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Signcryption from Pairings

Abstract. We introduce the first blind identity-based signcryption (BIBSC).
The Warden and the blind signcryption oracle conduct a 3-move inter-
active protocol, in which the oracle commits and then blindly sign any
challenge, and Warden outputs a signcryption untraceable from the 3-
move conversation. We introduce security models to define the security
notions of blindness and parallel one-more unforgeability (p1m-uf) by
active attackers. We present an efficient construction from pairings, then
prove its security in the random oracle model. The p1m-uf is reduced to
Schnorr’s ROS Problem or the co-CDH Problem. In the process, we also
introduce a new security model for (non-blind) identity-based signcryp-
tion (IBSC) which is a strenthening of Boyen’s. We construct protocols
proven secure in that model which has no more complexity (counting the
number of pairings and exponentiations) and cost no more bandwidth
than any secure IBSC in the literature. We also show several existing
IBSC schemes failing our new security model.

1 Introduction

Identity based cryptography is a kind of asymmetric key cryptography using
recipient’s identity as the public key. In 1984, Shamir [18] firstly proposed the
idea of identity based cryptography. Since then, there are many suggestions for
the implementation of identity based encryption ([12], [20], [16], [10]). However
they are not fully satisfactory. In 2001, Boneh and Franklin [4] proposed the first
practical identity based encryption scheme using pairings on elliptic curves.

The basic idea of identity based cryptography is to use the recipient’s iden-
tity as the public key. The identity can be name, email address or combining
any other strings that can help to identify a person uniquely. Usually a trusted
authority (TA) is needed to generate private keys according to the public keys.
The advantage of identity based cryptography over traditional public key cryp-
tography is that distribution of public key in advance is not needed.

Since the first practical identity based encryption scheme was proposed in
2001 [4], there are many new development in identity based cryptography, like
identity based signatures [6], authenticated key agreement [19], [8]. Identity-
based encryptions prior to that result either requires high complexity to compute
the key pair (e.g. RSA-based) or is insecure against colluders who can jointly
extract one more secret key (e.g. DL-based).

Privacy and authenticity are the basic aims of public-key cryptography. We
have encryption and signature to achieve these aims. There are many researches
for encryption or signature separately. Yet, there are some applications that
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requires the use of both encryption and signature, like signing an e-mail and
then encrypted before sent. Zheng [24] proposed that encryption and signature
can be combined as ”signcryption” which can be more efficient in computation
than running encryption and signature separately. The security of signcryption
is discussed by An et al. [1]

1.1 Contributions

We introduce the literature’s first blind identity-based signcryption (BIBSC).
Upon request from Warden, a blind signcryption oracle makes a commitment,
then blindly signs and computes the randomness term in the encryption for
Warden. Warden deblinds and proceeds to produce a signcryption untraceable
from the conversation with the oracle.

We formulate the first BIBSC security models to define blindness and to
define parallel one-more unforgeability by active adversary (p1m-UF).

We present the first BIBSC from pairings, and prove its security. The blind-
ness of our BIBSC from pairings is statistical ZK, and the p1m-UF is reduced to
Schnorr’s ROS Problem or the co-CDH Problem, in the random oracle model.

We also introduce a strengthening of Boyen’s security model for (non-blind)
identify-based signcryption (IBSC) to support authenticated encryption. We give
an efficient and secure constructing satisfying the strengthened model. It has no
more complexity (in terms of pairings and exponentiations) and costs no more
bandwidth than any secure IBSC in the literature. The shortcomings of several
existing IBSC in the strengthened model are shown.

1.2 Organization

In Section 2, we will define preliminaries. In Section 3, we will define the IBSC
and BIBSC security model. In Section 4, we will introduce our schemes. In
Section 5, we will compare our scheme with existing schemes. In Section 6, we
will introduce the additional functionalities of our scheme.

2 Preliminaries

2.1 Related Results

Shamir [18] suggested an identity based signature scheme. Boneh and Franklin
[4] proposed an identity based encryption scheme. There are some papers [15],
[5], [13], [11], [9], [14] concerning the combination of signature and encryption
to form a new IBSC scheme. The advantage of IBSC is that it involves less
computation and usually has a shorter ciphertext than using encryption and
signature scheme separately.

Let us consider the efficiency and proven security of known IBSC schemes
from pairings. The most expensive single operation is the pairing computations.
The scheme of [15], [5] and [14] use 5 pairings, while [13] and [9] use 6, [11] uses
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4. The scheme of [5] is proven secure in a stronger model than [15] and [13]. The
scheme of [11] has no security proof. The detailed comparison of our scheme and
other schemes will be discussed in Section 5.

The concept of blind signatures was introduced by Chaum [7], which pro-
vides anonymity of users in applications such as e-cash. It allows users to get
a signature of a message in a way that the signer learns neither the message
nor the resulting signature. Some ID-based blind signature schemes is developed
recently [21], [22], [23].

2.2 Pairings

The security analysis for IBSC is based on the hardness of co-BDH and co-
CDH problem. The security analysis for BIBSC is based on the hardness of the
co-CDH problem and Schnorr’s ROS problem [17].

