) (mod q) (6)

Y ′ = αY + αβH(c) (7)

We know that we must be able to find an unique α′ ∈ Z
∗
q such that Eq (5) holds.

Moreover, we can get an unique β′ ∈ Z∗q while the value is determined by the equation
β′ = h − (α′) −1 H1(m,Y ′).

Since (Y ′, S′,m, c) is a valid signature, we have ê(S′, P ) = ê(Y ′ + H1(m,Y ′)H(c), Ppub),
i.e. ê(S′, P ) = ê(Y ′, Ppub)ê(H1(m,Y ′)H(c), Ppub), this result will be useful shortly afterward.

Now we consider whether Eq (7) holds for α′ and β′ we have found:

ê(α′Y + α′β′H(c), Ppub)
= ê(α′Y + α′(h− (α′)−1H1(m,Y ′))H(c), Ppub)
= ê(α′rH(c) + α′hH(c), Ppub)ê(H1(m,Y ′)H(c), Ppub)−1

= ê(α′(r + h)H(c), Ppub)ê(H1(m,Y ′)H(c), Ppub)−1

= ê(α′(r + h)H(c), Ppub)ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′(r + h)sH(c), P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′S, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(S′, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(Y ′, Ppub)
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The above equation is valid since we can always find r such that rH(c) = Y and we must
have S = (r + h)sH(c) for any valid view of the protocol signing on a certain message with
agreed information c.

By the non-degeneracy of bilinear pairing, we know that

ê(Y ′, Ppub) = ê(α′Y + α′β′H(c), Ppub)⇔ Y ′ = α′Y + α′β′H(c)

Hence the blind factors α, β always exist which lead to the same relation defined in Issue,
so any view of the Issue protocol is unlinkable to any valid signature.

Consider again the Unlinkability Game, the signature of mb is associated with the instance
of the signing protocol that produces the signature of mb and that of m1−b with equal
probability since we can always find the corresponding blind factors α and β, we therefore
claim that the advantage of A in the game is 0. ut

Appendix B

We remark that the security of our schemes also depends on the intractability of the ROS (find
an Overdetermined, Solvable system of linear equations modulo q with Random inhomogeneities)
problem.

Definition 8. Given an oracle random function F : Zql → Zq, the ROS problem is to find
coefficients ak,i ∈ Zq and a solvable system of l + 1 distinct equations (1) in the unknown
c1, c2, · · · , cl over Zq:

ak,1c1 + · · ·+ ak,lcl = F (ak,1, · · · , ak,1) for k = 1, 2, · · · , t. (1)

Now we describe how an adversary A that is able solve ROS problem efficiently can get
l + 1 valid ID-based partially blind signature associated with the same agreed information c
by requesting only l signatures from the same signature issuer S having identity ID.

1. S sends commitments C1 = r1P , C2 = r2P , · · · , Cl = rlP and Y1 = r1QID, Y2 = r2QID,
· · · , Yl = rlQID to A.

2. A chooses randomly ak,1, ak,2, · · · ak,l from Zq and messages m1,m2, · · · ,mt and computes
fk =

∑l
i=1 (ak,iYi) and H1(mk, fk) for k = 1, 2, · · · , t where l+1 ≤ t < qH1 , the maximum

number of queries of H1 issued by A.
3. A solves the ROS-problem: l + 1 of equations (2) in the unknowns c1, c2, · · · , cl over Zq:

l∑
j=1

(ak,jcj) = H1(mk, fk) for k = 1, 2, · · · , t. (2)

4. A sends the solutions c1, c2, · · · , cl as the challenge (value to be signed) to S.
5. S sends back Si = (ri + ci)SID + riH(c) for i = 1, 2, · · · , l.
6. For each solved equation (2), A gets a valid signature (Yk ′, Ck ′, Sk ′) on message mk by

setting Yk ′ = fk, Ck ′ =
∑l

j=1 ak,jCj and Sk
′ =

∑l
j=1 ak,jSj .
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Now we show these l + 1 signatures are valid.

ê(Sk ′, P ) = ê(
l∑

j=1

ak,jSj , P )

= ê(
l∑

j=1

ak,j [(rj + cj)SID + rjH(c)], P )

= ê(SID, P )
∑l
j=1 ak,jrj ê(SID, P )

∑l
j=1 ak,jcj ê(H(c),

l∑
j=1

ak,jrjP )

= ê(
l∑

j=1

ak,jrjQID, Ppub)ê(QID, Ppub)H1(mk,fk)ê(H(c),
l∑

j=1

ak,jrjP )

= ê(
l∑

j=1

ak,jYj , Ppub)ê(H1(mk, fk)QID, Ppub)ê(H(c),
l∑

j=1

ak,jCj)

= ê(Yk ′ +H1(mk, Yk
′), Ppub)ê(H(c), Ck ′)

A similar attack can be applied on our partially blind signature in conventional PKI if an
adversary can solve ROS problem efficiently. However, ROS problem is “a plausible but novel
complexity assumption” [28]. We refer interested reader to [34] and [29] for more discussions
on the relationship between ROS problem and blind signature schemes.


