
EME∗: extending EME to handle arbitrary-length messages

with associated data

(Preliminary Report)

Shai Halevi∗

May 26, 2004

Abstract

This work describes a mode of operation, EME∗, that turns a regular block cipher into a
length-preserving enciphering scheme for messages of (almost) arbitrary length. Specifically, the
resulting scheme can handle any bit-length, not shorter than the block size of the underlying
cipher, and it also handles associated data of arbitrary bit-length. Such a scheme can either be
used directly in applications that need encryption but cannot afford length expansion, or serve
as a convenient building block for higher-level modes.

The mode EME∗ is a refinement of the EME mode of Halevi and Rogaway, and it inherits
the efficiency and parallelism from the original EME.

1 Introductions

Adding secrecy protection to existing (legacy) protocols and applications raises some unique prob-
lems. One of these problems is that existing protocols sometimes require that the encryption be
“transparent”, and in particular preclude length-expansion. One example is encryption of storage
data “at the sector level”, where both the higher-level operating system and the lower-level disk
expect the data to be stored in blocks of 512 bytes, and so any encryption method would have to
accept 512-byte plaintext and produce 512-byte ciphertext.

Clearly, insisting on a length-preserving (and hence deterministic) transformation has many
drawbacks. Indeed, even the weakest acceptable notion of “secure encryption” (i.e., semantic
security [5]) cannot be achieved by deterministic encryption. Still, there may be cases where length-
preservation is a hard requirement (due to technical, economical or even political constrains), and
in such cases one may want to use some encryption scheme that gives better protection than no
encryption at all. The strongest notions of security for a length-preserving transformation is “strong
pseudo-random permutation” (SPRP) as defined by Luby and Rackoff [10], and its extension to
“tweakable SPRP” by Liskov et al. [9]. A “tweak” is an additional input to the enciphering and
deciphering procedures that need not be kept secret. This report uses the terms “tweak” and
“associated data” pretty much interchangably, except that “associated data” hints that it can be
of arbitrary length, wheras “tweak” is sometimes thought of as a fixed-length quantity.

Motivated by the application for “sector level encryption”, some efficient modes of operation
that implement “tweakable SPRP” on large blocks were recently described by Halevi and Rogaway

∗IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, shaih@watson.ibm.com
http://www.research.ibm.com/people/s/shaih/

1

[6, 7]. As “general purpose modes”, however, these modes are somewhat limited, in that they can
only be applied to input messages whose size is a multiple of n, the block-size of the underlying
cipher. Also, the mode CMC from [6] is inherently sequential (and it was only proven secure against
attack model where all the messages are of the same length), and the mode EME from [7] is limited
to messages of at most n2 bits. The current work is aimed at eliminating these limitations.

The mode EME∗, presented below, takes a standard cipher with n-bit blocks and turns it into a
tweakable enciphering scheme with message spaceM = {0, 1}n+ (i.e., any string of at least n bits)
and tweak space T = {0, 1}∗. The key for EME∗ consists of one key of the underlying cipher and two
additional n-bit blocks. The mode EME∗ has similar structure to the mode EME from [7]. Roughly,
it consists of two layers of masked ECB encryption, with a layer of “lightweight mixing” in between.
As a consequence, EME∗ is highly parallelizeable,1 and also quite work-efficient. Processing an m-
block query with ` blocks of associated data takes at most ` + 2m + dm/ne block encryptions
(or decryptions). (We note that another mode for arbitrary-length messages, following the Luby-
Rackoff approach, was recently proposed by McGrew and Viaga [11].)

1.1 What about very short blocks?

The mode EME∗ can handle blocks of any bit-length but not less that the block size of the underlying
cipher. The underlying structure of EME∗, being based on ECB encryption, does not lend itself
to handling shorter blocks. In fact, in my opinion there is no good solution today for handling
arbitrary short blocks. The solutions that I am aware of are the following:

• For blocks that are not too short (say, at least 64 bits), one can simply switch to using a
different block cipher. For example, one could use EME∗[AES] to process blocks that are 128
bits or more, and use a separately keyed EME∗[3DES] to handle blocks of length between 64
and 127 bits.

This solution, however, is quite expensive, as it mandates the implementation of two different
ciphers. (Of course, one could use EME∗[3DES] also to handle longer messages, but then the
security parameter would be much reduced.) Moreover this solution does not address blocks
shorter than 64 bits.

• For very short blocks (e.g., one byte) it is possible to pre-compute a pseudorandom permu-
tation and store it in a table. This approach, however, clearly runs out of steam for blocks
longer than two bytes, and it is extremely wasteful of space even before that. (Also, it is not
clear how to incorporate a “tweak” into this approach.)

• Alternatively, one could apply the Luby-Rackoff construction to implement the narrow-block
cipher, using the underlying cipher for the pseudorandom functions. (Indeed, the ABL mode
of McGrew and Viaga [11] does just that.) This solution extends to handle messages of any
length, but at a price of a severely reduced security-parameter. For example, although 128-bit
blocks may enjoy “128 bits of security”, 127-bit blocks only enjoy “63 bits of security”. Even
worse, 64-bit blocks have to make due with a pathetic “32 bits of security”.

It is possible to use six or more rounds of the Luby-Rackoff construction to make the security
parameter a little less miserable (cf. Patarin’s work [12]), but the price is an extremely slow
mode for small blocks.

1In EME∗, the longest execution path for any input consists of at most five block encryption. If the input length
is a multiple of the block length then only longest path has only four encryptions, and only three if in addition the
input is shorter than n blocks.

2

• Another approach is to use a parameterizable cipher (e.g., RC5 [13]) as the underlying block
cipher. Parameterizable ciphers can be instantiated to handle various block sizes, so in
particular they can be used in their narrow-block instantiation to handle the small blocks.
However, to the best of my knowledge there is a fairly small number of such ciphers, and they
were never seriously analyzed for small blocks. So it unlikely that they provide very good
security, especially in the very small block sizes. Worse still, it is likely that using the same
key for different block sizes would have disastrous consequences.

I view the problem of handling arbitrary small blocks as wide open. The two plausible approaches
for addressing it are either to design a mode of operation with good security-performance tradeoff
for small blocks, or to design an efficient block cipher that can handle small blocks securely. I
believe that a good cipher is more likely to be possible than a good mode of operation (but perhaps
this is only because I know more about modes of operation than about block ciphers.)

Organization

Section 2 recalls some standard definitions (this section is taken almost verbatim from [7]). Section 3
describes the EME∗ mode with a brief discussion of the extensions of EME∗ over EME. The security
of EME∗ is stated in Section 4 and proven in the appendix.

Acknowledgments

I thank John Viaga for showing me his ABL mode of operation. I also thank Eli Biham for a
discussion about the state of block ciphers for very short blocks.

2 Preliminaries

Basics. A tweakable enciphering scheme is a function E: K×T ×M→M whereM =
⋃

i∈I{0, 1}
i

is the message space (for some nonempty index set I ⊆ N) and K 6= ∅ is the key space and T 6= ∅
is the tweak space. We require that for every K ∈ K and T ∈ T we have that E(K, T, ·) = ET

K(·) is
a length-preserving permutation onM. The inverse of an enciphering scheme E is the enciphering
scheme D = E−1 where X = DT

K(Y) if and only if ET
K(X) = Y . A block cipher is the special case

of a tweakable enciphering scheme where the message space is M = {0, 1}n (for some n ≥ 1) and
the tweak space is T = {ε} (the empty string). The number n is called the blocksize. By Perm(n)
we mean the set of all permutations on {0, 1}n. By PermT (M) we mean the set of all functions
π: T ×M→M where π(T, ·) is a length-preserving permutation.

An adversary A is a (possibly probabilistic) algorithm with access to some oracles. Oracles are
written as superscripts. By convention, the running time of an algorithm includes its description
size. The notation A⇒ 1 describes the event that the adversary A outputs the bit one.

Security measure. For a tweakable enciphering scheme E: K × T ×M → M we consider the
advantage that the adversary A has in distinguishing E and its inverse from a random tweakable
permutation and its inverse:

Adv±p̃rp
E

(A) = Pr
[
K

$
←K : AEK(·,·) E

−1
K (·,·) ⇒ 1

]
− Pr

[
π

$
← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1

]

The notation shows, in the brackets, an experiment to the left of the colon and an event to the
right of the colon. We are looking at the probability of the indicated event after performing the

specified experiment. By X
$
←X we mean to choose X at random from the finite set X . In writing

3

±p̃rp the tilde serves as a reminder that the PRP is tweakable and the ± symbol is a reminder that
this is the “strong” (chosen plaintext/ciphertext attack) notion of security. For a block cipher, we
omit the tilde.

Without loss of generality we assume that an adversary never repeats an encipher query, never
repeats a decipher query, never queries its deciphering oracle with (T, C) if it got C in response to
some (T, M) encipher query, and never queries its enciphering oracle with (T, M) if it earlier got M
in response to some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write Advxxx

Π (R) for the
maximal value of Advxxx

Π (A) over all adversaries A that use resources at most R. Resources of
interest are the running time t and the number of oracle queries q and the query complexity σn

(where n ≥ 1 is a number). The query complexity σn is just the total number of n-bit blocks in all
the queries that the adversary makes (including both the data and the associated data). Namely,
the query complexity of any one call (T, P) is d|T |/ne + d|P |/ne, and the query complexity of an
attack is the sum of the query complexity of all the calls. The name of an argument (e.g., t, q,
or σn) will be enough to make clear what resource it refers to.

Finite fields. We interchangeably view an n-bit string as: a string; a nonnegative integer less
than 2n (msb first); a formal polynomial over GF(2) (with the coefficient of xn−1 first and the free
term last); and an abstract point in the finite field GF(2n). To do addition on field points, one xors
their string representations. To do multiplication on field points, one must fix a degree-n irreducible
polynomial. We choose to use the lexicographically first primitive polynomial of minimum weight.
For n = 128 this is the polynomial x128 + x7 + x2 + x + 1. See [3] for a list of the indicated
polynomials. We note that with this choice of field-point representations, the point x = 0n−210 = 2
will always have order 2n−1 in the multiplicative group of GF(2n), meaning that 2, 22, 23, . . . , 22n−1

are all distinct. Finally, we note that given L = Ln−1 · · ·L1L0 ∈ {0, 1}
n it is easy to compute

2L. We illustrate the procedure for n = 128, in which case 2L = L<<1 if firstbit(L) = 0, and
2L = (L<<1)⊕ Const87 if firstbit(L) = 1. Here Const87 = 012010413 and firstbit(L) means Ln−1

and L<<1 means Ln−2Ln−3 · · ·L1L00.

3 Specification of EME∗ Mode

Consider a block cipher E: K × {0, 1}n → {0, 1}n. Then EME∗[E]: (K × {0, 1}2n)× T ×M→M
is an enciphering scheme with associated data, where K is the same as the underlying cipher,
T = {0, 1}0..n(2n−3), and M = {0, 1}n..n(2n−2). In words, the key for EME∗[E] consists of one key
K of the underlying block cipher E and two n-bit blocks, L and R. EME∗[E] accepts messages
of any bit length grater than or equal to n (but no more than n(2n − 2)), and associated data of
arbitrary bit-length (but no more than n(2n − 3)). Obviously, in paractical terms the upper limits
are no limitation at all.