Definition 1. (co-BDH problem)The co-Bilinear Diffie-Hellman problem is, given
P, Pα, P β ∈ G1, Q ∈ G2, for unknown α, β ∈ Zq, to compute e(P, Q)αβ.

Definition 2. (co-CDH problem) The co-Computational Diffie-Hellman prob-
lem is, given P, Pα ∈ G1, Q ∈ G2 for unknown α ∈ Zq, to compute Qα.

2.3 Blind signatures and Schnorr’s ROS Problem

Definition 3. (ROS problem) Find an overdetermined, solvable system of linear
equations modulo q with random inhomogeneities. Specifically, given an oracle
random function F : Zl

q ← Zq , find coefficients ak,i ∈ Zq and a solvable system
of l + 1 distinct equations of Eq. (1) in the unknowns c1, . . . , cl over Zq:

ak,1c1 + . . . + ak,lcl = F (ak,1, . . . , ak,l) for k = 1, . . . , t. (1)

3 Introducing BIBSC Security Model and Enhancing
IBSC Security Model

We define the first security models for BIBSC (Blind Identity-Based SignCryp-
tion). We also define an enhancement of Boyen’s security model for IBSC (Identity-
Based SignCryption). For logistics, we present the latter first.

3.1 Enhanced IBSC Security Model

3.1.1 Primitives An IBSC scheme consists of four algorithms: (Setup, Extract,
Signcrypt, Unsigncrypt). The algorithms are specified as follows:
Setup: On input a security parameter k, the TA generates 〈ζ, π〉 where ζ is the
randomly generated master key, and π is the corresponding public parameter.
Extract: On input ID, the TA computes its corresponding private key SID (cor-
responding to 〈ζ, π〉) and sends back to its owner in a secure channel.
Signcrypt: On input the private key of sender A, SA, recipient identity IDB and
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a message m, outputs a ciphertext σ corresponding to π.
Unsigncrypt: On input private key of recipient B, SB, and ciphertext σ, decrypt
to get sender identity IDA, message m and signature s corresponding to π. Verify
s and verify if encryptor = signer. Output � for ”true” or ⊥ for ”false”.

We make the consistency constraint that if σ ← Signcrypt(SA, IDB, m),
then m← Unsigncrypt(SB, σ).

3.1.2 Indistinguishability Indistinguishability for IBSC against adaptive cho-
sen ciphertext attack (IND-IBSC-CCA2) is defined as in the following game. It
is similar to the IND-CCA2 for traditional public key encryption scheme.

In this game, the Adversary is allowed to query the random oracles, key
extraction oracle, signcryption oracle and unsigncryption oracle adaptively. The
game is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomial number of oracle queries adaptively.
3. Adversary generates m1, IDA1, IDB1, and sends to Simulator. Adversary

knows SA1. Simulator generates m0, IDA0, IDB0, randomly chooses b ∈R

{0, 1}. Simulator delivers σ ← Signcrypt(SAb, IDBb, mb) to Adversary.
4. Adversary performs polynomial number of oracle queries adaptively.
5. Adversary tries to compute b, in the following three sub-games

(a) Simulator ensures B0 = B1, m0 = m1, Adversary computes b.
(b) Simulator ensures A0 = A1, m0 = m1, Adversary computes b.
(c) Simulator ensures A0 = A1, B0 = B1, Adversary computes b.

The Adversary wins the game if he can guess b correctly.
The oracles are defined as follows:

Key extraction oracle KEO: Upon input an identity, the key extraction oracle
outputs the private key corresponding to this identity.
Signcryption oracle SO: Upon input m, IDA, IDB, produce valid signcryp-
tion σ for the triple of input.
Unsigncryption oracle UO: Upon input ciphertext σ and receiver ID, the
unsigncryption oracle outputs the decryption result, verification outcome of sig-
nature and verification outcome of encryptor=signer.

Oracle query to KEO to extract private key of IDB0, IDB1 is not allowed.
Oracle query to SO for m1, IDA1, IDB1 is not allowed. Oracle query to UO for
the challenge ciphertext from Simulator is not allowed.

The advantage of the adversary is the probability, over half, that he can
compute b accurately.

Definition 4. (Indistinguishability) The IBSC is IND-IBSC-CCA2 secure if no
PPT adversary has non-negligible advantage in any of the three sub-games above.

In this game, the Adversary is allowed to know the private key of sender SA

of the challenge ciphertext. This gives us a strong insider-security for indistin-
guishability in [1]. Notice that the original definition for indistinguishability for
IBSC in Malone-Lee’s [15] paper is similar to the IND sub-game-c (IND-C) here.
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We combine the security model of ”anonymity” for IBSC in Boyen’s [5] paper
as the IND sub-game-a (IND-A) and IND sub-game-b (IND-B). This new IND
definition provides a more comprehensive view of indistinguishability.

3.1.3 Existential unforgeability Existential unforgeability against adaptive
chosen message attack for identity based signcryption (EU-IBSC-CMA) is de-
fined as in the following game. It is similar to the EU-CMA for traditional
signature scheme.

