
Fast and Proven Secure Blind Identity-Based
Signcryption from Pairings

Abstract. We present the first blind identity-based signcryption (BIBSC).
We formulate its security model and define the security notions of blind-
ness and parallel one-more unforgeability (p1m-uf). We present an effi-
cient construction from pairings, then prove a security theorem that re-
duces its p1m-uf to Schnorr’s ROS Problem in the random oracle model
plus the generic group and pairing model. The latter model is an exten-
sion of the generic group model to add support for pairings, which we
introduce in this paper. In the process, we also introduce a new secu-
rity model for (non-blind) identity-based signcryption (IBSC) which is
a strengthening of Boyen’s. We construct the first IBSC scheme proven
secure in the strenghened model which is also the fastest (resp. short-
est) IBSC in this model or Boyen’s model. The shortcomings of several
existing IBSC schemes in the strenghened model are shown.

1 Introduction

Identity based cryptography is a kind of asymmetric key cryptography using
recipient’s identity as the public key. In 1984, Shamir [20] firstly proposed the
idea of identity based cryptography. Since then, there are many suggestions for
the implementation of identity based encryption ([12, 23, 16, 10]). However they
are not fully satisfactory. In 2001, Boneh and Franklin [4] proposed the first
practical identity based encryption scheme using pairings on elliptic curves.

The basic idea of identity based cryptography is to use the recipient’s identity
as the public key. The identity can be name, email address or combining any
other strings that can help to identify a person uniquely. Usually a trusted
authority (TA) is needed to generate private keys according to the public keys.
The advantage is that distribution of public key in advance is not needed.

There are also developments in identity based signatures [6], resp. authenti-
cated key agreement [22, 8], ..., etc. Identity-based encryptions prior to [4], either
requires high complexity to compute the key pair or is insecure against colluders.

Blind signatures was introduced by Chaum [7], which provides anonymity of
users in applications such as e-cash. It allows users to get a signature of a message
in a way that signer learns neither the message nor the resulting signature.

Privacy and authenticity are also the basic aims of public-key cryptography.
We have encryption and signature to achieve these aims. Zheng [27] proposed
that encryption and signature can be combined as ”signcryption” which can be
more efficient in computation than running encryption and signature separately.
The security of signcryption is discussed by An et al. [1]

Contributions This paper makes the following contributions to the litera-
ture:
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1. We present the first blind identity-based signcryption (BIBSC). Roughly
speaking, BIBSC works as follows: Upon request from Warden, a blind sign-
cryption oracle makes a commitment, then blindly signs and computes the
randomness term in the encryption for Warden. Warden deblinds the signa-
ture and uses the randomness in its encryption to produce a signcryption.

2. We formulate the first BIBSC security models to define security notions
including blindness and parallel one-more unforgeability (p1m-uf).

3. We construct the first BIBSC scheme from pairings, and prove its security.
The blindness of our BIBSC from pairings is statistical ZK, and the p1m-uf
is reduced to Schnorr’s ROS Problem in the random oracle model plus the
generic group and pairing model (GGPM).

4. We introduce the generic group and pairing model (GPPM) which is an
extension of the generic group model [17, 21, 19] by including support for
pairings. We use this model to prove p1m-uf of our BIBSC.

5. We also introduce a strengthening of Boyen’s [5] security model for (non-
blind) identify-based signcryption (IBSC) to add support of authenticated
encryption.

6. We construct the first proven secure IBSC in the strengthened model. It is
also the fastest (resp. shortest) IBSC in our model as well as in Boyen’s [5].

7. Shortcomings of several existing IBSC in the strengthened model are shown.

Organization: In Section 2, we define the preliminaries. In Section 3, we define
the IBSC and BIBSC security model. In Section 4, we introduce our schemes. In
Section 5, we introduce the generic group and pairing model. In Section 6, we
compare our IBSC scheme with existing schemes.

2 Preliminaries

2.1 Related Results

Shamir [20] suggested an identity based signature scheme. Boneh and Franklin
[4] proposed an identity based encryption scheme. There are some papers [15,
5, 13, 11, 9, 14] concerning the combination of signature and encryption to form
IBSC scheme. The most expensive single operation is pairing computations. The
scheme of [15, 5, 14] use 5 pairings, while [13, 9] use 6, [11] uses 4. [5] is proven
secure in a stronger model than [15, 13]. [11] has no security proof.

Blind signatures was introduced by Chaum [7]. Some ID-based blind signa-
ture schemes is developed recently [24–26].

2.2 Pairings

Our BIBSC and IBSC schemes uses bilinear pairings on elliptic curves. We now
give a brief revision on the property of pairings and some candidate hard prob-
lems from pairings that will be used later.
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Let G1, G2, G3 be cyclic groups of prime order q, writing the group action
multiplicatively. Let g1 (resp. g2) be a generator of G1 (resp. G2). There exist ψ
which is isomorphism from G2 to G1, with ψ(g2) = g1.

Definition 1. A map e : G1 × G2 → G3 is called a bilinear pairing if, for all
x ∈ G1, y ∈ G2 and a, b ∈ Z, we have e(xa, yb) = e(x, y)ab, and e(g1, g2) 6= 1.

Definition 2. (co-BDH problem)The co-Bilinear Diffie-Hellman problem is, given
P, Pα, P β ∈ G1, Q ∈ G2, for unknown α, β ∈ Zq, to compute e(P,Q)αβ.

Definition 3. (co-CDH problem) The co-Computational Diffie-Hellman prob-
lem is, given P, Pα ∈ G1, Q ∈ G2 for unknown α ∈ Zq, to compute Qα.

2.3 Blind signatures and Schnorr’s ROS Problem

Blind signature is described as follows: Upon request from Warden, a signing
oracle makes a commitment, then blindly signs a message for Warden. Warden
deblinds the signature such that the signing oracle knows neither the message
nor the output signature.