The scheme EME∗[E] follows the same general principles of the tweakable scheme EME from [7].
Roughly, it consists of two layers of masked ECB encryption, with a layer of “lightweight mixing”
in between. A complete specification of the enciphering scheme EME∗[E] is given in Figure 1, and
an illustration (for a message of n + 2 full blocks and one partial block) is provided in Figure 2.
For those familiar with EME, the differences between EME and EME∗ are as follows:

• Hashing the “tweak”. The original EME scheme requires that the “tweak value” be an n-bit
string, whereas here we allow associated data of any length. For this purpose, we hash the

4

function HK,R(T1 · · ·T`−1, T`): // |T1| = · · · = |T`−1| = n, 0 < |T`| ≤ n

01 if T is empty return EK(R)

10 for i ∈ [1..`− 1] do TTT i ← EK(2iR⊕ Ti)
11 if |T`| = n then TTT ` ← EK(2`R⊕ T`)
12 elseTTT ` ← EK(2`+1R⊕ (T`10..0))
13 return TTT1 ⊕ · · · ⊕ TTT`

Algorithm EK,L,R(T ;P1 · · ·Pm)

// |P1| = · · · = |Pm−1| = n, 0 < |Pm| ≤ n

101 if |Pm| = n then lastFull ← m
102 else lastFull ← m− 1
103 PPPm ← Pm padded with 10..0

110 for i← 1 to lastFull do
111 PP i ← 2i−1L⊕ Pi

112 PPP i ← EK(PP i)

120 SP ← PPP2 ⊕ · · · ⊕ PPPm

121 MP1 ← PPP1 ⊕ SP ⊕HK,R(T)
122 if |Pm| = n then MC 1 ← EK(MP1)
123 else MM ← EK(MP1)
124 MC 1 ← EK(MM)
125 Cm ← Pm ⊕ (MM truncated)
126 CCC m ← Cm padded with 10..0
127 M1 ← MP1 ⊕MC 1

130 for i = 2 to lastFull do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then
133 MP j ← PPP i ⊕M1

134 MC j ← EK(MP j)
135 Mj ← MP j ⊕MC j

136 CCC i ← MC j ⊕M1

137 else CCC i ← PPP i ⊕ 2kMj

140 SC ← CCC 2 ⊕ · · · ⊕ CCC m

141 CCC 1 ← MC 1 ⊕ SC ⊕HK,R(T)
142 for i← 1 to lastFull do
143 CC i ← EK(CCC i)
144 Ci ← CC i ⊕ 2i−1L

150 return C1 . . . Cm

Algorithm DK,L,R(T ;C1 · · ·Cm)

// |C1| = · · · = |Cm−1| = n, 0 < |Cm| ≤ n

201 if |Cm| = n then lastFull ← m
202 else lastFull ← m− 1
203 CCC m ← Cm padded with 10..0

210 for i← 1 to lastFull do
211 CC i ← 2i−1L⊕ Ci

212 CCC i ← E−1

K (CC i)

220 SC ← CCC 2 ⊕ · · · ⊕ CCC m

221 MC 1 ← CCC 1 ⊕ SC ⊕HK,R(T)
222 if |Cm| = n then MP1 ← E−1

K (MC 1)
223 else MM ← E−1

K (MC 1)
224 MP1 ← E−1

K (MM)
225 Pm ← Cm ⊕ (MM truncated)
226 PPPm ← Pm padded with 10..0
227 M1 ← MP1 ⊕MC 1

230 for i = 2 to lastFull do
231 j = di/ne, k = (i− 1) mod n
232 if k = 0 then
233 MC j ← CCC i ⊕M1

234 MP j ← E−1

K (MC j)
235 Mj ← MP j ⊕MC j

236 PPP i ← MP j ⊕M1

237 else PPP i ← CCC i ⊕ 2kMj

240 SP ← PPP2 ⊕ · · · ⊕ PPPm

241 PPP1 ← MP1 ⊕ SP ⊕HK,R(T)
242 for i← 1 to lastFull do
243 PP i ← E−1

K (PPP i)
244 Pi ← PP i ⊕ 2i−1L

250 return P1 . . . Pm

Figure 1: Enciphering and deciphering under E = EME∗[E], where E: K × {0, 1}n → {0, 1}n is a
block cipher. The associated data is T ∈ {0, 1}∗, the plaintext is P = P1 · · ·Pm and the ciphertext
is C = C1 · · ·Cm.

5

. . .

. . .
F

T̃

Associated data

M1

M1

CCn

Pn

PPn

Cn

PPPn

CCCn

2n−1M1

pad

pad

Cn+3

CCC n+3

PPPn+3

Pn+3

2M1

MM

L

PP1

PPP1

MP1

SP ⊕ T̃

C1

CC 1

CCC 1

L

MC 1

SC ⊕ T̃

P1 P2

2L

PP2

PPP2

C2

CCC 2

CC 2

2L

Cn+1

CCCn+1

CCn+1

MP2

MC 2

PPn+1

Pn+1

PPPn+1

2nL2n−1L

CCCn+2

CCn+2

PPn+2

Cn+2

Pn+2

2M2

PPPn+2

2n+1L

2n+1L2nL2n−1L

MM

Figure 2: Enciphering under EME∗ a buffer with n + 2 full blocks and one partial block. The
boxes represent EK . We set the masks as SP = PPP2 ⊕ · · ·PPPn+3, Mi = MP i ⊕MC i, and
SC = CCC 2 ⊕ · · · ⊕ CCC n+3.

6

associated data to an n-bit string. The hash function need only be xor-universal, yet I chose
to implement it using the underlying block cipher in a PMAC-like mode [2].

• More than one mask. The EME scheme uses (multiples of) a single mask value M in the
“lightweight masking” layer. It was shown in [7], however, that this masking technique with
just one mask cannot be used for messages longer than n2 bits.

Longer messages are handled in EME∗ using the approach that was proposed in the appendix
of [7]. The message is broken to chunks of at most n2 bits each, and a different mask value is
used for every chunk. To handle the last partial block (if any), yet another mask is computed
and xor-ed into the last partial plaintext block, thus getting the last partial ciphertext block.

We comment that it is possible to derive the two key blocks L, R from the cipher key K, say by
setting L = 2EK(0) and R = 3EK(0).2 The proof below does not prove this variant, since proving
it would mean adding a few more pages to a proof that is already way too long.

4 Security of EME∗

The following theorem relates the advantage of an adversary in attacking EME∗[E] to the advantage
an adversary in attacking the block cipher E.

Theorem 1 [EME∗ security] Any adversary that tries to distinguish EME∗[Perm(n)] from a
truly random tweakable length-preserving permutation, using at most q queries totaling at most
σn blocks (some of which may be partial), has advantage at most (2.5σn + 3q)2/2n+1. Using the
notations from Section 2, we have

Adv±p̃rp
EME∗[Perm(n)](q, σn) ≤

(2.5σn + 3q)2

2n+1
(1)

Corollary 1 Fix n, t, q, σn ∈ N and a block cipher E: K × {0, 1}n → {0, 1}n. Then

Adv±p̃rp
EME∗[E](t, q, σn) ≤

(2.5σn + 3q)2

2n+1
+ 2 Adv±prp

E

(
t′, 2q + (2 +

1

n
)σn

)

where t′ = t + O(nσn). 2

Note that the theorem and corollary do not restrict messages to one particular length: proven
security is for a variable-input-length (VIL) cipher, not just fixed-input-length (FIL) one. The
proof of Theorem 1 is given in Appendix A. Corollary 1 embodies the standard way to pass from
the information-theoretic setting to the complexity-theoretic one.

References

[1] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key construc-
tions. In Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 197–215. Springer-Verlag, 2000.

2The maximum length of messages and associated input would have to be somewhat reduced for this to work.
But for n = 128 we can still prove security for messages and associated data that are shorter than, say, 2120

blocks. (The upper bound is actually 2n
− 1 − log2 3. With the representation of FG(2128) as above, we have

log2 3 ≈ 3.39 × 1038
≈ 2128

− 2120. See [14].)

7

[2] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT ’02, volume 2332 of
Lecture Notes in Computer Science, pages 384–397. Springer-Verlag, 2002.

[3] S. Duplichan. A primitive polynomial search program. Web document. Available at
http://users2.ev1.net/∼sduplichan/primitivepolynomials/primivitePolynomials.htm, 2003.

[4] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom permutation.
Journal of Cryptology, 10(3):151–162, 1997.

[5] S. Goldwasser and S. Micali. “Probabilistic encryption”. J. of Computer and System Sciences,
28, April 1984.

[6] S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor, Ad-
vances in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 482–499. Springer-Verlag, 2003. Full version available on the ePrint archive,
http://eprint.iacr.org/2003/148/.

[7] S. Halevi and P. Rogaway. A parallelizable enciphering mode. In The RSA confer-
ence – Cryptographer’s track, RSA-CT’04, volume 2964 of Lecture Notes in Computer Sci-
ence, pages 292–304. Springer-Velrag, 2004. Full version available on the ePrint archive,
http://eprint.iacr.org/2003/147/.

[8] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. Journal of
Cryptology, 14(1):17–35, 2001. Earlier version in CRYPTO ’96. www.cs.ucdavis.edu/∼rogaway.

[9] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in Cryptology –
CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer-
Verlag, 2002. www.cs.berkeley.edu/∼daw/.

[10] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. of Computation, 17(2), April 1988.

[11] D. A. McGrew and J. Viega. ABL mode: security without data expansion. Private communi-
cation, 2004.

[12] J. Patarin. Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security. In Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 513–529. Springer-
Verlag, 2003.

[13] R. L. Rivest. The RC5 encryption algorithm. In Fast Software Encryption (FSE ’94), volume
1008 of Lecture Notes in Computer Science, pages 86–96. Springer, 1994.

[14] P. Rogaway. Efficient instantiations of tweakable block ciphers and refinements to modes OCB
and PMAC. Available on-line from http://www.cs.ucdavis.edu/∼rogaway/papers/, 2004.

A Proof of Theorem 1 — Security of EME∗

A personal comment. The proof below spans more than 23 pages, and as much as I tried to
simplify and to explain clearly, it is quite a pain to read. Frankly, I don’t believe that anyone will
ever go through the trouble of reading and verifying it. Assuming this is the case, one can still get

8

some assurance in the correctness of the mode, even from a proof that no one reads: At least it
implies that the author went carefully through all the different cases and was convinced that they
all work. Indeed, the proof below uses the same mechanism that was used to prove CMC [6] and
EME [7], and this mechanism in effect forces one to cover all the cases. Also, the mode EME∗

is close enough to the original mode EME, so that one who verified the proof for EME (which is
shorter) may be able to be convinced of the correctness of EME∗ just “by inspection”.

A useful lemma. The proof of security is divided into two parts: in Section A.1 we carry
out a game-substitution argument, reducing the analysis of EME∗ to the analysis of a simpler
probabilistic game. In Section A.2 we analyze that simpler game. Before we begin we first recall a
little lemma, saying that a (tweakable) truly random permutation looks very much like an oracle
that just returns random bits (as long as you never ask pointless queries). So instead of analyzing
indistinguishability from a random permutation we can analyze indistinguishability from random
bits.

Let E: K × T × M → M be a tweaked block-cipher and let D be its inverse. Define the

advantage of distinguishing E from random bits, Adv±r̃nd
E

, by

Adv±r̃nd
E

(A) = Pr[K
$
←K : AEK(·,·) DK(·,·) ⇒ 1]− Pr[A$(·,·) $(·,·) ⇒ 1]

where $(T, M) returns a random string of length |M |. We insist that A makes no pointless queries,
regardless of oracle responses, and A asks no query (T, M) outside of T × M. We extend the
definition above in the usual way to its resource-bounded versions. We have the following lemma,
whose (standard) proof can be found, for example, in the full version of [6].

Lemma 2 [±p̃rp-security ≈ ±r̃nd-security] Let E: K×T ×M→M be a tweaked block-cipher

and let q ≥ 1 be a number. Then |Adv±p̃rp
E

(q) − Adv±r̃nd
E

(q)| ≤ q(q − 1)/2N+1 where N is the
length of a shortest string in the message space M. 2

A.1 The game-substitution sequence

Fix n, σn, and q. Let A be an adversary that asks q oracle queries (none pointless) totaling σn blocks
(of both data and associated data, potentially some of them partial blocks). Our goal in this part

is to tie the advantage Adv±r̃nd
EME[Perm(n)](A) to the probability Pr[N2 sets bad], where N2 is some

probability space and “ N2 sets bad ” is an event defined there. Later we bound Pr[N2 sets bad],
and, putting that together with Lemma 2, we get Eq. (1) of Theorem 1. Game N2 is obtained by
a game-substitution argument, as carried out in works like [8]. The goal is to simplify the rather
complicated setting of A adaptively querying its oracles, and to arrive at a simpler setting where
there is no adversary and no interaction—just a program that flips coins and a flag bad that does
or does not get set.

Abstracting the function HK,R: The analysis below turns out to be quite complicated. We
somewhat simplify it by replacing the function HK,R by an abstract function h : {0, 1}∗ → {0, 1}n,
chosen from a pairwise independent family H. The properties of h that we use in the analysis are:

(i) For a fixed T ∈ {0, 1}∗, h(T) is uniform in {0, 1}n when h is chosen at random from H.

(ii) For fixed T 6= T′ ∈ {0, 1}∗, h(T)⊕ h(T′) is uniform in {0, 1}n when h
$
←H.