In this game, the Adversary is allowed to query the random oracles, KEO,
SO and UO adaptively. The definition for oracles are same as above section.
The game is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomially number of oracle queries adaptively.
3. Adversary delivers valid (σ, IDB) where σ is not produced by any signcryp-

tion oracle query, and Adversary never extracted the secret key of IDA.

The Adversary wins the game if he can produce a valid (σ, IDB) that can be
decrypted, under the private key of IDB, to a message m, sender identity IDA

and a signature s. It is required that s pass the verification test for IDA, and σ
passes the verification that tests if encryptor = signer.

Oracle query to KEO to extract private key of IDA is not allowed. The
Adversary’s answer (σ, IDB) should not be computed by the SO before.

Definition 5. (Existential Unforgeability) A signcryption is secure against EU-
IBSC-CMA if no PPT adversary has non-negligible in successful completion of
the game above.

The Adversary is allowed to ask private key of IDB, the recipient identity
in the Adversary’s answer. This gives us a strong insider-security for existential
unforgeability in [1]. It is stronger than Boyen’s [5] existential unforgeability
in the sense that our model provides non-repudiation for the ciphertext while
Boyen’s provides non-repudiation for the decrypted signature only.

3.2 Introducing BIBSC security model

We will propose a blind version of IBSC and then define the security against
parallel one-more forgery for ciphertext attack for blind IBSC (BIBSC). It means
that any adversary cannot produce L + 1 ciphertext from L valid ciphertext.

3.2.1 Primitives A BIBSC is a five-tuple (Setup, Extract, BlindSigncrypt, War-
den, Unsigncrypt) where Setup, Extract and Unsigncrypt primitives are identical
as primitives in IBSC. (BlindSigncrypt, Warden) is a 3-move interactive protocol.
Input to BlindSigncrypt is sender’s identity IDA and private key SA, and recipi-
ent’s identity IDB. Input to Warden is IDA, IDB and a message m. The 3-move
interactive protocol is as follows:



6

1. BlindSigncrypt sends a commit X to Warden.
2. Warden challenges BlindSigncrypt with h.
3. BlindSigncrypt sends back the response W and V to Warden.

Finally Warden outputs a ciphertext σ.

3.2.2 Blindness We give a formal definition of the blindness of BIBSC scheme.
Adversary makes qB query to blind signcryption oracle BSO, qH query to ran-
dom oracles, qS query to SO, and qU query to UO. Let the Adversary keeps the
transcript T of the interaction between BlindSigncrypt and Warden. Then given
a valid ciphertext σ = (X, Y, Z), we say that BIBSC is blind if:

Prob{σ by Warden} = Prob{σ by Warden|T }

3.2.3 Parallel One-more Unforgeability Parallel one-more unforgeability
for BIBSC (p1m-UF) is defined as in the following game. It is similar to the
one-more forgery for traditional blind signature scheme [2], [3], [23].

The game is defined as follows:

1. Sender identity IDA is given to Adversary.
2. Adversary makes a total of qB queries to blind signcryption oracles BSOIDk

,
1 ≤ k ≤ K, and qH (resp. qS) queries to random (resp. Signcryption) Oracle.

3. Adversary delivers qB + 1 tuples (IDi, mi, σi) to Simulator, 1 ≤ i ≤ qB + 1.

The Adversary wins the game if he can produce qB +1 valid tuples (IDi, mi, σi)
that can decrypts, under the private key of IDi, to message mi and sender
identity IDA.

The UOand KEOare same as the one in IBSC. It is required that the private
key of IDA is never extracted by KEO. We have the new interactive BSO:
BSOIDA : Upon input IDB, it returns a number X . Then inputs a number h. It
produces an output (W, V ) based on sender IDA, recipient IDB, X and h.

Definition 6. (Parallel One-more Unforgeability) The advantage of the adver-
sary is the probability that he can produce qB + 1 distinct pairs of (IDBi, σi) to
win the above game. The BIBSC is p1m-UF secure if no PPT adversary has
non-negligible advantage in this game.

4 Efficient and Secure BIBSC (resp. IBSC) Schemes
from Pairings

We present our constructions of efficient and secure BIBSC and IBSC schemes.
For logistics of presentation, we present the IBSC first.
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4.1 A new efficient and secure IBSC scheme

This IBSC scheme follows the primitives in Section 2. Let G1, G2 be two (mul-
tiplicative) cyclic groups of prime order p. The bilinear mapping is given as
e : G1 × G2 → GT . Then for all P ∈ G1, Q ∈ G2 and for all a, b ∈ Z we have
e(P a, Qb) = e(P, Q)ab = e(P b, Qa). Now we define our scheme as follows.

