# Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 


#### Abstract

We present the first blind identity-based signcryption (BIBSC). We formulate its security model and define the security notions of blindness and parallel one-more unforgeability (p1m-uf). We present an efficient construction from pairings, then prove a security theorem that reduces its p1m-uf to Schnorr's ROS Problem in the random oracle model plus the generic group and pairing model. The latter model is an extension of the generic group model to add support for pairings, which we introduce in this paper. In the process, we also introduce a new security model for (non-blind) identity-based signcryption (IBSC) which is a strengthening of Boyen's. We construct the first IBSC scheme proven secure in the strenghened model which is also the fastest (resp. shortest) IBSC in this model or Boyen's model. The shortcomings of several existing IBSC schemes in the strenghened model are shown.


## 1 Introduction

Identity based cryptography is a kind of asymmetric key cryptography using recipient's identity as the public key. In 1984, Shamir [20] firstly proposed the idea of identity based cryptography. Since then, there are many suggestions for the implementation of identity based encryption ( $[12,23,16,10]$ ). However they are not fully satisfactory. In 2001, Boneh and Franklin [4] proposed the first practical identity based encryption scheme using pairings on elliptic curves.

The basic idea of identity based cryptography is to use the recipient's identity as the public key. The identity can be name, email address or combining any other strings that can help to identify a person uniquely. Usually a trusted authority (TA) is needed to generate private keys according to the public keys. The advantage is that distribution of public key in advance is not needed.

There are also developments in identity based signatures [6], resp. authenticated key agreement [22, 8], $\ldots$, etc. Identity-based encryptions prior to [4], either requires high complexity to compute the key pair or is insecure against colluders.

Blind signatures was introduced by Chaum [7], which provides anonymity of users in applications such as e-cash. It allows users to get a signature of a message in a way that signer learns neither the message nor the resulting signature.

Privacy and authenticity are also the basic aims of public-key cryptography. We have encryption and signature to achieve these aims. Zheng [27] proposed that encryption and signature can be combined as "signcryption" which can be more efficient in computation than running encryption and signature separately. The security of signcryption is discussed by An et al. [1]

Contributions This paper makes the following contributions to the literature:

1. We present the first blind identity-based signcryption (BIBSC). Roughly speaking, BIBSC works as follows: Upon request from Warden, a blind signcryption oracle makes a commitment, then blindly signs and computes the randomness term in the encryption for Warden. Warden deblinds the signature and uses the randomness in its encryption to produce a signcryption.
2. We formulate the first BIBSC security models to define security notions including blindness and parallel one-more unforgeability (p1m-uf).
3. We construct the first BIBSC scheme from pairings, and prove its security. The blindness of our BIBSC from pairings is statistical ZK, and the p1m-uf is reduced to Schnorr's ROS Problem in the random oracle model plus the generic group and pairing model (GGPM).
4. We introduce the generic group and pairing model (GPPM) which is an extension of the generic group model $[17,21,19]$ by including support for pairings. We use this model to prove p1m-uf of our BIBSC.
5. We also introduce a strengthening of Boyen's [5] security model for (nonblind) identify-based signcryption (IBSC) to add support of authenticated encryption.
6. We construct the first proven secure IBSC in the strengthened model. It is also the fastest (resp. shortest) IBSC in our model as well as in Boyen's [5].
7. Shortcomings of several existing IBSC in the strengthened model are shown.

Organization: In Section 2, we define the preliminaries. In Section 3, we define the IBSC and BIBSC security model. In Section 4, we introduce our schemes. In Section 5, we introduce the generic group and pairing model. In Section 6, we compare our IBSC scheme with existing schemes.

## 2 Preliminaries

### 2.1 Related Results

Shamir [20] suggested an identity based signature scheme. Boneh and Franklin [4] proposed an identity based encryption scheme. There are some papers [15, $5,13,11,9,14$ ] concerning the combination of signature and encryption to form IBSC scheme. The most expensive single operation is pairing computations. The scheme of $[15,5,14]$ use 5 pairings, while [13, 9] use 6 , [11] uses 4 . [5] is proven secure in a stronger model than $[15,13]$. [11] has no security proof.

Blind signatures was introduced by Chaum [7]. Some ID-based blind signature schemes is developed recently [24-26].

### 2.2 Pairings

Our BIBSC and IBSC schemes uses bilinear pairings on elliptic curves. We now give a brief revision on the property of pairings and some candidate hard problems from pairings that will be used later.

Let $G_{1}, G_{2}, G_{3}$ be cyclic groups of prime order $q$, writing the group action multiplicatively. Let $g_{1}$ (resp. $g_{2}$ ) be a generator of $G_{1}$ (resp. $G_{2}$ ). There exist $\psi$ which is isomorphism from $G_{2}$ to $G_{1}$, with $\psi\left(g_{2}\right)=g_{1}$.
Definition 1. A map e $: G_{1} \times G_{2} \rightarrow G_{3}$ is called a bilinear pairing if, for all $x \in G_{1}, y \in G_{2}$ and $a, b \in Z$, we have $e\left(x^{a}, y^{b}\right)=e(x, y)^{a b}$, and $e\left(g_{1}, g_{2}\right) \neq 1$.
Definition 2. (co-BDH problem)The co-Bilinear Diffie-Hellman problem is, given $P, P^{\alpha}, P^{\beta} \in G_{1}, Q \in G_{2}$, for unknown $\alpha, \beta \in Z_{q}$, to compute $e(P, Q)^{\alpha \beta}$.
Definition 3. (co-CDH problem) The co-Computational Diffie-Hellman problem is, given $P, P^{\alpha} \in G_{1}, Q \in G_{2}$ for unknown $\alpha \in Z_{q}$, to compute $Q^{\alpha}$.

### 2.3 Blind signatures and Schnorr's ROS Problem

Blind signature is described as follows: Upon request from Warden, a signing oracle makes a commitment, then blindly signs a message for Warden. Warden deblinds the signature such that the signing oracle knows neither the message nor the output signature.

Parallel one-more forgery against blind signature is that an attacker interacts for $l$ times with a signer and produces from these interactions $l+1$ signatures. Schnorr [19] reduced the parallel one-more unforgeability (p1m-uf) of the blind Schnorr signature to the ROS Problem in the random oracle plus generic group model (ROM+GGM). The following are from Schnorr[19]:
Definition 4. (ROS problem) Find an overdetermined, solvable system of linear equations modulo $q$ with random inhomogeneities. Specifically, given an oracle random function $F: Z_{q}^{l} \leftarrow Z_{q}$, find coefficients $a_{k, i} \in Z_{q}$ and a solvable system of $l+1$ distinct equations of $E q$. (1) in the unknowns $c_{1}, \ldots, c_{l}$ over $Z_{q}$ :

$$
a_{k, 1} c_{1}+\ldots+a_{k, l} c_{l}=F\left(a_{k, 1}, \ldots, a_{k, l}\right) \text { for } k=1, \ldots, t . \quad \text { (1) }
$$

Theorem 1. [19] Given generator $g$, public key $h$ and an oracle for $H$, let a generic adversary $\mathcal{A}$ performs $t$ generic steps and interacts for $l$ times with a signer. If $\mathcal{A}$ succeeds in a parallel attack to produce $l+1$ signatures with a probability of success better than $\binom{t}{2} / q$, then $\mathcal{A}$ must solve the ROS-problem in $R O M+G G M$.

## 3 BIBSC and Enhanced IBSC Security Model

We define the first security models for BIBSC and also an enhancement of Boyen's security model for IBSC. For logistics, we present the latter first.

### 3.1 Enhanced IBSC Security Model

We present an enhancement of Boyen's security model for IBSC. The main addition is to add support for authenticated encryption where the signer and encryptor of signcryption are assured to be the same. The signer cannot deny signcrypting the message to the recipient. Boyen's IBSC model is restricted to ciphertext unlinkability where this assurance is not required. Our model below is capable of supporting authenticated encryption, resp. ciphertext unlinkability.
3.1.1 Primitives An IBSC scheme consists of four algorithms: (Setup, Extract, Signcrypt, Unsigncrypt). The algorithms are specified as follows:
Setup: On input a security parameter $k$, the TA generates $\langle\zeta, \pi\rangle$ where $\zeta$ is the randomly generated master key, and $\pi$ is the corresponding public parameter. Extract: On input ID, the TA computes its corresponding private key $S_{I D}$ (corresponding to $\langle\zeta, \pi\rangle$ ) and sends back to its owner in a secure channel.
Signcrypt: On input the private key of sender A, $S_{A}$, recipient identity $I D_{B}$ and a message $m$, outputs a ciphertext $\sigma$ corresponding to $\pi$.
Unsigncrypt: On input private key of recipient $\mathrm{B}, S_{B}$, and ciphertext $\sigma$, decrypt to get sender identity $I D_{A}$, message $m$ and signature $s$ corresponding to $\pi$. Verify $s$ and verify if encryptor $=$ signer. Output $\top$ for "true" or $\perp$ for "false".