(iii) The choice h
$
←H is independent of all the other random choices in the game.

9

We can justify these assumptions on h by replacing the computation of EK(T ⊕ jR) (with j a
constant) in lines 10, 11, and 12 of Figure 1, by the computation fj(T) where for each j we have an
independent random function fj : {0, 1}n → {0, 1}n. It is known that replacing a masked random
permutation by a collection of random functions this way entails only a negligible difference on the
view of the adversary. Specifically, one could prove the following: Fix some integers n, qp, qf ∈ N

and an adversary with three oracles AE(·),D(·),F (·,·), and consider the two following experiments.

• In the first experiment (Expr1), we choose at random a permutation π over {0, 1}n and a
string R ∈ {0, 1}n. Then for x, y, j ∈ {0, 1}n, an oracle-query E(x) is answered by π(x),
an oracle query D(y) is answered by π−1(y), and an oracle query F (j, x) is answered by
π(x⊕ jR) (where the multiplication jR is over GF (2n)).

• In the second experiment (Expr2), we choose at random a permutation π over {0, 1}n, and
2n functions {fj : {0, 1}n → {0, 1}n}j∈{0,1}n . Then for x, y, j ∈ {0, 1}n, the oracle-queries
E(x) and D(y) are answered as before by π(x) and π−1(y), respectively, but an oracle query
F (j, x) is answered by fj(x).

Lemma 3 Fix some n, qp, qf ∈ N. For any adversary AE(·),D(·),F (·,·) as above that makes at most
qp queries to E and D, and at most qf queries to F , it holds that

∣∣∣∣ Pr
Expr1

[AE,D,F ⇒ 1] − Pr
Expr2

[AE,D,F ⇒ 1]

∣∣∣∣ ≤ qf (qf + 2qp)/2
n

2

This lemma is pretty much folklore by now, although I could not find a reference where it is proven.
Similar results were proven by by Even and Mansour [4]. A proof for a special case of this lemma
can be found in [1, Lemma 4], and that proof can easily be extended to prove Lemma 3 itself.

Using Lemma 3, we can replace the function HK,R from Figure 1 by the following function h
(that depends on the 2n random functions fj). In the code below, the constants 2i are computed
in the finite field GF (2n).

function h(T1 · · ·T`−1, T`): // |T1| = · · · = |T`−1| = n, 0 < |T`| ≤ n

01 if T is empty return f1(0)

10 for i ∈ [1..`− 1] do TTT i ← f2i(Ti)
11 if |T`| = n then TTT ` ← f2`(T`)
12 elseTTT ` ← f2`+1(T`10..0))
13 return TTT1 ⊕ · · · ⊕ TTT`

Divide the total number of blocks σn in an attack on EME∗ into σn = σd
n + σa

n where σd
n is the

number of blocks in the data itself, and σa
n is the number of blocks in the associated data. Let Nbe

denote the total number of block encryptions that are used throughout the attack (not counting
the computation of H), and we can bound it by

Nbe < (2 +
1

n
)σd

n + 2q (2)

Then from Lemma 3 it follows that the statistical distance in the view of the adversary due to the
replacement of HK,R by h is bounded by σa

n(σa
n + 2Nbe)/2

n. Once we made that replacement, it is
clear that the choice of h is now independent of all the other random choices in the attack, so we
only need to prove the properties (i) and (ii). This is done next:

10

Subroutine Choose-π(X):

010 Y
$

←{0, 1}n; if Y ∈ Range then bad ← true , Y
$

← Range

011 if X ∈ Domain then bad ← true , Y ← π(X)

012 π(X)← Y , Domain← Domain ∪ {X}, Range← Range ∪ {Y }; return Y

Subroutine Choose-π−1(Y):

020 X
$

←{0, 1}n; if X ∈ Domain then bad ← true , X
$

←Domain

021 if Y ∈ Range then bad ← true , X ← π−1(Y)

022 π(X)← Y , Domain← Domain ∪ {X}, Range← Range ∪ {Y }; return X

Figure 3: The procedures that are used in games E1 and R1. The shaded statements are executed in Game E1

but not in Game R1.

Claim 2 When 2n functions {fj : {0, 1}n → {0, 1}n}j∈{0,1}n are chosen at random and h is defined
as above, it holds that:

(i) For any fixed T ∈ {0, 1}0..n(2n−3), h(T) is uniform in {0, 1}n.
(ii) For any fixed T 6= T ′ ∈ {0, 1}0..n(2n−3), h(T)⊕ h(T ′) is uniform in {0, 1}n.

Proof: Property (i) is obvious, since the output of h at any point T depend on at least one
application of one of the functions fj , and these are all random functions. To prove Property (ii),
fix some T 6= T ′, and denote T = T1 . . . T` and similarly T = T1 . . . T`′ , where ` = d|T |/ne and
`′ = d|T ′|/ne. (The proof below use the fact that 2 is a primitive element in GF (2n) and `′ ≤ 2n−3,
so for any i 6= i′ ≤ `′ + 1 we have 2i 6= 2i′ in GF (2n).)

If ` = `′ then there must be at least one index i ≤ ` such that Ti 6= T ′i . If Ti and T ′i are
full blocks then h(T)⊕ h(T ′) = something-independent-of-f2i ⊕ f2i(Ti)⊕ f2i(T ′i), which is uniform
since f2i is a random function. If they are both partial blocks (so i = `) then we get h(T)⊕ h(T ′) =
something-independent-of-f2`+1 ⊕ f2`+1(Ti10..0)⊕ f2`+1(T ′i10..0), which is again uniform since Ti 6=
T ′i implies that also Ti10..0 6= T ′i10..0 and f2`+1 is a random function. If Ti is a full block and T ′i is
partial, then we similarly get h(T)⊕ h(T ′) = something-independent-of-f2`+1 ⊕ f2`+1(T ′i10..0).

If ` 6= `′, then assume that `′ > `. If T ′i is a partial block then as before we get h(T)⊕ h(T ′) =
something-independent-of-f2`′+1 ⊕ f2`′+1(T ′i10..0). Similarly if T ′i is a full block and either `′ > `+1
or T` is a full block, then h(T)⊕ h(T ′) = something-independent-of-f2`′ ⊕ f2`′ (T ′i). The last case
is when `′ = ` + 1 and T ′`′ is a full block and T` is a partial block. In this case h(T ′) includes the
term f2`(T ′`) but h(T) is independent of f2` , so again h(T)⊕ h(T ′) is uniform.

The game E1. We describe the attack scenario of A against EME[Perm(n)] (with the abstraction
of h as above) as a probabilistic game in which the permutation π is chosen “on the fly”, as needed to
answer the queries of A. Initially, the partial function π: {0, 1}n → {0, 1}n is everywhere undefined.
When we need π(X) and π isn’t yet defined at X we choose this value randomly among the available
range values. When we need π−1(Y) and there is no X for which π(X) has been set to Y we likewise
choose X at random from the available domain values. As we fill in π its domain and its range thus
grow. In the game we keep track of the domain and range of π by maintaining two sets, Domain
and Range, that include all the points for which π is already defined. We let Domain and Range
be the complement of these sets relative to {0, 1}n. The game, denoted E1, is shown in Figures 3
and 4. Since game E1 accurately represent the attack scenario, we have that

Pr[AEπ Dπ ⇒ 1] ≤ Pr[AE1 ⇒ 1] +
σa

n(σa
n + 2Nbe)

2n
(3)

11

Initialization:
050 Domain← Range← ∅; for all X ∈ {0, 1}n do π(X)← undef

051 bad ← false; L
$

←{0, 1}n; h← H

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P

s
ms):

102 if |P s
ms | = n then lastFulls ← ms

103 else lastFulls ← ms − 1
104 PPPs

ms ← P s
ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i

113 PPPs
i ← PPPr

i

114 else PPs
i ← P s

i ⊕ 2i−1L
115 PPPs

i ← Choose-π(PPs
i)

120 MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(T s)

121 if |P s
ms | = n then MC s

1 ← Choose-π(MPs
1)

122 else MM s ← Choose-π(MPs
1)

123 MC s
1 ← Choose-π(MM s)

124 Cs
ms ← P s

ms ⊕ (MM s truncated)
125 CCC s

ms ← Cs
ms padded with 10..0

126 M s
1 ← MPs

1 ⊕MC s
1

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then
133 MPs

j ← PPPs
i ⊕M s

1

134 MC s
j ← Choose-π(MPs

j)
135 M s

j ← MPs
j ⊕MC s

j

136 CCC s
i ← MC s

j ⊕M s
1

137 else CCC s
i ← PPPs

i ⊕ 2kM s
j

138 CCC s
1 ← MC s

1 ⊕ CCC s
2 ⊕ · · ·CCC s

ms ⊕ h(T s)

140 for i← 1 to lastFulls do
141 CC s

i ← Choose-π(CCC s
i)

142 Cs
i ← CC s

i ⊕ 2i−1L

150 return Cs
1 · · ·C

s
ms

A decipher query, Dec(T s;Cs
1 · · ·C

s
ms):

202 if |Cs
ms | = n then lastFulls ← ms

203 else lastFulls ← ms − 1
204 CCC s

ms ← Cs
ms padded with 10..0

210 for i← 1 to lastFulls do
211 r = r[s, i] is the 1st index s.t. Cs

i = Cr
i

212 if r < s then CC s
i ← CC r

i

213 CCC s
i ← CCC r

i

214 else CC s
i ← Cs

i ⊕ 2i−1L
215 CCC s

i ← Choose-π−1(CC s
i)

220 MC s
1 ← CCC s

1 ⊕ · · · ⊕ CCC s
ms ⊕ h(T s)

221 if |Cs
ms | = n then MPs

1 ← Choose-π−1(MC s
1)

222 else MM s ← Choose-π−1(MC s
1)

223 MPs
1 ← Choose-π−1(MM s)

224 P s
ms ← Cs

ms ⊕ (MM s truncated)
225 PPPs

ms ← P s
ms padded with 10..0

226 M s
1 ← MPs

1 ⊕MC s
1

230 for i← 2 to lastFulls do
231 j = di/ne, k = (i− 1) mod n
232 if k = 0 then
233 MC s

j ← CCC s
i ⊕M s

1

234 MPs
j ← Choose-π−1(MC s

j)
235 M s

j ← MPs
j ⊕MC s

j

236 PPPs
i ← MPs

j ⊕M s
1

237 else PPPs
i ← CCC s

i ⊕ 2kM s
j

238 PPPs
1 ← MPs

1 ⊕ PPPs
2 ⊕ · · ·PPPs

ms ⊕ h(T s)

240 for i← 1 to lastFulls do
241 PPs

i ← Choose-π−1(PPPs
i)

242 P s
i ← PPs

i ⊕ 2i−1L

250 return P s
1 · · ·P

s
ms

Figure 4: Game E1 describes the attack of A on EME[Perm(n)], where the permutation π is chosen “on the fly”

as needed. Game R1 is the same as game E1, except we do not execute the shaded statements in the procedures

from Figure 3.

12

(where the additive factor is due to the abstraction of h). Looking ahead to the game-substitution
sequence, we structured the code in Figures 3 and 4 in a way that makes it easier to present the
following games. In particular, here are some things to note about this code:

• Notations. We denote all the quantities that are encountered during the processing of query s
with a superscript s. For example, the number of blocks in the query is denoted ms, and the
plaintext is denoted P s = P s

1 · · ·P
s
ms (where |P s

i | = n for i < ms and |P s
ms | ≤ n).

• The notation r[s, i]. When handling the s-th adversary query, we look for each block of the
query to see if it is a “new block”: if this is an encipher query P s = (P s

1 · · ·P
s
ms) we look

for an earlier plaintext P r = (P r
1 · · ·P

r
mr) with the same i’th block P s

i = P r
i . Since we use

“masked ECB” encryption, we only expect to choose a new value for π when there is no
such prior plaintext. If this is a decipher query then for any i we likewise look for an earlier
ciphertext Cr with the same i’th block, Cs

i = Cr
i . We define r[s, i] to be the index of the first

such plaintext or ciphertext. Namely, we define

r[s, i]
def
=

{
min{ r ≤ s : P r

i = P s
i } if query s is an encipher query

min{ r ≤ s : Cr
i = Cs

i } if query s is a decipher query

• Filling in π and π−1 values. When we need to define π on what is likely to be a new domain
point X, setting π(X)← Y for some Y , we do the following: We first sample Y from {0, 1}n;
then re-sample, this time from Range, if the initially chosen sample Y was already in the range
of π; finally, if π already had a value at X, then we forget about the newly chosen value Y
and use the previous value of π(X). We behave analogously for π−1(Y) values. In Figure 3
we highlight the places where we have to reset a choice we tentatively made. Whenever we
do so we set a flag bad. The flag bad is never seen by the adversary A that interacts with
the E1 game—it is only present to facilitate the subsequent analysis.

