Generalizing Kedlaya's order counting based on Miura theory

Joe Suzuki

Abstract

K. Kedlaya proposed an method to count the number of \mathbb{F}_{q}-rational points in a hyperelliptic curve, using the Leschetz fixed points formula in Monsky-Washinitzer Cohomology. The method has been extended to super-elliptic curves (Gaudry and Gürel) immediately, to characteristic two hyper-elliptic curves, and to $C_{a b}$ curves (J. Denef, F. Vercauteren). Based on Miura theory, which is associated with how a curve is expressed as an affine variety, this paper applies Kedlaya's method to so-called strongly telescopic curves which are no longer plane curves and contain super-elliptic curves as special cases.

1 Monsky-Washinitzer Cohomology

Let $k=\mathbb{F}_{q^{i}}$ for some $i \geq 1$ with $q=p^{m}$ and p prime, $R=W(k)$ the Witt ring of k, and K the quotient field of R. Let $\overline{\mathcal{A}}$ the coordinate ring of a smooth affine variety over k, \mathcal{A} a smooth R-algebra with $\mathcal{A} \otimes_{R} k \cong \overline{\mathcal{A}}$, and \mathcal{A}^{∞} the p-adic completion of \mathcal{A}. Let v_{p} denote the p-adic valuation on R. Fix $x_{1}, \cdots, x_{n} \in \mathcal{A}^{\infty}$ whose reductions $\bar{x}_{1}, \cdots, \bar{x}_{n}$ generate $\overline{\mathcal{A}}$ over k.

Definition 1 (Monsky-Washinitzer [4]) The week completion \mathcal{A}^{\dagger} of \mathcal{A} is the substring of \mathcal{A}^{∞} consisting of elements $z=\sum_{l_{1} \cdots l_{n}} a_{l_{1} \cdots l_{n}} x_{1}^{l_{1}} \cdots x_{n}^{l_{n}}$ such that

$$
l \geq d(z) \Longrightarrow \frac{\min _{1+\cdots+l_{n}=l} v_{p}\left(a_{l_{1} \cdots l_{n}}\right)}{l}>c(z)
$$

for some $d(z) \in \mathbb{Z}$ and $c(z)>0$.
Let Ω be the \mathcal{A}^{\dagger} module of different forms over K generated by symbols $d x, x \in \mathcal{A}^{\dagger} \otimes_{R} K$ and subject to the relations

1. $d(x+y)=d x+d y$ for $x, y \in \mathcal{A}^{\dagger} \otimes_{R} K$;
2. $d(x y)=x d y+y d x$ for $x, y \in \mathcal{A}^{\dagger} \otimes_{R} K$; and
3. $d x=0$ for $x \in K$.

We define the exterior derivative $d: \wedge^{r} \Omega \rightarrow \wedge^{r+1} \Omega$ by,

$$
\omega=\sum \alpha_{l_{1}, \cdots, l_{r}} d x_{l_{1}} \wedge \cdots \wedge d x_{l_{r}} \mapsto d(\omega)=\sum d\left(\alpha_{l_{1}, \cdots, l_{r}}\right) \wedge d x_{l_{1}} \wedge \cdots \wedge d x_{l_{r}}
$$

where $\alpha_{l_{1}, \cdots, l_{r}} \in \mathcal{A}^{\dagger}$, the sum runs over $1 \leq l_{1}<\cdots<l_{r} \leq n$, and $\wedge^{r} \Omega$ denotes the r-th exterior power of Ω.

Definition 2 (Monsky-Washinitzer [4]) In the sequence of homomorphisms

$$
0 \longrightarrow \wedge^{0} \Omega \xrightarrow{d} \wedge^{1} \Omega \xrightarrow{d} \cdots \xrightarrow{d} \wedge^{n} \Omega \longrightarrow 0,
$$

the cohomology groups of the de Rham complex over $\mathcal{A}^{\dagger} \otimes_{R} K$

$$
H^{r}(\overline{\mathcal{A}} ; K):=\frac{\operatorname{ker}\left(d: \wedge^{r} \Omega \rightarrow \wedge^{r+1} \Omega\right)}{i m\left(d: \wedge^{r-1} \Omega \rightarrow \wedge^{r} \Omega\right)}
$$

$r=0, \cdots, n$, are called the Monsky-Washnitzer cohomology groups, where $\wedge^{-1} \Omega=\wedge^{n+1} \Omega=0$.
In general, it is known that

1. $H^{r}(\overline{\mathcal{A}} ; K), r=0,1, \cdots, n$, are finite dimensional K-vector spaces; and
2. $H^{0}(\overline{\mathcal{A}} ; K)=K$

If we lift the p-power Frobenius $\bar{\sigma}$ of $\overline{\mathcal{A}}$ to an endomorphism σ of \mathcal{A}^{\dagger}, then the q-power Frobenius on $\overline{\mathcal{A}}$ will be lifted to an endmorphism $F:=\sigma^{m}$. In general, an endomorphism ϕ of \mathcal{A}^{\dagger} induces an endmorphism ϕ_{*} on the cohomology groups.

Theorem 1 (Leschetz fixed point formula [5]) Suppose \mathcal{A}^{\dagger} admits an endmorphism F lifting the q^{i}-power Frobenius on $\overline{\mathcal{A}}$. Then, the number of homomorphisms $\overline{\mathcal{A}} \rightarrow k$ equals

$$
\begin{equation*}
\sum_{r=0}^{n}(-1)^{r} \operatorname{Tr}\left(q^{i} F_{*}^{-i} \mid H^{r}(\overline{\mathcal{A}} ; K)\right) \tag{1}
\end{equation*}
$$

2 Kedlaya's Method

Kedraya [2] proposed an order counting method for hyperelliptic curves $C: \bar{y}^{2}=\bar{Q}(\bar{x})(\bar{Q}:$ a polynomial of degree $2 g+1$ over k without repeated roots, p : odd) using the Lefschetz fixed point formula. Kedlaya considered the curve C^{\prime} excluding the points on $\bar{y}=0$ from C. We consider the coordinate ring $\overline{\mathcal{A}}=k\left[\bar{x}, \bar{y}, \bar{y}^{-1}\right]$ for $\bar{y}^{2}=\bar{Q}(\bar{x})$. Let $\mathcal{A}=R\left[x, y, y^{-1}\right]$ for $y^{2}=Q(x)$ such that $\mathcal{A} \otimes_{R} k \cong \overline{\mathcal{A}}$, and \mathcal{A}^{\dagger} the weak completion of \mathcal{A}. Then, the elements of \mathcal{A}^{\dagger} can be viewed as series $\sum_{j=-\infty}^{\infty} \sum_{l=0}^{2 g} a_{l j} x^{l} y^{j}$ with $a_{l j} \in R$ such that

$$
\liminf _{j \rightarrow \infty} \frac{\min _{l}\left\{v_{p}\left(a_{l j}\right)\right\}}{j}>0 \text { and } \liminf _{j \rightarrow-\infty} \frac{\min _{l}\left\{v_{p}\left(a_{l j}\right)\right\}}{j}>0
$$