We make the consistency constraint that if $\sigma \leftarrow \operatorname{Signcrypt}\left(S_{A}, I D_{B}, m\right)$, then $m \leftarrow U n s i g n c r y p t\left(S_{B}, \sigma\right)$.
3.1.2 Indistinguishability Indistinguishability for IBSC against adaptive chosen ciphertext attack (IND-IBSC-CCA2) is defined as in the following game. The Adversary is allowed to query the random oracles, key extraction oracle, signcryption oracle and unsigncryption oracle. The game is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomial number of oracle queries adaptively.
3. Adversary generates $m_{1}, I D_{A 1}, I D_{B 1}$, and sends to Simulator. Adversary knows $S_{A 1}$. Simulator generates $m_{0}, I D_{A 0}, I D_{B 0}$, randomly chooses $b \in_{R}$ $\{0,1\}$. Simulator delivers $\sigma \leftarrow \operatorname{Signcrypt}\left(S_{A b}, I D_{B b}, m_{b}\right)$ to Adversary.
4. Adversary performs polynomial number of oracle queries adaptively.
5. Adversary tries to compute $b$, in the following three sub-games
(a) Simulator ensures $B 0=B 1, m_{0}=m_{1}$, Adversary computes $b$.
(b) Simulator ensures $A 0=A 1, m_{0}=m_{1}$, Adversary computes $b$.
(c) Simulator ensures $A 0=A 1, B 0=B 1$, Adversary computes $b$.

The Adversary wins the game if he can guess $b$ correctly. The advantage of the adversary is the probability, over half, that he can compute $b$ accurately.

The oracles are defined as follows:
Key extraction oracle $\mathcal{K} \mathcal{E} \mathcal{O}$ : Upon input an identity, the key extraction oracle outputs the private key corresponding to this identity.
Signcryption oracle $\mathcal{S O}$ : Upon input $m, I D_{A}, I D_{B}$, produce valid signcryption $\sigma$ for the triple of input.
Unsigncryption oracle $\mathcal{U O}$ : Upon input ciphertext $\sigma$ and receiver ID, the unsigncryption oracle outputs the decryption result, verification outcome of signature and verification outcome of encryptor=signer.

Oracle query to $\mathcal{K} \mathcal{E} \mathcal{O}$ to extract private key of $I D_{B 0}, I D_{B 1}$ is not allowed. Oracle query to $\mathcal{S O}$ for $m_{1}, I D_{A 1}, I D_{B 1}$ is not allowed. Oracle query to $\mathcal{U O}$ for the challenge ciphertext from Simulator is not allowed.

Definition 5. (Indistinguishability) The IBSC is IND-IBSC-CCA2 secure if no PPT adversary has non-negligible advantage in any of the three sub-games above.

Our security notion above is a strong one. It incorporates previous security notions including insider-security in [1], indistinguishability in [15], and anonymity in [5].
3.1.3 Existential unforgeability Existential unforgeability against adaptive chosen message attack for IBSC (EU-IBSC-CMA) is defined as in the following game. The Adversary is allowed to query the random oracles, $\mathcal{K} \mathcal{E} \mathcal{O}, \mathcal{S O}$ and $\mathcal{U O}$ adaptively. The definition for oracles are same as above section. The game is defined as follows:

1. Simulator selects the public parameter and sends to the Adversary.
2. Adversary performs polynomially number of oracle queries adaptively.
3. Adversary delivers valid $\left(\sigma, I D_{B}\right)$ where $\sigma$ is not produced by any signcryption oracle query, and Adversary never extracted the secret key of $I D_{A}$.

The Adversary wins the game if he can produce a valid $\left(\sigma, I D_{B}\right)$ that can be decrypted, under the private key of $I D_{B}$, to a message $m$, sender identity $I D_{A}$ and a signature $s$ which passes all verification test.

Oracle query to $\mathcal{K E \mathcal { O }}$ to extract private key of $I D_{A}$ is not allowed. The Adversary's answer $\left(\sigma, I D_{B}\right)$ should not be computed by the $\mathcal{S O}$ before.
Definition 6. (Existential Unforgeability) A IBSC is secure against EU-IBSCCMA if no PPT adversary has a non-negligible probability in the successful completion of the game above.

The Adversary is allowed to ask private key of the recipient in Adversary's answer. This gives us a insider-security in [1]. It is stronger than Boyen's [5] existential unforgeability in the sense that our model provides non-repudiation for ciphertext while Boyen's provides non-repudiation for decrypted signature only. For ciphertext unlinkability, we have to add one more restriction for our model. Oracle query to $\mathcal{S O}$ for $I D_{A}, m$ in the output using any recipient identity is not allowed. Then the model changes to non-repudiation for signature.

### 3.2 Introducing BIBSC security model

We will propose the primitives of blind version of IBSC and then define the security notions for blindness and parallel one-more unforgeability.
3.2.1 Primitives A BIBSC is a five-tuple (Setup, Extract, BlindSigncrypt, Warden, Unsigncrypt) where Setup, Extract and Unsigncrypt primitives are identical as primitives in IBSC. (BlindSigncrypt, Warden) is a 3-move interactive protocol. Input to BlindSigncrypt is sender's identity $I D_{A}$ and private key $S_{A}$, and recipient's identity $I D_{B}$. Input to Warden is $I D_{A}, I D_{B}$ and a message $m$. The 3 -move interactive protocol is as follows:

1. BlindSigncrypt sends a commit $X$ to Warden.
2. Warden challenges BlindSigncrypt with $h$.
3. BlindSigncrypt sends back the response $W$ and $V$ to Warden.

Finally Warden outputs a ciphertext $\sigma$.
3.2.2 Blindness Here we define the blindness of BIBSC scheme. The Adversary is allowed to makes $q_{B}$ query to blind signcryption oracle $\mathcal{B S O}, q_{H}$ query to random oracles, $q_{S}$ query to $\mathcal{S O}$, and $q_{U}$ query to $\mathcal{U O}$. The Adversary keeps the transcripts $\mathcal{T}$ recording the interaction between BlindSigncrypt and Warden.

Definition 7. (Blindness) A BIBSC is blind if given a ciphertext $\sigma$ by Warden, $\operatorname{Prob}\{\sigma$ by Warden $\}=\operatorname{Prob}\{\sigma$ by Warden $\mid \mathcal{T}\}$
3.2.3 Parallel One-more Unforgeability Parallel one-more unforgeability for BIBSC ( p 1 m -uf) is defined as in the following game. It is similar to the one-more forgery for traditional blind signature scheme $[2,3,26]$.

1. Sender identity $I D_{A}$ is given to Adversary.
2. Adversary makes a total of $q_{B}$ queries to blind signcryption oracles $\mathcal{B S} \mathcal{O}_{I D_{k}}$, $1 \leq k \leq K$, and $q_{H}$ (resp. $q_{S}$ ) queries to random (resp. Signcryption) Oracle.
3. Adversary delivers $q_{B}+1$ tuples $\left(I D_{i}, m_{i}, \sigma_{i}\right)$ to Simulator, $1 \leq i \leq q_{B}+1$.

The Adversary wins the game if he can produce $q_{B}+1$ valid tuples $\left(I D_{i}, m_{i}, \sigma_{i}\right)$ that can decrypts, under the private key of $I D_{i}$, to message $m_{i}$ and sender identity $I D_{A}$. The $\mathcal{S O}, \mathcal{U O}$ and $\mathcal{K} \mathcal{E} \mathcal{O}$ are same as the one in IBSC. We have the new interactive $\mathcal{B S O}$ :
$\mathcal{B S O} \mathcal{O}_{I D_{A}}$ : Upon input $I D_{B}$, it returns a number $X$. Then inputs a number $h$. It produces an output $(W, V)$ based on sender $I D_{A}$, recipient $I D_{B}, X$ and $h$. It is required that the private key of $I D_{A}$ is never extracted by $\mathcal{K} \mathcal{E} \mathcal{O}$. The advantage of the Adversary is the probability that he can produce $q_{B}+1$ distinct pairs of $\left(I D_{B i}, \sigma_{i}\right)$ to win the above game.

Definition 8. (Parallel One-more Unforgeability) The BIBSC is p1m-uf secure if no PPT adversary has non-negligible advantage in this game.

## 4 Efficient and Secure BIBSC (resp. IBSC) Schemes

We present our constructions of efficient and secure BIBSC and IBSC schemes from pairings. For logistics of presentation, we present the IBSC first.

### 4.1 A new efficient and secure IBSC scheme

This IBSC scheme follows the primitives in Section 2. Let $G_{1}, G_{2}, G_{3}$ be (multiplicative) cyclic groups of order $q$. The pairings is given as $e: G_{1} \times G_{2} \rightarrow G_{3}$. Now we define our scheme as follows.