Game R1. We next modify game E1 by omitting the statements that immediately follow the
setting of bad to true. (This is the usual trick under the game-substitution approach.) Namely,

before we were making some consistency checks after each random choice π(X) = Y
$
←{0, 1}n to

see if this value of Y was already in use, or if π was already defined at X, and we reset out choice
of Y as needed. Now we still make these checks and set the flag bad, but we do not reset the chosen
value of Y . The game R1 is described in Figure 5. (In this figure we omitted the function π from
the code, since it is never used anymore.)

These changes mean that π may end up not being a permutation, and moreover we may reset
its value on previously chosen points. Still, the games E1 and R1 are syntactically identical apart
from what happens after the setting of the flag bad to true. Once the flag bad is set to true the
subsequent behavior of the game does not impact the probability that an adversary A interacting
with the game can set the flag bad to true. This is exactly the setup used in the game-substitution
method to conclude that

Pr[AE1 ⇒ 1]− Pr[AR1 ⇒ 1] ≤ Pr[AR1 sets bad] (4)

13

Initialization:

050 Domain← Range← ∅; bad ← false; L
$

←{0, 1}n; h← H

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P

s
ms):

101 if |P s
ms | = n then lastFulls ← ms

102 else lastFulls ← ms − 1
103 PPPs

ms ← P s
ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i ; PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; PPPs
i

$

←{0, 1}n

114 if PPs
i ∈ Domain or PPPs

i ∈ Range then bad ← true

115 Domain← Domain ∪ {PP s
i}; Range← Range ∪ {PPPs

i}

120 MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(T s)

121 if |P s
ms | = n then MC s

1

$

←{0, 1}n; M s
1 ← MPs

1 ⊕MC s
1

122 if MPs
1 ∈ Domain or MC s

1 ∈ Range then bad ← true

123 Domain← Domain ∪ {MPs
1}; Range← Range ∪ {MC s

1}

124 else MM s $

←{0, 1}n ; MC s
1

$

←{0, 1}n; M s
1 ← MPs

1 ⊕MC s
1

125 if MPs
1 ∈ Domain or MM s ∈ Range then bad ← true

126 if MM s ∈ Domain ∪ {MPs
1} or MC s

1 ∈ Range ∪ {MM s} then bad ← true

127 Domain← Domain ∪ {MPs
1,MM s}; Range← Range ∪ {MM s,MC s

1}
128 Cs

ms ← P s
ms ⊕ (MM s truncated); CCC s

ms ← Cs
ms padded with 10..0

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then

133 MPs
j ← PPPs

i ⊕M s
1 ; MC s

j

$

←{0, 1}n; M s
j ← MPs

j ⊕MC s
j

134 if MPs
j ∈ Domain or MC s

j ∈ Range then bad ← true

135 Domain← Domain ∪ {MPs
j}; Range← Range ∪ {MC s

j}
136 CCC s

i ← MC s
j ⊕M s

1

137 else CCC s
i ← PPPs

i ⊕ 2kM s
j

138 CCC s
1 ← MC s

1 ⊕ CCC s
2 ⊕ · · ·CCC s

ms ⊕ h(T s)

140 for i← 1 to lastFulls do

141 CC s
i

$

←{0, 1}n; Cs
i ← CC s

i ⊕ 2i−1L
142 if CCC s

i ∈ Domain or CC s
i ∈ Range then bad ← true

143 Domain← Domain ∪ {CCC s
i}; Range← Range ∪ {CC s

i}

150 return Cs
1 · · ·C

s
ms

A decipher query, Dec(T s;Cs
1 · · ·C

s
ms), is treated symmetrically

Figure 5: Game R1 is similar to E1, but does not reset the random choices.

14

Initialization:

050 Domain← Range← ∅; bad ← false; L
$

←{0, 1}n; h← H

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P

s
ms):

101 if |P s
ms | = n then lastFulls ← ms

102 else lastFulls ← ms − 1
103 PPPs

ms ← P s
ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i ; PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; PPPs
i

$

←{0, 1}n

114 if PPs
i ∈ Domain or PPPs

i ∈ Range then bad ← true

115 Domain← Domain ∪ {PP s
i}; Range← Range ∪ {PPPs

i}

120 Cs
∗

$

←{0, 1}n; M s
1

$

←{0, 1}n

121 MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(T s); MC s

1 ← MPs
1 ⊕M s

1 ; MM s ← PPPs
ms ⊕ Cs

∗

122 if MPs
1 ∈ Domain or MM s ∈ Range then bad ← true

123 if MM s ∈ Domain ∪ {MPs
1} or MC s

1 ∈ Range ∪ {MM s} then bad ← true

124 Domain← Domain ∪ {MPs
1,MM s}; Range← Range ∪ {MM s,MC s

1}
125 if |P s

ms | = n then
126 Cs

ms ← (Cs
∗

truncated); CCC s
ms ← Cs

ms padded with 10..0

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then

133 MPs
j ← PPPs

i ⊕M s
1 ; M s

j

$

←{0, 1}n; MC s
j ← MPs

j ⊕M s
j

134 if MPs
j ∈ Domain or MC s

j ∈ Range then bad ← true

135 Domain← Domain ∪ {MPs
j}; Range← Range ∪ {MC s

j}
136 CCC s

i ← PPPs
i ⊕ 2kM s

j

137 CCC s
1 ← PPPs

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

140 for i← 1 to lastFulls do

141 Cs
i

$

←{0, 1}n; CC s
i ← Cs

i ⊕ 2i−1L
142 if CCC s

i ∈ Domain or CC s
i ∈ Range then bad ← true

143 Domain← Domain ∪ {CCC s
i}; Range← Range ∪ {CC s

i}

150 return Cs
1 · · ·C

s
ms

A decipher query, Dec(T s;Cs
1 · · ·C

s
ms), is treated symmetrically

Figure 6: Game R2 is indistinguishable from Game R1 but chooses some of its variables in different order.

15

Game R2. We now make several changes to the order in which variables are chosen in game R1.
Specifically, we make the following changes to the code:

• Instead of choosing CC s
i

$
←{0, 1}n and then setting Cs

i ← CC s
i ⊕ 2iL (in line 141), we choose

Cs
i

$
←{0, 1}n and then set CC s

i ← Cs
i ⊕ 2iL.

• Similarly, instead of choosing MC s
j

$
←{0, 1}n and setting M s

j ← MPs
j ⊕MC s

j (lines 121, 124

and 133), we choose M s
j

$
←{0, 1}n and set MC s

j ← MPs
j ⊕M s

j .

• Instead of choosing MM
$
←{0, 1}n and setting Cs

ms ← P s
ms ⊕ (MM s truncated) (lines 124 and

128) we choose Cs
∗

$
←{0, 1}n and set Cs

ms ← (Cs
∗ truncated) and MM s ← (P s

ms10..0)⊕ Cs
∗ .

• We replace the assignment CCC s
i ← MC s

j ⊕M s
1 in line 136 by the equivalent assignment

CCC s
i ← PPPs

i ⊕M s
j . This is equivalent since MC s

j = MPs
j ⊕M s

j = PPPs
i ⊕M s

1 ⊕M s
j .

• We replace the assignment CCC s
1 ← MC s

1 ⊕ CCC s
2 ⊕ · · · ⊕ CCC s

ms ⊕ h(Ts) in line 138 by the
equivalent assignment CCC s

1 ← PPPs
1 ⊕M s

1 ⊕ (PPPs
2 ⊕ CCC s

2)⊕ · · · ⊕ (PPPs
ms ⊕ CCC s

ms).
This is indeed equivalent since MC s

1 = MPs
1 ⊕M s

1 = PPPs
1 ⊕ · · · ⊕ PPPs

ms ⊕ h(Ts)⊕M s
1 .

Clearly, these changes preserve the distribution of all those variables, and we make the symmetric
changes also for decryption queries.

In addition to these changes, we also slightly simplify the logic of the game by assigning value to
MM s and adding it to Domain and Range even in the case that P s

ms is a full block (|P s
ms | = n). This

has no effect on the answers that are returned to the adversary, but it may increase the probability
of the flag bad being set (since we may introduce collisions that were not present before).

The resulting game R2 is described in Figure 6. It is clear that the changes we made do has
no effect on the probability that A returns one (as they do not change anything in the interaction
between A and its oracles), and they can only increase the probability of setting flag bad. Hence
we conclude that

Pr[AR1 ⇒ 1] = Pr[AR2 ⇒ 1] and Pr[AR1 sets bad] ≤ Pr[AR2 sets bad] (5)

We note that in game R2 we respond to any encipher query P s by returning |P s| random bits, and
similarly, we respond to any decipher query Cs by returning |Cs| random bits. Thus R2 provides
an adversary with an identical view to a pair of random-bit oracles,

Pr[AR2 ⇒ 1] = Pr[A±r̃nd ⇒ 1] (6)

Combining Equations 3, 4, 5, and 6, we thus have that

Adv±r̃nd
EME[Perm(n)](A) = Pr[AE1 ⇒ 1] +

σa
n(σa

n + 2Nbe)

2n
− Pr[AR2 ⇒ 1]

= Pr[AE1 ⇒ 1]− Pr[AR1 ⇒ 1] +
σa

n(σa
n + 2Nbe)

2n

≤ Pr[AR1 sets bad] +
σa

n(σa
n + 2Nbe

2n

≤ Pr[AR2 sets bad] +
σa

n(σa
n + 2Nbe)

2n
(7)

Our task is thus to bound Pr[AR2 sets bad].

16

Respond to the s-th adversary query as follows:

An encipher query, Enc(T s;P s
1 · · ·P

s
ms):

010 tys ← Enc

011 (Cs
1 · · ·C

s
ms−1Cs

∗)
$
←{0, 1}nms

012 Cs
ms ← 1st |P s

ms | bits of Cs
∗

013 return Cs = Cs
1 · · ·C

s
ms

A decipher query, Dec(T s;Cs
1 · · ·C

s
ms):

020 tys ← Dec

021 (P s
1 · · ·P

s
ms−1P s

∗)
$
←{0, 1}nms

022 P s
ms ← 1st |Cs

ms | bits of P s
∗

023 return P s = P s
1 · · ·P

s
ms

Finalization:

First phase

050 D← R← ∅; L
$

←{0, 1}n; h
$

←H // D,R are multisets
051 repeat the following for all s ∈ [1..q]:

100 if tys = Enc then
101 if |P s

ms | = n then lastFulls ← ms

102 else lastFulls ← ms − 1
103 PPPs

ms ← P s
ms padded with 10..0; CCC s

ms ← Cs
ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. P s

i = P r
i

112 if r < s then PPs
i ← PPr

i ; PPPs
i ← PPPr

i

113 else PPs
i ← P s

i ⊕ 2i−1L; PPPs
i

$

←{0, 1}n; D← D ∪ {PPs
i}; R← R ∪ {PPPs

i}

120 M s
1

$

←{0, 1}n

121 MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(T s); MC s

1 ← MPs
1 ⊕M s

1 ; MM s ← PPPs
ms ⊕ Cs

∗

122 D← D ∪ {MPs
1,MM s}; R← R ∪ {MM s,MC s

1}

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then

133 MPs
j ← PPPs

i ⊕M s
1 ; M s

j

$

←{0, 1}n; MC s
j ← MPs

j ⊕M s
j

134 D← D ∪ {MPs
j}; R← R ∪ {MC s

j}
135 CCC s

i ← PPPs
i ⊕ 2kM s

j

136 CCC s
1 ← PPPs

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

140 for i← 1 to lastFulls do
141 CC s

i ← Cs
i ⊕ 2i−1L; D← D ∪ {CCC s

i}; R← R ∪ {CC s
i}

200 The case tys = Dec is treated symmetrically

Second phase

300 bad ← (some value appears more than once in D) or (some value appears more than once in R)

Figure 7: Game R3 is adversarially indistinguishable from game RND2 but defers the setting of bad.

