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Abstract. Motivated by a potentially flawed deployment of the one time pad in a recent quantum
cryptographic application securing a bank transfer [12], we show how to implement a statistically
secure system for message passing, that is, a channel with negligible failure rate secure against
unbounded adversaries, using a one time pad based cryptosystem. We prove the security of our
system in the framework put forward by Backes, Pfitzmann, and Waidner [11, 2, 3].

1 Introduction

It is well known that the one time pad (OTP) is perfectly concealing, i.e. that given an arbitrary ciphertext
c ∈ {0, 1}n, the probability of any message m ∈ M ⊆ {0, 1}n is P (m|c) = P (m) where M denotes the
message space. Therefore one time pad based encryption is the obvious choice when dealing with unbounded
adversaries. However, the one time pad on its own does not suffice to implement secure message passing, as
it is “malleable” in the sense that plaintext bits can be flipped by flipping the corresponding ciphertext bit.

Recently, a bank transfer of EUR 3000 was secured by quantum cryptography [12], i. e., a quantum key
agreement scheme was used to establish a shared secret and a one time pad encrypted money transfer form
was sent. However, in the experiment the integrity of the message was not secured which can have devastating
consequences (cf. [6, Section 1.4]): Say, the bank transfer form itself contains no authentication mechanism
and there is a known position where the amount of money is specified in digits. Then an adversary can flip
bits at these positions. Such a change cannot be noticed at the bank and the resulting cleartext would look
like the original message, but showing a different amount of money. Hence the security of a bank transfer
as described in [12] cannot be concluded from the security of the (authenticated!) quantum key agreement
protocol alone.

Therefore, to implement secure message passing, the one time pad needs to be combined with some
kind of authentication scheme, to ensure non-malleability and of course authenticity. Note that this already
implies, that we cannot implement perfectly secure message passing using the one time pad. In fact there
is no way to classically implement perfectly secure message passing over unauthenticated channels, because
the adversary always has a negligible chance to guess the secret we use for authentication correctly and
thus introduce a forged message. So statistical security is the best we can do. This limitation also applies
to quantum cryptographic schemes like [5] that use a statistically secure key exchange on quantum basis
but classical schemes for encryption and authentication. In this work we will give a secure message passing
protocol that achieves statistical security and prove its security against unbounded adversaries in the formal
framework developed by Backes, Pfitzmann, and Waidner [11, 2, 3]. For being able to deal with an unbounded
adversary, we will use an authentication scheme described by Stinson [14, Chapter 10.3], but note that any
other statistically secure and composable authentication scheme serves our purpose as well. Secure message
passing in the presence of a computationally bounded adversary is treated by Canetti and Krawczyk in [7].

There are a number of other issues with the one time pad. Since the OTP is a stream cipher, synchro-
nization needs to be maintained. If the adversary suppresses a message, the subsequent messages should still
be readable. Therefore the current position in the key used for encryption needs to be transmitted with the
ciphertext. The key position must remain readable, so it may not be encrypted with the message. It should
also be authenticated with the message, as otherwise the adversary may modify the key position. Then the
message would decrypt to random bits on the receiver side, yet appear authenticated, so the receiver would
be under the impression that the sender produces nonsensical messages.

It is usually advantageous to first encrypt a message and then authenticate the ciphertext, as it is desirable
to detect forged messages before decryption to reduce workload for the receiver and lessen the susceptibility to
denial of service attacks. In fact, first encrypting and then authenticating the ciphertext is the only generically
secure procedure for implementing secure channels [9]. That is, a protocol intended to implement a secure
channel based on an arbitrary symmetric encryption primitive (secure against chosen plaintext attack) and
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an arbitrary message authentication function (secure against chosen message attacks) will in general only
be secure if it encrypts the message and then authenticates the ciphertext. Since we wish to generalize our
results from the one time pad and our specific authentication function to other ciphers and authentication
functions, we will therefore use the generically secure encrypt-then-authenticate scheme.

Heeding the arguments and restrictions above, the basic structure of our real system is nearly determined.
Since we discuss the one time pad (and for reasons of applicability), we will choose the alphabet Σ = F2 for
all subsequent discussions.