The essential point is that Kedlaya found for the curve C^{\prime} an admissible endomorphism σ over \mathcal{A}^{\dagger} that is obtained by lifting the p-power Frobenius of $\overline{\mathcal{A}}$, which is needed to apply the Leschetz fixed point formula. We can lift the p-power Frobenius to an endomorphism σ by defining it as the cannonical Witt vector Frobenius on R, then extending to $R[x]$ by mapping $x \in \mathcal{A}^{\dagger}$ to $x^{p} \in \mathcal{A}^{\dagger}$ and $y \in \mathcal{A}^{\dagger}$ to
$y^{\sigma}=y^{p}\left(1+\frac{Q(x)^{\sigma}-Q(x)^{p}}{Q(x)^{p}}\right)^{1 / 2}=y^{p} \sum_{l=0}^{\infty} \frac{(1 / 2)(1 / 2-1) \cdots(1 / 2-l+1)}{l!} \frac{\left(Q(x)^{\sigma}-Q(x)^{p}\right)^{l}}{y^{2 p l}} \in \mathcal{A}^{\dagger}$.
Then, the de Rham cohomology of \mathcal{A} splits $H^{1}(\overline{\mathcal{A}} ; K)$ into eigenspaces under the hyperelliptic involution: a positive eigenspace $H^{1}(\overline{\mathcal{A}} ; K)_{+}$generated by $x^{l} d x / y^{2}$ for $l=0, \cdots, 2 g-1$, and a
negative eigenspace $H^{1}(\overline{\mathcal{A}} ; K)_{-}$generated by $x^{l} d x / y$ for $l=0, \cdots, 2 g-1$. In fact, using the formula

$$
d x \equiv 0, x \in \mathcal{A}^{\dagger} \otimes_{R} K,
$$

any form $\sum_{j=-\infty}^{\infty} \sum_{l=0}^{2 g-1} a_{l j} x^{l} d x / y^{j}$ can be reduced either to $\sum_{l=0}^{2 g-1} b_{l} x^{l} d x / y$ or to $\sum_{l=0}^{2 g-1} b_{l} x^{l} d x / y^{2}$, with $b_{l} \in K$, depending on whether j is odd or even. Since $(d x)^{\sigma_{*}}=p x^{p-1} d x$ and

$$
\left(\frac{1}{y}\right)^{\sigma}=y^{-p}\left(1+\frac{Q(x)^{\sigma}-Q(x)^{p}}{Q(x)^{p}}\right)^{1 / 2}=\sum_{l=0}^{\infty} \frac{(-1 / 2)(-1 / 2-1) \cdots(-1 / 2-l+1)}{l!} \frac{\left(Q(x)^{\sigma}-Q(x)^{p}\right)^{l}}{y^{(2 l+1) p}},
$$

we have a matrix $M=\left(m_{l, j}\right), m_{l, j} \in K$ such that

$$
\left(\frac{x^{l} d x}{y}\right)^{\sigma_{*}} \equiv \sum_{j=0}^{2 g-1} m_{l, j} \frac{x^{j} d x}{y} .
$$

For the Monsky-Washnitzer cohomology groups, since $d x \wedge d y=d y \wedge d(1 / y)=d(1 / y) \wedge d x=0$ for $\overline{\mathcal{A}}$, we have

1. $H^{1}(\overline{\mathcal{A}} ; K) \equiv \Omega$; modulo $d x, x \in \mathcal{A}^{\dagger} \otimes_{R} K$; and
2. $H^{0}(\overline{\mathcal{A}} ; K)=0, r=2,3, \cdots, n$;

Based on the Leschetz fixed point formula, Kedraya showed $q^{i}+1-\# C(k)$ equals the trace of $q^{i} F_{*}^{-i}$ on the negative eigenspace $H^{1}(\overline{\mathcal{A}} ; K)_{-}$of $H^{1}(\overline{\mathcal{A}} ; K)$ for all $i>0$: for another coordinate ring $\overline{\mathcal{A}}^{\prime}=k\left[\bar{x}, \bar{y}^{-2}\right]$ for $\bar{y}^{2}=\bar{Q}(\bar{x})$, we have $H^{0}\left(\overline{\mathcal{A}}^{\prime} ; K\right)=0, r=2,3, \cdots, n$, so that

$$
\begin{aligned}
\# C(k)-d & =\# C^{\prime}(k) \\
& =\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{0}(\overline{\mathcal{A}} ; K)\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}(\overline{\mathcal{A}} ; K)\right) \\
& =\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{0}(\overline{\mathcal{A}} ; K)\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}(\overline{\mathcal{A}} ; K)_{+}\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}(\overline{\mathcal{A}} ; K)_{-}\right) \\
& =\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{0}\left(\overline{\mathcal{A}}^{\prime} ; K\right)\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}\left(\overline{\mathcal{A}}^{\prime} ; K\right)\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}(\overline{\mathcal{A}} ; K)_{-}\right) \\
& =q^{i}+1-d-\operatorname{Tr}\left(q^{i} F_{*}^{-i}, H^{1}(\overline{\mathcal{A}} ; K)_{-}\right)
\end{aligned}
$$

where $d=\#\left\{(\bar{x}, \bar{y}) \in k^{2} \mid \bar{y}^{2}=\bar{Q}(\bar{x}), \bar{y}=0\right\}$. (Note that the Leschetz fixed point formula has been applied in the second and last equlities for $\overline{\mathcal{A}}$ and $\overline{\mathcal{A}}^{\prime}$, respectively.)