17

Game R3. Next we reorganize game R2 so as to separate out (i) choosing random values to
return to the adversary, (ii) defining intermediate variables, and (iii) setting the flag bad.

We remarked before that game R2 replies to any z-bit query with z random bits. Now, in
game R3, shown in Figure 7, we make that even more clear by choosing the blocks Cs

1 · · ·C
s
ms−1C

s
∗

or P s
1 · · ·P

s
ms−1P

s
∗ just as soon as the sth query is made. Nothing else is done at that point except

for recording if the adversary made an Enc query or a Dec query, and returning the answer to the
adversary.

When the adversary finishes all of its oracle queries and halts, we execute the “finalization”
step of game R3. First, we go over all the variables of the game and determine their values, just
as we do in game R2. While doing so, we collect all the values in the sets Domain and Range,
this time viewing them as multisets D and R, respectively. When we are done setting values to all
the variables, we go back and look at D and R. The flag bad is set if (and only if) any of these
multisets contains some value more than once. This procedure is designed to set bad under exactly
the same conditions as in game R2. The following is thus clear:

Pr[AR2 sets bad] = Pr[AR3 sets bad] (8)

Game N1. So far we have not changed the structure of the games at all: it has remained an
adversary asking q questions to an oracle, our answering those questions, and the internal variable
bad either ending up true or false. The next step, however, actually gets rid of the adversary, as
well as all interaction in the game.

We want to bound the probability that bad gets set to true in game R3. We may assume that
the adversary is deterministic, and so the probability is over the random choices that are made
while answering the queries (in lines 011 and 021), and the random choices in the finalization
phase of the game (lines 050, 113, 120, 133, 213, 220, and 233). We will now eliminate the coins
associated to lines 011 and 021. Recall that the adversary asks no pointless queries.

We would like to make the stronger statement that for any set of values that might be chosen
in lines 011 and 021, and for any set of queries (none pointless) associated to them, the finalization
step of game R3 rarely sets bad. However, this statement isn’t quite true. For example, assume
that queries r and s (r < s) are both encipher queries, and that the random choices in line 011
specify that the i’th ciphertext block in the two answers is the same, Cr

i = Cs
i . Then the flag bad

is sure to be set, since we will have a “collision” between CC r
i and CC s

i . Formally, since in line 141
we set CC r

i = Cr
i ⊕ 2i−1L = Cs

i ⊕ 2i−1L = CC s
1, and since both CC r

i and CC s
i are added to R we

would set bad when we examine their values in line 300.
Another example is when encipher queries r, s have last blocks P r

mr , P s
ms , respectively, that

are partial (namely |P r
mr |, |P s

ms | < n), and the blocks Cs
∗ , C

r
∗ that are chosen at random in line 11

satisfy (P r
mr10..0)⊕ Cr

∗ = (P s
ms10..0)⊕ Cs

∗ . In this case, we would have MM r = MM s and since
both are added to D in line 122 we would set bad when we examine their values in line 300. Similar
examples can be shown for decipher queries.

We call such collisions immediate collisions. Formally, an immediate collision on encipher hap-
pens whenever s is an encipher query and for some r < s we have either Cs

i = Cr
i for some

i ≤ lastFulls, or Cs
∗ = (P s

ms10..0)⊕ (P r
mr10..0)⊕ Cr

∗ when |P r
mr |, |P s

ms | < n. An immediate collision
on decipher happens whenever s is an decipher query and for some r < s we have either P s

i = P r
i for

some i ≤ lastFulls, or P s
∗ = (Cs

ms10..0)⊕ (Cr
mr10..0)⊕ P r

∗ when |Cr
mr |, |Cs

ms | < n. The probability
of an immediate collision (on either encipher or decipher) in game R3 is at most

q∑

s=1

ms(s− 1)

2n
<

q

2n

q∑

s=1

ms =
qσd

n

2n

18

050 D← R← ∅; L
$

←{0, 1}n; h
$

←H // D,R are multisets
051 for s← 1 to q do
100 if tys = Enc then
101 Cs

ms ← 1st |Ps
ms | bits of Cs

∗

102 if |Ps
ms | = n then lastFulls ← ms

103 else lastFulls ← ms − 1; PPPs
ms ← Ps

ms padded with 10..0; CCC s
ms ← Cs

ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. Ps

i = Pr
i

112 if r < s then PPs
i ← PPr

i ; PPPs
i ← PPPr

i

113 else PPs
i ← Ps

i ⊕ 2i−1L; PPPs
i

$

←{0, 1}n; D← D ∪ {PPs
i}; R← R ∪ {PPPs

i}

120 M s
1

$

←{0, 1}n

121 MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(Ts); MC s

1 ← MPs
1 ⊕M s

1 ; MM s ← PPPs
ms ⊕ Cs

∗

122 D← D ∪ {MPs
1,MM s}; R← R ∪ {MM s,MC s

1}

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n
132 if k = 0 then

133 MPs
j ← PPPs

i ⊕M s
1 ; M s

j

$

←{0, 1}n; MC s
j ← MPs

j ⊕M s
j

134 D← D ∪ {MPs
j}; R← R ∪ {MC s

j}
135 CCC s

i ← PPPs
i ⊕ 2kM s

j

136 CCC s
1 ← PPPs

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

140 for i← 1 to lastFulls do
141 CC s

i ← Cs
i ⊕ 2i−1L; D← D ∪ {CCC s

i}; R← R ∪ {CC s
i}

200 else // tys = Dec

201 Ps
ms ← 1st |Cs

ms | bits of Ps
∗

202 if |Cs
ms | = n then lastFulls ← ms

203 else lastFulls ← ms − 1; PPPs
ms ← Ps

ms padded with 10..0; CCC s
ms ← Cs

ms padded with 10..0

210 for i← 1 to lastFulls do
211 r = r[s, i] is the 1st index s.t. Cs

i = Cr
i

212 if r < s then CC s
i ← CC r

i ; CCC s
i ← CCC r

i

213 else CC s
i ← Cs

i ⊕ 2i−1L; CCC s
i

$

←{0, 1}n; D← D ∪ {CCC s
i}; R← R ∪ {CC s

i}

220 M s
1

$

←{0, 1}n

221 MC s
1 ← CCC s

1 ⊕ · · · ⊕ CCC s
ms ⊕ h(Ts); MPs

1 ← MC s
1 ⊕M s

1 ; MM s ← CCC s
ms ⊕ Ps

∗

222 D← D ∪ {MPs
1,MM s}; R← R ∪ {MM s,MC s

1}

230 for i← 2 to lastFulls do
231 j = di/ne, k = (i− 1) mod n
232 if k = 0 then

233 MC s
j ← CCC s

i ⊕M s
1 ; M s

j

$

←{0, 1}n; MPs
j ← MC s

j ⊕M s
j

234 D← D ∪ {MPs
j}; R← R ∪ {MC s

j}
235 PPPs

i ← CCC s
i ⊕ 2kM s

j

236 PPPs
1 ← CCC s

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

240 for i← 1 to lastFulls do
241 PPs

i ← Cs
i ⊕ 2i−1L; D← D ∪ {PPs

i}; R← R ∪ {PPPs
i}

300 bad ← (some value appears more than once in D) or (some value appears more than once in R)

Figure 8: Game N1 is based on game R3 but now τ = (ty,T,P,C) is a fixed, allowed transcript.

19

We make from the Finalization part of game R3 a new game, game N1 (for “noninteractive”). This
game silently depends on a fixed transcript τ = 〈ty,T,P,C〉 with tys the ”type” of query s (tys ∈
{Enc, Dec}) and Ts ∈ {0, 1}∗ the associated data to query s. Also for an encipher query s we have
Ps = Ps

1 · · ·P
s
ms and Cs = Cs

1 · · ·C
s
ms−1, C

s
∗, and for a decipher query we have Ps = Ps

1 · · ·P
s
ms−1P

s
∗

and Cs = Cs
1 · · ·C

s
ms .

Below we let lastFulls denote either ms if the last block in query s is full or ms − 1 if it is
partial. Also, for an encipher query we denote by Ps

∗ the padding of Ps
ms , Ps

∗ = Ps
ms10..0, and by

Cs
ms we denote the first |Ps

ms | bits of Cs
∗. Similarly, for a decipher query we denote Cs

∗ = Cs
ms10..0,

and denote by Ps
ms the first |Cs

ms | bits of Ps
∗. Since the transcript τ is fixed, then also all these

quantities are fixed.
This fixed transcript τ may not specify any immediate collisions or pointless queries; we call

such a transcript allowed. Thus saying that τ is allowed means that for all r < s we have the
following: if tys = Enc then

(i) (Ts, Ps) 6= (Tr, Pr),
(ii) Cs

i 6= Cr
i for any i ∈ [1 .. lastFulls],

(iii) If |Ps
ms |, |Pr

mr | < n then Cs
∗ 6= (Ps

ms10..0)⊕ (Pr
mr10..0)⊕ Cr

∗;
while if tys = Dec then

(i) (Ts, Cs) 6= (Tr, Cr) and
(ii) Ps

i 6= Pr
i for any i ∈ [1 .. lastFulls],

(iii) If |Cs
ms |, |Cr

mr | < n then Ps
∗ 6= (Cs

ms10..0)⊕ (Cr
mr10..0)⊕ Pr

∗.
Now fix an allowed transcript τ that maximizes the probability of the flag bad being set. This one
transcript τ is hardwired into game N1. We have that

Pr[AR3 sets bad] ≤ Pr[N1 sets bad] +
qσd

n

2n
(9)

This step can be viewed as conditioning on the absence of an immediate collision, followed by
the usual argument that an average of a collection of real numbers is at most the maximum of
those numbers. One can also view the transition from game R3 to game N1 as augmenting the
adversary, letting it specify not only the queries to the game, but also the answers to these queries
(as long as it does not specify immediate collisions or pointless queries). In terms of game R3,
instead of having the oracle choose the answers to the queries at random in lines 011 and 021, we
let the adversary supply both the queries and the answers. The oracle just records these queries
and answers. When the adversary is done, we execute the finalization step as before to determine
the bad flag. Clearly such an augmented adversary does not interact with the oracle at all, it just
determines the entire transcript, giving it as input to the oracle. Now maximizing the probability
of setting bad over all such augmented adversaries is the same as maximizing this probability over
all allowed transcripts.

Game N2. Before we move to analyze the non-interactive game, we make one last change, aimed
at reducing the number of cases that we need to handle in the analysis. We observe that due to
the complete symmetry between D and R, it is sufficient to analyze the collision probability in just
one of them. Specifically, because of this symmetry we can assume w.l.o.g. that in game N1

Pr[some value appears more than once in D] ≥ Pr[some value appears more than once in R]

and therefore Pr[N1 sets bad] ≤ 2 · Pr[some value appears more than once in D]. We therefore
replace the game N1 by game N2, in which we only set the flag bad if there is a collision in D. We

20

050 D← ∅; L
$

←{0, 1}n ; h
$

←H // D is a multiset

051 for s← 1 to q do
100 if tys = Enc then
101 Cs

ms ← 1st |Ps
ms | bits of Cs

∗

102 if |Ps
ms | = n then lastFulls ← ms

103 else lastFulls ← ms − 1; PPPs
ms ← Ps

ms padded with 10..0; CCC s
ms ← Cs

ms padded with 10..0

110 for i← 1 to lastFulls do
111 r = r[s, i] is the 1st index s.t. Ps

i = Pr
i

112 if r < s then PPs
i ← PPr

i ; PPPs
i ← PPPr

i

113 else PPs
i ← Ps

i ⊕ 2i−1L; D← D ∪ {PPs
i} ; PPPs

i

$

←{0, 1}n

120 M s
1

$

←{0, 1}n ; MPs
1 ← PPPs

1 ⊕ · · · ⊕ PPPs
ms ⊕ h(Ts); MM s ← PPPs

ms ⊕ Cs
∗

121 D← D ∪ {MPs
1,MM s}

130 for i← 2 to lastFulls do
131 j = di/ne, k = (i− 1) mod n

132 if k = 0 then MPs
j ← PPPs

i ⊕M s
1 ; D← D ∪ {MPs

j} ; M s
j

$

←{0, 1}n

134 CCC s
i ← PPPs

i ⊕ 2kM s
j

135 CCC s
1 ← PPPs

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

140 for i← 1 to lastFulls do D← D ∪ {CCC s
i}

200 else // tys = Dec

201 Ps
ms ← 1st |Cs

ms | bits of Ps
∗

202 if |Cs
ms | = n then lastFulls ← ms

203 else lastFulls ← ms − 1; CCC s
ms ← Cs

ms padded with 10..0

210 for i← 1 to lastFulls do
211 r = r[s, i] is the 1st index s.t. Cs

i = Cr
i

212 if r < s then CCC s
i ← CCC r

i

213 else CCC s
i

$

←{0, 1}n ; D← D ∪ {CCC s
i}

220 M s
1

$

←{0, 1}n ; MPs
1 ← CCC s

1 ⊕ · · · ⊕ CCC s
ms ⊕ h(Ts)⊕M s

1 ; MM s ← CCC s
ms ⊕ Ps

∗

221 D← D ∪ {MM s,MPs
1}

230 for i← 2 to lastFulls do
231 j = di/ne, k = (i− 1) mod n

232 if k = 0 then M s
j

$

←{0, 1}n ; MPs
j ← CCC s

i ⊕M s
1 ⊕M s

j ; D← D ∪ {MPs
j}

234 PPPs
i ← CCC s

i ⊕ 2kM s
j

235 PPPs
1 ← CCC s

1 ⊕M s
1 ⊕ (PPPs

2 ⊕ CCC s
2)⊕ · · · ⊕ (PPPs

ms ⊕ CCC s
ms)

240 for i← 1 to lastFulls do PPs
i ← Ps

i ⊕ 2i−1L; D← D ∪ {PPs
i}

300 bad ← Some value appears more than once in D

Figure 9: Game N2. Twice the probability that bad gets set in this game bounds the probability that bad gets

set in game N1. We highlight random selection by boxing, statements that grow D by shading.