2 The Ideal Model

In a first step we need to define precisely, what secure message passing is supposed to mean. To this end we
specify an ideal functionality TH, that obviously ensures the secrecy and authenticity of our messages, passes
all information leaked through necessary imperfections of the message passing system to the adversary and
offers the adversary a well defined interface to perform all actions the message passing system cannot prevent
(i.e. reordering or suppressing messages). So it becomes obvious what the system does not conceal and not
prevent.

In defining the ideal model for secure message transmission, we largely follow [11]. Since the handling of
multiple sessions can be derived from the handling of individual sessions by means of the composition theorem,
we can restrict ourselves to considering only a single session as is done in [7]. We do not need session identifiers,
since multiple sessions can be distinguished by different port names. Also, differing from [11], we will for
now only investigate unidirectional message transmission, with one designated sender and one designated
receiver. This is no restriction, since arbitrary networks can be composed from secure unidirectional point
to point connections, and security of these networks follows by composability [11] (this is analogous to [7]).
There is a further reason, why it is sensible to first restrict oneself to a unidirectional connection:

Caveat 1 As we investigate stream ciphers (more specifically the one time pad) in an asynchronous frame-
work, any two participants need a separate key for each unidirectional connection.

Rational. If two parties were to use the same key string for a bidirectional connection it would be hard to
ensure, that a specific subsequence of the key is not used twice (e.g. simultaneously by each partner sending
out some message). But this would undermine the security of the protocol, since by calculating the sum of
two such ciphertexts the key can be cancelled. The resulting sum of two plaintexts may be deciphered using
statistical methods. ¤

Now let s ∈ N>0 and L be a non-zero polynomial with coefficients in N, where s denotes the maximum
number of messages the sender may send, and L the maximum message length as a function of the security
parameter k.

All machines given throughout this work will be initialized to a state corresponding to the security
parameter k in accordance with the [11] framework and the adversary is always the master scheduler, all
buffers not explicitly scheduled by another machine are scheduled by the adversary.

Since we only admit two participants, the sender and the receiver, a single dishonest party can, due to the
nature of the message transmission task, already disclose all relevant information to the adversary A. Hence
we require nothing in case one (or both) parties are corrupted and turn control over to the adversary—all
messages are passed directly to the adversary who may also send arbitrary messages to the honest users
(“environment”) H. Therefore we only need to discuss the case where the set of honest participants H is the
set of all participants M, i.e. H = M = {1, 2}, where 1 is the sender and 2 the receiver. We now define the
ideal system for secure message transmission as

Syssecmsg,ideal
s,L = {({TH}, S)} (1)

where ports(TH) = {inu?, outu!, out/u!|u ∈ H} ∪ {insim?, outsim!, outsim
/!} and the specified ports are given by

Sc := {inu!, outu?|u ∈ H}.
TH maintains data structures init1, init2, key1, key2 ∈ {0, 1}, sc ∈ {0, . . . , s} initialized to 0, and a list

deliver initially empty. initu stores if user u has initiated key exchange, keyu stores if user u would have
received his set of keys (both encryption and authentication keys) in the real model, deliver holds the
messages due for delivery until the adversary schedules them. The state-transition function of TH is given
by the rules below. Inputs not treated explicitly are ignored. If an input triggers a non-empty output, we
say the machine accepts it.
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Figure 1: Ideal Model: Secure Message Passing

(init) to TH via inu?

• if initu = 1 then abort
(User u has already initiated key exchange.)

• initu := 1
(User u has initiated key exchange.)

• output (init, u) at outsim! and schedule
outsim!

(initok, u) to TH via insim?

• if init1 = 0 or init2 = 0 or keyu = 1 then
abort
(One user has not initiated key exchange
yet or user u has already received a key.)

• keyu := 1
(The adversary has not disrupted key dis-
tribution to user u.)

• output (initialized) at outu! and schedule
outu!

(send,m) to TH via in1?

• if key1 6= 1 then abort
(No key yet, hence no encryption possible.)

• if sc ≥ s or len(m) > L(k) then abort
(Too many messages sent already or mes-
sage too long.)

• deliver[sc] := (sc,m)

• sc := sc + 1

• output (busy, sc − 1, len(m)) at outsim! and
schedule outsim!

(select, i) to TH via insim?

• if key2 6= 1 then abort
(User 2 has not received a key yet, thus
decryption not possible.)