Setup: The setup of TA is similar to the setup in [4]. On inputting a security parameter $n \in N$, a generator $G\left[1^{n}\right]$ will generates $G_{1}, G_{2}, G_{3}, q$ and $e$. The TA chooses a generator $P \in G_{1}$ and pick a random $s \in Z_{q}$ as master key. Then TA sets $P_{T A}=P^{s} \in G_{1}$. After that TA chooses cryptographic hash functions $H_{0}:\{0,1\}^{*} \rightarrow G_{2}, H_{1}:\{0,1\}^{*} \times G_{2} \times\{0,1\}^{*} \rightarrow Z_{q}, H_{2}: G_{3} \rightarrow\{0,1\}^{*}, H_{3}: G_{3} \times$
$\{0,1\}^{*} \rightarrow G_{2}$. The system parameters are $\left\langle q, G_{1}, G_{2}, G_{3}, e, P, P_{T A}, H_{0}, H_{1}, H_{2}, H_{3}\right\rangle$.
Extract: Given a user identity string $I D \in\{0,1\}^{*}$, his public key is $Q_{I D}=$ $H_{0}(I D) \in G_{2}$. His private key $S_{I D}=\left(Q_{I D}\right)^{s} \in G_{2}$ is calculated by TA.

Signcrypt: Suppose Alice wants to signcrypt a message $m$ to Bob. Alice firstly signs the message and then encrypts it and sends to Bob.

- Sign: Assume Alice's identity is $I D_{A}$ and Bob's identity is $I D_{B}$. The public key and private key of Alice are $Q_{A}$ and $S_{A}$ respectively. Alice chooses a random $r \in Z_{q}$ and computes:

$$
\begin{aligned}
& X=P^{r} \in G_{1} \\
& h=H_{1}\left(m, X, I D_{B}\right) \in Z_{q} \\
& W=S_{A}{ }^{h} Q_{A}^{r} \in G_{2}
\end{aligned}
$$

- Encrypt: Alice computes $Q_{B}=H_{0}\left(I D_{B}\right) \in G_{2}$ and:

$$
\begin{aligned}
V & =e\left(P_{T A}^{r}, Q_{B}\right) \in G_{3} \\
Y & =H_{3}\left(V, I D_{A}\right) \oplus W \in G_{2} \\
Z & =H_{2}(V) \oplus\left\langle I D_{A}, m\right\rangle \in\{0,1\}^{*}
\end{aligned}
$$

Alice outputs ciphertext $\sigma=\langle X, Y, Z\rangle$ after encryption and sends to Bob.
Unsigncrypt: Bob receives the ciphertext $\sigma=\langle X, Y, Z\rangle$ and decrypts it. After that Bob verifies if the signature is indeed come from Alice.

- Decrypt: Assume the private key of Bob is $S_{B}$. Bob decrypts $\sigma$ by computing:

$$
\begin{aligned}
V^{\prime} & =e\left(X, S_{B}\right) \\
\left\langle I D_{A}, m\right\rangle & =H_{2}\left(V^{\prime}\right) \oplus Z
\end{aligned}
$$

Output $\left\langle I D_{A}, m\right\rangle$ together with $\left\langle X, Y, V^{\prime}\right\rangle$ to Verify.

- Verify: Bob computes $W^{\prime}=H_{3}\left(V^{\prime}, I D_{A}\right) \oplus Y$. Compare if:

$$
e\left(P, W^{\prime}\right)=e\left(X P_{T A}^{h}, Q_{A}\right) \text { where } h=H_{1}\left(m, X, I D_{B}\right)
$$

Output $T$ if the above verification is true, or output $\perp$ if false.
In Section 3.1, the Unsigncrypt requires decryption of ciphertext, verification of signature, and verification for checking encryptor $=$ signer. The first two parts are done in the previous steps. The last one is implicitly done in Decrypt and Verify as both of them use the same $X$ in $\sigma$ to decrypt and verify.

Finally, we show the consistency constraint is satisfied in Decrypt and Verify. In Decrypt, V can be recovered as: $e\left(X, S_{B}\right)=e\left(P^{r}, Q_{B}{ }^{s}\right)=e\left(P_{T A}{ }^{r}, Q_{B}\right)$. In Verify, if the signature is valid, both sides should be equivalent because:
$e(P, W)=e\left(P, S_{A}{ }^{h} Q_{A}{ }^{r}\right)=e\left(P, Q_{A}{ }^{(s h+r)}\right)=e\left(P^{(r+s h)}, Q_{A}\right)=e\left(X P_{T A}{ }^{h}, Q_{A}\right)$.
Theorem 2. Our IBSC scheme is IND-IBSC-CCA2 secure provided the coBDH Problem is hard in the random oracle model.

Theorem 3. Our IBSC scheme is EU-IBSC-CMA secure provided the co-CDH Problem is hard, in the random oracle model.

Proof sketches of the above two theorems are in Appendix A.
Dual support of ciphertext unlinkability (CU) and authenticated encryption (AE): One of the main difference between our IBSC scheme and Boyen's scheme [5] is that our scheme has linkability (AE) while Boyen's scheme has unlinkability (CU). As unlinkability may also be important in some applications, we provide the CU version of our scheme.

The only change to our scheme is that in Sign change $h=H_{1}(m, X)$. Other steps remains the same. Therefore this CU version is as efficient as the original AE version. Notice that by changing to CU, unforgeability for ciphertext reduces to unforgeability for signature only, as in [5].

### 4.2 The first BIBSC scheme

In BIBSC, Setup, Extract and Unsigncrypt are same as Section 4.1. Now, we describe the interactive protocol for BlindSigncrypt and Warden in following table.

| BlindSigncrypt | Warden |  |
| :---: | :---: | :---: |
| randomly choose $r$ |  |  |
| send $X=P^{r} \in G_{1}$ | $\longrightarrow$ | randomly choose $\alpha, \beta$ |
| computes $\hat{X}=X^{\alpha} P^{\beta} \in G_{1}, \hat{h}=H\left(m, \hat{X}, I D_{B}\right) \in Z_{q}$ |  |  |
| send $W=S_{A}{ }^{h} Q_{A}{ }^{r} \in G_{2}$ |  |  |
| and $V=e\left(P_{T A}{ }^{r}, Q_{B}\right) \in G_{2} \longrightarrow$ | send $h=\alpha^{-1} \hat{h} \in Z_{q}$ |  |
|  |  |  |
| computes $\hat{W}=W^{\alpha} Q_{A}{ }^{\beta} \in G_{2}$ |  |  |
|  | computes $\hat{V}=V^{\alpha} e\left(P_{T A}{ }^{\beta}, Q_{B}\right) \in G_{3}$ <br> computes $\hat{Y}=H_{3}\left(\hat{V}, I D_{A}\right) \oplus \hat{W} \in G_{2}$ <br> computes $\hat{Z}=H_{2}(\hat{V}) \oplus\left\langle I D_{A}, m\right\rangle \in\{0,1\}^{*}$ <br> outputs $\sigma=\langle\hat{X}, \hat{Y}, \hat{Z}\rangle$ |  |

Consistency is verified as:

$$
\begin{aligned}
e(P, \hat{W}) & =e\left(P, W^{\alpha} Q_{A}^{\beta}\right) & \text { and } \hat{V} & =V^{\alpha} e\left(P_{T A}^{\beta}, Q_{B}\right) \\
& =e\left(P, Q_{A}\right)^{s \hat{h}+\alpha r+\beta} & & =e\left(P^{s(r \alpha+\beta)}, Q_{B}\right) \\
& =e\left(P_{T A} \hat{h} X^{\alpha} P^{\beta}, Q_{A}\right) & & =e\left(X^{\alpha} P^{\beta}, S_{B}\right) \\
& =e\left(\hat{X} P_{T A}, Q_{A}\right) & & =e\left(\hat{X}, S_{B}\right)
\end{aligned}
$$

Remark: In our proofs, we use an alternative representation for $\hat{Y}$ and $\hat{Z}$. Let $\theta_{4}$ (resp. $\theta_{5}$ ) be a bijective mapping from $G_{2}$ to $G_{4}$ (resp. from $\{0,1\}^{*}$ to $G_{5}$ ) where $G_{4}$ (resp. $G_{5}$ ) is a cyclic group. Change $H_{2}: G_{3} \rightarrow G_{5}, H_{3}: G_{3} \times\{0,1\}^{*} \rightarrow$ $G_{4}$. Then $\hat{Y}=H_{3}\left(\hat{V}, I D_{A}\right) \oplus \theta_{4}(\hat{W}) \in G_{4}$ and $\hat{Z}=H_{2}(\hat{V}) \oplus \theta_{5}\left(\left\langle I D_{A}, m\right\rangle\right) \in G_{5}$. In Unsigncrypt, we can use $\theta_{4}^{-1}$ and $\theta_{5}^{-1}$ to recover the message. The efficiency and security of BIBSC will not be affected.