21

now can drop the code that handles R, as well as anything else that doesn’t affect the multiset D.
Specifically, we make the following changes in the code of the game N1:

• We drop the multiset R from the code.

• We replace the assignment MP s
1 ← MC s

1 ⊕M s
1 from line 221 in game N1 by the equivalent as-

signment MPs
1 ← CCC s

1 ⊕ · · · ⊕ CCC s
ms ⊕ h(Ts)⊕M s

1 . Similarly, we replace the assignment
MPs

j ← MC s
j ⊕M s

j from line 233 by the equivalent assignment MP s
j ← CCC s

i ⊕M s
1 ⊕M s

j .

• Now the variable CC s
i and MC s

j are never used in the code, so we drop them altogether.

The resulting game is described in Figure 9, and we have

Pr[N1 sets bad] ≤ 2 · Pr[N2 sets bad] (10)

A.2 Analysis of the non-interactive game

We are now ready to analyze the resulting game N2, showing that the event “ N2 sets bad ” only
happens with small probability. In the analysis we view the multiset D as a set of formal variables
(rather than a multiset containing the values that these variables assume). Namely, whenever we
set D ← D ∪ {X} for some variable X we think of it as setting D ← D ∪ {“X”} where “X” is
the name of that formal variable. Viewed in this light, our goal now is to bound the probability
that two formal variables in D assume the same value in the execution of N2. We observe that
the formal variables in D are uniquely determined by τ—they don’t depend on the random choices
made in the game N2; specifically,

D = {MM s | s ≤ q} ∪ {MP s
j | s ≤ q, j ≤ dlastFulls/ne}

∪ {PPs
i | tys = Dec, i ≤ lastFulls} ∪ {PPs

i | tys = Enc, i ≤ lastFulls, s = r[s, i]}

∪ {CCC s
i | tys = Enc, i ≤ lastFulls} ∪ {CCC s

i | tys = Dec, i ≤ lastFulls, s = r[s, i]}

We view the formal variables in D as ordered according to when they are assigned a value in the
execution of game N2. This ordering too is fixed, depending only on the fixed transcript τ .

Throughout the remainder of this section, in all probability claims, the implicit experiment
is that of game N2. We adopt the convention that in an arithmetic or probability expression, a
formal variable implicitly refers to its value. For example, Pr[X = X ′] means the probability that
the value assigned to X is the same as the value assigned to X ′. (At times we may still write “X”
to stress that we refer to the name of the formal variable X, or value(X) to stress that we refer to
its value.) The rest of this section is devoted to case analysis, proving the following claim:

Claim 3 For any two distinct variable X, X ′ ∈ D we have that Pr[X = X ′] ≤ 2−n.

Before proving Claim 3, we show how to use it to complete the proof of Theorem 1. Recall that
we denote the total number of block encryptions or decryptions by Nbe, so there are no more than
Nbe variables in D and the union bound gives us

Pr[N2 sets bad] ≤

(
Nbe

2

)
/2n (11)

22

Combining Lemma 2 with Equations 7, 8, 9, 10 and 11 we get:

Adv±p̃rp
EME[Perm(n)](A) ≤ Adv±r̃nd

EME[Perm(n)](A) + q(q − 1)/2n+1

≤ 2 · Pr[N2 sets bad] + qσd
n/2n + σa

n(σa
n + 2Nbe)/2

n + q(q − 1)/2n+1

≤ 2 ·

(
Nbe

2

)
/2n + qσd

n/2n + σa
n(σa

n + 2Nbe)/2
n + q(q − 1)/2n+1

Using the bound Nbe < (2 + 1
n)σd

n + 2q from Eq. (2) and substituting σn = σd
n + σa

n (and assuming
that n > 32), it can be shown that

2

(
Nbe

2

)

2n
+

qσd
n

2n
+

σa
n(σa

n + 2Nbe)

2n
+

q(q − 1)

2n+1
<

(2.5σn + 3q)2

2n+1

Since A was an arbitrary adversary with query complexity of q and σn, we are done.

A.2.1 The case analysis

We now need to prove Claim 3. We first prove a few claims, each covering some special cases of
collisions (Claim 7 through Corollary 15 below), and then show that all possible cases are indeed
covered by these claims.

Inspecting the code of game N2 we see that some of the variables in this game are directly
chosen at random from {0, 1}n, while others are assigned values deterministically. Specifically, the
variables that are directly chosen at random (other than the function h) are L, all the variables
M s

j , the variables PPP s
i such that tys = Enc, i ≤ lastFulls and s = r[s, i], and the variables CCC s

i

such that tys = Dec, i ≤ lastFulls and s = r[s, i]. Hereafter we refer to these variables as the free
variables of the game, and we let F denote the set of them:

F = {L} ∪ {M s
j | j ≤ dlastFulls/ne}

∪ {PPPs
i | tys = Enc, i ≤ lastFulls, s = r[s, i]}

∪ {CCC s
i | tys = Dec, i ≤ lastFulls, s = r[s, i]}

The value of any other variable in the game can be expressed as a deterministic function in these
free variables (and in the function h). The bulk of the argument below is roughly to show that for
any pair of variables in D, their sum is either some non-zero constant, or it depends linearly on
some free variable.3

We start with some helpful observations regarding the sum of CCC ’s (or PPP ’s) from the same
query. Fix some s ≤ q and a non-empty set of indices I ⊆ [1..lastFulls], and denote its complement

by I
def
= [1..lastFulls] \ I. Also let

j(I)
def
=

dmax(I)/ne if 1 /∈ I⌈
max(I)/n

⌉
if 1 ∈ I, I 6= ∅

1 if I = ∅

(Roughly, j(I) is either the index of the “last chunk of n blocks that intersects with I” or the index
of the “last chunk that intersects with I”, depending on whether or not 1 ∈ I.)

3In some cases we show that this sum depends on the choice of h in a way that ensures that it is almost always
non-zero.

23

Claim 4 For an encipher query s and a non-empty set I ⊆ [1 .. lastFulls], we have
∑

i∈I CCC s
i =

aM s
j(I) ⊕ β, where a 6= 0 is a constant (that depends on the set I), and β is an expression that

depends only on constants and variables that were determined before M s
j(I) in the game N2.

Likewise, if r is a decipher query (tys = Dec), then
∑

i∈I PPPs
i = aM s

j(I) ⊕ β, where a 6= 0 is a
constant and β is an expression that depends only on constants and variables that were determined
before M s

j(I) in the game N2.

Proof: We prove here only the first assertion. The proof of the other assertion is symmetric.

Consider first the case where 1 /∈ I, and denote Ilast
def
= {i ∈ I | di/ne = j(I)}. Notice that

Ilast 6= ∅. Since s is an encipher query and 1 /∈ I, then for all i ∈ I, the value of CCC s
i is set in

line 134 to CCC s
i ← PPPs

i ⊕ 2(i−1) mod n ·M s
di/ne

. Thus we have

∑

i∈I

CCC s
i =

∑

i∈I

PPPs
i ⊕ 2(i−1) mod n ·M s

di/ne

= things-that-were-determined-before-M s
j(I) ⊕

 ∑

i∈Ilast

2(i−1) mod n

 ·M s

j(I)

It is left to show that the coefficient of M s
j(I) is non-zero. Let j

def
= j(I) and recall that Ilast ⊆

{(j − 1)n + 1, . . . , jn}. Hence, if we denote I ′last = {i− (j − 1)n | i ∈ Ilast} then I ′last ⊆ {1, . . . n}
and I ′last 6= ∅, and therefore

∑
i∈Ilast

2(i−1) mod n =
∑

i′∈I′
last

2i′−1 6= 0.

For the case where 1 ∈ I, let Xs be the constant which is either 0 if the last block in query s
is full (|Ps

ms | = n, lastFulls = ms) or Xs = (PPPs
ms ⊕ CCC s

ms) if it is a partial block (|Ps
ms | < n,

lastFulls = ms − 1). (Note that Xs is indeed a constant: if Pr
ms is a partial block then Xs is equal

to Ps
ms ⊕ Cs

ms , padded with zeros to n bits.) Using this notation we can express the value of CCC s
1

as

CCC s
1 = PPPs

1 ⊕M s
1 ⊕

ms∑

i=2

(PPPs
i ⊕ CCC s

i) = PPPs
1 ⊕M s

1 ⊕
lastFulls∑

i=2

(PPPs
i ⊕ CCC s

i)⊕Xs

Recall that in this case 1 ∈ I so I = [2..lastFulls] \ I. Thus we can write

∑

i∈I

CCC s
i = CCC s

1 ⊕
∑

i∈I, i>1

CCC s
i

=

(
PPPs

1 ⊕M s
1 ⊕

lastFulls∑

i=2

(PPPs
i ⊕ CCC s

i)⊕Xs

)
⊕

∑

i∈I, i>1

CCC s
i

= Xs ⊕
lastFulls∑

i=1

PPPs
i ⊕M s

1 ⊕
∑

i∈I

CCC s
i

= Xs ⊕
lastFulls∑

i=1

PPPs
i ⊕M s

1 ⊕
∑

i∈I

(PPPs
i ⊕ 2(i−1) mod n ·M s

di/ne
)

= things-that-were-determined-before-M s
1 ⊕M s

1 ⊕
∑

i∈I

2(i−1) mod n ·M s
di/ne

Denote I last
def
= {i ∈ I | di/ne = j(I)}, and note that I last = ∅ if and only if I = ∅.

24

Now, if j(I) > 1 (which means that I 6= ∅ and in particular I last 6= ∅), then the coefficient of
M s

j(I) in the expression above is
∑

i∈I last
2(i−1) mod n, which is non-zero since I last is non-empty. If

j(I) = 1 then the coefficient of M s
j(I) = M s

1 is (1⊕
∑

i∈Ilast
2i−1), which is non-zero since 1 /∈ I last.

Corollary 5 For any query s and any fixed non-empty set I ⊆ [1..lastFulls], we have Pr[
∑

i∈I CCC s
i =

0] = 2−n and similarly Pr[
∑

i∈I PPPs
i = 0] = 2−n.

Proof: Again, due to symmetry it is sufficient to prove only the case of
∑

i CCC s
i . If s is an

encipher query then this follows directly from Claim 4. If s is a decipher query, then each CCC s
i is

either itself a free variable (if it is a “new block”, r[s, i] = s) or it is set equal to CCC
r[s,i]
i (where

r[s, i] is the last query such that Cr
i = Cs

i). Hence we can write
∑

i∈I CCC s
i =

∑
i∈I CCC

r[s,i]
i .