• if 0 ≤ i < sc(= size(deliver)) then out-
put (receive, deliver[i]) at out2! and sched-
ule out2!

3 The Hybrid Model

We now define a hybrid model that uses an actual encryption algorithm, but still relies on an ideal authenti-
cation subsystem to deliver messages. We will prove this hybrid model to be perfectly as secure as the ideal
model in the black box simulatability sense [11]. As encryption primitive we will use the one time pad, but
we will attempt to give a general formulation, so that the one time pad can easily be replaced with a different
stream cipher. Of course, no more than computational security can be expected then.

Figure 2: Hybrid Model: Secure Message Passing

The hybrid real model is sketched in Figure 2. The two machines M1,enc, M2,enc handle encryption and
decryption respectively. Between the two machines we still have an authenticated channel, implemented by
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the ideal authentication functionality Fauth,ideal
s,Lauth

. The maximal message length Lauth for the authentication
subsystem is given as polynomial over N in k defined as Lauth(k) := L(k) + s · k ≥ L(k) + dlog2(s · k)e. The
authentication subsystem has to handle messages that are dlog2(s · k)e longer than the messages handled by
the encryption machines, because the current position within the one time pad key used for encryption has to
be authenticated with the original message. With H = {1, 2} as above, the hybrid system is formally given
as

Syssecmsg,hybrid
s,L = {({Mu,enc, F

auth,ideal
s,Lauth

,FKEenc|u ∈ H}, S)} (2)

where

ports(Mu,enc) = {inu?, outu!, out/u!, inu,auth!, outu,auth?, in/
u,auth!, (3)

inu,FKEenc !, in
/
u,FKEenc

!, outu,FKEenc?} where u ∈ H
ports(Fauth,ideal

s,Lauth
) = {inu,auth?, outu,auth!, out/u,auth!|u ∈ H} (4)

∪ {insim,auth?, outsim,auth!, outsim,auth
/!}

ports(FKEenc) = {inu,FKEenc?, outu,FKEenc !, out/u,FKEenc
!,

insim,FKEenc?, outsim,FKEenc !, out/sim,FKEenc
!|u ∈ H} (5)

and the specified ports are given by Sc := {inu!, outu?|u ∈ H}. The machines in Syssecmsg,hybrid
s,L maintain the

following data structures (where u ∈ H):

FKEenc: initu, distributedu ∈ {0, 1}, key ∈ Σ∗

Mu,enc: init ∈ {0, 1}, enckey ∈ Σ∗, keypos ∈ {0, . . . , s · L(k)}, sc ∈ {0, . . . , s}

Fauth,ideal
s,Lauth

: init1, init2, key1, key2 ∈ {0, 1}, sc ∈ {0, . . . , s},
deliver ∈ ({0, . . . , s}, Σk)∗

where all variables are initialized to 0, the empty list [] or the empty string ε as applicable. When operating
on strings in Σ∗ or lists, we let x[a : b] denote the substring (in case x is a string) or sublist (in case x is a
list) from (and including) position a up to (but not including) position b. The state-transition functions of
the machines are given by the rules in the box below. Inputs not treated explicitly are ignored. If an input
triggers a non-empty output, we say the machine accepts it. (Note that the rules are ordered by the machines
they belong to and may be invoked by rules listed further down.)

(init) to Mu,enc via inu?

• output (init) at inu,auth! and schedule
inu,auth!

(initialized) to Mu,enc via outu,auth?

• i := s · L(k)

• output (generate, i) at inu,FKEenc ! and sched-
ule inu,FKEenc !

(cipher, (cnt, (keypos, c))) to M2,enc via out2,auth?

• if initauth 6= 1 or initenc 6= 1 then abort
(No key yet, hence no decryption possible.)

• if len(c) > L(k) or keypos+ len(c) > s ·L(k)
then abort
(Message too long or keypos out of range.)

• m := c⊕ enckey[keypos : keypos + len(c)]

• output (receive, cnt,m) at out2! and sched-
ule out2!

(init) to Fauth,ideal
s,Lauth

via inu,auth?

• if initu = 1 then abort
(User u has already initiated key exchange.)

• initu := 1
(User u has initiated key exchange.)

• output (init, u) at outsim,auth! and schedule
outsim,auth!

(initok, u) to Fauth,ideal
s,Lauth

via insim,auth?