Parallel one-more forgery against blind signature is that an attacker interacts
for l times with a signer and produces from these interactions l + 1 signatures.
Schnorr [19] reduced the parallel one-more unforgeability (p1m-uf) of the blind
Schnorr signature to the ROS Problem in the random oracle plus generic group
model (ROM+GGM). The following are from Schnorr[19]:
Definition 4. (ROS problem) Find an overdetermined, solvable system of linear
equations modulo q with random inhomogeneities. Specifically, given an oracle
random function F : Zl

q ← Zq , find coefficients ak,i ∈ Zq and a solvable system
of l + 1 distinct equations of Eq. (1) in the unknowns c1, . . . , cl over Zq:

ak,1c1 + . . .+ ak,lcl = F (ak,1, . . . , ak,l) for k = 1, . . . , t. (1)

Theorem 1. [19] Given generator g, public key h and an oracle for H, let
a generic adversary A performs t generic steps and interacts for l times with
a signer. If A succeeds in a parallel attack to produce l + 1 signatures with a
probability of success better than (t

2)/q, then A must solve the ROS-problem in
ROM+GGM.

3 BIBSC and Enhanced IBSC Security Model

We define the first security models for BIBSC and also an enhancement of
Boyen’s security model for IBSC. For logistics, we present the latter first.

3.1 Enhanced IBSC Security Model

We present an enhancement of Boyen’s security model for IBSC. The main ad-
dition is to add support for authenticated encryption where the signer and en-
cryptor of signcryption are assured to be the same. The signer cannot deny
signcrypting the message to the recipient. Boyen’s IBSC model is restricted to
ciphertext unlinkability where this assurance is not required. Our model below is
capable of supporting authenticated encryption, resp. ciphertext unlinkability.
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3.1.1 Primitives An IBSC scheme consists of four algorithms: (Setup, Extract,
Signcrypt, Unsigncrypt). The algorithms are specified as follows:
Setup: On input a security parameter k, the TA generates 〈ζ, π〉 where ζ is the
randomly generated master key, and π is the corresponding public parameter.
Extract: On input ID, the TA computes its corresponding private key SID (cor-
responding to 〈ζ, π〉) and sends back to its owner in a secure channel.
Signcrypt: On input the private key of sender A, SA, recipient identity IDB and
a message m, outputs a ciphertext σ corresponding to π.
Unsigncrypt: On input private key of recipient B, SB , and ciphertext σ, decrypt
to get sender identity IDA, messagem and signature s corresponding to π. Verify
s and verify if encryptor = signer. Output > for ”true” or ⊥ for ”false”.

We make the consistency constraint that if σ ← Signcrypt(SA, IDB ,m),
then m← Unsigncrypt(SB , σ).

3.1.2 Indistinguishability Indistinguishability for IBSC against adaptive cho-
sen ciphertext attack (IND-IBSC-CCA2) is defined as in the following game. The
Adversary is allowed to query the random oracles, key extraction oracle, sign-
cryption oracle and unsigncryption oracle. The game is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomial number of oracle queries adaptively.
3. Adversary generates m1, IDA1, IDB1, and sends to Simulator. Adversary

knows SA1. Simulator generates m0, IDA0, IDB0, randomly chooses b ∈R

{0, 1}. Simulator delivers σ ← Signcrypt(SAb, IDBb,mb) to Adversary.
4. Adversary performs polynomial number of oracle queries adaptively.
5. Adversary tries to compute b, in the following three sub-games

(a) Simulator ensures B0 = B1, m0 = m1, Adversary computes b.
(b) Simulator ensures A0 = A1, m0 = m1, Adversary computes b.
(c) Simulator ensures A0 = A1, B0 = B1, Adversary computes b.

The Adversary wins the game if he can guess b correctly. The advantage of the
adversary is the probability, over half, that he can compute b accurately.

The oracles are defined as follows:
Key extraction oracle KEO: Upon input an identity, the key extraction oracle
outputs the private key corresponding to this identity.
Signcryption oracle SO: Upon input m, IDA, IDB , produce valid signcryp-
tion σ for the triple of input.
Unsigncryption oracle UO: Upon input ciphertext σ and receiver ID, the
unsigncryption oracle outputs the decryption result, verification outcome of sig-
nature and verification outcome of encryptor=signer.

Oracle query to KEO to extract private key of IDB0, IDB1 is not allowed.
Oracle query to SO for m1, IDA1, IDB1 is not allowed. Oracle query to UO for
the challenge ciphertext from Simulator is not allowed.

Definition 5. (Indistinguishability) The IBSC is IND-IBSC-CCA2 secure if no
PPT adversary has non-negligible advantage in any of the three sub-games above.
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Our security notion above is a strong one. It incorporates previous secu-
rity notions including insider-security in [1], indistinguishability in [15], and
anonymity in [5].

3.1.3 Existential unforgeability Existential unforgeability against adaptive
chosen message attack for IBSC (EU-IBSC-CMA) is defined as in the following
game. The Adversary is allowed to query the random oracles, KEO, SO and
UO adaptively. The definition for oracles are same as above section. The game
is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomially number of oracle queries adaptively.
3. Adversary delivers valid (σ, IDB) where σ is not produced by any signcryp-

tion oracle query, and Adversary never extracted the secret key of IDA.

The Adversary wins the game if he can produce a valid (σ, IDB) that can be
decrypted, under the private key of IDB , to a message m, sender identity IDA

and a signature s which passes all verification test.
Oracle query to KEO to extract private key of IDA is not allowed. The

Adversary’s answer (σ, IDB) should not be computed by the SO before.

Definition 6. (Existential Unforgeability) A IBSC is secure against EU-IBSC-
CMA if no PPT adversary has a non-negligible probability in the successful com-
pletion of the game above.

The Adversary is allowed to ask private key of the recipient in Adversary’s
answer. This gives us a insider-security in [1]. It is stronger than Boyen’s [5]
existential unforgeability in the sense that our model provides non-repudiation
for ciphertext while Boyen’s provides non-repudiation for decrypted signature
only. For ciphertext unlinkability, we have to add one more restriction for our
model. Oracle query to SO for IDA,m in the output using any recipient identity
is not allowed. Then the model changes to non-repudiation for signature.

3.2 Introducing BIBSC security model

We will propose the primitives of blind version of IBSC and then define the
security notions for blindness and parallel one-more unforgeability.