Let r∗ be the largest value r[s, i] for any i ∈ I (for example, r∗ = s if any of the CCC s
i ’s is a

“new block”). Also, let I∗ be all the indices i ∈ I such that r[s, i] = r∗, and let i∗ be the largest
index in I∗. That is, we define

r∗
def
= max{r[s, i] | i ∈ I}, I∗

def
= {i ∈ I | r[s, i] = r∗}, i∗

def
= max(I∗)

By definition, since I is non-empty then I∗ must also be non-empty. Also, for any i ∈ I \ I∗ we
have r[s, i] < r∗. If query r∗ is an encipher query, then CCC r∗

i∗ is a free variable and we can write

∑

i∈I

CCC s
i =

∑

i∈I\{i∗}

CCC
r[s,i]
i ⊕ CCC r∗

i∗

= things-that-were-determined-before-CCC r∗

i∗ ⊕ CCC r∗

i∗

Hence the probability that
∑

i∈I CCC s
i = 0, over the random choice of CCC r∗

i∗ , is exactly 2−n. On
the other hand, if query r∗ is a decipher query, then we can apply Claim 4 to query r∗ and get

∑

i∈I

CCC s
i =

∑

i∈I∗

CCC r∗

i ⊕
∑

i∈I\I∗

CCC
r[s,i]
i

=
(
αM r∗

j(I∗) ⊕ β
)
⊕

∑

i∈I\I∗

CCC
r[s,i]
i = αM r∗

j(I∗) ⊕ β′

where α 6= 0 and β′ is an expression that depends only on constants and variables that were
determined before M r∗

j(I∗) in the game N2. Again, the probability of
∑

i∈I CCC s
i = 0, over the

random choice of M r∗

j(I∗), is exactly 2−n.

The “last free variable”. In the case analysis to come, we consider for each variable X ∈ D,
the last free variable (in the ordering of the game N2) that X depends on, denoted φ(X). Formally,
we have a function φ: D→ F ∪ {none} that is defined as follows:

• As the variables MM s are all constants, depending only on Ps
ms and Cs

∗ (or Cs
ms and Ps

∗), we
denote φ(MM s) = none for all s.

• For the formal variables PP s
i ∈ D, this last free variable is L, φ(PP s

i) = L.

25

φ(MM s) = none MM

φ(PPs
i) = L if tys = Dec or s = r[s, i] PP

φ(CCC s
i) =

CCC s
i if tys = Dec and s = r[s, i]

M s
di/ne

if tys = Enc and i > 1

M s
dlastFulls/ne

if tys = Enc and i = 1

CCC1

CCC2

CCC3

φ(MPs
j) =

M s
j if tys = Dec

M s
1 if tys = Enc and j > 1

PPP
rmax[s]
imax[s] if tys = Enc, j = 1, and tyrmax[s] = Enc

M
rmax[s]
jmax[s] if tys = Enc, j = 1, and tyrmax[s] = Dec

MM1

MM2

MM3

MM4

Figure 10: Defining the last free variable, φ(X), associated to formal variable X ∈ D. Transcript τ =
(ty,T,P,C) has been fixed and it determines r[·, ·], rmax[·], imax[·], jmax[·].

• For a formal variable CCC s
i ∈ D this last free variable φ(CCC s

i) is either CCC s
i itself (on

decipher)4 or M s
di/ne

(on encipher, if i > 1), or M s
dlastFulls/ne

(on encipher, if i = 1). The last

two assertions are corollaries of Claim 4 for I = {i}.

• The rules for the MP s
j ’s are a bit more involved. Clearly, on decipher we have φ(MP s

j) = M s
j

for all j, and on encipher we have φ(MP s
j) = M s

1 for all j > 1. To define φ(MP s
1) on encipher,

recall that we set (in line 120) MP s
1 ← h(Ts)⊕

∑m
i=1 PPPs

i , so the last free variable that
MPs depends on, is the “last of the free variables that any PPP s

i depends on”.

Each of these PPP s
i ’s can either be a free variable itself (if this is a “new block”, s = r[s, i]),

or it can be set equal to some prior PPP r
i (if r = r[s, i] < s). In the latter case, PPP r

i is either
a free variable (if query r is encipher), or else it depends on M r

di/ne
(if query r is decipher and

i > 1) or on M r
dlastFullr/ne

(if query r is decipher and i = 1). To define φ(MP s
1), we therefore

denote

rmax[s]
def
= max{r[s, i] | 1 ≤ i ≤ lastFulls}

imax[s]
def
= max{i ≤ lastFulls | r[s, i] = rmax[s]}

and jmax[s]
def
=

⌈
lastFullrmax[s]/n

⌉
if imax[s] = 1

d imax[s]/n e if imax[s] > 1

Thus, when tys = Enc we have

φ(MPs
1) =

PPP
rmax[s]
imax[s] if tyrmax[s] = Enc

M
rmax[s]
jmax[s] if tyrmax[s] = Dec

4 Note that CCC
s
i ∈ D, which means that C

s
i is “a new block”, s = r[s, i].

26

A summary of all these cases appears in Figure 10. We stress that just like the sets D and F,
the function φ too depends only on the fixed transcript τ and not on the random choices in the
game N2. Justifying the name “last free variable” we observe the following, which follows from the
preceding discussion:

Claim 6 Let X ∈ D be a formal variable, and let Y = φ(X). If Y 6= none then the value that X
assumes in game N2 can be expressed as value(X) = a·value(Y)⊕ β where a 6= 0 is a constant (that
depends on the name of the formal variable X and the fixed transcript τ) and β is an expression
involving only constants and free variables that are determined before Y in the game N2. 2

As an immediate corollary of Claim 6, we get the following.

Claim 7 Let X, X ′ ∈ D be formal variables such that φ(X) 6= φ(X ′). Then Pr[X = X ′] = 2−n.

Proof: let Y = φ(X) and let Y ′ = φ(X ′), and assume that Y ′ occurs before Y in N2. By Claim 6
above, we have X ⊕X ′ = a ·Y ⊕ β ⊕ a′ ·Y ′ ⊕ β′ where a 6= 0 is a constant, and β ⊕ a′ ·Y ′ ⊕ β′

is an expression involving only constants and free variables that are determined before Y . As the
value of Y is chosen at random from GF(2n), independently of the other free variables, it follows
that Pr[X = X ′] = 2−n.

Claim 7 leaves us with the task of analyzing collisions between variables that depend on the same
last free variable. These are handled in the next few claims.

Claim 8 For any two distinct variables MM s,MM t ∈ D, we have MM s 6= MM t (with probability
one).

Proof: This follows from the fact that the transcript τ is allowed: Assume, for example, that
tys = Enc and tyt = Dec (the other cases are symmetric). Then MM s = Cs

∗ ⊕ (Ps
ms10..0) and

MM t = Pt
∗ ⊕ (Ct

mt10..0), so MM s = MM t implies Pt
∗ = Cs

∗ ⊕ (Ps
ms10..0)⊕ (Cs

mt10..0) which is not
allowed.

Claim 9 For any two distinct variables PP s
i ,PP t

i′ ∈ D, we have Pr[PP s
i = PP t

i′] ≤ 2−n.

Proof: If i 6= i′ then we have

PPs
i ⊕ PP t

i′ = (Ps
i ⊕ 2i−1L)⊕ (Pt

i′ ⊕ 2i′−1L) = Ps
i ⊕ Pt

i′ ⊕ (2i ⊕ 2i′)L

and as i 6= i′, the coefficient of L is non-zero, and therefore Pr[PP s
i ⊕ PP t

i′ = 0n] = 2−n. If i = i′

and t < s then necessarily Ps
i 6= Pt

i′ . (Otherwise, either query s is encipher, in which case r[s, i] < s
and PPs

i /∈ D, or query s is encipher, which means that the transcript τ specifies an immediate
collision.) Therefore, with probability one we have PP s

i ⊕ PP t
i′ = (Ps

i ⊕ 2i−1L)⊕ (Pt
i ⊕ 2i−1L) =

Ps
i ⊕ Pt

i 6= 0.

Claim 10 For any two distinct variables CCC s
i ,CCC t

i′ ∈ D, we have Pr[CCC s
i = CCC t

i′] = 2−n.

Proof: By inspecting Figure 10, we see that for two variable CCC s
i ,CCC t

i′ ∈ D, if s 6= t then
φ(CCC s

i) 6= φ(CCC t
i′) and then by Claim 7 we get Pr[CCC s

i = CCC s
i′] = 2−n. On the other hand,

if s = t and i 6= i′ then Pr[CCC s
i = CCC s

i′] = 2−n by Corollary 5.

Claim 11 For any two variables CCC s
i ,MP t

j ∈ D, Pr[CCC s
i = MP t

j] = 2−n.

27

Proof: From the definition of φ(·) in Figure 10 it follows that:

• If s is a decipher query then φ(CCC s
i) = CCC s

i 6= φ(MP t
j).

• If s is an encipher query and s > t then φ(CCC s
i) = M s

j′ 6= φ(MP t
j), since MP t

j cannot depend
on anything that happens in a later query s.

• If s is an encipher query and s < t, then:

– If t is a decipher query or j > 1, then φ(MP t
j) = M t

j′ 6= φ(CCC s
i), since CCC s

i cannot
depend on anything that happens in a later query t.

– If t is an encipher query and j = 1, then φ(MP t
j) is of the form either PPP r

i′ or M r
j′ ,

where r
def
= rmax[t]. If r 6= s then clearly φ(MP t

j) = XXXr
∗ 6= Y Y Y s

∗ = φ(CCC s
i). (We

use XXXs
∗ , Y Y Y s

∗ to denote some free variables that are set in queries r, s, respectively.)
But if r = s then tyr = Enc, so φ(MP t

j) = PPP r
i′ 6= φ(CCC s

i).

• If s is an encipher query and s = t and j = 1 then φ(MP s
j) is either some PPP s′

i′ 6= φ(CCC s
i)

(rule MM3), or some M r
j for r < s (rule MM4) and again φ(MP t

j) = M r
j 6= Y Y Y s

∗ = φ(CCC s
i .

• If s is an encipher query, s = t, j > 1, and i > n, then φ(CCC s
i) = M s

di/ne 6= M s
1 = φ(MP t

j).

• If s is an encipher query and s = t and j > 1 and i = 1, then φ(CCC s
i) = M s

dlastFulls/ne and

φ(MP t
j) = M s

1 . But since j > 1 it must be that lastFulls > n, so φ(CCC s
i) 6= φ(MP t

j).

In any of the cases above, we get Pr[CCC s
i = MP t

j] = 2−n by Claim 7. The only case left to
analyze is when s = t is an encipher query, j > 1, and 1 < i ≤ n. In this case MP s

j is assigned
value in line 132, MP s

j ← PPPs
ij ⊕M s

1 (ij = jn− n + 1), and CCC s
i is assigned value in line 134,

CCC s
i ← PPPs

i ⊕ 2i−1M s
1 . Hence

MPs
j ⊕ CCC s

i = (PPPs
ij ⊕M s

1)⊕ (PPPs
i ⊕ 2i−1M s

1) = PPPs
ij ⊕ PPPs

i ⊕ (1⊕ 2i−1)M s
1

The coefficient of M s
1 is 1⊕ 2i−1 6= 0 (since i > 1), so the sum MP s

j ⊕ CCC s
i depends linearly on

M s
1 and Pr[CCC s

i = MPs
j] = 2−n.

The most involved case to analyze (indeed, the one that embodies the “real reason” that EME∗

is secure) is collisions of the type MP s
j = MP t

j′ . We break the analysis of these collisions into the
following three claim: in Claim 12 we analyze the case s = t, in Claim 13 we analyze the case s 6= t
and either j or j ′ are different than one, and in Claim 13 we analyze the (hardest) case where s 6= t
and j = j′ = 1.

Claim 12 For any two distinct variables MP s
j ,MPs

j′ ∈ D, belonging to the same query s, it holds
that Pr[MPs

j = MPs
j′] ≤ 2−n.

Proof: Assume w.l.o.g. that j ′ > j. From Figure 10 we see that if tys = Dec then we would
have φ(MPs

j′) = M s
j′ 6= M s

j = φ(MPs
j). Also, if tys = Enc and j′ > j = 1, then φ(MP s

j′) = M s
1 ,

but φ(MPs
1) is either some PPP r

∗, or else it is some M r
∗ for an earlier query r < s. (The latter case

corresponds to rule MM4 from Figure 10, and we cannot have r = s since tys = Enc but tyr = Dec.)
In any of these cases, we get φ(MP s

j′) 6= φ(MPs
j) and by Claim 7 Pr[MP s

j = MPs
j′] = 2−n.