• if init1 = 0 or init2 = 0 or keyu = 1 then
abort
(One user has not initiated key exchange
yet or user u has already received a key.)

• keyu := 1
(The adversary has not disrupted the dis-
tribution of keys to user u.)

• output (initialized) at outu,auth! and schedule
outu,auth!
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(key, key) to Mu,enc via outu,FKEenc?

• enckey := key

• init := 1

• output (initialized) at outu! and schedule
outu!

(send, m) to M1,enc via in1?

• if init 6= 1 then abort
(No key yet, hence no encryption possible.)

• if sc ≥ s or len(m) > L(k) then abort
(Too many messages sent already or mes-
sage too long.)

• sc := sc + 1

• c := (keypos, m⊕enckey[keypos : keypos+
len(m)])
(For transmission we encode keypos as
dlog2(s · k)e bit string.)

• keypos := keypos + len(m)

• output (cipher, c) at in1,auth! and schedule
in1,auth!

(cipher, c) to Fauth,ideal
s,Lauth

via in1,auth?

• if key1 6= 1 then abort
(No key yet, hence no authentication possi-
ble.)

• if sc ≥ s or len(m) > Lauth(k) then abort
(Too many messages sent already or mes-
sage too long.)

• deliver[sc] := (sc, c)
(For transmission we encode sc as dlog2 se
bit string.)

• sc := sc + 1

• output (busy, sc − 1, c) at outsim,auth! and
schedule outsim,auth!

(select, i) to Fauth,ideal
s,L via insim,auth?

• if key2 6= 1 then abort
(User 2 has not received a key yet, thus
authentication not possible.)

• if 0 ≤ i < sc (= size(deliver)) then output
(cipher, deliver[i]) at out2,auth! and schedule
out2,auth!

(generate, i) to FKEenc via inu,FKEenc?, u ∈ {1, 2}
• if init3−u = 1 and initu = 0 then

– initu := 1

– key ∈ Fi
2 drawn uniformly at random

– output (generate, i) at outsim,FKEenc !
and schedule outsim,FKEenc !

else initu := 1

(distribute, u) to FKEenc via insim,FKEenc?

• if distributedu = 1 or init1 = 0 or init2 = 0
then abort

• distributedu := 1

• output (key, key) at outu,FKEenc ! and sched-
ule outu,FKEenc !

Caveat 2 The position in the key sequence must be included with the message unencrypted. It should be
authenticated with the message, unless tampering with the key sequence position ensures (with overwhelming
probability) that authentication will fail.

Rational. If the key sequence position is not included, the adversary suppressing one single message results
in loss of synchronization. Thus decryption will fail for all subsequent messages. If the key position is
not authenticated, the adversary may modify it without being noticed. If the authentication is then not
guaranteed to fail, the receiver will be under the impression he is receiving nonsensical messages from the
sender. ¤

4 Black Box Perfect Indistinguishability of Hybrid & Ideal Model

We show now, that the ideal model depicted in Figure 1 and the hybrid real model as in Figure 2 are black
box perfectly indistinguishable according to the definition set forth in [11]. That implies that the hybrid real
model is perfectly at least as secure as the ideal model.

Theorem 1 The hybrid real system Syssecmsg,hybrid
s,L as in Figure 2 is black box perfectly at least as secure as
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the ideal system Syssecmsg,ideal
s,L as in Figure 1:

Syssecmsg,hybrid
s,L ≥f,perf

sec Syssecmsg,ideal
s,L (6)

where the valid mapping f between the systems is obvious from the machine names.

Proof. Given an adversary A in the hybrid real model we define the adversary A′ for the ideal model using
the simple black box construction shown in Figure 3. All machines are given exactly as in the hybrid-real
model, with three exceptions. On the machines Mu,enc the ports inu?, outu! are renamed to in′u?, out′u! and
MUX is newly defined. MUX acts as multiplexer, that distributes the outputs of TH to the submachines of
the simulator S. The ports of MUX are ports(MUX) = {insim!, outsim?, in′u!, out′u?|u ∈ H} and it operates as
follows:

(init, u) to MUX via outsim?

• output (init) at in′u! and schedule in′u!

(initialized) to MUX via out′u?

• output (initok, u) at insim! and schedule
insim?