3.2.1 Primitives A BIBSC is a five-tuple (Setup, Extract, BlindSigncrypt, War-
den, Unsigncrypt) where Setup, Extract and Unsigncrypt primitives are identical
as primitives in IBSC. (BlindSigncrypt, Warden) is a 3-move interactive protocol.
Input to BlindSigncrypt is sender’s identity IDA and private key SA, and recipi-
ent’s identity IDB . Input to Warden is IDA, IDB and a message m. The 3-move
interactive protocol is as follows:

1. BlindSigncrypt sends a commit X to Warden.
2. Warden challenges BlindSigncrypt with h.
3. BlindSigncrypt sends back the response W and V to Warden.

Finally Warden outputs a ciphertext σ.
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3.2.2 Blindness Here we define the blindness of BIBSC scheme. The Adversary
is allowed to makes qB query to blind signcryption oracle BSO, qH query to
random oracles, qS query to SO, and qU query to UO. The Adversary keeps the
transcripts T recording the interaction between BlindSigncrypt and Warden.

Definition 7. (Blindness) A BIBSC is blind if given a ciphertext σ by Warden,
Prob{σ by Warden} = Prob{σ by Warden|T }

3.2.3 Parallel One-more Unforgeability Parallel one-more unforgeability
for BIBSC (p1m-uf) is defined as in the following game. It is similar to the
one-more forgery for traditional blind signature scheme [2, 3, 26].

1. Sender identity IDA is given to Adversary.
2. Adversary makes a total of qB queries to blind signcryption oracles BSOIDk

,
1 ≤ k ≤ K, and qH (resp. qS) queries to random (resp. Signcryption) Oracle.

3. Adversary delivers qB + 1 tuples (IDi,mi, σi) to Simulator, 1 ≤ i ≤ qB + 1.

The Adversary wins the game if he can produce qB +1 valid tuples (IDi,mi, σi)
that can decrypts, under the private key of IDi, to message mi and sender
identity IDA. The SO, UO and KEO are same as the one in IBSC. We have the
new interactive BSO:
BSOIDA

: Upon input IDB , it returns a number X. Then inputs a number h. It
produces an output (W,V ) based on sender IDA, recipient IDB , X and h.
It is required that the private key of IDA is never extracted by KEO. The
advantage of the Adversary is the probability that he can produce qB +1 distinct
pairs of (IDBi, σi) to win the above game.

Definition 8. (Parallel One-more Unforgeability) The BIBSC is p1m-uf secure
if no PPT adversary has non-negligible advantage in this game.

4 Efficient and Secure BIBSC (resp. IBSC) Schemes

We present our constructions of efficient and secure BIBSC and IBSC schemes
from pairings. For logistics of presentation, we present the IBSC first.

4.1 A new efficient and secure IBSC scheme

This IBSC scheme follows the primitives in Section 2. Let G1, G2, G3 be (mul-
tiplicative) cyclic groups of order q. The pairings is given as e : G1 ×G2 → G3.
Now we define our scheme as follows.

Setup: The setup of TA is similar to the setup in [4]. On inputting a security
parameter n ∈ N , a generator G[1n] will generates G1, G2, G3, q and e. The
TA chooses a generator P ∈ G1 and pick a random s ∈ Zq as master key. Then
TA sets PTA = P s ∈ G1. After that TA chooses cryptographic hash functions
H0 : {0, 1}∗ → G2,H1 : {0, 1}∗×G2×{0, 1}∗ → Zq,H2 : G3 → {0, 1}∗,H3 : G3×
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{0, 1}∗ → G2. The system parameters are 〈q,G1, G2, G3, e, P, PTA,H0,H1,H2,H3〉.

Extract: Given a user identity string ID ∈ {0, 1}∗, his public key is QID =
H0(ID) ∈ G2. His private key SID = (QID)s ∈ G2 is calculated by TA.

Signcrypt: Suppose Alice wants to signcrypt a message m to Bob. Alice firstly
signs the message and then encrypts it and sends to Bob.

– Sign: Assume Alice’s identity is IDA and Bob’s identity is IDB . The public
key and private key of Alice are QA and SA respectively. Alice chooses a
random r ∈ Zq and computes:

X = P r ∈ G1

h = H1(m,X, IDB) ∈ Zq

W = SA
hQA

r ∈ G2

– Encrypt: Alice computes QB = H0(IDB) ∈ G2 and:

V = e(PTA
r, QB) ∈ G3

Y = H3(V, IDA)⊕W ∈ G2

Z = H2(V )⊕ 〈IDA,m〉 ∈ {0, 1}∗

Alice outputs ciphertext σ = 〈X,Y, Z〉 after encryption and sends to Bob.

Unsigncrypt: Bob receives the ciphertext σ = 〈X,Y, Z〉 and decrypts it. After
that Bob verifies if the signature is indeed come from Alice.

– Decrypt: Assume the private key of Bob is SB . Bob decrypts σ by computing:

V ′ = e(X,SB)
〈IDA,m〉 = H2(V ′)⊕ Z

Output 〈IDA,m〉 together with 〈X,Y, V ′〉 to Verify.

– Verify: Bob computes W ′ = H3(V ′, IDA)⊕ Y . Compare if:

e(P,W ′) = e(XPTA
h, QA) where h = H1(m,X, IDB)

Output > if the above verification is true, or output ⊥ if false.

In Section 3.1, the Unsigncrypt requires decryption of ciphertext, verification
of signature, and verification for checking encryptor = signer. The first two parts
are done in the previous steps. The last one is implicitly done in Decrypt and
Verify as both of them use the same X in σ to decrypt and verify.

Finally, we show the consistency constraint is satisfied in Decrypt and Verify.
In Decrypt, V can be recovered as: e(X,SB) = e(P r, QB

s) = e(PTA
r, QB). In

Verify, if the signature is valid, both sides should be equivalent because:
e(P,W ) = e(P, SA

hQA
r) = e(P,QA

(sh+r)) = e(P (r+sh), QA) = e(XPTA
h, QA).

Theorem 2. Our IBSC scheme is IND-IBSC-CCA2 secure provided the co-
BDH Problem is hard in the random oracle model.
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Theorem 3. Our IBSC scheme is EU-IBSC-CMA secure provided the co-CDH
Problem is hard, in the random oracle model.