Theorem 4. Our BIBSC scheme has blindness.
Theorem 5. Our BIBSC scheme is p1m-uf secure provided Schnorr's ROS Problem is hard in the $R O M+G G P M$.

## 5 Generic Group and Pairing Model (GGPM)

We (briefly) introduce the generic group and pairing model (GGPM) by extending the generic group model (GGM) of $[17,21,18]$, to include support for the pairing oracle. There are two types of data, namely, group elements and non-group data. Group elements fall into three kinds: elements of $G_{1}, G_{2}$, or $G_{3}$. The group cardinalities are prime numbers $q_{1}, q_{2}, q_{3}$, respectively, with $q_{1}=q_{2}=q_{3}=q$. Non-group data are integers in $Z$ (or in $Z_{q}, Z_{q}, Z_{q}$ respectively, depending on convention). The group elements of $G_{3}$ can be randomly generated, obtained from the blind signcryption oracle, or computed as the pairing of one element from $G_{1}$ and an element from $G_{2}$. The GGPM, in its basic form, consists of:

1. three GGM's, one for each of $G_{1}, G_{2}$, and $G_{3}$. Denote their encodings by $\theta_{i}: G_{i} \rightarrow S_{i}, i=1,2,3$. With usual assumptions such that generic algorithm is banned for some non-group operations. (In ECDL with parameters $p, G$, $q$, the group is $(<G>, *)$, and arithmetics in $Z_{p}$ are explicitly banned in GGM. In DL with parameters $p, q, g$, the group is $(\langle g\rangle, *)$, and additions (resp. subtractions) in $Z_{p}$ are banned in GGM.)
2. a pairing oracle, $\hat{e}: S_{1} \times S_{2} \rightarrow S_{3}$, satisfying bilinear properties.
3. Other oracles in the security model such as Blind Signcryption Oracle $\mathcal{B S O}$, Key Extraction Oracle $\mathcal{K} \mathcal{E} \mathcal{O}$ and Random Oracle.

Here three GGM's definitions are similar to Schnorr's GGM [18]. So we only focus on the new pairing model. Only a restricted set of operations for group elements are allowed. Each generic step is a computation of one of the following: mex-1: $Z_{q}^{d_{1}} \times G_{1}^{d_{1}} \rightarrow G_{1},\left(a_{1}^{(1)}, \cdots, a_{d_{1}}^{(1)}, g_{1}^{(1)}, \cdots, g_{d_{1}}^{(1)}\right) \mapsto \prod_{i}\left(g_{i}^{(1)}\right)^{a_{i}^{(1)}}$ $\operatorname{mex}-2: Z_{q}^{d_{2}} \times G_{2}^{d_{2}} \rightarrow G_{2},\left(a_{1}^{(2)}, \cdots, a_{d_{2}}^{(2)}, g_{1}^{(2)}, \cdots, g_{d_{2}}^{(2)}\right) \mapsto \prod_{i^{\prime}}\left(g_{i^{\prime}}^{(2)}\right)^{a_{i^{\prime}}^{(2)}}$ mex-3: $Z_{q}^{d_{3}+d_{1} d_{2}} \times G_{3}^{d_{3}} \times G_{1}^{d_{1}} G_{2}^{d_{2}} \rightarrow G_{3}$,
$\left(a_{1}^{(3)}, \cdots, a_{d_{3}+d_{1} d_{2}}^{(3)}, g_{1}^{(3)}, \cdots, g_{d_{3}}^{(3)},\left(g_{1}^{(1)}, g_{1}^{(2)}\right), \cdots,\left(g_{d_{1}}^{(1)}, g_{d_{2}}^{(2)}\right)\right)$
$\mapsto \prod_{i=1}^{d_{3}}\left(g_{i}^{(3)}\right)^{a_{i}^{(3)}} \prod_{j=1}^{d_{1}} \prod_{k=1}^{d_{2}} e\left(g_{j}^{(1)}, g_{k}^{(2)}\right)^{a_{d_{3}+d_{2}(j-1)+k}^{(3)}}$
mex-p : $Z_{q}^{d_{1}+d_{2}} \times G_{1}^{d_{1}} \times G_{2}^{d_{2}} \rightarrow G_{3}$,
$\left(a_{1}^{(4)}, \cdots, a_{d_{1}}^{(4)}, a_{1}^{(5)}, \cdots, a_{d_{2}}^{(5)}, g_{1}^{(1)}, \cdots, g_{d_{1}}^{(1)}, g_{1}^{(2)}, \cdots, g_{d_{2}}^{(2)}\right) \mapsto \prod_{j} \prod_{k} e\left(g_{j}^{(1)}, g_{k}^{(2)}\right)^{a_{j}^{(4)} a_{k}^{(5)}}$
The elements $g_{i}^{(1)}$ 's consist of $P, P_{T A}, \mathcal{B S O}$ commitments $X_{i}$ 's, and randomly generate $G_{1}$ elements. The elements $g_{i}^{(2)}$ 's consist of $Q_{I D}$ 's, $S_{I D}$ 's, $\mathcal{B S O}$ responses $W_{i}$ 's, and randomly generate $G_{2}$ elements. The elements $g_{i}^{(3)}$ 's consist of $\mathcal{B S O}$ responses $V_{i}$ 's and randomly generate $G_{3}$ elements. Similar to Schnorr [19], we omit randomly generated group elements below w.l.o.g.

A (non-interactive) generic algorithm is a sequence of $t_{t o t a l}$ generic steps

1. Inputs are: $f_{1}^{(u)}, \cdots, f_{t_{u}^{\prime}}^{(u)} \in G_{u}$ for $u=1,2,3,1 \leq t_{u}^{\prime}<t_{t o t a l}$, where $t^{\prime}=$ $\sum_{u} t_{u}^{\prime}<t_{\text {total }}$ and non-group data like $Z_{q}$ in given ciphertext or signature.
2. Computation steps are: $f_{i}^{(u)}=\prod_{j=1}^{i-1}\left(f_{j}^{(u)}\right)^{a_{i, j}^{(u)}}$, for $i=t_{u}^{\prime}+1, \cdots, t_{u}, u=1,2$, and $f_{i}^{(3)}=\prod_{j=1}^{i-1}\left(f_{j}^{(3)}\right)^{a_{i, j}^{(3)}} \cdot \prod_{1 \leq k, \ell<t} e\left(f_{k}^{(1)}, f_{\ell}^{(2)}\right)^{b_{i, k, \ell}}$ for $i=t_{3}^{\prime}+1, \cdots, t_{3}$, where $t_{\text {total }}=t_{1}+t_{2}+t_{3}+t_{4}$ and exponents $a_{i, j}^{(u)}$ depends arbitrarily on $i, j$, and non-group inputs.
3. Ouputs are: non-group data and group elements $f_{\sigma_{1}}^{(u)}, \cdots, f_{\sigma_{d}}^{(u)}$ where the integers $\sigma_{1}, \cdots, \sigma_{d} \in\left\{1, \cdots, t_{u}\right\}$ that depend arbitrarily on the non-group input.

The generic adversary can also perform equality test, if-then-else, looping, and other logical operations. We omit discussions about them here.

In the generic algorithm, each computation step $f_{\sigma}^{(u)}$ must be represented as the product of powers of group elements $g_{i}^{(1)}$ 's, $g_{i^{\prime}}^{(2)}$ 's, $g_{i^{\prime \prime}}^{(3)}$ 's, and $e\left(g_{k}^{(1)}, g_{\ell}^{(2)}\right)^{\prime}$ 's. There are only polynomially many group elements involved in any PPT algorithm. Each step can be represented as a sequence of exponents, and that representation should be unique. A collision is when a step can have multiple representations w.r.t. the bases consisting of the prescribed set of group elements. The following lemma shows the collision probability for $f_{i}^{(1)}, f_{j}^{(2)}, f_{k}^{(3)}$ are negligible except when involving oracle queries. The proof is similar to Schnorr's Lemma 1 and omitted.

Lemma 1. The probability of a PPT generic algorithm being able to compute a collision is negligible, except those collisions obtain via oracle queries.

The only non-negligible collisions are obtained from the blind signcryption oracle which are of the type $e(A, B)=e(C, D)$ in $G_{3}$.

Next we elaborate on interactive generic algorithms. We count the following generic steps:

- group operations mex-1, mex-2, mex-3, mex-p
- queries to hash oracle $H$
- queries to key extraction oracle $\mathcal{K} \mathcal{E} \mathcal{O}$
- interactions with a blind signcryption oracle $\mathcal{B S O}$.

A generic adversary is an interactive algorithm that interacts with $\mathcal{B S O}$. The construction is similar to Schnorr's, unless specified below. The input consists of generators $g^{(1)}, g^{(2)}, g^{(3)}$, public keys $Q_{1}, \cdots, Q_{K} \in G_{2}$, master public key $P_{T A} \in G_{1}$, group order $q$, pairing $e(\cdot, \cdot)$ and collection of messages, ciphertexts and so on, which can be broken into group elements and non-group data.
$\mathcal{A}$ 's transmission to $\mathcal{K} \mathcal{E} \mathcal{O}$ depends arbitrarily on given group elements and non-group data. Notice that key extraction for sender's private key is not allowed.