(busy, i, len(m)) to MUX via outsim?

• m := 0len(m) ∈ Flen(m)
2

• output (send,m) at in′1! and schedule in′1!

(receive, cnt, m) to MUX via out′2?

• output (select, cnt) at insim! and schedule
insim!

To complete the proof that the hybrid real model is black box perfectly as secure as the ideal model we
have to show, that under the given black box construction and for a fixed adversary A for both models, the
views of the honest users H are perfectly indistinguishable.

But this is clear from the construction of the simulator and the fact, that the one time pad is perfectly
concealing. The black box construction as given above clearly replicates the hybrid real protocol identically
within the simulator S, but for the content of the messages. But the one time pad is perfectly concealing,
and thus renders messages of different content indistinguishable. So there is no way for either adversary A
or the users H to distinguish the ideal and the hybrid real structure. Thus the views for the honest users H
are left perfectly indistinguishable and perfect black box simulatability is proven. ¤

Figure 3: Black Box Construction
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5 The Real Model

The real model defined in this section describes the actual usable protocol for statistically secure message
passing. There are two machines M1 and M2 for sender and receiver respectively. Each machine Mu decom-
poses into two submachines Mu,enc and Mu,auth that handle encryption and authentication. The machines
Mu,auth and FKEauth constitute the real authentication subsystem Sysauth,real

s,L that replaces the ideal authen-
tication subsystem Sysauth,ideal

s,L . As such the real system is mostly identical to the hybrid-real model, only
replacing the ideal authentication system with the real one, and thus allowing for a proof of security by
composition.

The real authentication system is based on a statistically secure authentication procedure described in
[14, Chapter 10.3]. It views the message m as number in Fp and uses an affine authentication function,
computing the authentication tag as t(m, k1, k2) := (m · k1 + k2) mod p where k1, k2 ∈ Fp is the current pair
of keys. A more detailed discussion of this scheme and its security will be given in the next section.

With H = {1, 2} the real system is formally given as

Syssecmsg,real
s,L = {({Mu,enc, Mu,auth, FKEauth, FKEenc|u ∈ H}, S)} (7)

where

ports(Mu,enc) = {inu?, outu!, out/u!, inu,auth!, outu,auth?, in/
u,auth!, (8)

inu,FKEenc !, in
/
u,FKEenc

!, outu,FKEenc?} where u ∈ H
ports(M1,auth) = {in1,auth?, out1,auth!, out/1,auth!, netout!, (9)

in1,FKEauth
!, in/

1,FKEauth
!, out1,FKEauth

?}
ports(M2,auth) = {in2,auth?, out2,auth!, out/2,auth!, netin?, (10)

in2,FKEauth
!, in/

2,FKEauth
!, out2,FKEauth

?}
ports(FKEauth) = {inu,FKEauth

?, outu,FKEauth
!, out/u,FKEauth

!, (11)

insim,FKEauth
?, outsim,FKEauth

!, out/sim,FKEauth
!|u ∈ H}

ports(FKEenc) = {inu,FKEenc?, outu,FKEenc !, out/u,FKEenc
!, (12)

insim,FKEenc?, outsim,FKEenc !, out/sim,FKEenc
!|u ∈ H}

and the specified ports are given by Sc := {inu!, outu?|u ∈ H}.

Figure 4: Real Model: Application of One Time Pad

The machines in Syssecmsg,real
s,L maintain the following data structures (where u ∈ H and v ∈ {enc, auth}):

FKEenc: initu, distributedu ∈ {0, 1}, key ∈ Σ∗

FKEauth: initu, distributedu ∈ {0, 1}, key ∈ Σ∗, p ∈ {0, . . . , 2k+1 − 1}
Mu,enc: init ∈ {0, 1}, enckey ∈ Σ∗, keypos ∈ {0, . . . , s · L(k)}, sc ∈ {0, . . . , s}
Mu,auth: initauth ∈ {0, 1}, authkey ∈ Σ∗, sc ∈ {0, . . . , s}, p ∈ {0, . . . , 2k+1 − 1}
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where all variables are initialized to 0, [], ε as applicable. Again, all differences to the hybrid real model are
confined to the authentication subsystem.

The state-transition functions of all machines are given as in the hybrid real model, except for the machines
that belong to the real authentication subsystem. For those the state transition functions are described below.
Again, inputs not treated explicitly are ignored.