Proof sketches of the above two theorems are in Appendix A.
Dual support of ciphertext unlinkability (CU) and authenticated

encryption (AE): One of the main difference between our IBSC scheme and
Boyen’s scheme [5] is that our scheme has linkability (AE) while Boyen’s scheme
has unlinkability (CU). As unlinkability may also be important in some applica-
tions, we provide the CU version of our scheme.

The only change to our scheme is that in Sign change h = H1(m,X). Other
steps remains the same. Therefore this CU version is as efficient as the original
AE version. Notice that by changing to CU, unforgeability for ciphertext reduces
to unforgeability for signature only, as in [5].

4.2 The first BIBSC scheme

In BIBSC, Setup, Extract and Unsigncrypt are same as Section 4.1. Now, we
describe the interactive protocol for BlindSigncrypt and Warden in following table.

BlindSigncrypt Warden
randomly choose r randomly choose α, β
send X = P r ∈ G1 −→

computes X̂ = XαP β ∈ G1, ĥ = H(m, X̂, IDB) ∈ Zq

←− send h = α−1ĥ ∈ Zq

send W = SA
hQA

r ∈ G2

and V = e(PTA
r, QB) ∈ G2 −→

computes Ŵ = WαQA
β ∈ G2

computes V̂ = V αe(PTA
β , QB) ∈ G3

computes Ŷ = H3(V̂ , IDA)⊕ Ŵ ∈ G2

computes Ẑ = H2(V̂ )⊕ 〈IDA,m〉 ∈ {0, 1}∗
outputs σ = 〈X̂, Ŷ , Ẑ〉

Consistency is verified as:

e(P, Ŵ ) = e(P,WαQA
β) and V̂ = V αe(PTA

β , QB)
= e(P,QA)sĥ+αr+β = e(P s(rα+β), QB)
= e(PTA

ĥXαP β , QA) = e(XαP β , SB)
= e(X̂PTA

ĥ, QA) = e(X̂, SB)

Remark: In our proofs, we use an alternative representation for Ŷ and Ẑ.
Let θ4 (resp. θ5) be a bijective mapping from G2 to G4 (resp. from {0, 1}∗ to G5)
where G4 (resp. G5) is a cyclic group. ChangeH2 : G3 → G5,H3 : G3×{0, 1}∗ →
G4. Then Ŷ = H3(V̂ , IDA)⊕θ4(Ŵ ) ∈ G4 and Ẑ = H2(V̂ )⊕θ5(〈IDA,m〉) ∈ G5.
In Unsigncrypt, we can use θ−1

4 and θ−1
5 to recover the message. The efficiency

and security of BIBSC will not be affected.
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Theorem 4. Our BIBSC scheme has blindness.

Theorem 5. Our BIBSC scheme is p1m-uf secure provided Schnorr’s ROS
Problem is hard in the ROM+GGPM.

5 Generic Group and Pairing Model (GGPM)

We (briefly) introduce the generic group and pairing model (GGPM) by ex-
tending the generic group model (GGM) of [17, 21, 18], to include support for
the pairing oracle. There are two types of data, namely, group elements and
non-group data. Group elements fall into three kinds: elements of G1, G2, or
G3. The group cardinalities are prime numbers q1, q2, q3, respectively, with
q1 = q2 = q3 = q. Non-group data are integers in Z (or in Zq, Zq, Zq respec-
tively, depending on convention). The group elements of G3 can be randomly
generated, obtained from the blind signcryption oracle, or computed as the pair-
ing of one element from G1 and an element from G2. The GGPM, in its basic
form, consists of:

1. three GGM’s, one for each of G1, G2, and G3. Denote their encodings by
θi : Gi → Si, i = 1, 2, 3. With usual assumptions such that generic algorithm
is banned for some non-group operations. (In ECDL with parameters p, G,
q, the group is (< G >, ∗), and arithmetics in Zp are explicitly banned in
GGM. In DL with parameters p, q, g, the group is (< g >, ∗), and additions
(resp. subtractions) in Zp are banned in GGM.)

2. a pairing oracle, ê : S1 × S2 → S3, satisfying bilinear properties.
3. Other oracles in the security model such as Blind Signcryption Oracle BSO,

Key Extraction Oracle KEO and Random Oracle.

Here three GGM’s definitions are similar to Schnorr’s GGM [18]. So we only
focus on the new pairing model. Only a restricted set of operations for group
elements are allowed. Each generic step is a computation of one of the following:
mex-1: Zd1

q ×G
d1
1 → G1, (a

(1)
1 , · · · , a(1)

d1
, g

(1)
1 , · · · , g(1)

d1
) 7→

∏
i(g

(1)
i )a

(1)
i

mex-2: Zd2
q ×G

d2
2 → G2, (a

(2)
1 , · · · , a(2)

d2
, g

(2)
1 , · · · , g(2)

d2
) 7→

∏
i′(g

(2)
i′ )a

(2)
i′

mex-3: Zd3+d1d2
q ×Gd3

3 ×G
d1
1 G

d2
2 → G3,

(a(3)
1 , · · · , a(3)

d3+d1d2
, g

(3)
1 , · · · , g(3)

d3
, (g(1)

1 , g
(2)
1 ), · · · , (g(1)

d1
, g

(2)
d2

))

7→
∏d3

i=1(g
(3)
i )a

(3)
i

∏d1
j=1

∏d2
k=1 e(g

(1)
j , g

(2)
k )a

(3)
d3+d2(j−1)+k

mex-p : Zd1+d2
q ×Gd1

1 ×G
d2
2 → G3,

(a(4)
1 , · · · , a(4)

d1
, a

(5)
1 , · · · , a(5)

d2
, g

(1)
1 , · · · , g(1)

d1
, g

(2)
1 , · · · , g(2)

d2
) 7→

∏
j

∏
k e(g

(1)
j , g

(2)
k )a

(4)
j a

(5)
k

The elements g(1)
i ’s consist of P , PTA, BSO commitments Xi’s, and ran-

domly generate G1 elements. The elements g(2)
i ’s consist of QID’s, SID’s, BSO

responses Wi’s, and randomly generate G2 elements. The elements g(3)
i ’s consist

of BSO responses Vi’s and randomly generate G3 elements. Similar to Schnorr
[19], we omit randomly generated group elements below w.l.o.g.