By the Weil conjectures, there exists a polynomial

$$
\begin{equation*}
x^{2 g}+a_{1} x^{2 g-1}+\cdots+a_{2 g} \tag{2}
\end{equation*}
$$

whose roots $\alpha_{1}, \cdots, \alpha_{2 g}$ satisfy $\alpha_{j} \alpha_{g+j}=q$ for $j=1, \cdots, g,\left|\alpha_{j}\right|=\sqrt{q}$ for $j=1, \cdots, 2 g$, and

$$
q^{i}+1-\# C(k)=\sum_{j=1}^{2 g} \alpha_{j}^{i}
$$

with $k=\mathbb{F}_{q^{i}}$ for all $i>0$. Thus, the eigenvalues of $q F_{*}^{-1}$ on $H^{1}(\overline{\mathcal{A}} ; K)_{-}$are precisely the α_{j}, as are the eigenvalues of F_{*} itself. Since $a_{j}=a_{2 g-j}$, it suffices to determine a_{1}, \cdots, a_{g}. Since $\alpha_{1}, \cdots, \alpha_{2 g}$ are the roots of (2), the coefficients a_{0}, \cdots, a_{g} are bounded by

$$
\left|a_{i}\right| \leq\binom{ 2 g}{i} q^{i / 2} \leq 2^{2 g} q^{g / 2} .
$$

Thus to determine the zeta function, it suffices to compute the action of F_{*} on a suitable basis of $H^{1}(\overline{\mathcal{A}} ; K)_{-}$modulo p^{N} for $N \geq(g / 2) m+(2 g+1) \log _{p} 2$.

If $z^{\sigma_{*}} \equiv z M$ for $z \equiv\left[\frac{d x}{y}, \frac{x d x}{y}, \cdots, \frac{x^{2 g-1} d x}{y}\right]$ and some $M \in K^{2 g \times 2 g}$, then

$$
z^{F_{*}} \equiv z M M^{\sigma_{*}} M^{\sigma_{*}^{2}} \cdots M^{\sigma_{*}^{m-1}}
$$

Hence, if we compute the product $\mathcal{M}=M M^{\sigma_{*}} M^{\sigma_{*}^{2}} \cdots M^{\sigma_{*}^{m-1}}$ and its characteristic polynomial modulo p^{N}, we can recover the characteristic polynomial of Frobenious from the first g coefficients.

3 Miura Theory

Let F / K be an algebraic function field of one variable over K with a place P_{∞} of degree one. Without loss of generality, we suppose the set of pole numbers of $P_{\infty}, M_{P_{\infty}}$, is some monoid $<$ $A>$ generated by n positive integers in $A=\left\{a_{1}, \cdots, a_{n}\right\}$ such that $a_{j} \notin<a_{1}, \cdots, a_{j-1}, a_{j+1}, \cdots, a_{n}>$ for $1 \leq j \leq n$ and $\operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)=1$.

Let $x_{j} \in F, 1 \leq j \leq n$, be functions such that $\left(x_{j}\right)_{\infty}=a_{j} P_{\infty}$. Then,

$$
\mathcal{L}\left(\infty P_{\infty}\right):=\cup_{m=0}^{\infty} \mathcal{L}\left(m P_{\infty}\right)=K\left[x_{1}, \cdots, x_{n}\right]
$$

Hence, the mapping

$$
\Theta: \begin{cases}K\left[X_{1}, \cdots, X_{n}\right] & \rightarrow K\left[x_{1}, \cdots, x_{n}\right]=\mathcal{L}\left(\infty P_{\infty}\right) \\ f\left(X_{1}, \cdots, X_{n}\right) & \mapsto f\left(x_{1}, \cdots, x_{n}\right)\end{cases}
$$

gives a surjective homorphism, i.e., $K\left[X_{1}, \cdots, X_{n}\right] / \operatorname{Ker} \Theta \simeq \mathcal{L}\left(\infty P_{\infty}\right)$.
Let \mathbb{N} be the nonnegative integers. We wish to obtain Ker Θ. To this end, we define $\Psi_{A}: \mathbb{N}^{n} \rightarrow<A>$ by $\Psi_{A}\left(s_{1}, \cdots, s_{n}\right)=\sum_{j=1}^{n} a_{j} s_{j}$.

Definition $3\left(C_{A}\right.$ order) $\alpha>_{A} \beta$ for $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \in \mathbb{N}^{n}$ if

1. $\Psi_{A}\left(\alpha_{1}, \cdots, \alpha_{n}\right)>\Psi_{A}\left(\beta_{1}, \cdots, \beta_{n}\right)$, or
2. $\Psi_{A}\left(\alpha_{1}, \cdots, \alpha_{n}\right)=\Psi_{A}\left(\beta_{1}, \cdots, \beta_{n}\right)$ and $\alpha_{1}=\beta_{1}, \cdots, \alpha_{j-1}=\beta_{j-1}, \alpha_{j}<\beta_{j}$ for some $1 \leq j \leq$ n.

If we define

$$
B(A):=\left\{\text { the least } M \in \mathbb{N}^{n} \text { w.r.t. } C_{A} \text { order } \mid \Psi_{A}(M) \in<A>\right\}
$$

and

$$
V(A):=\left\{L \in \mathbb{N}^{n} \backslash B(A) \mid L=L_{1}+L_{2}, L_{1} \in \mathbb{N}^{n} \backslash B(A) L_{2} \in \mathbb{N}^{n} \Longrightarrow L_{2}=(0, \cdots, 0)\right\}
$$

then one easily checks

$$
\mathbb{N}^{n} \backslash B(A)=V(A)+\mathbb{N}^{n}
$$

Let $x^{M}:=\Pi_{j} x_{j}^{M_{j}}$ for $M=\left(M_{1}, \cdots, M_{n}\right) \in \mathbb{N}^{n}$. Since $\Psi_{A}: B(A) \rightarrow<A>$ is bijective and $\operatorname{dim}_{k}\left(\mathcal{L}\left((l+1) P_{\infty}\right) / \mathcal{L}\left(l P_{\infty}\right)\right) \leq \operatorname{deg} P_{\infty}=1$ for each $l \geq 0,\left\{x^{m} \mid m \in B(A)\right\}$ is a k-basis of $\mathcal{L}\left(\infty P_{\infty}\right)$. Furthermore, for each $M \in \mathbb{N}^{n} \backslash B(A)$, there exists a relation such that

$$
\begin{equation*}
x^{M}+\alpha_{L} x^{L}+\sum_{N \in B(A), \Psi_{A}(N)<\Psi_{A}(L)} \alpha_{N} x^{N}=0, \tag{3}
\end{equation*}
$$

where L is the unique element in $B(A)$ satisfying $\Psi_{A}(M)=\Psi_{A}(L)$, and $\alpha_{L} \neq 0, \alpha_{N} \in K$.
Let

$$
F^{(M)}:=X^{M}+\alpha_{L} X^{L}+\sum_{N \in B(A), \Psi_{A}(N)<\Psi_{A}(L)} \alpha_{N} X^{N},
$$

where we donote $\Pi_{j} X_{j}^{m_{j}}$ by X^{M} for $M=\left(m_{1}, \cdots, m_{n}\right) \in \mathbb{N}^{n}$. Then, we have
Theorem 2 (Miura [3])

$$
\text { Ker } \Theta=\left\{F^{(M)} \mid M \in V(A)\right\} .
$$

The affine algebraic set Ker Θ associated with $\left(F / K, P_{\infty}\right)$ is a smooth affine variety with coordinate ring $K\left[x_{1}, \cdots, x_{n}\right]$.