(init) to Mu,auth via inu,auth?

• j := max{k + 1, Lauth(k) + 2}
• output (generate, s, j) at inu,FKEauth

! and
schedule inu,FKEauth

!

(cipher, c) to M1,auth via in1,auth?

• if initauth 6= 1 then abort
(No key yet, hence no authentication possi-
ble.)

• if sc ≥ s or len(c) > Lauth(k) then abort
(Too many messages sent already or mes-
sage too long.)

• m := 1||c
(Prefix the bitstring c with a leading one.)

• tag := (m·key[2·sc]+key[2·sc+1]) mod p
(Calculating the authentication tag we view
m as number in Z.)

• pkt := (sc,m, tag)

• sc := sc + 1

• output (packet, pkt) at netout!

(key, key, modulus) to Mu,auth via outu,FKEauth
?

• p := modulus

• authkey := key

• initauth := 1

• output (initialized) at outu,auth! and schedule
outu,auth!

(packet, pkt) to M2,auth via netin?

• if initauth 6= 1 then abort
(No key yet, hence no authentication possi-
ble.)

• (pos,m, tag) := pkt
(As pos, tag are bitstrings of fixed length,
segmentation is easy)

• if m[0] 6= 1 or pos ≥ s or len(m) − 1 >
Lauth(k) then abort
(Leading bit wrong, too many messages
sent or message too long.)

• if tag 6= (m · key[2 · pos] + key[2 · pos + 1])
mod p then abort
(Authentication failed.)

• output (cipher, pos, m[1 : len(m)]) at
out2,auth! and schedule out2,auth!

(generate, i, j) to FKEauth via inu,FKEauth
?, u ∈

{1, 2}
• if init3−u = 1 and initu = 0 then

– choose p ∈ {2j−1 ≤ q < 2j : q prime}
arbitrary
(Choose a j bit prime.)

– initu := 1

– key := []

– while size(key) < 2i

∗ a ∈ Fj
2 drawn uniformly at ran-

dom
∗ if a < p then key := key||a

(append a to list key)

– output (generate, i, p) at outsim,FKEauth
!

and schedule outsim,FKEauth
!

else initu := 1

(distribute, u) to FKEauth via insim,FKEauth
?

• if distributedu = 1 or init1 = 0 or init2 = 0
then abort

• distributedu := 1

• output (key, key, p) at outu,FKEauth
! and

schedule outu,FKEauth
!
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Caveat 3 Our authentication scheme does not protect leading zeros, since m and 0||m correspond to the
same number in Fp. Therefore, we make sure, that every message starts with a one.

Caveat 4 We need to include the message sequence number with the authenticated message, since loss of
synchronization would otherwise prevent us from authenticating messages after the adversary has suppressed
one. The message sequence number need not be authenticated, since modification of the sequence number will
just lead to failing authentication.

It remains to show that Syssecmsg,real
s,L is black box statistically as secure as Syssecmsg,hybrid

s,L . This is done
by composition. We will prove that the real authentication subsystem Sysauth,real

s,L is black box statistically
as secure as the ideal authentication subsystem Sysauth,ideal

s,L utilized in Syssecmsg,real
s,L . The statistical black

box security of Syssecmsg,ideal
s,L then follows from the perfect black box security of Syssecmsg,hybrid

s,L using the
composition theorem from [11].

6 Security of the Authentication Subsystem

The ideal authentication subsystem

Sysauth,ideal
s,Lauth

= {({Fauth,ideal
s,Lauth

}, S)}, (13)

utilizing the ideal authentication functionality (structure)

F auth,ideal
s,Lauth

= ({Fauth,ideal
s,Lauth

}, S) (14)

is depicted in Figure 5. The real authentication subsystem

Sysauth,real
s,Lauth

= {({Mu,auth,FKEauth|u ∈ H}, S)} (15)

utilizing the real authentication functionality

F auth,real
s,Lauth

= ({Mu,auth,FKEauth|u ∈ H}, S) (16)

is shown in Figure 6. All machine definitions and the trust model are as given above and the specified ports
are given by Sc := {inu,auth!, outu,auth?|u ∈ H} where of course H = {1, 2}.