The restriction is that $\mathcal{A}$ can use group elements only for generic group operations, equality tests and for queries to hash oracle and $\mathcal{K} \mathcal{E} \mathcal{O}$, whereas nongroup data can be arbitrarily used without charge. The computed group elements are given as explicit multiplicative combinations of given group elements. Let $X_{\ell}=g^{(1)^{r_{\ell}}} \in G_{1}, W_{\ell}=Q_{A}^{r_{\ell}+s h_{\ell}} \in G_{2}, V_{\ell}=e\left(X_{\ell}, S_{B_{\ell}}\right)$ for $\ell=1, \cdots, l$ be
the group elements that $\mathcal{A}$ gets from $\mathcal{B S O}$ using the sender $I D_{A}$ and recipient $I D_{B_{\ell}}$. A computed $f_{j}^{(1)} \in G_{1}$ is of the form $f_{j}^{(1)}=P^{a_{j,-1}^{(1)}} P_{T A}^{a_{j, 0}^{(1)}} \prod_{\ell=1}^{l} X_{\ell}{ }_{\ell}^{a_{j, \ell}^{(1)}}$, where the exponents $a_{j,-1}^{(1)}, \cdots, a_{j, l}^{(1)} \in Z_{q}$ depend arbitrarily on given non-group data. A computed $f_{j}^{(2)} \in G_{2}$ is of the form $f_{j}^{(2)}=Q_{A}^{a_{j, 0}^{(2)}} \prod_{\ell=1}^{l} W_{\ell}^{a_{j, \ell}^{(2)}}$, where the exponents depend arbitrarily on given non-group data. A computed $f_{j}^{(3)} \in G_{3}$ is of the form $f_{j}^{(3)}=e\left(P, Q_{A}\right)^{a_{j,-1}^{(3)}} e\left(P_{T A}, Q_{A}\right)^{a_{j, 0}^{(3)}} \prod_{\ell=1}^{l} V_{\ell}{ }_{\ell}^{a_{j, \ell}^{(3)}}$.

Powers and limitations of GGM and GGPM Lemma 1 implies that coCDH is hard. The perspective is that co-CDH constitutes collisions in GGPM. The real-world interpretation of this model-based result is roughly as follows: GGM (resp. GGPM) bans certain operations, in the sense that it can be assumed w.l.o.g. that the generic algorithm does not use these operations. The justification is that these operations are thought to be of no help. In GGM for discrete logarithm with parameters $p, q, g$, the additions (resp. subtractions) in $Z_{p}$ are banned. In GGM for ECDL with parameters $p, q$, base point $G$ whose order is $q$, arithmetics in $Z_{p}$ are banned. In GGPM where we have in mind the $G_{1}, G_{2}$, and $G_{3}$ are all groups of elliptic curve points, the GGPM model allows point operations, arithmetics in $Z_{q}$, but bans arithmetics in $Z_{p}$ on the argument that they do not help.

Based on such model assumptions, GGM has be used to prove results that often cannot be proved in other models. The GGM has been used to prove the hardness of the discrete logarithm [17, 21]. It has also been used to reduce p1m-uf of Schnorr or Okamoto-Schnorr blind signature to the ROS Problem [19], or the one-more discrete logarithm problem. Note that the one-more discrete logarithm problem is proven hard in the GGM by simple applications of the methods used in [18]. Based on similar model assumptions, we use GGPM to reduce p1m-uf of blind signcryption to the ROS Problem or the one-more co-CDH Problem in this paper. Note that one-more co-CDH is proven hard in GGPM.

Algorithms already exist that exploits operations banned from GGM. The index calculus method to compute the discrete logarithm utilizes size information in $Z_{p}$ to achieve efficiency. It is outside the boundary of GGM. In ECDL, it is suspected but not yet explicitly demonstrated that arithmetics in $Z_{p}$ and properties of the curve can be exploited. Therefore, GGM and GGPM are used with these elliptic curves applications in mind. If and when exploitations of $Z_{p}$ arithmetics or curve properties, or other unforeseen techniques outside the model, can be exhibited, both GGM and GGPM will need to be reexamined.

Lemma 1 also implies the hardness of the one-more co-CDH Problem in the GGPM. The one-more co-CDH Problem is (roughly speaking): Given $q_{B}$ queries to the co-CDH Oracle, compute $q_{B}+1$ co-CDH Problems.

## 6 Comparing Performance

In this Section, we will compare our IBSC scheme with existing schemes. We will compare in terms of security, size of ciphertext and computation time.

For security analysis, we divide into the followings: IND-A implies anonymity of sender. IND-B implies anonymity of recipient. IND-C implies message confidentiality. EU implies ciphertext non-repudiation. The computation time includes the number of pairings and exponential computation as they are the most expensive in IBSC scheme. The actual number of computation which cannot be pre-computed is shown in bracket. The comparisons are summarized in the following table.

| Scheme | $$ |  |  | Ciphertext Size | Signcrypt Time |  | Unsigncrypt Time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \#pair | \#exp | \#pair | \#exp |
| EtS | $\times$ | $\sqrt{ } \sqrt{ }$ | $\sqrt{ } \sqrt{ }$ |  | $(2 k+1) G_{1}+2\\|m\\|(+I D)$ | 1 | 4 (1) | 3 | 1 (1) |
| StE | $\checkmark$ | $\checkmark$ | $\sqrt{ }$ | $(2 k+1) G_{1}+2\\|m\\|+I D$ | 1 | 4 (1) | 3 | 1 (1) |
| M [15] | $\times$ | $\checkmark$ | $\times 1$ | $(k+1) G_{1}+\\|m\\|(+I D)$ | 1 | 3 (1) | 4 | 1 (1) |
| LQ1 [13] | $\times$ | $\times$ * | $\sqrt{ }$ | $k\left(G_{1}+F_{p}\right)+\\|m\\|(+I D)$ | 2 | 2 (1) | 4 | 1 (1) |
| NR [11] | $\times$ | $\times{ }^{*}$ | * $\times$ | $(k+1) G_{1}+\\|m\\|(+I D)$ | 1 | 3 (2) | 3 | 1 (1) |
| B [5] | $\sqrt{ }$ | $\sqrt{ } \sqrt{ }$ | $\checkmark$ | $(k+1) G_{1}+\\|m\\|+I D$ | 1 | 4 (3) | 4 | $2(2)$ |
| CYSC [9] | $\times$ | $\sqrt{ } \sqrt{ }$ | $\sqrt{ } \sqrt{ }$ | $k\left(G_{1}+F_{p}\right)+\\|m\\|(+I D)$ | 2 | 2 (1) | 4 | 1 (1) |
| LQ2 [14] | $\sqrt{ }$ | $\sqrt{ }$ | $\checkmark$ | $(k+1) G_{1}+\\|m+\delta\\|+I D$ | 1 | 4 (3) | 4 | 1 (1) |
| This scheme |  | $\sqrt{ } \sqrt{ }$ | $\sqrt{ } \sqrt{ }$ | $(k+1) G_{1}+\\|m\\|+I D$ | 1 | 4 (1) | 3 | 1 (1) |

As we can see, our IBSC scheme is the fastest, with shortest ciphertext size and proven secure in the strongest model among the existing schemes. Detailed comparison will be given in Appendix B.

Additional functionalities of our scheme: From our new efficient IBSC scheme, we can achieve further functionalities which are useful in reality. They are the TA compatibility and forward secrecy.

TA Compatibility. In reality, sender and recipient may use different TAs. If it happens, our scheme can still be used with slight changes. Assume all TAs use same pairing $e$, hash functions and $P \in G_{1}$. Now let Alice uses $T A_{1}$ with master key $s_{1}$. and Bob uses $T A_{2}$ with master key $s_{2}$. In Encrypt, change $V=$ $e\left(Q_{B}{ }^{r}, P_{T A_{2}}\right)$. In Verify, $e(P, Y)=e\left(P_{T A_{1}}{ }^{h} X, Q_{A}\right)$. Others remain unchanged.

Forward secrecy. Our scheme can achieve forward secrecy. It is implied by IND-CCA2. If sender and recipient use different TAs, then it can even achieve partial TA forward secrecy. If master key of $T A 1$ is compromised, then past communications with users using different TAs will not be compromised, since the adversary still cannot compute $V$.

## 7 Conclusion

In this paper, we have proposed a new BIBSC scheme and its security model. We introduce the generic group and pairing model (GGPM). We proof the BIBSC scheme is secure against p1m-uf in ROM+GGPM.

For the IBSC scheme, our scheme is the fastest, have a short ciphertext and proven secure in a stronger security model when comparing with existing scheme. We provide the flexibility for choosing linkability of ciphertext or not.