Setup: The setup of the TA is similar to the setup in [4]. On inputting a se-
curity parameter n ∈ N , the BDH parameter generator G[1n] will generates
G1, G2, GT , p and e. The TA chooses a generator P ∈ G∗

1 and pick a ran-
dom s ∈ Z∗

p as master key. Then the TA sets PTA = P s. After that the TA
chooses cryptographic hash functions H0 : {0, 1}∗ → G∗

2, H1 : {0, 1}∗ × G∗
2 →

F ∗
p , H2 : GT → {0, 1}∗, H3 : GT × {0, 1}∗ → {0, 1}∗. The system parameters are
〈p, G1, G2, GT , e, P, PTA, H0, H1, H2, H3〉.
Extract: Given a user with identity string ID ∈ {0, 1}∗. His public key is QID =
H0(ID) ∈ G∗

2. His private key SID is calculated by the TA where SID = (QID)s.

Signcrypt: Suppose Alice wants to signcrypt a message m to Bob. Alice firstly
signs the message and then encrypts it and sends to Bob.

– Sign: Assume Alice’s identity is IDA. The public key and private key of Alice
are QA and SA respectively. Alice chooses a random r ∈ F ∗

p and computes:

X = P r

h = H1(m, X)⊕ IDB

W = SA
hQA

r

Alice forwards the parameters 〈X, W, m, r〉 for using in Encrypt.
– Encrypt: Assume Bob’s identity is IDB. Alice computes:

QB = H0(IDB)
V = e(PTA

r, QB)
Y = H3(V, IDA)⊕W
Z = H2(V )⊕ 〈IDA, m〉

Alice outputs ciphertext σ = 〈X, Y, Z〉 after encryption and sends to Bob.

Unsigncrypt: Bob receives the ciphertext and decrypts it. After that Bob verifies
if the signature is indeed come from Alice.

– Decrypt: Assume the private key of Bob is SB from Extract. Let σ = 〈X, Y, Z〉
be the ciphertext received. Bob decrypts by computing:

V ′ = e(X, SB)
〈IDA, m〉 = H2(V ′)⊕ Z

Output 〈IDA, m〉 together with 〈X, Y, V ′〉 to Verify.

– Verify: Alice verifies the signature by computing W ′ = H3(V ′, IDA) ⊕ Y .
Accept the message if:
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e(P, W ′) = e(XPTA
h, QA) where h = H1(m, X)⊕ IDB

Output � if the above verification is true, or output ⊥ if false.

In Section 3.1, the Unsigncrypt requires decryption of the ciphertext, verifi-
cation of the signature, and verification for checking encryptor = signer. The
first two parts are done in the previous steps. The last one is implicitly done in
Decrypt and Verify as both of them use the same X in σ to decrypt and verify.

Finally, we show the consistency constraint is satisfied in Decrypt and Verify.
In Decrypt, V can be recovered as:

e(X, SB) = e(P r, QB
s) = e(P rs, QB) = e(PTA

r, QB)

In Verify, if the signature is valid, both sides should be equivalent because:

e(P, W ) = e(P, SA
hQA

r) = e(P, QA
(sh+r)) = e(P (r+sh), QA) = e(XPTA

h, QA)

We find that our IBSC scheme satisfy security models for indistinguishability
and existential unforgeability. The security analysis results are given as follows:

Theorem 1. Our IBSC scheme is IND-IBSC-CCA2 secure provided the co-
BDH Problem is hard in the random oracle model.

Theorem 2. Our IBSC scheme is EU-IBSC-CMA secure provided the co-CDH
Problem is hard, in the random oracle model.

The security proof for the above theorems will be given in Appendix A.

Ciphertext unlinkability (CU) and authenticated encryption (AE) One
of the main difference between our scheme in previous section and Boyen’s
scheme [5] is that our scheme has linkability (AE) while Boyen’s scheme has
unlinkability (CU). As unlinkability may also be important in some applications,
we provide the CU version of our scheme.

The only change to our scheme is to change h in Sign into h = H1(m, X). All
other steps remains the same. Therefore this unlinkable version is as efficient as
the original AE version.

Notice that by changing to CU, unforgeability for ciphertext reduces to un-
forgeability for signature only, as in [5]. Other security levels remains the same
as AE version.

4.2 The first BIBSC scheme

In this BIBSC, the Setup, Extract and Unsigncrypt are same as Section 4.1. Now,
we describe the interactive protocol for BlindSigncrypt and Warden in the follow-
ing table:
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BlindSigncrypt Warden
randomly choose r

send X = P r −→
randomly choose α, β

computes X̂ = XαP β , ĥ = H(m, X̂)
←− send h = α−1ĥ

send W = SA
hQA

r, V = e(PTA
r, QB) −→

computes Ŵ = WαQA
β

computes V̂ = V αe(PTA
β , QB)

computes Ŷ = H3(V̂ , IDA)⊕ Ŵ

computes Ẑ = H2(V̂ )⊕ 〈IDA, m〉
outputs σ = 〈X̂, Ŷ , Ẑ〉

Consistency is verified as:

e(P, Ŵ ) = e(P, WαQA
β) and V̂ = V αe(PTA

β , QB)
= e(P, QA)sĥ+αr+β = e(P s(rα+β), QB)
= e(PTA

ĥXαP β, QA) = e(XαP β, SB)
= e(X̂PTA

ĥ, QA) = e(X̂, SB)

For the BIBSC, we have the following security analysis:

Theorem 3. Our BIBSC scheme is blind even if the transcript of BlindSigncrypt
is given.