Example 1 ($C_{a b}$ curves) $A=\{a, b\}$ with $g c d(a, b)=1$. Then,

$$
B(A)=\{(m, l) \mid 0 \leq l \leq a-1, m=0,1, \cdots\}
$$

and

$$
V(A)=\{(0, a)\} .
$$

Hence, the curve C is defined by the equation:

$$
\begin{equation*}
Y^{a}=\alpha_{a b} X^{b}+\sum_{m a+l b<a b} \alpha_{m a+l b} X^{m} Y^{l}, \tag{4}
\end{equation*}
$$

where $\alpha_{a b}, \alpha_{m a+l b} \in K$. By transforming the variables X and Y to $\alpha_{a b}^{s} X$ and $\alpha_{a b}^{t} Y$ with $s, t \in \mathbb{Z}$, respectively, we can set $\alpha_{a b}=1$. (Note $\left.g c d(a, b)=1\right)$. If $\alpha_{m a+l b}=0$ for $l \neq 0\left(g c d\left(a_{1}, p\right)=1\right.$ is required), the curve is called super-elliptic.

Example $2 A=\{4,6,5\}$. Then,

$$
\begin{aligned}
B(A)= & \{(0,0,0),(1,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0),(0,1,1), \\
& (3,0,0),(2,0,1),(2,1,0),(1,1,1),(4,0,0), \cdots\}
\end{aligned}
$$

and

$$
V(A)=\{(0,2,0),(0,0,2)\} .
$$

Hence, the curve C is defined by the equations:

$$
\begin{gathered}
Y^{2}=\beta_{12} X^{3}+\beta_{11} Y Z+\beta_{10} X Y+\beta_{9} X Z+\beta_{6} Y+\beta_{5} Z+\beta_{4} X+\beta_{0} \\
Z^{2}=\gamma_{10} X Y+\gamma_{9} X Z+\gamma_{6} Y+\gamma_{3} Z+\gamma_{4} X+\gamma_{0}
\end{gathered}
$$

where $\beta_{i}, \gamma_{j} \in K$.

Without loss of generality, we fix an element $a_{1} \in A$ such that $\left(a_{1}, p\right)=1$. Such an a_{1} exists because the number of gaps, g, is finite, and $\left(a_{j}, p\right)=1$ for some j. Let b_{l} denote the minimal $b \in<a_{2}, \cdots, a_{n}>$ such that $b \equiv l \bmod a_{1}, l=0,1, \cdots$. Clearly, $b_{l}=b_{l+m a_{1}}$ for $m=0,1, \cdots$.

Let $T(A):=\left\{\left(s_{1}, s_{2}, \cdots, s_{n}\right) \in B(A) \mid s_{1}=0\right\}$. Then,

Theorem 3 (Miura [3])

$$
\begin{equation*}
T(A)=\left\{M \in B(A) \mid \Psi_{A}(M)=b_{l}, l=0,1, \cdots, a_{1}-1\right\} \tag{5}
\end{equation*}
$$

$\# T(A)=a_{1}$, and $\left\{x^{M} \mid M \in T(A)\right\}$ is a $K\left[x_{1}\right]$-basis of $K\left[x_{1}, \cdots, x_{n}\right]$.
Example 3 If $A=\{a, b\}$ with $\operatorname{gcd}(a, b)=1$, then $T(A)=\{(0,0),(0,1), \cdots,(0, a-1)\}$, so that the coordinate ring is

$$
K[x, y]=K[x]+k[x] y+\cdots+K[x] y^{a-1}
$$

for $y^{a}=x^{b}+\sum_{m a+l b<a b} \alpha_{m a+l b} x^{m} y^{l}$, where $\alpha_{m a+l b} \in K$.
Example 4 If $A=\{4,6,5\}$, then $T(A)=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1)\}$ and $b_{0}=0, b_{1}=$ $5, b_{2}=6, b_{3}=9$, so that the coordinate ring is

$$
K[x, y, z]=K[x]+K[x] z+K[x] y+K[x] y z
$$

for

$$
\begin{gathered}
y^{2}=\beta_{12} x^{3}+\beta_{11} y z+\beta_{10} x y+\beta_{9} x z+\beta_{6} y+\beta_{5} z+\beta_{4} x+\beta_{0} \\
z^{2}=\gamma_{10} x y+\gamma_{9} x z+\gamma_{6} y+\gamma_{3} z+\gamma_{4} x+\gamma_{0}
\end{gathered}
$$

where $\beta_{i}, \gamma_{j} \in K$.

Proposition 1

$$
\begin{equation*}
g=\#(\mathbb{N} \backslash<A>)=\sum_{l=0}^{a_{1}-1}\left\lfloor b_{l} / a_{1}\right\rfloor \tag{6}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the largest integer no more than x.
We fix the order of $a_{1}, \cdots, a_{n} \in A$ as $\bar{A}=\left(a_{1}, \cdots, a_{n}\right)$.
Definition 4 (Nijenhuis-Wilf [6]) $\bar{A}=\left(a_{1}, \cdots, a_{n}\right)$ satisfying

$$
\begin{equation*}
a_{j} / d_{j} \in<a_{1} / d_{j-1}, \cdots, a_{j-1} / d_{j-1}> \tag{7}
\end{equation*}
$$

where $d_{j}=\operatorname{gcd}\left(a_{1}, \cdots, a_{j}\right)$, is said to be telescopic. Furthermore, any curve with a K-rational point P_{∞} such that

1. $\mathcal{M}_{P_{\infty}}=A$
2. an ordered \bar{A} of \mathcal{A} is telescopic
is said to be telescopic. In particular, if $n=2$, the curve is telescopic.
Example $5 \bar{A}=(4,6,5)$ satisfies (7) although $\bar{A}=(4,5,6)$ does not. However, the curve with $\mathcal{M}_{P_{\infty}}=A$ is telescopic for A.