A (non-interactive) generic algorithm is a sequence of ttotal generic steps
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1. Inputs are: f (u)
1 , · · · , f (u)

t′u
∈ Gu for u = 1, 2, 3, 1 ≤ t′u < ttotal, where t′ =∑

u t
′
u < ttotal and non-group data like Zq in given ciphertext or signature.

2. Computation steps are: f (u)
i =

∏i−1
j=1(f

(u)
j )a

(u)
i,j , for i = t′u+1, · · · , tu, u = 1, 2,

and f
(3)
i =

∏i−1
j=1(f

(3)
j )a

(3)
i,j ·

∏
1≤k,`<t e(f

(1)
k , f

(2)
` )bi,k,` for i = t′3 + 1, · · · , t3,

where ttotal = t1 + t2 + t3 + t4 and exponents a(u)
i,j depends arbitrarily on i, j,

and non-group inputs.
3. Ouputs are: non-group data and group elements f (u)

σ1 , · · · , f
(u)
σd where the inte-

gers σ1, · · · , σd ∈ {1, · · · , tu} that depend arbitrarily on the non-group input.

The generic adversary can also perform equality test, if-then-else, looping, and
other logical operations. We omit discussions about them here.

In the generic algorithm, each computation step f (u)
σ must be represented as

the product of powers of group elements g(1)
i ’s, g(2)

i′ ’s, g(3)
i′′ ’s, and e(g(1)

k , g
(2)
` )’s.

There are only polynomially many group elements involved in any PPT algo-
rithm. Each step can be represented as a sequence of exponents, and that repre-
sentation should be unique. A collision is when a step can have multiple repre-
sentations w.r.t. the bases consisting of the prescribed set of group elements. The
following lemma shows the collision probability for f (1)

i , f
(2)
j , f

(3)
k are negligible

except when involving oracle queries. The proof is similar to Schnorr’s Lemma
1 and omitted.

Lemma 1. The probability of a PPT generic algorithm being able to compute a
collision is negligible, except those collisions obtain via oracle queries.

The only non-negligible collisions are obtained from the blind signcryption oracle
which are of the type e(A,B) = e(C,D) in G3.

Next we elaborate on interactive generic algorithms. We count the fol-
lowing generic steps:

– group operations mex-1, mex-2, mex-3, mex-p
– queries to hash oracle H
– queries to key extraction oracle KEO
– interactions with a blind signcryption oracle BSO.

A generic adversary is an interactive algorithm that interacts with BSO.
The construction is similar to Schnorr’s, unless specified below. The input con-
sists of generators g(1), g(2), g(3), public keys Q1, · · · , QK ∈ G2, master public key
PTA ∈ G1, group order q, pairing e(·, ·) and collection of messages, ciphertexts
and so on, which can be broken into group elements and non-group data.
A’s transmission to KEO depends arbitrarily on given group elements and

non-group data. Notice that key extraction for sender’s private key is not allowed.
The restriction is that A can use group elements only for generic group

operations, equality tests and for queries to hash oracle and KEO, whereas non-
group data can be arbitrarily used without charge. The computed group elements
are given as explicit multiplicative combinations of given group elements. Let
X` = g(1)r` ∈ G1,W` = QA

r`+sh` ∈ G2, V` = e(X`, SB`
) for ` = 1, · · · , l be
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the group elements that A gets from BSO using the sender IDA and recipient

IDB`
. A computed f

(1)
j ∈ G1 is of the form f

(1)
j = P a

(1)
j,−1P

a
(1)
j,0

TA

∏l
`=1X`

a
(1)
j,` ,

where the exponents a(1)
j,−1, · · · , a

(1)
j,l ∈ Zq depend arbitrarily on given non-group

data. A computed f
(2)
j ∈ G2 is of the form f

(2)
j = Q

a
(2)
j,0

A

∏l
`=1W`

a
(2)
j,` , where the

exponents depend arbitrarily on given non-group data. A computed f
(3)
j ∈ G3

is of the form f
(3)
j = e(P,QA)a

(3)
j,−1e(PTA, QA)a

(3)
j,0

∏l
`=1 V`

a
(3)
j,` .

Powers and limitations of GGM and GGPM Lemma 1 implies that co-
CDH is hard. The perspective is that co-CDH constitutes collisions in GGPM.
The real-world interpretation of this model-based result is roughly as follows:
GGM (resp. GGPM) bans certain operations, in the sense that it can be as-
sumed w.l.o.g. that the generic algorithm does not use these operations. The
justification is that these operations are thought to be of no help. In GGM for
discrete logarithm with parameters p, q, g, the additions (resp. subtractions) in
Zp are banned. In GGM for ECDL with parameters p, q, base point G whose
order is q, arithmetics in Zp are banned. In GGPM where we have in mind the
G1, G2, and G3 are all groups of elliptic curve points, the GGPM model allows
point operations, arithmetics in Zq, but bans arithmetics in Zp on the argument
that they do not help.

Based on such model assumptions, GGM has be used to prove results that
often cannot be proved in other models. The GGM has been used to prove the
hardness of the discrete logarithm [17, 21]. It has also been used to reduce p1m-uf
of Schnorr or Okamoto-Schnorr blind signature to the ROS Problem [19], or the
one-more discrete logarithm problem. Note that the one-more discrete logarithm
problem is proven hard in the GGM by simple applications of the methods used
in [18]. Based on similar model assumptions, we use GGPM to reduce p1m-uf
of blind signcryption to the ROS Problem or the one-more co-CDH Problem in
this paper. Note that one-more co-CDH is proven hard in GGPM.

Algorithms already exist that exploits operations banned from GGM. The
index calculus method to compute the discrete logarithm utilizes size information
in Zp to achieve efficiency. It is outside the boundary of GGM. In ECDL, it
is suspected but not yet explicitly demonstrated that arithmetics in Zp and
properties of the curve can be exploited. Therefore, GGM and GGPM are used
with these elliptic curves applications in mind. If and when exploitations of
Zp arithmetics or curve properties, or other unforeseen techniques outside the
model, can be exhibited, both GGM and GGPM will need to be reexamined.