Theorem 4. Our BIBSC scheme is p1m-UF-BIBSC secure provided Schnorr’s
ROS Problem is hard and the co-CDH Problem is hard.

The security proof for the above theorems will be given in Appendix A.

5 Comparing Performance

In this Section, we will compare our IBSC scheme with existing schemes from
Malone-Lee(M) [15], Libert and Quisquater scheme 1(LQ1) [13] and 2(LQ2)[14],
Nalla and Reddy(NR) [11], Boyen(B) [5], and Chow et al.(CYSC) [9]. We also
include the Sign-then-Encrypt(StE) and Encrypt-then-Sign(EtS) using ID-based
encryption from [4] and ID-based signature from [6]. We will compare in terms
of security, size of ciphertext and computation time.

For security analysis, we divide into the followings: IND-A implies anonymity
of sender. IND-B implies anonymity of recipient. IND-C implies message con-
fidentiality. EU implies ciphertext non-repudiation. The computation time of
IBSC scheme includes the number of pairings and exponential computation as
they are the most expensive in IBSC scheme. The comparisons are summarized
in the following table.
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Scheme Security Ciphertext Size Signcrypt Unsigncrypt
IND EU Time Time

A B C #pair #exp #pair #exp
EtS × √ √ √ (2k + 1)G1 + 2||m||(+ID) 1 4 (1) 3 1 (1)
StE

√ √ √ × (2k + 1)G1 + 2||m||+ ID 1 4 (1) 3 1 (1)
M [15] × √ × √ (k + 1)G1 + ||m||(+ID) 1 3 (1) 4 1 (1)
LQ1 [13] × × *

√
k(G1 + Fp) + ||m||(+ID) 2 2 (1) 4 1 (1)

NR [11] × × * × (k + 1)G1 + ||m||(+ID) 1 3 (2) 3 1 (1)
B [5]

√ √ √
* (k + 1)G1 + ||m||+ ID 1 4 (3) 4 2 (2)

CYSC [9] × √ √ √ k(G1 + Fp) + ||m||(+ID) 2 2 (1) 4 1 (1)
LQ2 [14]

√ √ √
* (k + 1)G1 + ||m + δ||+ ID 1 4 (3) 4 1 (1)

This scheme
√ √ √ √

(k + 1)G1 + ||m||+ ID 1 4 (1) 3 1 (1)

5.1 Security

The security analysis follows our definition of security models in Section 2: IND-
A, IND-B, IND-C, EU.

– IND-A: The schemes of M, LQ1, NR and CYSC are not IND-A secure. It is
because the unsigncryption of ciphertext requires the knowledge of sender’s
identity in advance.

– IND-B: The schemes of LQ1 and NR are not IND-B secure. Any adversary
which knows the sender’s identity, private key and the message signcrypted
can distinguish the identity of the recipient.

– IND-C: The scheme of M is not IND-CCA2 secure shown in [13]. Schemes of
LQ1 and NR are IND secure according to security model in LQ1, but not
secure in Boyen’s and our security models, where private key of sender is
known to Adversary.

– EU: NR’s scheme is not EU-CMA secure. Any adversary can forge a signcryp-
tion from any sender to recipient IDB, where private key of IDB is known to
adversary. Boyen’s scheme has unforgeability for the signature only. It does
not satisfy the unforgeability for ciphertext as required in our security model
and also the security model of standard signcryption in [1]. It is related to
the property of ”unlinkability” in Boyen’s scheme. LQ2 scheme is similar to
Boyen’s in this aspect. Our IBSC scheme avoids this controversial property
of unlinkability and achieves unforgeability for ciphertext.

Some comments based on the above definitions are given in Appendix B.

5.2 Computation Time

The computation of pairings is the most expensive computation in IBSC scheme.
From the above table, we can see that our scheme is the fastest among existing
schemes, with similar running time as NR [11], EtS and StE.

If we look further to the number of exponential computation involved, our
scheme is in the middle place in exponential calculation. However, there are
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some components in our scheme that can be pre-computed before knowing the
recipient identity and message. For any random number r, X , QA

r and PTA
r

can be pre-computed. Therefore the actual number of exponential in our scheme
which cannot be pre-computed is two, which is shown in bracket in the table. We
can see that our scheme is again the fastest in terms of exponential computation.

5.3 Ciphertext Size

For fair comparison on ciphertext size, we assume that a message m of length
||m|| have to cut into k pieces for signcryption. Also, sender’s identity must be
known in advance to unsigncryption for the schemes which do not pass IND-A
test. Therefore sender’s identity is also included in those schemes. Parameters
for signcryption of same m is reused whenever possible.

In LQ2 [14], δ is 160 bits for ciphertext unlinkability, and is 0 bit for ciphertext
linkability. As shown in the table, we can see that our scheme has the shortest
ciphertext size.

6 Important Functionality of Our Scheme

From our new efficient IBSC scheme, we can achieve further functionalities which
are useful in reality. They are the TA compatibility and forward secrecy.