Theorem 4 (Nijenhuis-Wilf [6]) In general,

$$
\begin{equation*}
g \leq\left[1+\sum_{j=1}^{n}\left(\frac{d_{j-1}}{d_{j}}-1\right) a_{j}\right] / 2 \tag{8}
\end{equation*}
$$

where $d_{0}=0$. The equation follows if and only if $A=\left(a_{1}, \cdots, a_{n}\right)$ is telescopic.
Theorem 5 (Miura [3]) If a curve with A is telescopic, then

1. $T(A)=\left\{\left(0, t_{2}, \cdots, t_{n}\right) \mid 0 \leq t_{j} \leq d_{j-1} / d_{j}-1, j=2, \cdots, n\right\}$
2. $V(A)=\left\{\left(0, \cdots, 0, d_{j-1} / d_{j}, 0, \cdots, 0\right) \mid j=2, \cdots, n\right\}$.

Example 6 If $A=\{4,6,5\}$, then $T(A)=\{(0,0,0),(0,1,0),(0,0,1),(0,1,1)\}$ and $V(A)=$ $\{(0,2,0),(0,0,2)\}$. Furthermore, $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=(0,5,6,11)$ with $a_{1}=4$, so that $g=4$ from Proposition 1, which is also obtained from Theorem 4.

If Ker $\Theta=\left\{F^{(M)} \mid M \in V(A)\right\}$ is given by

$$
\left\{\bar{F}_{j}\left(X_{1}, \cdots, X_{j}\right) \mid j=2,3, \cdots, n\right\}
$$

for some $\bar{F}_{j}:=X_{j}^{d_{j-1} / d_{j}}-h_{j}\left(X_{1}, \cdots, X_{j-1}\right), h_{j} \in k\left[X_{1}, \cdots, X_{j-1}\right], j=2, \cdots, n$, then the curve is said to be strongly telescopic.

4 Cohomology of Smooth Curves

We consider the coordinate ring $\overline{\mathcal{A}}=k\left[\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n}, \bar{x}_{2}^{-1}, \cdots, \bar{x}_{n}^{-1}\right]$ for some

$$
\bar{F}_{j}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)=0
$$

$j=2, \cdots, n$, and assume that the curve is smooth. Let $\mathcal{A}=R\left[x_{1}, x_{2}, \cdots, x_{n}, x_{2}^{-1}, \cdots, x_{n}^{-1}\right]$ such that $\mathcal{A} \otimes_{R} k \cong \overline{\mathcal{A}}$, and \mathcal{A}^{\dagger} the weak completion of \mathcal{A}.

For monomial $\bar{x}_{1}^{l_{1}} \cdots \bar{x}_{n}^{l_{n}}$ with $\left(\bar{x}_{1}\right)_{\infty}=a_{1}, \cdots,\left(\bar{x}_{n}\right)_{\infty}=a_{n}$ and $l_{1}, \cdots, l_{n} \in \mathbb{N}$, we define for $A=\left\{a_{1}, \cdots, a_{n}\right\}$

$$
\Psi\left(\bar{x}_{1}^{l_{1}} \cdots \bar{x}_{n}^{l_{n}}\right):=\Psi_{A}\left(l_{1}, \cdots, l_{n}\right),
$$

which is extended for polynomial $\sum_{j} r_{j} \bar{x}_{1}^{l_{j 1}} \cdots \bar{x}_{n}^{l_{j n}} \in k\left[\bar{x}_{1}, \cdots, \bar{x}_{n}\right]$ with $r_{j} \in k$ and $l_{j 1}, \cdots, l_{j n} \in$ \mathbb{N}, as

$$
\Psi\left(\sum_{j} r_{j} \bar{x}_{1}^{l_{j 1}} \cdots \bar{x}_{n}^{l_{j n}}\right):=\max _{j} \Psi\left(\bar{x}_{1}^{l_{j 1}} \cdots \bar{x}_{n}^{l_{j n}}\right)
$$

Let F_{j} be the lifted polinomial associated with $\bar{F}_{j}, j=2, \cdots, n$. From the equations $d F_{j}=0$, $j=2, \cdots, n$, we obtain the unique relation

$$
\begin{equation*}
\omega_{*}:=\frac{d x_{1}}{f_{1}\left(x_{1}, \cdots, x_{n}\right)}=\cdots=\frac{d x_{n}}{f_{n}\left(x_{1}, \cdots, x_{n}\right)}, \tag{9}
\end{equation*}
$$

where $f_{j}\left(x_{1}, \cdots, x_{n}\right)=0, j=1, \cdots, n$, have no common zero. This is possible because, if $f_{j}=t f_{j}^{*}$ at $P \in \mathbb{P}_{F}$ with $v_{P}\left(f_{j}^{*}\right)=0$ for $j=1, \cdots, n$, where t is a uniformaizer at P, then we
can replace f_{j} by f_{j}^{*}. Since, if $P \neq P_{\infty}, v_{P}\left(d x_{j}\right) \geq 0$ and $v_{P}\left(f_{j}\right) \geq 0$, and since $\operatorname{deg}\left(w_{*}\right)=2 g-2$, we have

$$
\begin{equation*}
\left(\omega_{*}\right)=(2 g-2) P_{\infty} . \tag{10}
\end{equation*}
$$

Since $\left(f_{j}\right)$ is a principle divisor, $\Psi\left(f_{j}\right)=a_{i}+2 g-1$.
In this section, we find $2 g$ independent elements in $H^{1}(\overline{\mathcal{A}} ; K)$ over K. Hereafter, we denote $\omega \equiv 0$ if differntial $\omega \in \Omega$ is exact, say $H^{1}(\overline{\mathcal{A}} ; K) \equiv \Omega$. We can eliminate the highest degree monomial in $f_{i}\left(x_{1}, \cdots, x_{n}\right) \omega_{*}$ with respect to $>_{A}$ by the relation $d x_{i}=f_{i}\left(x_{1}, \cdots, x_{n}\right) \omega_{*} \equiv 0$ for $i=1, \cdots, n$.