We are left with the case where tys = Enc, and j′ > j > 1. Hence both MP s
j ,MPs

j′ were assigned
values in line 132 of Game N2, so

MPs
j ⊕MPs

j′ = (PPPs
i ⊕M s

1)⊕ (PPPs
i′ ⊕M s

1) = PPPs
i ⊕ PPPs

i′

28

(with i = jn − n + 1 and i′ = j′n − n + 1). By Corollary 5 (with I = {i, i′}), we have Pr[MP s
j =

MPs
j′] = Pr[PPPs

i ⊕ PPPs
i′ = 0] = 2−n.

Claim 13 For any two distinct variables MP s
j ,MP t

j′ ∈ D, such that s 6= t and at least one of j, j ′

is not equal to one, it holds that Pr[MP s
j = MP t

j′] ≤ 2−n.

Proof: Assume w.l.o.g. that s < t. We observe the following from Figure 10:

• If tyt = Dec or j′ > 1 then φ(MP t
j′) = M t

j′′ (for some j′′), but MPs
j cannot depend on M t

j′′

which is only determined when processing query t > s. Hence φ(MP s
j) 6= φ(MP t

j′).

• If tyt = Enc and j′ = 1 (so j > 1) and r
def
= rmax[t] 6= s, then φ(MP t

j′) is either some PPP r
∗ or

some M r
∗ whereas φ(MP s

j) = M s
∗ , so again φ(MP s

j) 6= φ(MP t
j′).

• If tyt = Enc and j′ = 1 (so j > 1) and r
def
= rmax[t] = s and tys = Enc, then φ(MP s

j) = M s
j 6=

PPPs
∗ = φ(MP t

j′).

In either of these cases we get Pr[MP s
j = MPs

j′] = 2−n by Claim 7.
The only case left to analyze for this claim is when s < t, tyt = Enc, j′ = 1 (so j > 1),

r
def
= rmax[t] = s, and tys = Dec. In this case MP t

j′ = MP t
1 was assigned value in line 120 of

Game N2, MP t
1 ← h(Tt)⊕

∑mt

i=1 PPP t
i, and MPs

j was assigned value in line 232 in game N2,
MPs

j ← CCC s
ij ⊕M s

1 ⊕M s
j (where ij = jn− n + 1 > 1). Hence we get

MP t
1 ⊕MPs

j = (h(Tt)⊕
mt∑

i=1

PPP t
i)⊕ (CCC s

ij ⊕M s
1 ⊕M s

j)

Inspecting the code of game N2, we see that the all the PPP r
i ’s, CCC r

i ’s and M r
j ’s are independent

of the choice of the function h. Hence by property (i) from Claim 2 we get

Pr[MP t
1 = MPs

j] = Pr
h

h(Tt) = CCC s

ij ⊕M s
1 ⊕M s

j ⊕
mt∑

i=1

PPP t
i

 = 2−n

Claim 14 For any two queries s 6= t, it holds that Pr[MP s
1 = MP t

1] ≤ 2−n.

Proof: We again assume w.l.o.g. that s < t. As in Claim 13, we observer that if tyt = Dec or
rmax[t] 6= s then φ(MP t

1) 6= φ(MPs
1) and we are done by Claim 7. So from now on we assume that

tyt = Enc and rmax[t] = s.
Recall that since the transcript τ is allowed, we know that either Ts 6= Tt or Ps 6= Pt. We start

by analyzing the case where Ts 6= Tt. Observe that regardless of the direction of queries s, t, it
holds that MPs

1 = h(Ts)⊕
∑ms

i=1 PPPs
i and MP t

1 = h(Tt)⊕
∑ms

i=1 PPP t
i. Thus

MP t
1 ⊕MPs

1 = h(Tt)⊕
mt∑

i=1

PPP t
i ⊕ h(Ts)⊕

ms∑

i=1

PPPs
i

= h(Tt)⊕ h(Ts)⊕ things-that-are-independent-of-h

29

and since Ts 6= Tt, we have Pr[MP t
1 = MPs

j] = 2−n by property (ii) from Claim 2.
Next we analyze the case where Ts = Tt and Ps 6= Pt. To facilitate treatment of queries with

partial blocks, let us denote for all r

Y r =

{
PPP r

mr if |Pr
mr | < n

0 if |Pr
mr | = n

and note that Y r is a constant, depending only on Pr
mr , and that if Ps

ms 6= Pt
mt then Y s 6= Y t. Then

we can write

MPs
1 ⊕MP t

1 = h(Ts)⊕
lastFulls∑

i=1

PPPs
i ⊕ Y s ⊕ h(Tt)⊕

lastFullt∑

i=1

PPP t
i ⊕ Y t

= Y s ⊕ Y t ⊕
lastFulls∑

i=1

PPPs
i ⊕

lastFullt∑

i=1

PPP t
i (12)

An easy sub-case is where Ps and Pt agree on all the “full blocks”. That is, denote P̃s def
=

Ps
1 . . .Ps

lastFulls and P̃t def
= Pt

1 . . .Pt
lastFullt

, and we analyze the case where P̃s = P̃t. Since Ps 6= Pt, it
must be the case where they differ in their last block, namely Ps

ms 6= Pt
mt , which means that Y s 6= Y t.

In this case we have
∑lastFulls

i=1 PPPs
i =

∑lastFullt

i=1 PPP t
i and therefore MP s

1 ⊕MP t
1 = Y s ⊕ Y t 6= 0

with probability one.
For the rest of this proof we assume that Ts = Tt, and P̃s 6= P̃t. Let E be the set of indexes

where P̃s and P̃t agree, E
def
= { i ≤ min(lastFullt, lastFulls) | Ps

i = Pt
i}. We can re-write Eq. (12)

as

MPs
1 ⊕MP t

1 = Y s ⊕ Y t ⊕
∑

i≤lastFulls,i/∈E

PPPs
i ⊕

∑

i≤lastFullt,i/∈E

PPP t
i (13)

where the equality is justified since Ps
i = Pt

i implies PPPs
i = PPP t

i. Recall that we assume tyt = Enc

and rmax[t] = s, and we now distinguish again between two sub-cases:

First sub-case: here we assume that tys = Dec and furthermore P̃s is not a prefix of P̃t. Since
rmax[t] = s, then all the blocks Pt

i already appeared in queries no later than s, namely r[t, i] ≤ s
for all i ∈ [1 .. lastFullt]. Since for i /∈ E we have Ps

i 6= Pt
i, it follows that for these indexes r[t, i] < s.

Thus we get

MPs
1 ⊕MP t

1 = Y s ⊕ Y t ⊕
∑

i≤lastFulls,i/∈E

PPPs
i ⊕

∑

i≤lastFullt,i/∈E

PPP t
i

= Y s ⊕ Y t ⊕
∑

i≤lastFulls,i/∈E

PPPs
i ⊕

∑

i≤lastFullt,i/∈E

PPP
r[t,i]
i

= things-that-were-determined-before-query-s ⊕
∑

i≤lastFulls,i/∈E

PPPs
i (14)

Since P̃s is not a prefix of P̃t, then the set Ds
def
= {i ≤ lastFulls | i /∈ E} is non-empty. And since

query s is decipher, we can apply Claim 4 to conclude that
∑

i∈D PPPs
i = αMPs

j(Ds)
⊕ β where

α 6= 0 and β depends only on things that were determined before MP s
j(Ds)

. Combining this with

30

Eq. (14) we conclude that MP s
1 ⊕MP t

1 = αMPs
j(Ds)

⊕ β′ for the same non-zero constant α, where

β′ is a different expression, but it still depends only on things that were determined before MP s
j(Ds)

.

Therefore, Pr[MP s
1 = MP t

1] = 2−n.

Second sub-case: Next we analyze the cases where either query s is encipher, tys = Enc, or P̃s is
a (proper) prefix of P̃t. Recall that query t is encipher, so each PPP t

i is either a free variable (if it

is a “new block”, r[t, i] = t) or else it is identically set to equal PPP
r[t,i]
i (if r[t, i] < t). And in the

case where query s is encipher, then the same holds for each PPP s
i . Either way, we can re-write

Eq. (13) as

MPs
1 ⊕MP t

1 = Y s ⊕ Y t ⊕
∑

i≤lastFulls,i/∈E

PPP
r[s,i]
i ⊕

∑

i≤lastFullt,i/∈E

PPP
r[t,i]
i (15)

(In the case that query s is decipher and P̃s is a proper prefix of P̃t, the equality follows since
the summation on i ≤ lastFulls, i /∈ E ranges over an empty set.) Recall that by definition we have
r[s, i] = r[t, i] iff P s

i = P t
i iff i ∈ E.

Let query r∗ be “the last query that MP s ⊕MP t depends on”, and let I∗s , I∗t be the sets of
indexes of PPPs

i ’s and PPP t
i ’s that “come from query r∗”. That is, we define

R∗
def
= {r[s, i] | i ≤ lastFulls, i /∈ E} ∪ {r[t, i] | i ≤ lastFullt, i /∈ E},

r∗
def
= max(R),

I∗s
def
= { i ≤ lastFulls | i /∈ E, r[s, i] = r∗ },

I∗t
def
= { i ≤ lastFullt | i /∈ E, r[t, i] = r∗ },

I∗
def
= I∗s ∪ I∗t

From this definition it follows that the sets I∗s , I∗t are disjoint (since r[s, i] 6= r[t, i] for i /∈ E), and
their union is non-empty (since R∗ is non-empty). Using these notation we can rewrite Eq. (15)

MPs
1 ⊕MP t

1 = Y s ⊕ Y t ⊕

∑

i∈I∗s

PPP
r[s,i]
i ⊕

∑

i≤lastFulls,i/∈(E∪I∗s)

PPP
r[s,i]
i

 (16)

⊕

∑

i∈I∗t

PPP
r[t,i]
i ⊕

∑

i≤lastFullt,i/∈(E∪I∗t)

PPP
r[t,i]
i

= things-that-were-determined-before-query-r∗ ⊕
∑

i∈I∗

PPPr∗

i

If query r∗ is decipher, tyr∗ = Dec, we can use Claim 4 to conclude that
∑

i∈I∗ PPPr∗
i = αMP r∗

j(I∗) ⊕ β

where α 6= 0 and β only depends on things that are determined before MP r∗

j(I∗), and since MP r∗

j(I∗)

is a free variable, it follows that Pr[MP s
1 = MP t

1] = 2−n. If query r∗ is encipher, tyr = Enc, then
all the variables PPP r∗

i , i ∈ I∗, are free variables, and again we have Pr[MP s = MP t] ≤ 2−n.

As an immediate corollary from the last three claims we have

Corollary 15 For any two distinct variables MP s
j ,MP t

j′ ∈ D, Pr[MPs
j = MPs

j′] ≤ 2−n. 2

31

Proof of Claim 3. All that is left now is to verify that Claim 7 through Corollary 15 above
indeed cover all the possible types of collisions between X, X ′ ∈ D. So let X, X ′ ∈ D be two distinct
variables. We partition the analysis to four cases, depending on the “type” of the variable X.

X = “MM s”. Here either X ′ = “MM t” in which case Pr[X = X ′] = 0 by Claim 8, or else
φ(X ′) 6= none = φ(X) and we have Pr[X = X ′] = 2−n from Claim 7.

X = “PPs
i”. Similarly to the previous case, either X ′ = “PPs′

i′ ” and we have Pr[X = X ′] = 2−n

by Claim 9, or else φ(X ′) 6= L = φ(X) and we have the same using Claim 7.

X = “CCCs
i ”. If X ′ = “MM t” or X ′ = “MP t

i′” then φ(X ′) 6= φ(X) and we get Pr[X = X ′] = 2−n

from Claim 7. If X ′ = “CCC t
i′” then we get he same from Claim 10, and if X ′ = “MP t

j”
then we get he same from Claim 11.

X = “MPs
j”. If X ′ = “MM t” or X ′ = “MP t

i′” then φ(X ′) 6= φ(X) and we get Pr[X = X ′] = 2−n

from Claim 7. If X ′ = “CCC t
i” then we get he same from Claim 11, and if X ′ = “MP t

j′”
then we get he same from Corollary 15.

This completes the proof of Claim 3.

32