Lemma 1 also implies the hardness of the one-more co-CDH Problem in the
GGPM. The one-more co-CDH Problem is (roughly speaking): Given qB queries
to the co-CDH Oracle, compute qB + 1 co-CDH Problems.

6 Comparing Performance

In this Section, we will compare our IBSC scheme with existing schemes. We
will compare in terms of security, size of ciphertext and computation time.



12

For security analysis, we divide into the followings: IND-A implies anonymity
of sender. IND-B implies anonymity of recipient. IND-C implies message con-
fidentiality. EU implies ciphertext non-repudiation. The computation time in-
cludes the number of pairings and exponential computation as they are the
most expensive in IBSC scheme. The actual number of computation which can-
not be pre-computed is shown in bracket. The comparisons are summarized in
the following table.

Scheme Security Ciphertext Size Signcrypt Unsigncrypt
IND EU Time Time

A B C #pair #exp #pair #exp
EtS ×

√ √ √
(2k + 1)G1 + 2||m||(+ID) 1 4 (1) 3 1 (1)

StE
√ √ √

× (2k + 1)G1 + 2||m||+ ID 1 4 (1) 3 1 (1)
M [15] ×

√
×
√

(k + 1)G1 + ||m||(+ID) 1 3 (1) 4 1 (1)
LQ1 [13] × × *

√
k(G1 + Fp) + ||m||(+ID) 2 2 (1) 4 1 (1)

NR [11] × × * × (k + 1)G1 + ||m||(+ID) 1 3 (2) 3 1 (1)
B [5]

√ √ √
* (k + 1)G1 + ||m||+ ID 1 4 (3) 4 2 (2)

CYSC [9] ×
√ √ √

k(G1 + Fp) + ||m||(+ID) 2 2 (1) 4 1 (1)
LQ2 [14]

√ √ √
* (k + 1)G1 + ||m+ δ||+ ID 1 4 (3) 4 1 (1)

This scheme
√ √ √ √

(k + 1)G1 + ||m||+ ID 1 4 (1) 3 1 (1)

As we can see, our IBSC scheme is the fastest, with shortest ciphertext size
and proven secure in the strongest model among the existing schemes. Detailed
comparison will be given in Appendix B.

Additional functionalities of our scheme: From our new efficient IBSC
scheme, we can achieve further functionalities which are useful in reality. They
are the TA compatibility and forward secrecy.

TA Compatibility. In reality, sender and recipient may use different TAs. If
it happens, our scheme can still be used with slight changes. Assume all TAs
use same pairing e, hash functions and P ∈ G1. Now let Alice uses TA1 with
master key s1. and Bob uses TA2 with master key s2. In Encrypt, change V =
e(QB

r, PTA2). In Verify, e(P, Y ) = e(PTA1
hX,QA). Others remain unchanged.

Forward secrecy. Our scheme can achieve forward secrecy. It is implied by
IND-CCA2. If sender and recipient use different TAs, then it can even achieve
partial TA forward secrecy. If master key of TA1 is compromised, then past
communications with users using different TAs will not be compromised, since
the adversary still cannot compute V .

7 Conclusion

In this paper, we have proposed a new BIBSC scheme and its security model. We
introduce the generic group and pairing model (GGPM). We proof the BIBSC
scheme is secure against p1m-uf in ROM+GGPM.

For the IBSC scheme, our scheme is the fastest, have a short ciphertext and
proven secure in a stronger security model when comparing with existing scheme.
We provide the flexibility for choosing linkability of ciphertext or not.
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A Proof Sketch of Security

A.1 Proof Sketch of Theorem 2

Setting up: Dealer D gives (P, Pα, P β , Q) to Simulator S and wants S to compute
e(P,Q)αβ . S sends the system parameter to F with PTA = P β as in Setup. S
picks a random number ηQ from {1, 2, ..., µ0}, where µ0 is the number of query
to H0.

Simulating Oracles: As regards queries to the random oracles:

– Query on H0 for identity ID is handled as follows:
• The ηQ-th distinct query to H0 is back patched to the value Q. The

corresponding identity is denoted as IDQ. Adds the entry 〈IDQ, Q〉 to
tape L0, and returns the public key Q.
• Otherwise, picks a random λ ∈ F ∗

p , adds the entry 〈ID, λ〉 to the tape
L0, and return the public key QID = Pλ.

– Queries on H1, H2 and H3 are handled by producing a random element from
the codomain, and adding both query and answer to tape L1, L2 and L3.

As regards to oracle queries for:

– KEO: For input identity IDA.
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• If IDA = IDQ, then D terminates its interaction with F, having failed
to guess the targeted recipient among those in L0.
• Otherwise, S retrieves 〈IDA, λA〉 from L0 and returns SA = (P β)λA .

– SO : For input message m, sender IDA, and recipient IDB .
• If IDA = IDQ, then S randomly chooses r, h ∈ F ∗

p , and lets X =
P r(P β)−h, W = (Q)r. Then, S adds the tuple 〈m,X, h ⊕ IDB〉 to
L1 to force the random oracle H1(m,X) = h ⊕ IDB . Finally, S uses
〈X,W,m, r, IDB〉 to run Signcrypt to produce the desired ciphertext σ.

• Otherwise, S retrieves 〈IDA, λA〉 from L0 and computes SA = (P β)λA .
Then S will run Signcrypt using SA and get ciphertext σ.

– UO : For input recipient IDB and ciphertext σ = 〈X,Y, Z〉.
• If IDB = IDQ, then S searches all combinations 〈IDA,m,X,W 〉 such

that 〈m,X, h1〉 ∈ L1, 〈V, h2〉 ∈ L2, 〈V, IDA, h3〉 ∈ L3, for some h1, h2,
h3, V, under the constraints that h3 ⊕ Y = W , h2 ⊕ Z = 〈IDA,m〉 and
Verify[IDA,m,X,W, IDB ] = >. Pick a 〈IDA,m〉 in one of the combi-
nations above to return as answer. If no such tuple is found, the oracle
signals that the ciphertext is invalid.
• Otherwise, S retrieves 〈IDB , λB〉 from L0 and computes SB = (P β)λB .