6.1 TA Compatibility

In the reality, it is quite often that sender and recipient use different TAs. If this
situation happens, our scheme can still be used without major changes.

Assume all TAs use same pairing e, hash functions and P ∈ G1. Now let Alice
uses TA1 with master key s1. Hence PTA1 = Ps1 and SA = QA

s1 . Similarly Bob
uses TA2 with master key s2. Hence PTA2 = Ps2 and SB = QA

s2 .
In our scheme, Sign remains unchanged. In Encrypt, V = e(QB

r, PTA2)
and others remain unchanged. Decrypt remains unchanged. In Verify, e(P, Y ) =
e(PTA1

hX, QA) and others remain unchanged. Consistency is verified as:

V = e(PTA2, QB
r) and e(P, W ) = e(P, SA

hQA
r)

= e(P s2, QB
r) = e(P, QA

(r+hs1))
= e(X, SB) = e(PTA1

hX, QA)

The security and efficiency of our scheme remains unaffected. Therefore, our
scheme can have the TA compatibility function.

6.2 Forward secrecy

Our scheme can achieve forward secrecy. It means that even if the private key
of the sender is compromised in the future, the past communications will not be
compromised. It can be achieved as in our scheme:
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V = e(PTA, QB
r)

where r cannot be known even if sender private key is compromised in the future.
Therefore Adversary cannot compute V and hence cannot recover m from Z.

If sender and recipient use different TAs as in Section 6.1, then our scheme
can even achieve partial TA forward secrecy. If master key of TA1 is compro-
mised, then the past communications with users using different TAs will not be
compromised, since the computation of V requires the knowledge of r or s2:

V = e(PTA2, QB
r) = e(P s2 , QB

r)

Therefore even s1 is compromised in the future, the adversary still cannot com-
pute V and hence cannot recover m from Z.

7 Conclusion

In this paper, we have proposed a new BIBSC scheme. It is secure against parallel
one-more forgery attack.

For the IBSC scheme, our scheme is the fastest, have maximum security and
have a short ciphertext when comparing with existing scheme. It is proven secure
in a stronger security model than the models in existing schemes. We provide
the flexibility for choosing linkability of ciphertext or not.

Moreover, our scheme provides practical features of TA compatibility and
forward secrecy.
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A Proof Sketch of Security

A.1 Proof of Theorem 1

Setting up: Dealer D gives (P, Pα, P β, Q) to Simulator S and wants S to compute
e(P, Q)αβ . S sends the system parameter to F with PTA = P β as in Setup. S
picks a random number ηQ from {1, 2, ..., µ0}, where µ0 is the number of query
to H0.

Simulating Oracles: As regards queries to the random oracles:

– Query on H0 for identity ID is handled as follows:
• The ηQ-th distinct query to H0 is back patched to the value Q. The

corresponding identity is denoted as IDQ. Adds the entry 〈IDQ, Q〉 to
tape L0, and returns the public key Q.
• Otherwise, picks a random λ ∈ F ∗

p , adds the entry 〈ID, λ〉 to the tape
L0, and return the public key QID = Pλ.

– Queries on H1, H2 and H3 are handled by producing a random element from
the codomain, and adding both query and answer to tape L1, L2 and L3.

As regards to oracle queries for:

– KEO: For input identity IDA.
• If IDA = IDQ, then D terminates its interaction with F, having failed

to guess the targeted recipient among those in L0.
• Otherwise, S retrieves 〈IDA, λA〉 from L0 and returns SA = (P β)λA .

– SO : For input message m, sender IDA, and recipient IDB.
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• If IDA = IDQ, then S randomly chooses r, h ∈ F ∗
p , and lets X =

P r(P β)−h, W = (Q)r. Then, S adds the tuple 〈m, X, h ⊕ IDB〉 to
L1 to force the random oracle H1(m, X) = h ⊕ IDB. Finally, S uses
〈X, W, m, r, IDB〉 to run Signcrypt to produce the desired ciphertext σ.
• Otherwise, S retrieves 〈IDA, λA〉 from L0 and computes SA = (P β)λA .

Then S will run Signcrypt using SA and get ciphertext σ.
– UO : For input recipient IDB and ciphertext σ = 〈X, Y, Z〉.
• If IDB = IDQ, then S searches all combinations 〈IDA, m, X, W 〉 such

that 〈m, X, h1〉 ∈ L1, 〈V, h2〉 ∈ L2, 〈V, IDA, h3〉 ∈ L3, for some h1, h2,
h3, V, under the constraints that h3 ⊕ Y = W , h2 ⊕ Z = 〈IDA, m〉 and
Verify[IDA, m, X, W, IDB] = �. Pick a 〈IDA, m〉 in one of the combi-
nations above to return as answer. If no such tuple is found, the oracle
signals that the ciphertext is invalid.
• Otherwise, S retrieves 〈IDB, λB〉 from L0 and computes SB = (P β)λB .

Then S will run Unsigncrypt using SB to get 〈IDA, m〉 or ⊥.