For $b \in\langle A\rangle$, let $M_{A}(b)$ denote the $M \in B(A)$ such that $\Psi_{A}(M)=b$.

Theorem 6

$$
K\left[x_{1}, \cdots, x_{n}\right] \omega_{*} \equiv \sum_{h \in H(A)} K x^{M_{A}(h)} \omega_{*}
$$

with $H(A)=\left[\left\{b_{l}+2 g-1-a_{1} v, 0 \leq l \leq a_{1}-1, v=1, \cdots\right\} \cup\{2 g-1\}\right] \cap<A>$. In particular, $\# H(A)=2 g$.

Proof. From Theorem 3,

$$
R\left[x_{1}, \cdots, x_{n}\right]=\sum_{l=0}^{a_{1}-1} R\left[x_{1}\right] y_{l},
$$

where $y_{l}:=x^{M_{A}\left(b_{l}\right)}$. Then, from (9), we find $g_{j, l}\left(x_{1}, y_{1}, \cdots, y_{a-1}\right) \in R\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
\begin{equation*}
\omega_{*}=\frac{d x_{1}^{j} y_{l}}{g_{j, l}\left(x_{1}, y_{1} \cdots, y_{a_{1}-1}\right)} \tag{11}
\end{equation*}
$$

for $(j, l) \in G\left(a_{1}\right):=\left\{(j, l) \mid j=0,1, \cdots, 0 \leq l \leq a_{1}-1\right\} \backslash\{(0,0)\}$, and obtain

$$
\begin{equation*}
\Psi\left(g_{j, l}\right)=j a_{1}+b_{l}+2 g-1 . \tag{12}
\end{equation*}
$$

From $d x_{1}^{j} y_{l} \equiv 0$ with $(j, l) \in G\left(a_{1}\right), c x^{M_{A}\left(j a_{1}+b_{l}+2 g-1\right)} \omega_{*}$ with $c \in K$ can be reduced to lower degree terms. Hence, Ω modulo exact differentials is spanned by $\left\{x^{M_{A}(h)} \omega_{*} \mid h \in H(A)\right\}$.

If we define by e_{l} the minimal $e_{l}\left(0 \leq l \leq a_{1}-1\right)$ such that $e_{l} \equiv b_{l}+2 g-1 \bmod a_{1}$, then e_{l} ranges over $0 \leq l \leq a_{1}-1$, which means $\sum_{l}\left(b_{l}+2 g-1-e_{l}\right)=\sum_{l}\left(b_{l}+2 g-1-l\right)$. Hence,

$$
\sum_{l}\left\lfloor\frac{b_{l}+2 g-1}{a_{1}}\right\rfloor=\sum_{l} \frac{b_{l}+2 g-1-e_{l}}{a_{1}}=\sum_{l} \frac{b_{l}+2 g-1-l}{a_{1}}=\sum_{l=0}^{a-1} \frac{b_{l}-l}{a_{1}}+2 g-1=3 g-1,
$$

where Proposition 1 has been applied in the last equality. So, we have

$$
\# H(A)=\sum_{l=0}^{a-1}\left\lfloor\frac{b_{l}+2 g-1}{a_{1}}\right\rfloor-g+1=2 g
$$

if $2 g-1 \in<A>(2 g-1$ is a nongap $)$, and

$$
\# H(A)=\sum_{l=0}^{a-1}\left\lfloor\frac{b_{l}+2 g-1}{a_{1}}\right\rfloor-(g-1)=2 g
$$

if $2 g-1 \notin<A>(2 g-1$ is a gap $)$.

Example 7 If $A=\{a, b\}$ with $g c d(a, b)=1$, Proposition 1 implies $g=(a-1)(b-1) / 2$, thus $2 g-1=b(a-1)-a$. We know there exists an injective $\phi:\{0, \cdots, a-1\} \rightarrow\{0, \cdots, a-1\}$ such that $b_{l}=\phi(l) b$ and $\phi(0)=0$. Since

$$
b_{l}+2 g-1-j a=b \phi(l)+a b-a-b-j a=b(\phi(l)-1)+a(b-1-j) \in H(A)
$$

for $1 \leq l \leq a-1$ and $1 \leq j \leq b-1$. However, for $l=0, b_{0}+2 g-1-j a=a b-(j+1) a-b \notin<a, b>$. Thus, we have

$$
H(A)=\{j a+l b \mid 0 \leq j \leq b-2,0 \leq l \leq a-2\}
$$

Hence, Ω is generated by $\left\{x^{j} y^{l} \omega_{*} \mid 0 \leq j \leq b-2,0 \leq l \leq a-2\right\}$ over K modulo exact differentials. If the curve is superelliptic, the equation (4) with $\alpha_{a, b}=1$ reduces to

$$
\begin{equation*}
Y^{a}=X^{b}+\sum_{j=0}^{b-1} \alpha_{j a} X^{j} \tag{13}
\end{equation*}
$$

Then, $\omega_{*}=\frac{d x}{a y^{a-1}}$, and $K[x, y] \omega_{*}$ for (13) is generated by $\left\{\left.x^{j} \frac{d x}{y^{l}} \right\rvert\, 0 \leq j \leq b-2,1 \leq l \leq a-1\right\}$ over K modulo exact differentials.

Example 8 If $A=\{4,6,5\}$, then $H(A)=\{0,4,5,6,8,9,10,14\}$. Hence, Ω is generated by

$$
\left\{w_{*}, x w_{*}, x^{2} w_{*}, z w_{*}, x z w_{*}, y w_{*}, x y w_{*}, x^{2} y^{2} w_{*}\right\}
$$

over K modulo exact differentials. Furthermore, if the curve is defined by

$$
\begin{equation*}
y^{2}=x^{3}+x+1, z^{2}=x y+x+1 \tag{14}
\end{equation*}
$$

then

$$
w_{*}=\frac{d x}{y z}=\frac{d y}{z\left(3 x^{2}+1\right) / 2}=\frac{d z}{x\left(3 x^{2}+1\right) / 2+y(y+1)}
$$

and $K[x, y, z] \omega_{*}$ for (14) is generated by

$$
\left\{\frac{1}{y z} d x, \frac{x}{y z} d x, \frac{x^{2}}{y z} d x, \frac{1}{y} d x, \frac{x}{y} d x, \frac{1}{z} d x, \frac{x}{z} d x, \frac{x^{2} y}{z} d x\right\}
$$

over K modulo exact differentials.