Theorem 2 The real authentication subsystem Sysauth,real
s,Lauth

as in Figure 6 is black box statistically at least as
secure as the ideal authentication subsystem Sysauth,ideal

s,Lauth
as in Figure 5: Sysauth,real

s,Lauth
≥f,ExpSmall

sec Sysauth,ideal
s,Lauth

where the valid mapping f between the systems is obvious from the machine names.

Proof. It is clear from its definition that the ideal authentication functionality F auth,ideal
s,Lauth

does guarantee
authenticated transmission. We will now show that the real authentication functionality F auth,real

s,Lauth
, that

transmits all data via the adversary A, is black box statistically as secure as the ideal functionality.
To this end, given an adversary A in the real model we define the adversary A′ for the ideal model using

the black box simulator Sim as shown in Figure 7. All machines are given exactly as in the real model, with
three exceptions. On the machines Mu,auth the ports inu,auth?, outu,auth! are renamed to in′u,auth?, out′u,auth! and
MUX′ is newly defined. MUX′ acts as multiplexer, that distributes the outputs of Fauth,ideal

s,Lauth
to the submachines

of the simulator Sim. The ports of MUX′ are ports(MUX′) = {insim,auth!, outsim,auth?, in′u,auth!, out′u,auth?|u ∈ H}
and it operates as follows:

(init, u) to MUX′ via outsim,auth?

• output (init) at in′u,auth! and schedule
in′u,auth!

(initialized) to MUX′ via out′u,auth?

• output (initok, u) at insim,auth! and schedule
insim,auth!

(busy, i, c) to MUX′ via outsim,auth?

• output (cipher, c) at in′1,auth! and schedule
in′1,auth!

(cipher, (cnt, c)) to MUX′ via out′2?

• output (select, cnt) at insim,auth! and sched-
ule insim,auth!
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Figure 5: Ideal Model: Authentication

Figure 6: Real Model: Authentication Figure 7: Black Box Simulator: Authentication

To complete the proof that the real authentication system is black box statistically as secure as the ideal
system we have to show, that, under the given black box construction and for a fixed adversary A for both
models, the views of the honest users H are statistically indistinguishable.

The black box construction as given above clearly replicates the real authentication protocol identically
within the simulator Sim. So there is no way for the adversary A to distinguish the ideal and the real structure.
Thus the views for the honest users H are left identical unless A manages to introduce forged messages.

Hence, we take a look at the probability that A successfully introduces a forged message m′. First we note
that the probability P (t(m, k1, k2)|m) of a certain tag t(m, k1, k2) := (m · k1 + k2) mod p given a message
m assuming a uniform distribution over the keys k1, k2 ∈ Fp is P (t|m) = 1

p .
Therefore, the adversary A has a chance of exactly 1

p ≤ 1
2k , i.e. exponentially small in the security

parameter k, to successfully introduce a forged message and tag (m′, t′). That holds, even if the adversary
A has intercepted the current message m, since for m 6= m′ and an arbitrary choice of the forged tag t′ we
have P [t′ = t(m′, k1, k2)|(m, t(m, k1, k2))] = 1

p (see [14, Chapter 10.3]).
If we consider a polynomial l(X) and perform l(k) many authentications for security parameter k, then we

find that the probability for a successful deception is bounded by l(k) 1
2k ∈ ExpSmall(k). That means, if we

consider a configuration of the real authentication system conf real = (F auth,real
s,Lauth

, Sauth, H, A) ∈ Conf(Sysauth,real
s,Lauth

)
and the corresponding configuration conf ideal = (F auth,ideal

s,Lauth
, Sauth, H, A′) ∈ Conf(Sysauth,ideal

s,Lauth
) of the ideal sys-

tem, we obtain views for the honest users H, such that viewconf ideal,l(H) ≈ExpSmall viewconf real,l(H) where
viewconfideal,l(H), viewconfreal,l(H) are the families of l-step prefixes of the views for arbitrary polynomials l

and the valid mapping f : Sysauth,real
s,Lauth

−→ Sysauth,ideal
s,Lauth

is clear. We may therefore conclude that by the
definitions in [11] the real authentication system is statistically at least as secure as the ideal system:
Sysauth,real

s,Lauth
≥f,ExpSmall

sec Sysauth,ideal
s,Lauth

¤

Caveat 5 The statistical security of the authentication scheme given here is only guaranteed, as long as the
message m interpreted as a natural number is bounded by the modulus p.