Then S will run Unsigncrypt using SB to get 〈IDA,m〉 or ⊥.

Witness Extraction: As in the IND-IBSC-CCA2 game, at some point F
chooses plaintext m1, sender IDA1, and recipient IDB1 on which he wishes
to be challenged. S responds with challenge ciphertext 〈X,Y, Z〉, where:

X = Pα

Y and Z are random strings of appropriate size. All further queries by F are
processed adaptively as in the oracles above.

Finally, F returns its final guess. S ignores the answer from F, randomly picks
an entry 〈V, h2〉 in L2, and returns V as the solution to the co-BDH problem.

If the recipient identity IDA1 = IDQ selected by S, to recognize the challenge
ciphertext 〈X,Y, Z〉 with X = Pα is incorrect, F needs to query random oracle
H2(V ) with

V = e(X,SQ) = e(Pα, Qβ) = e(P,Q)αβ

It will leave an entry 〈V, h2〉 on L2, from which B can then extract V = e(P,Q)αβ .
ut

A.2 Proof Sketch of Theorem 3

Setting up: Dealer D gives (P, P β , Q) to Simulator S and wants S to compute
Qβ . Others are same as in the proof sketch of Theorem 2.

Oracle Simulation: The signcryption oracle, the unsigncryption oracle, and
the key extraction oracle are simulated in the same way as in the proof of The-
orem 2.

Witness Extraction: Assume F is a PPT forger. Rewind F to the random
oracle query whose output appears in the verification in unsigncryption. Then
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we obtain W = Sh
AQ

r
A and W ′ = Sh′

A Q
r
A in respective forks. Combining, we can

compute the co-CDH Problem if QA = Q. Then Qβ = SA = (W ′/W )(h
′−h)−1

.
ut

A.3 Proof Sketch of Theorem 4

To prove the blindness of BIBSC, we show that given a valid ciphertext 〈X̂, Ŷ , Ẑ〉
and any transcript of blind signcryption (X,h,W, V ), there always exist a unique
pair of blinding factors α, β ∈ Z∗

q . Since the blinding factors are randomly chosen,
the blindness of BIBSC is achieved.

Given a valid ciphertext 〈X̂, Ŷ , Ẑ〉, then there exist a unique (X̂, Ŵ , V̂ ,m)
for this ciphertext. Then for any transcript of blind signcryption (X,h,W, V ),
the following equations must hold for α, β ∈ Z∗

q :

X̂ = XαP β

h = α−1H1(m, X̂)
Ŵ = WαQA

β

V̂ = V αe(PTA
β , QB)

From the second equation, we see that there exist a blinding factor α = H1(m, X̂)/h.
For this α, there exist a blinding factor β from the first equation and β =
logP (X̂X−α). Therefore we have to show that these blinding factors α, β satisfy
the last two equations.

Notice that there exists a SB which is the private key for QB . Then:

V̂ = e(X̂, SB)
= e(XαP β , SB)
= e(X,SB)αe(P β , SB)
= V αe(PTA

β , QB)

Furthermore, 〈X̂, Ŵ ,m〉 is a valid signature. Therefore we have:

e(P, Ŵ ) = e(X̂,QA)e(PTA, QA)H1(m,X̂)

= e(XαP β , QA)e(PTA, QA)αh

= e(XPTA
h, QA)αe(P β , QA)

= e(P,W )αe(P,QA
β)

= e(P,WαQA
β)

Hence, given a valid ciphertext 〈X̂, Ŷ , Ẑ〉 and any transcript of blind signcryption
(X,h,W, V ), there always exists a unique pair of blinding factors α, β ∈ Z∗

q .
Therefore, Prob{σ by Warden} = Prob{σ by Warden|T }. The blindness of
BIBSC is proved. ut

A.4 Proof Sketch of Theorem 5

This section refers to a generic adversary A performing some t generic steps,
including some qB interactions (X1, h1,W1, V1), · · · , (XqB

, hqB
,WqB

, VqB
) with
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BSO, producing some t′(u) group elements in Gu. We let r = (r1, · · · , rqB
) denote

BSO random coins. Let f1 = P, f2 = PTA, f3, · · · , ft′(1) ∈ G1 denote the group el-
ements ofA’s computation. The genericA computes fj = P aj,−1P

aj,0
TA

∏qB

`=1X`
aj,`

where X` are BSO commitments and the exponents depend arbitrarily on pre-
viously computed non-group data.

Schnorr’s Lemma 2 implies DLP is hard (uncomputable by PPT generic
adversary) in GGM. Similarly, it applies here. It is hard to get s from QB

s.
Let A outputs (X̂i, Ŵi, V̂i) be valid for message m̂i, sender IDA and recipient

IDBi
, 1 ≤ i ≤ qB +1. Then we have ĥi = H1(X̂i, m̂i, IDBi

) for some hash query
satisfying e(X̂iP

ĥi

TA, QA) = e(P, Ŵi). Let X̂i = f
(1)
σi .

The equation e(P, Ŵi)e(P−ĥi

TA , QA)=e(fσi
, QA)=e(P aσi,−1P

aσi,0

TA

∏qB

`=1X`
aσi,` ,

QA) and e(X`, QA)=e(P,W`)e(P−h`

TA , QA) imply:

Ŵi = QA
aσi,−1 ·

qB∏
`=1

W
aσi,`

` ·QA
(aσi,0−

∑qB
`=1 aσi,`h`+ĥi)s

If ĥi = −aσi,0 +
∑l

`=1 aσi,`h`, then A can easily compute the correct Ŵi.
Then we have Ŵi = QA

aσi,−1
∏l

`=1W
aσi,`

` where W1,· · ·,Wl, aσi,−1,· · ·,aσi,l are
known to A.

Conversely, A must select h1, · · · , hl as to zero the coefficient involving the
master secret key s. Otherwise we can recoverQA

s fromW1,· · ·,Wl, aσi,−1,· · ·,aσi,l,
ĥi, Ŵi which are known to A. Then it can solve the 1m-co-CDH problem, as we
get qK private keys from KEO. The probability of solving 1m-co-CDH in GGPM
is negligible. Hence A must solve the ROS problem. ut

B Detailed comparison on performance of IBSC

We compare our IBSC scheme with existing schemes from Malone-Lee(M) [15],
Libert and Quisquater scheme 1(LQ1) [13] and 2(LQ2)[14], Nalla and Reddy(NR)
[11], Boyen(B) [5], and Chow et al.(CYSC) [9]. We also include the Sign-then-
Encrypt(StE) and Encrypt-then-Sign(EtS) using ID-based encryption from [4]
and ID-based signature from [6].