5 Kedlaya's Method for Strongly Telescopic Curves

We apply Kedlaya's method to strongly telescopic curves in n variables $\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n}$ with

$$
\begin{equation*}
\bar{I}=\left\{\bar{x}_{2}^{m_{2}}=\bar{h}_{2}\left(\bar{x}_{1}\right), \bar{x}_{3}^{m_{3}}=\bar{h}_{3}\left(\bar{x}_{1}, \bar{x}_{2}\right), \cdots, \bar{x}_{n}^{m_{n}}=\bar{h}_{n}\left(\bar{x}_{1}, \cdots, \bar{x}_{n-1}\right)\right\} \tag{15}
\end{equation*}
$$

where $\bar{h}_{j} \in k\left[\bar{x}_{1}, \cdots, \bar{x}_{j-1}\right], j=2, \cdots, n$.
Let C be such a curve, and C^{\prime} the affine curve obtained from C by deleting the support of the divisors of $\bar{x}_{2}, \cdots, \bar{x}_{n}$; then the coordinate ring $\overline{\mathcal{A}}$ of C^{\prime} is $k\left[\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n}, \bar{x}_{2}^{-1}, \cdots, \bar{x}_{n}^{-1}\right]$ for \bar{I}.

We fix $\mathcal{A}=R\left[x_{1}, x_{2}, \cdots, x_{n}, x_{2}^{-1}, \cdots, x_{n}^{-1}\right]$ for I such that $\mathcal{A} \otimes_{R} k \cong \overline{\mathcal{A}}$, where

$$
I=\left\{x_{2}^{m_{2}}=h_{2}\left(x_{1}\right), x_{3}^{m_{3}}=h_{3}\left(x_{1}, x_{2}\right), \cdots, x_{n}^{m_{n}}=h_{n}\left(x_{1}, \cdots, x_{n-1}\right)\right\},
$$

and $h_{j} \in R\left[x_{1}, \cdots, x_{j-1}\right], j=2, \cdots, n$, and let \mathcal{A}^{\dagger} be the weak completion of \mathcal{A}.
Let v_{p} denote the p-adic valuation on R. Then, $\sum_{t_{1} \geq 0, t_{2} \cdots, t_{n} \in \mathbb{Z}} s_{t_{1}, \cdots, t_{n}} x_{1}^{t_{1}} \cdots x_{n}^{t_{n}} \in \mathcal{A}^{\dagger}, s_{t_{1}, \cdots, t_{n}} \in$ R, if and only if

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \min _{t_{1} \geq 0, r=\left|t_{1}+\cdots+t_{n}\right|} \frac{v_{p}\left(s_{t_{1}, \cdots, t_{n}}\right)}{r}>0 . \tag{16}
\end{equation*}
$$

We can lift the p-power Frobenious to an endomorphism σ of \mathcal{A}^{\dagger} by defining it as the canonical Witt vector Frobenius on R, then extending to $R\left[x_{1}\right]$ by mapping x_{1} to x_{1}^{p}. Apparently, p divides $x_{1}^{\sigma}-x_{1}^{p}=0$. If p divides $x_{2}^{\sigma}-x_{2}^{p}, \cdots, x_{j-1}^{\sigma}-x_{j-1}^{p}$, then p divides

$$
x_{j}^{\sigma}-x_{j}^{p}=h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p} .
$$

Thus, p divides $h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}$ for all $j=1, \cdots, n$, and

$$
\begin{align*}
x_{j}^{\sigma} & =x_{j}^{p}\left(1+\frac{h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}}{h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}}\right)^{1 / m_{j}} \\
& =x_{j}^{p} \sum_{l=0}^{\infty}\binom{1 / m_{i}}{j} \frac{\left(h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}\right)^{l}}{x_{j}^{p m_{j} l}} \in \mathcal{A}^{\dagger} \otimes_{R} K . \tag{17}\\
\left(x_{j}^{-1}\right)^{\sigma} & =x_{j}^{-p}\left(1+\frac{h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}}{h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}}\right)^{-1 / m_{j}} \\
& =x_{j}^{-p} \sum_{l=0}^{\infty}\binom{-1 / m_{i}}{j} \frac{\left(h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{\sigma}-h_{j}\left(x_{1}, \cdots, x_{j-1}\right)^{p}\right)^{l}}{x_{j}^{p m_{j} l}} \in \mathcal{A}^{\dagger} \otimes_{R} K . \tag{18}
\end{align*}
$$

Let $F=\sigma^{\log _{p} q}$; then F is a lift of the q-power Frobenius, so we may apply the Lefschetz fixed point formula to it and use the result to compute the zeta function of C

Any form can be written as $\sum_{t_{1} \geq 0} \sum_{t_{2}, \cdots, t_{n}} s_{t_{1}, \cdots, t_{n}} x_{1}^{t_{1}} \cdots x_{n}^{t_{n}} d x_{1}$. Then, there are $h_{j}^{*}\left(x_{1}, \cdots, x_{j-1}\right) \in$ $K\left[x_{1}, \cdots, x_{j-1}\right], j=2, \cdots, n$, such that

$$
\begin{equation*}
\omega_{*}:=\frac{d x_{1}}{x_{2}^{m_{2}-1} \cdots x_{n}^{m_{n}-1}}=\frac{d x_{2}}{h_{2}^{*}\left(x_{1}\right) x_{3}^{m_{3}-1} \cdots x_{n}^{m_{n}-1}}=\cdots=\frac{d x_{n}}{h_{n}^{*}\left(x_{1}, \cdots, x_{n-1}\right)} \tag{19}
\end{equation*}
$$

and no common zero in the denominators. Then, the denominator $x_{2}^{m_{2}-1} \cdots x_{n}^{m_{n}-1}$ has degree $\sum_{j=2}^{n} a_{j}\left(m_{j}-1\right)$ equal to $a_{1}+2 g-1$, which means the curve is telescopic (see Theorem 4). Thus, if $t_{j} \geq 0$ for $j=2, \cdots, n$, from the theory in the previous section and (19), they are reduced to some in $\sum_{h \in H(A)} K x^{M_{A}(h)} \omega_{*}$.