Rational. If we allowed messages m ≥ p the adversary could easily introduce a forged message (m+p) mod p.
This would go unnoticed, as t(m + p, k1, k2) = ((m + p)k1 + k2) mod p = (mk1 + k2) mod p = t(m, k1, k2)

¤
Our system takes this into account by limiting the message length to at most Lauth(k) + 1 bits (including

the leading one) and choosing p as Lauth(k) + 2 bit prime (or larger).
The composition theorem of [11, Theorem 4.1] is applicable to the systems Syssecmsg,hybrid

s,L and Syssecmsg,real
s,L

with the respective subsystems Sysauth,ideal
s,Lauth

and Sysauth,real
s,Lauth

, since each system is composed of only one single
structure and because the consistency condition on the ports is clearly fulfilled. Thus we have
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Theorem 3 The real system for secure message passing as given above is black box statistically as secure
as the ideal system: Syssecmsg,real

s,L ≥f,ExpSmall
sec Syssecmsg,ideal

s,L where the valid mapping f between the systems is
obvious.

Note that the theorem above still holds if we replace the authentication system with any other statistically
secure and composable authentication system.

7 Conclusion

We have seen, that it is feasible, but not trivial, to use the one time pad to construct a statistically secure
message passing system. In particular we note, that it is impossible to obtain a perfectly secure system (i.e.
perfectly indistinguishable from the ideal system), because authentication can at best be statistically secure.

The proof we presented is modular in the sense that it admits any choice of statistically secure authen-
tication system. As indicated in Appendix A it is also easily extensible to computationally secure ciphers
and authentication systems, thus providing a framework for statements about stream ciphers in the model
of [11, 2, 3].
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A Using Computationally Secure Components

The statistically secure protocol for message passing given above was designed to be as simple, modular, and
extensible as possible. The authentication subsystem may clearly be replaced with any other composable
and statistically secure authentication system and as implementation of the key exchange functionality FKE
we may use any type of statistically secure key exchange, for instance passing the key by hand or using a
quantum key exchange according to [5] (for the composability see [4, 13]).

For some applications it is desirable, that messages arriving “late”, i.e. after a message sent later than
the one in question, be discarded, to ensure messages always arrive in order. Given the system above,
guaranteeing the order of messages is simple. The secure message passing system Syssecmsg,ideal

s,L as described
above already passes message sequence numbers to the recipient. Ensuring that messages arrive in order
reduces to the simple matter of adding an additional machine, that ensures the strict monotonicity of these
sequence numbers.

Using the framework above with only computationally secure components (a case discussed, e. g., by
Canetti and Krawczyk [7]), requires a little additional work:

Theorem 4 All machines in the (real/hybrid-real/ideal) model as given above can be instantiated (as turing
machines) in such a fashion, that every invocation of a machine will terminate after time polynomial in the
security parameter k.

Proof. Clearly, the machines TH,Mu,enc, Mu,auth,FKEenc,F
auth,ideal
s,L will run for time at most polynomial in k

on every invocation in the model, provided we implement the actual turing machines sensibly. In particular,
no machine needs to read more than (2s + 1) · (L(k) + s · k + 2) + const bits of input per invocation, if the
length checks are performed properly. Here const is a constant overhead induced by the message labels (i.e
init or packet).

For the machine FKEauth we need that it is feasible to calculate an arbitrary j := Lauth(k) + 2 bit prime
p ∈ {2j−1 ≤ q < 2j : q prime} with negligible failure probability in time polynomial in k. Since testing a j bit
number for primality is polynomial in j [1], it follows from the prime number theorem, as discussed in [10],
that guessing and testing a j bit prime is possible in time polynomial in j with negligible failure probability
and j is a polynomial in k. FKEauth then runs in time polynomial in k with negligible failure probability.

¤
Since every invocation of a machine in our models runs in time polynomial in k it is not hard to turn all

machines into polynomial machines as specified by [11]. We simply have to enforce polynomial bounds on
the total runtime of every machine. To this end every machine rejects input after a polynomial number of
invocations by setting its length function [2] to zero.

Therefore the model given above can easily be modified to prove results on stream ciphers and authenti-
cation schemes, that offer only polynomial security.
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