## References

1. J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Proc. CRYPTO 2002, pages 83-107. Springer-Verlag, 2002. Lecture Notes in Computer Science No. 2332.
2. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problem and the security of Chaum's blind signature scheme. J. of Cryptology, pages 185-215, 2003.
3. A. Boldyreva. Efficient threshold signature, multisignature, and blind signature schemes based on the Gap-Diffie-Hellman-group signature scheme. In PKC'03, pages 31-46. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 567.
4. D. Boneh and M. Franklin. Identity-based encryption from the weil paring. In Proc. CRYPTO 2001, pages 213-229. Springer-Verlag, 2001. Lecture Notes in Computer Science No. 2139.
5. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for identity-based cryptography. In Proc. CRYPTO 2003, pages 382-398. SpringerVerlag, 2003. Lecture Notes in Computer Science No. 2729.
6. J.C. Cha and J.H. Cheon. An identity-based signature from gap diffie-hellman groups. In Practice and Theory in Public Key Cryptography - PKC'2003, pages 18-30. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 2567.
7. D. Chaum. Blind signatures for untraceable payments. In Proc. CRYPTO 82, pages 199-203. NY, 1983. Plenum.
8. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings. Cryptology ePrint Archive, Report 2002/184, 2002. http://eprint.iacr.org/.
9. S. Chow, S.M. Yiu, L. Hui, and K.P. Chow. Efficient forward and provably secure ID-based signcryption scheme with public verifiability and public ciphertext authenticity. In ICISC 2003, pages 352-369. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 2971.
10. C. Cocks. Non-interactive public-key cryptography. In Cryptography and Coding, pages 360-363. Springer-Verlag, 2001. Lecture Notes in Computer Science No. 2260.
11. K.C. Reddy D. Nalla. Signcryption scheme for identity-based cryptosystems. Cryptology ePrint Archive, Report 2003/066, 2003. http://eprint.iacr.org/.
12. Y. Desmedt and J. Quisquater. Public-key systems based on the difficulty of tampering. In Proc. CRYPTO 86, pages 111-117. Springer-Verlag, 1986. Lecture Notes in Computer Science No. 263.
13. B. Libert and J.-J. Quisquater. New identity based signcryption schemes from pairings. IEEE Information Theory Workshop, Paris (France), 2003.
14. B. Libert and J.-J. Quisquater. The exact security of an identity based signature and its applications. Cryptology ePrint Archive, Report 2004/102, 2004. http://eprint.iacr.org/.
15. J. Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098, 2002. http://eprint.iacr.org/.
16. U. Maurer and Y. Yacobi. Non-interactive public-key cryptography. In Proc. CRYPTO 91, pages 498-507. Springer-Verlag, 1991. Lecture Notes in Computer Science No. 547.
17. V.I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55, pages 165-172, 1994.
18. C. P. Schnorr. Practical security in public-key cryptography. In Proc. ICISC. Springer, 2001. Lecture Notes in Computer Science.
19. C. P. Schnorr. Security of blind discrete log signatures against interactive attacks. In Proc. ICISC, pages 1-12. Springer-Verlag, 2001. Lecture Notes in Computer Science No. 2229.
20. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYPTO 84, pages 47-53. Springer-Verlag, 1984. Lecture Notes in Computer Science No. 196.
21. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc. EUROCRYPT 97, pages 256-266. Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1233.
22. N.P. Smart. An identity based authenticated key agreement protocol based on the weil pairing. Electronic Letters 38, pp.630-632, 2002.
23. S. Tsuji and T. Itoh. An ID-based cryptosystem based on the discrete logarithm problem. IEEE Journal on Selected Areas in Communication, 7(4):467-473, 1989.
24. F. Zhang and K. Kim. ID-Based blind signature and ring signature from pairings. In Proc. ASIACRYPT 2002, pages 533-547. Springer-Verlag, 2002. Lecture Notes in Computer Science No. 2501.
25. F. Zhang and K. Kim. Efficient ID-based blind signature and proxy signature from bilinear pairings. In Proc. ACISP'03, pages 312-323. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 2727.
26. F. Zhang, R. Safavi-Naini, and W. Susilo. Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In Proc. INDOCRYPT03, pages 191-204. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 2904.
27. Y. Zheng. Digital signcryption or how to achieve cost(signature \& encryption) $\ll \operatorname{cost}($ signature $)+$ cost (encryption). In Proc. CRYPTO 97, pages 165-179. Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1294.

## A Proof Sketch of Security

## A. 1 Proof Sketch of Theorem 2

Setting up: Dealer D gives $\left(P, P^{\alpha}, P^{\beta}, Q\right)$ to Simulator S and wants S to compute $e(P, Q)^{\alpha \beta}$. S sends the system parameter to F with $P_{T A}=P^{\beta}$ as in Setup. S picks a random number $\eta_{Q}$ from $\left\{1,2, \ldots, \mu_{0}\right\}$, where $\mu_{0}$ is the number of query to $H_{0}$.

Simulating Oracles: As regards queries to the random oracles:

- Query on $H_{0}$ for identity ID is handled as follows:
- The $\eta_{Q}$-th distinct query to $H_{0}$ is back patched to the value $Q$. The corresponding identity is denoted as $I D_{Q}$. Adds the entry $\left\langle I D_{Q}, Q\right\rangle$ to tape $L_{0}$, and returns the public key $Q$.
- Otherwise, picks a random $\lambda \in F_{p}^{*}$, adds the entry $\langle I D, \lambda\rangle$ to the tape $L_{0}$, and return the public key $Q_{I D}=P^{\lambda}$.
- Queries on $H_{1}, H_{2}$ and $H_{3}$ are handled by producing a random element from the codomain, and adding both query and answer to tape $L_{1}, L_{2}$ and $L_{3}$.

As regards to oracle queries for:
$-\mathcal{K E O}$ : For input identity $I D_{A}$.

- If $I D_{A}=I D_{Q}$, then D terminates its interaction with F , having failed to guess the targeted recipient among those in $L_{0}$.
- Otherwise, S retrieves $\left\langle I D_{A}, \lambda_{A}\right\rangle$ from $L_{0}$ and returns $S_{A}=\left(P^{\beta}\right)^{\lambda_{A}}$.
$-\mathcal{S O}$ : For input message $m$, sender $I D_{A}$, and recipient $I D_{B}$.
- If $I D_{A}=I D_{Q}$, then S randomly chooses $r, h \in F_{p}^{*}$, and lets $X=$ $P^{r}\left(P^{\beta}\right)^{-h}, W=(Q)^{r}$. Then, S adds the tuple $\left\langle m, X, h \oplus I D_{B}\right\rangle$ to $L_{1}$ to force the random oracle $H_{1}(m, X)=h \oplus I D_{B}$. Finally, S uses $\left\langle X, W, m, r, I D_{B}\right\rangle$ to run Signcrypt to produce the desired ciphertext $\sigma$.
- Otherwise, S retrieves $\left\langle I D_{A}, \lambda_{A}\right\rangle$ from $L_{0}$ and computes $S_{A}=\left(P^{\beta}\right)^{\lambda_{A}}$. Then S will run Signcrypt using $S_{A}$ and get ciphertext $\sigma$.
$-\mathcal{U O}$ : For input recipient $I D_{B}$ and ciphertext $\sigma=\langle X, Y, Z\rangle$.
- If $I D_{B}=I D_{Q}$, then S searches all combinations $\left\langle I D_{A}, m, X, W\right\rangle$ such that $\left\langle m, X, h_{1}\right\rangle \in L_{1},\left\langle V, h_{2}\right\rangle \in L_{2},\left\langle V, I D_{A}, h_{3}\right\rangle \in L_{3}$, for some $h_{1}, h_{2}$, $h_{3}, \mathrm{~V}$, under the constraints that $h_{3} \oplus Y=W, h_{2} \oplus Z=\left\langle I D_{A}, m\right\rangle$ and Verify $\left[I D_{A}, m, X, W, I D_{B}\right]=\top$. Pick a $\left\langle I D_{A}, m\right\rangle$ in one of the combinations above to return as answer. If no such tuple is found, the oracle signals that the ciphertext is invalid.
- Otherwise, S retrieves $\left\langle I D_{B}, \lambda_{B}\right\rangle$ from $L_{0}$ and computes $S_{B}=\left(P^{\beta}\right)^{\lambda_{B}}$. Then S will run Unsigncrypt using $S_{B}$ to get $\left\langle I D_{A}, m\right\rangle$ or $\perp$.

Witness Extraction: As in the IND-IBSC-CCA2 game, at some point F chooses plaintext $m_{1}$, sender $I D_{A 1}$, and recipient $I D_{B 1}$ on which he wishes to be challenged. S responds with challenge ciphertext $\langle X, Y, Z\rangle$, where:

$$
X=P^{\alpha}
$$

$Y$ and $Z$ are random strings of appropriate size. All further queries by F are processed adaptively as in the oracles above.