Witness Extraction: As in the IND-IBSC-CCA2 game, at some point F
chooses plaintext m1, sender IDA1, and recipient IDB1 on which he wishes
to be challenged. S responds with challenge ciphertext 〈X, Y, Z〉, where:

X = Pα

Y and Z are random strings of appropriate size. All further queries by F are
processed adaptively as in the oracles above.

Finally, F returns its final guess. S ignores the answer from F, randomly picks
an entry 〈V, h2〉 in L2, and returns V as the solution to the co-BDH problem.

If the recipient identity IDA1 = IDQ selected by S, to recognize the challenge
ciphertext 〈X, Y, Z〉 with X = Pα is incorrect, F needs to query random oracle
H2(V ) with

V = e(X, SQ) = e(Pα, Qβ) = e(P, Q)αβ

It will leave an entry 〈V, h2〉 on L2, from which B can then extract V = e(P, Q)αβ .
��

A.2 Proof Sketch of Theorem 2

Setting up: Dealer D gives (P, P β , Q) to Simulator S and wants S to compute
Qβ. Others are same as in the proof of Theorem 1.

Oracle Simulation: The signcryption oracle, the unsigncryption oracle, and
the key extraction oracle are simulated in the same way as in the proof of The-
orem 1.

Witness Extraction: Assume F is a PPT forger. Rewind F to the random
oracle query whose output appears in the verification in unsigncryption. Then
we obtain W = Sh

AQr
A and W ′ = Sh′

A Qr
A in respective forks. Combining, we can

compute the co-CDH Problem Sa = (W ′/W )(h
′−h)−1

. ��
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A.3 Proof Sketch of Theorem 3

To prove the blindness of BIBSC, we show that given a valid ciphertext 〈X̂, Ŷ , Ẑ〉
and any transcript of blind signcryption (X, h, W, V ), there always exist a unique
pair of blinding factors α, β ∈ Z∗

q . Since the blinding factors are randomly chosen,
the blindness of BIBSC is achieved.

Given a valid ciphertext 〈X̂, Ŷ , Ẑ〉, then there exist a unique (X̂, Ŵ , V̂ , m)
for this ciphertext. Then for any transcript of blind signcryption (X, h, W, V ),
the following equations must hold for α, β ∈ Z∗

q :

X̂ = XαP β

h = α−1H1(m, X̂)
Ŵ = WαQA

β

V̂ = V αe(PTA
β , QB)

From the second equation, we see that there exist a blinding factor α = H1(m, X̂)/h.
For this α, there exist a blinding factor β from the first equation and β =
logP (X̂X−α). Therefore we have to show that these blinding factors α, β satisfy
the last two equations.

Notice that there exists a SB which is the private key for QB. Then:

V̂ = e(X̂, SB)
= e(XαP β , SB)
= e(X, SB)αe(P β , SB)
= V αe(PTA

β, QB)

Furthermore, 〈X̂, Ŵ , m〉 is a valid signature. Therefore we have:

e(P, Ŵ ) = e(X̂, QA)e(PTA, QA)H1(m,X̂)

= e(XαP β , QA)e(PTA, QA)αh

= e(XPTA
h, QA)αe(P β, QA)

= e(P, W )αe(P, QA
β)

= e(P, WαQA
β)

Hence, given a valid ciphertext 〈X̂, Ŷ , Ẑ〉 and any any transcript of blind sign-
cryption (X, h, W, V ), there always exists a unique pair of blinding factors α, β ∈
Z∗

q . Therefore, Prob{σ by Warden} = Prob{σ by Warden|T }. The blindness of
BIBSC is proved. ��

A.4 Proof Sketch of Theorem 4

That solving either hard problems imply forgery is easy. We proceed to prove
the other direction. We mimicks Schnorr’s proof [17]. First, formulate a generic
adversary. Then simulate it using an ROS part near the beginning. Then show
the simulation either solves co-CDH or ROS.

Generic Adversary: Algorithm GA1: A generic adversary can be for-
mulated as follows:
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1. Input: IDa, IDb.
2. Obtain qB commitments Xi, 1 ≤ i ≤ qB, from BlindSigncrypt Oracle.
3. Compute. Makes qH queries to the random oracle H1.
4. Send challenges hi, 1 ≤ i ≤ qB, to BlindSigncrypt Oracle.
5. Receive responses (Wi, Vi), 1 ≤ i ≤ qB . Outputs message-signcryptions

(m̂j , (X̂j , Ŷ j , Ẑj)), 1 ≤ j ≤ qB + 1.

All conversations can be interleaved arbitrarily. For simplicity, we fixe IDa and
IDb.

The queries H1(m̂j , X̂j) = ĥj must all have been made.
Simulating the generic adversary: Algorithm GA2:

1. Input: IDa, IDb.
2. Obtain commitments in the form of a qB-row-vector X from BlindSigncrypt

Oracle.
3. Randomly generate qB × qH matrix D. Compute qH -vector X′ = XD. Ran-

domly generate qH -vector m′. Compute qH -vector h′ = H1(X′,m′), i.e.
h′

j = H1(X ′
j , m

′
j), 1 ≤ j ≤ qH .