B.1 Security

The security analysis follows our definition of security models in Section 2: IND-
A, IND-B, IND-C, EU.

– IND-A: The schemes of M, LQ1, NR and CYSC are not IND-A secure. It is
because the unsigncryption of ciphertext requires the knowledge of sender’s
identity in advance.

– IND-B: The schemes of LQ1 and NR are not IND-B secure. Any adversary
who knows the sender’s identity, private key and the message signcrypted
can distinguish the identity of the recipient.
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– IND-C: The scheme of M is not IND-CCA2 secure shown in [13]. Schemes of
LQ1 and NR are IND secure according to security model in LQ1, but not
secure in Boyen’s and our security models, where private key of sender is
known to Adversary.

– EU: NR’s scheme is not EU-CMA secure. Any adversary can forge a signcryp-
tion from any sender to recipient IDB , where private key of IDB is known to
adversary. Boyen’s scheme has unforgeability for the signature only. It does
not satisfy the unforgeability for ciphertext as required in our security model
and also the security model of standard signcryption in [1]. It is related to
the property of ”unlinkability” in Boyen’s scheme. LQ2 scheme is similar to
Boyen’s in this aspect. Our IBSC scheme avoids this controversial property
of unlinkability and achieves unforgeability for ciphertext.

Some comments based on the above definitions are given in Appendix C.

B.2 Computation Time

The computation of pairings is the most expensive computation in IBSC scheme.
From the above table, we can see that our scheme is the fastest among existing
schemes, with similar running time as NR [11], EtS and StE.

If we look further to the number of exponential computation involved, our
scheme is in the middle place in exponential calculation. However, there are
some components in our scheme that can be pre-computed before knowing the
recipient identity and message. For any random number r, X, QA

r and PTA
r

can be pre-computed. Therefore the actual number of exponential in our scheme
which cannot be pre-computed is two, which is shown in bracket in the table. We
can see that our scheme is again the fastest in terms of exponential computation.

B.3 Ciphertext Size

For fair comparison on ciphertext size, we assume that a message m of length
||m|| have to cut into k pieces for signcryption. Also, sender’s identity must be
known in advance to unsigncryption for the schemes which do not pass IND-A
test. Therefore sender’s identity is also included in those schemes. Parameters
for signcryption of same m is reused whenever possible.

In LQ2 [14], δ is 160 bits for ciphertext unlinkability, and is 0 bit for ciphertext
linkability. As shown in the table, we can see that our scheme has the shortest
ciphertext size.

C Comments on various IBSC’s w.r.t. our security model

C.1 Comment for IND-B

In the following, please refer to the original paper for original scheme and the
definition of the symbols used. In the IND sub-game (b), the Adversary chooses
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message m, sender IDA and recipient IDB1. The Adversary knows the private
key of IDA. Simulator chooses a recipient IDB0, and randomly picks b ∈ {0, 1}.
Simulator signcrypts the message m from sender IDA to recipient IDBb and
returns the ciphertext to the Adversary. The Adversary has to guess b.

Libert and Quisquater’s scheme 1 [13] The Adversary has the ciphertext
〈c, r, S〉 and dA, the private key of IDA. The Adversary computes:

k2 = H2(e(S,QB1)e(dA, QB1)r)
m′ = Dk2(c)

The Adversary outputs b = 1 if m′ = m. Otherwise, the Adversary outputs
b = 0. Then the Adversary wins the IND game with probability 1.

Nalla and Reddy’s scheme [11] The Adversary has the ciphertext 〈R,S,C〉
and SA, the private key of IDA. The Adversary computes:

R′ = (R||H1(e(QB1, SA))||m)
kA = H ′′(e(QB1, R)H′(R′))
C ′ = kA ⊕m

The Adversary outputs b = 1 if C ′ = C. Otherwise, the Adversary outputs b = 0.
Then the Adversary wins the IND game with probability 1.

C.2 Comment for IND-C

In the IND sub-game (c), the Adversary chooses message m1, sender IDA and
recipient IDB . The Adversary knows the private key of IDA. Simulator chooses a
messagem0, and randomly picks b ∈ {0, 1}. Simulator signcrypts the messagemb

from sender IDA to recipient IDB and returns the ciphertext to the Adversary.
The Adversary has to guess b.

Nalla and Reddy’s scheme [11] The Adversary has the ciphertext 〈R,S,C〉
and SA, the private key of IDA. The Adversary computes:

R′ = (R||H1(e(QB , SA))||m1)
kA = H ′′(e(QB , R)H′(R′))
C ′ = kA ⊕m1

The Adversary outputs b = 1 if C ′ = C. Otherwise, the Adversary outputs b = 0.
Then the Adversary wins the IND game with probability 1.

C.3 Comment for EU

In the EU game, the Adversary chooses message m, sender IDA and recipient
IDB . The Adversary knows the private key of IDB . The Adversary returns a
ciphertext σ and recipient identity IDB to the Simulator.



20

Nalla and Reddy’s scheme [11] The Adversary has SB , the private key of
IDB . The Adversary randomly chooses a ∈ R and computes:

R = SB
a

R′ = (R||H1(e(SB , QA))||m)
S = QB

aH′(R′)

kA = H ′′(e(QB , SB)aH′(R′))
C = kA ⊕m

The Adversary outputs the ciphertext σ = 〈R,S,C〉, sender identity IDA and
recipient identity IDB to the Simulator.

The Simulator decrypts by computing:

kB = H ′′(e(S, SB))
m = kB ⊕ C

The decryption succeeds. Then in verification, the Simulator computes R′ =
(R||H1(e(SB , QA))||m) and checks if:

e(SB , S) = e(QB , R)H′(R′)

By the above construction, the ciphertext must pass the verification. Then the
Adversary wins the EU game with probability 1.