Finally, F returns its final guess. S ignores the answer from F, randomly picks an entry $\left\langle V, h_{2}\right\rangle$ in $L_{2}$, and returns $V$ as the solution to the co- BDH problem.

If the recipient identity $I D_{A 1}=I D_{Q}$ selected by S , to recognize the challenge ciphertext $\langle X, Y, Z\rangle$ with $X=P^{\alpha}$ is incorrect, F needs to query random oracle $H_{2}(V)$ with

$$
V=e\left(X, S_{Q}\right)=e\left(P^{\alpha}, Q^{\beta}\right)=e(P, Q)^{\alpha \beta}
$$

It will leave an entry $\left\langle V, h_{2}\right\rangle$ on $L_{2}$, from which B can then extract $V=e(P, Q)^{\alpha \beta}$.

## A. 2 Proof Sketch of Theorem 3

Setting up: Dealer D gives $\left(P, P^{\beta}, Q\right)$ to Simulator S and wants S to compute $Q^{\beta}$. Others are same as in the proof sketch of Theorem 2.

Oracle Simulation: The signcryption oracle, the unsigncryption oracle, and the key extraction oracle are simulated in the same way as in the proof of Theorem 2.

Witness Extraction: Assume $\mathcal{F}$ is a PPT forger. Rewind $\mathcal{F}$ to the random oracle query whose output appears in the verification in unsigncryption. Then
we obtain $W=S_{A}^{h} Q_{A}^{r}$ and $W^{\prime}=S_{A}^{h^{\prime}} Q_{A}^{r}$ in respective forks. Combining, we can compute the co-CDH Problem if $Q_{A}=Q$. Then $Q^{\beta}=S_{A}=\left(W^{\prime} / W\right)^{\left(h^{\prime}-h\right)^{-1}}$.

## A. 3 Proof Sketch of Theorem 4

To prove the blindness of BIBSC, we show that given a valid ciphertext $\langle\hat{X}, \hat{Y}, \hat{Z}\rangle$ and any transcript of blind signcryption $(X, h, W, V)$, there always exist a unique pair of blinding factors $\alpha, \beta \in Z_{q}^{*}$. Since the blinding factors are randomly chosen, the blindness of BIBSC is achieved.

Given a valid ciphertext $\langle\hat{X}, \hat{Y}, \hat{Z}\rangle$, then there exist a unique $(\hat{X}, \hat{W}, \hat{V}, m)$ for this ciphertext. Then for any transcript of blind signcryption $(X, h, W, V)$, the following equations must hold for $\alpha, \beta \in Z_{q}^{*}$ :

$$
\begin{aligned}
\hat{X} & =X^{\alpha} P^{\beta} \\
h & =\alpha^{-1} H_{1}(m, \hat{X}) \\
\hat{W} & =W^{\alpha} Q_{A}{ }^{\beta} \\
\hat{V} & =V^{\alpha} e\left(P_{T A}{ }^{\beta}, Q_{B}\right)
\end{aligned}
$$

From the second equation, we see that there exist a blinding factor $\alpha=H_{1}(m, \hat{X}) / h$. For this $\alpha$, there exist a blinding factor $\beta$ from the first equation and $\beta=$ $\log _{P}\left(\hat{X} X^{-\alpha}\right)$. Therefore we have to show that these blinding factors $\alpha, \beta$ satisfy the last two equations.

Notice that there exists a $S_{B}$ which is the private key for $Q_{B}$. Then:

$$
\begin{aligned}
\hat{V} & =e\left(\hat{X}, S_{B}\right) \\
& =e\left(X^{\alpha} P^{\beta}, S_{B}\right) \\
& =e\left(X, S_{B}\right)^{\alpha} e\left(P^{\beta}, S_{B}\right) \\
& =V^{\alpha} e\left(P_{T A}^{\beta}, Q_{B}\right)
\end{aligned}
$$

Furthermore, $\langle\hat{X}, \hat{W}, m\rangle$ is a valid signature. Therefore we have:

$$
\begin{aligned}
e(P, \hat{W}) & =e\left(\hat{X}, Q_{A}\right) e\left(P_{T A}, Q_{A}\right)^{H_{1}(m, \hat{X})} \\
& =e\left(X^{\alpha} P^{\beta}, Q_{A}\right) e\left(P_{T A}, Q_{A}\right)^{\alpha h} \\
& =e\left(X P_{T A}{ }^{h}, Q_{A}\right)^{\alpha} e\left(P^{\beta}, Q_{A}\right) \\
& =e(P, W)^{\alpha} e\left(P, Q_{A}^{\beta}\right) \\
& =e\left(P, W^{\alpha} Q_{A}{ }^{\beta}\right)
\end{aligned}
$$

Hence, given a valid ciphertext $\langle\hat{X}, \hat{Y}, \hat{Z}\rangle$ and any transcript of blind signcryption $(X, h, W, V)$, there always exists a unique pair of blinding factors $\alpha, \beta \in Z_{q}^{*}$. Therefore, $\operatorname{Prob}\{\sigma$ by $W$ arden $\}=\operatorname{Prob}\{\sigma$ by $\operatorname{Warden} \mid \mathcal{T}\}$. The blindness of BIBSC is proved.

## A. 4 Proof Sketch of Theorem 5

This section refers to a generic adversary $\mathcal{A}$ performing some t generic steps, including some $q_{B}$ interactions $\left(X_{1}, h_{1}, W_{1}, V_{1}\right), \cdots,\left(X_{q_{B}}, h_{q_{B}}, W_{q_{B}}, V_{q_{B}}\right)$ with
$\mathcal{B S O}$, producing some $t^{\prime(u)}$ group elements in $G_{u}$. We let $\boldsymbol{r}=\left(r_{1}, \cdots, r_{q_{B}}\right)$ denote $\mathcal{B S O}$ random coins. Let $f_{1}=P, f_{2}=P_{T A}, f_{3}, \cdots, f_{t^{\prime(1)}} \in G_{1}$ denote the group elements of $\mathcal{A}$ 's computation. The generic $\mathcal{A}$ computes $f_{j}=P^{a_{j,-1}} P_{T A}^{a_{j, 0}} \prod_{\ell=1}^{q_{B}} X_{\ell}{ }^{a_{j, \ell}}$ where $X_{\ell}$ are $\mathcal{B S O}$ commitments and the exponents depend arbitrarily on previously computed non-group data.

Schnorr's Lemma 2 implies DLP is hard (uncomputable by PPT generic adversary) in GGM. Similarly, it applies here. It is hard to get $s$ from $Q_{B}{ }^{s}$.

Let $\mathcal{A}$ outputs $\left(\hat{X}_{i}, \hat{W}_{i}, \hat{V}_{i}\right)$ be valid for message $\hat{m}_{i}$, sender $I D_{A}$ and recipient $I D_{B_{i}}, 1 \leq i \leq q_{B}+1$. Then we have $\hat{h_{i}}=H_{1}\left(\hat{X}_{i}, \hat{m}_{i}, I D_{B_{i}}\right)$ for some hash query satisfying $e\left(\hat{X}_{i} P_{T A}^{\hat{h_{i}}}, Q_{A}\right)=e\left(P, \hat{W}_{i}\right)$. Let $\hat{X}_{i}=f_{\sigma_{i}}^{(1)}$.

The equation $e\left(P, \hat{W}_{i}\right) e\left(P_{T A}^{-\hat{h_{i}}}, Q_{A}\right)=e\left(f_{\sigma_{i}}, Q_{A}\right)=e\left(P^{a_{\sigma_{i},-1}} P_{T A}^{a_{\sigma_{i}, 0}} \prod_{\ell=1}^{q_{B}} X_{\ell}{ }^{a_{\sigma_{i}}, \ell}\right.$, $\left.Q_{A}\right)$ and $e\left(X_{\ell}, Q_{A}\right)=e\left(P, W_{\ell}\right) e\left(P_{T A}^{-h_{\ell}}, Q_{A}\right)$ imply:

$$
\hat{W}_{i}=Q_{A}{ }^{a_{\sigma_{i},-1}} \cdot \prod_{\ell=1}^{q_{B}} W_{\ell}^{a_{\sigma_{i}, \ell}} \cdot Q_{A}{ }^{\left(a_{\sigma_{i}, 0}-\sum_{\ell=1}^{q_{B}} a_{\sigma_{i}, \ell} h_{\ell}+\hat{h_{i}}\right) s}
$$

If $\hat{h_{i}}=-a_{\sigma_{i}, 0}+\sum_{\ell=1}^{l} a_{\sigma_{i}, \ell} h_{\ell}$, then $\mathcal{A}$ can easily compute the correct $\hat{W}_{i}$. Then we have $\hat{W}_{i}=Q_{A}{ }^{a_{\sigma_{i},-1}} \prod_{\ell=1}^{l} W_{\ell}^{a_{\sigma_{i}, \ell}}$ where $W_{1}, \cdots, W_{l}, a_{\sigma_{i},-1}, \cdots, a_{\sigma_{i}, l}$ are known to $\mathcal{A}$.