4. Simulate Steps (3-5) of the generic adversary. Except to backpatch all its H1

oracle query outputs to h′.
5. Outputs the tuples (m̂j , (X̂j , Ŷ j , Ẑj)), 1 ≤ j ≤ qB + 1.

The Adversary cannot distinguish this simulation from the real world. There-
fore, the outputs are valid signcryptions (with non-negligible probability).

Let J ′={	1,· · ·,	qB+1} where for each member of J ′ we have H1(X̂j , m̂j) =
h′

�j
which implies X̂j = X ′

�j
and m̂j = m′

�j
. Let E = D|J′ denote the restriction

(cropping) of D to columns whose column index is in J ′. Note E is a qB×(qB +1)
matrix. For each j ∈ J ′, let

∆h,j = (
∑

i

hiEi,j)− ĥj

∆X,j = (
∏

i

X
Ei,j

i )/X̂j

∆W,j = (
∏

i

W
Ei,j

i )/Ŵ j

By Algorithm GA2, we have ∆X,j = 1, each j. Signature verifications ensure

e(P, Wi) = e(XiP
hi

TA, Qa), 1 ≤ i ≤ q (BlindSigncrypt Oracle side);

e(P, Ŵ j) = e(X̂jP
ĥj

TA, Qa), 1 ≤ j ≤ qB + 1 (GA1 side) .

Combining, we obtain

e(P, ∆W,j) = e(∆X,jP
∆h,j

TA , Qa) = e(P, Q
s∆h,j
a )

for each j ∈ J ′. Therefore Qs
a = ∆

1/∆h,j

W,j .
In summary, there are two cases. Case 1, ∆W,j = 1 and ∆h,j = 0 for all

j ∈ J ′. Then we have reduced GA1 to solving the ROS Problem. Case 2, the
opposite, then GA2 has computed a co-CDH Problem.
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B Comments on various IBSC’s w.r.t. our security model

B.1 Comment for IND-B

In the following, please refer to the original paper for original scheme and the
definition of the symbols used. In the IND sub-game (b), the Adversary chooses
message m, sender IDA and recipient IDB1. The Adversary knows the private
key of IDA. Simulator chooses a recipient IDB0, and randomly picks b ∈ {0, 1}.
Simulator signcrypts the message m from sender IDA to recipient IDBb and
returns the ciphertext to the Adversary. The Adversary has to guess b.

Libert and Quisquater’s scheme 1 [13] The Adversary has the ciphertext
〈c, r, S〉 and dA, the private key of IDA. The Adversary computes:

k2 = H2(e(S, QB1)e(dA, QB1)r)
m′ = Dk2(c)

The Adversary outputs b = 1 if m′ = m. Otherwise, the Adversary outputs
b = 0. Then the Adversary wins the IND game with probability 1.

Nalla and Reddy’s scheme [11] The Adversary has the ciphertext 〈R, S, C〉
and SA, the private key of IDA. The Adversary computes:

R′ = (R||H1(e(QB1, SA))||m)
kA = H ′′(e(QB1, R)H′(R′))
C′ = kA ⊕m

The Adversary outputs b = 1 if C′ = C. Otherwise, the Adversary outputs b = 0.
Then the Adversary wins the IND game with probability 1.

B.2 Comment for IND-C

In the IND sub-game (c), the Adversary chooses message m1, sender IDA and
recipient IDB. The Adversary knows the private key of IDA. Simulator chooses a
message m0, and randomly picks b ∈ {0, 1}. Simulator signcrypts the message mb

from sender IDA to recipient IDB and returns the ciphertext to the Adversary.
The Adversary has to guess b.

Nalla and Reddy’s scheme [11] The Adversary has the ciphertext 〈R, S, C〉
and SA, the private key of IDA. The Adversary computes:

R′ = (R||H1(e(QB, SA))||m1)
kA = H ′′(e(QB, R)H′(R′))
C′ = kA ⊕m1

The Adversary outputs b = 1 if C′ = C. Otherwise, the Adversary outputs b = 0.
Then the Adversary wins the IND game with probability 1.
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B.3 Comment for EU

In the EU game, the Adversary chooses message m, sender IDA and recipient
IDB. The Adversary knows the private key of IDB. The Adversary returns a
ciphertext σ and recipient identity IDB to the Simulator.

Nalla and Reddy’s scheme [11] The Adversary has SB, the private key of
IDB. The Adversary randomly chooses a ∈ R and computes:

R = SB
a

R′ = (R||H1(e(SB , QA))||m)
S = QB

aH′(R′)

kA = H ′′(e(QB, SB)aH′(R′))
C = kA ⊕m

The Adversary outputs the ciphertext σ = 〈R, S, C〉, sender identity IDA and
recipient identity IDB to the Simulator.

The Simulator decrypts by computing:

kB = H ′′(e(S, SB))
m = kB ⊕ C

The decryption succeeds. Then in verification, the Simulator computes R′ =
(R||H1(e(SB , QA))||m) and checks if:

e(SB, S) = e(QB, R)H′(R′)

By the above construction, the ciphertext must pass the verification. Then the
Adversary wins the EU game with probability 1.