Conversely, $\mathcal{A}$ must select $h_{1}, \cdots, h_{l}$ as to zero the coefficient involving the master secret key $s$. Otherwise we can recover $Q_{A}{ }^{s}$ from $W_{1}, \cdots, W_{l}, a_{\sigma_{i},-1}, \cdots, a_{\sigma_{i}, l}$, $\hat{h}_{i}, \hat{W}_{i}$ which are known to $\mathcal{A}$. Then it can solve the 1 m -co-CDH problem, as we get $q_{K}$ private keys from $\mathcal{K E \mathcal { O }}$. The probability of solving $1 \mathrm{~m}-\mathrm{co}-\mathrm{CDH}$ in GGPM is negligible. Hence $\mathcal{A}$ must solve the ROS problem.

## B Detailed comparison on performance of IBSC

We compare our IBSC scheme with existing schemes from Malone-Lee(M) [15], Libert and Quisquater scheme 1(LQ1) [13] and 2(LQ2)[14], Nalla and Reddy(NR) [11], Boyen(B) [5], and Chow et al.(CYSC) [9]. We also include the Sign-thenEncrypt(StE) and Encrypt-then-Sign(EtS) using ID-based encryption from [4] and ID-based signature from [6].

## B. 1 Security

The security analysis follows our definition of security models in Section 2: INDA, IND-B, IND-C, EU.

- IND-A: The schemes of M, LQ1, NR and CYSC are not IND-A secure. It is because the unsigncryption of ciphertext requires the knowledge of sender's identity in advance.
- IND-B: The schemes of LQ1 and NR are not IND-B secure. Any adversary who knows the sender's identity, private key and the message signcrypted can distinguish the identity of the recipient.
- IND-C: The scheme of M is not IND-CCA2 secure shown in [13]. Schemes of LQ1 and NR are IND secure according to security model in LQ1, but not secure in Boyen's and our security models, where private key of sender is known to Adversary.
- EU: NR's scheme is not EU-CMA secure. Any adversary can forge a signcryption from any sender to recipient $I D_{B}$, where private key of $I D_{B}$ is known to adversary. Boyen's scheme has unforgeability for the signature only. It does not satisfy the unforgeability for ciphertext as required in our security model and also the security model of standard signcryption in [1]. It is related to the property of "unlinkability" in Boyen's scheme. LQ2 scheme is similar to Boyen's in this aspect. Our IBSC scheme avoids this controversial property of unlinkability and achieves unforgeability for ciphertext.

Some comments based on the above definitions are given in Appendix C.

## B. 2 Computation Time

The computation of pairings is the most expensive computation in IBSC scheme. From the above table, we can see that our scheme is the fastest among existing schemes, with similar running time as NR [11], EtS and StE.

If we look further to the number of exponential computation involved, our scheme is in the middle place in exponential calculation. However, there are some components in our scheme that can be pre-computed before knowing the recipient identity and message. For any random number $r, X, Q_{A}{ }^{r}$ and $P_{T A}{ }^{r}$ can be pre-computed. Therefore the actual number of exponential in our scheme which cannot be pre-computed is two, which is shown in bracket in the table. We can see that our scheme is again the fastest in terms of exponential computation.

## B. 3 Ciphertext Size

For fair comparison on ciphertext size, we assume that a message $m$ of length $\|m\|$ have to cut into $k$ pieces for signcryption. Also, sender's identity must be known in advance to unsigncryption for the schemes which do not pass IND-A test. Therefore sender's identity is also included in those schemes. Parameters for signcryption of same $m$ is reused whenever possible.

In LQ2 [14], $\delta$ is 160 bits for ciphertext unlinkability, and is 0 bit for ciphertext linkability. As shown in the table, we can see that our scheme has the shortest ciphertext size.

## C Comments on various IBSC's w.r.t. our security model

## C. 1 Comment for IND-B

In the following, please refer to the original paper for original scheme and the definition of the symbols used. In the IND sub-game (b), the Adversary chooses
message $m$, sender $I D_{A}$ and recipient $I D_{B 1}$. The Adversary knows the private key of $I D_{A}$. Simulator chooses a recipient $I D_{B 0}$, and randomly picks $b \in\{0,1\}$. Simulator signcrypts the message $m$ from sender $I D_{A}$ to recipient $I D_{B b}$ and returns the ciphertext to the Adversary. The Adversary has to guess $b$.

Libert and Quisquater's scheme 1 [13] The Adversary has the ciphertext $\langle c, r, S\rangle$ and $d_{A}$, the private key of $I D_{A}$. The Adversary computes:

$$
\begin{aligned}
k_{2} & =H_{2}\left(e\left(S, Q_{B 1}\right) e\left(d_{A}, Q_{B 1}\right)^{r}\right) \\
m^{\prime} & =D_{k_{2}}(c)
\end{aligned}
$$

The Adversary outputs $b=1$ if $m^{\prime}=m$. Otherwise, the Adversary outputs $b=0$. Then the Adversary wins the IND game with probability 1.

Nalla and Reddy's scheme [11] The Adversary has the ciphertext $\langle R, S, C\rangle$ and $S_{A}$, the private key of $I D_{A}$. The Adversary computes:

$$
\begin{aligned}
R^{\prime} & =\left(R\left\|H_{1}\left(e\left(Q_{B 1}, S_{A}\right)\right)\right\| m\right) \\
k_{A} & =H^{\prime \prime}\left(e\left(Q_{B 1}, R\right)^{H^{\prime}\left(R^{\prime}\right)}\right) \\
C^{\prime} & =k_{A} \oplus m
\end{aligned}
$$

The Adversary outputs $b=1$ if $C^{\prime}=C$. Otherwise, the Adversary outputs $b=0$. Then the Adversary wins the IND game with probability 1.

## C. 2 Comment for IND-C

In the IND sub-game (c), the Adversary chooses message $m_{1}$, sender $I D_{A}$ and recipient $I D_{B}$. The Adversary knows the private key of $I D_{A}$. Simulator chooses a message $m_{0}$, and randomly picks $b \in\{0,1\}$. Simulator signcrypts the message $m_{b}$ from sender $I D_{A}$ to recipient $I D_{B}$ and returns the ciphertext to the Adversary. The Adversary has to guess $b$.

Nalla and Reddy's scheme [11] The Adversary has the ciphertext $\langle R, S, C\rangle$ and $S_{A}$, the private key of $I D_{A}$. The Adversary computes:

$$
\begin{aligned}
R^{\prime} & =\left(R\left\|H_{1}\left(e\left(Q_{B}, S_{A}\right)\right)\right\| m_{1}\right) \\
k_{A} & =H^{\prime \prime}\left(e\left(Q_{B}, R\right)^{H^{\prime}\left(R^{\prime}\right)}\right) \\
C^{\prime} & =k_{A} \oplus m_{1}
\end{aligned}
$$

The Adversary outputs $b=1$ if $C^{\prime}=C$. Otherwise, the Adversary outputs $b=0$. Then the Adversary wins the IND game with probability 1.

## C. 3 Comment for EU

In the EU game, the Adversary chooses message $m$, sender $I D_{A}$ and recipient $I D_{B}$. The Adversary knows the private key of $I D_{B}$. The Adversary returns a ciphertext $\sigma$ and recipient identity $I D_{B}$ to the Simulator.

Nalla and Reddy's scheme [11] The Adversary has $S_{B}$, the private key of $I D_{B}$. The Adversary randomly chooses $a \in R$ and computes:

$$
\begin{aligned}
R & =S_{B}^{a} \\
R^{\prime} & =\left(R\left\|H_{1}\left(e\left(S_{B}, Q_{A}\right)\right)\right\| m\right) \\
S & =Q_{B}^{a H^{\prime}\left(R^{\prime}\right)} \\
k_{A} & =H^{\prime \prime}\left(e\left(Q_{B}, S_{B}\right)^{a H^{\prime}\left(R^{\prime}\right)}\right) \\
C & =k_{A} \oplus m
\end{aligned}
$$

The Adversary outputs the ciphertext $\sigma=\langle R, S, C\rangle$, sender identity $I D_{A}$ and recipient identity $I D_{B}$ to the Simulator.

The Simulator decrypts by computing:

$$
\begin{aligned}
k_{B} & =H^{\prime \prime}\left(e\left(S, S_{B}\right)\right) \\
m & =k_{B} \oplus C
\end{aligned}
$$

The decryption succeeds. Then in verification, the Simulator computes $R^{\prime}=$ $\left(R\left\|H_{1}\left(e\left(S_{B}, Q_{A}\right)\right)\right\| m\right)$ and checks if:

$$
e\left(S_{B}, S\right)=e\left(Q_{B}, R\right)^{H^{\prime}\left(R^{\prime}\right)}
$$

By the above construction, the ciphertext must pass the verification. Then the Adversary wins the EU game with probability 1.