From smoothness of C, for any $B \in K\left[x_{1}\right]$ and $t_{j}, j=2, \cdots, n$, there exist $U, V \in K\left[x_{1}, \cdots, x_{n-1}\right]$ such that

$$
B\left(x_{1}\right)
$$

$$
\begin{align*}
= & U\left(x_{1}, \cdots, x_{n-1}\right) h_{2}\left(x_{1}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right) \\
& +V\left(x_{1}, \cdots, x_{n-1}\right)\left[c_{2} h_{2}^{*}\left(x_{1}\right) h_{3}\left(x_{1}, x_{2}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right)\right. \\
& +c_{3} x_{2} h_{3}^{*}\left(x_{1}, x_{2}\right) h_{4}\left(x_{1}, x_{2}, x_{3}\right) \cdots h\left(x_{1}, \cdots, x_{n-1}\right)+ \\
& \left.\cdots+c_{n} x_{2} \cdots x_{n-1} h_{n}^{*}\left(x_{1}, \cdots, x_{n-1}\right)\right] \tag{20}
\end{align*}
$$

if $c_{j} \neq 0$ for some $j=2, \cdots, n$. In fact, each pair of x_{j} and $h_{j}^{*}\left(x_{1}, \cdots, x_{j-1}\right), j=2, \cdots, n$, cannot be zero at the same time, so that we obtain $\bar{U}, \bar{V} \in K\left[x_{1}, \cdots, x_{n-1}\right]$ such that

$$
\begin{aligned}
1= & \bar{U}\left(x_{1}, \cdots, x_{n-1}\right) h_{2}\left(x_{1}\right) \cdots h_{n}\left(x_{2}, \cdots, x_{n-1}\right) \\
& +\bar{V}\left(x_{1}, \cdots, x_{n-1}\right)\left[c_{2} h_{2}^{*}\left(x_{1}\right) h_{3}\left(x_{1}, x_{2}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right)\right. \\
& \left.+c_{3} x_{2} h_{3}^{*}\left(x_{1}, x_{2}\right) h_{4}\left(x_{1}, x_{2}, x_{3}\right)+\cdots+c_{n} x_{2} \cdots x_{n-1} h_{n}^{*}\left(x_{1}, \cdots, x_{n-1}\right)\right]
\end{aligned}
$$

and $U=\bar{U} B, V=\bar{V} B \in K\left[x_{1}, \cdots, x_{n-1}\right]$. On the other hand,

$$
\begin{align*}
0 \equiv & d\left[\frac{S\left(x_{1}, \cdots, x_{n-1}\right)}{x_{2}^{t_{2}-m_{2}} \cdots x_{n}^{t_{n}-m_{n}}}\right] \\
= & d S\left(x_{1}, \cdots, x_{n-1}\right) x_{2}^{m_{2}-t_{2}} \cdots x_{n}^{m_{n}-t_{n}} \\
& -\left(t_{2}-m_{2}\right) S\left(x_{1}, \cdots, x_{n-1}\right) x_{2}^{m_{2}-1-t_{2}} x_{3}^{m_{3}-t_{3}} \cdots x_{n}^{m_{n}-t_{n}} d x_{2} \\
& -\cdots-\left(t_{n}-m_{n}\right) S\left(x_{1}, \cdots, x_{n-1}\right) x_{2}^{m_{2}-t_{2}} \cdots x_{n-1}^{m_{n-1}-t_{n-1}} x_{n}^{m_{n}-1-t_{n}} d x_{n} \\
= & d S\left(x_{1}, \cdots, x_{n-1}\right) h_{2}\left(x_{1}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right) / x_{2}^{t_{2}} \cdots x_{n}^{t_{n}} \\
& -S\left(x_{1}, \cdots, x_{n-1}\right)\left[\frac{t_{2}-m_{2}}{m_{2}-1} h_{2}^{*}\left(x_{1}\right) h_{3}\left(x_{1}, x_{2}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right)\right. \\
& +\frac{t_{3}-m_{3}}{m_{3}-1} x_{2} h_{3}^{*}\left(x_{1}, x_{2}\right) h_{4}\left(x_{1}, x_{2}, x_{3}\right) \cdots h_{n}\left(x_{1}, \cdots, x_{n-1}\right) \\
& \left.+\cdots+\frac{t_{n}-m_{n}}{m_{n}-1} x_{2} \cdots x_{n-1} h_{n}^{*}\left(x_{1}, \cdots, x_{n-1}\right)\right] \frac{d x_{1}}{x_{2}^{t_{2}} \cdots x_{n}^{t_{n}}} \tag{21}
\end{align*}
$$

for any $S \in K\left[x_{1}, \cdots, x_{n-1}\right]$ if $t_{j} \neq m_{j}$ for some $j=2, \cdots, n$.
Combining (20) and (21), there exist $U, V \in K\left[x_{1}, \cdots, x_{n-1}\right]$ such that

$$
\begin{equation*}
B\left(x_{1}\right) \frac{d x_{1}}{x_{2}^{t_{2}} \cdots x_{n}^{t_{n}}} \equiv \frac{U\left(x_{1}, \cdots, x_{n-1}\right) d x_{1}+d V\left(x_{1}, \cdots, x_{n-1}\right)}{x_{2}^{t_{2}-m_{2}} \cdots x_{n}^{t_{n}-m_{n}}} \tag{22}
\end{equation*}
$$

Furthermore, from (19) and (22),

$$
\begin{aligned}
d V & =\frac{\partial V}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial V}{\partial x_{n}} d x_{n} \\
& =\left[\frac{\partial V}{\partial x_{1}}+\frac{\partial V}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}+\cdots+\frac{\partial V}{\partial x_{n}} \frac{d x_{n}}{d x_{1}}\right] d x_{1} \\
& =\left[\frac{\partial V}{\partial x_{1}}+\frac{\partial V}{\partial x_{2}} \frac{h_{2}^{*}\left(x_{1}\right)}{x_{2}^{m_{2}-1}}+\cdots+\frac{\partial V}{\partial x_{n}} \frac{h_{n}^{*}\left(x_{1}, \cdots, x_{n-1}\right)}{x_{2}^{m_{2}-1} \cdots x_{n}^{m_{n}-1}}\right] d x_{1}
\end{aligned}
$$

Hence, there exist $B_{s_{2}, \cdots, s_{n}} \in K\left[x_{1}\right]$ such that

$$
\begin{equation*}
B\left(x_{1}\right) \frac{d x_{1}}{x_{2}^{t_{2}} \cdots x_{n}^{t_{n}}} \equiv \sum_{s_{2}<t_{2}, \cdots, s_{n-1}<t_{n-1}} B_{s_{2}, \cdots, s_{n}}\left(x_{1}\right) \frac{d x_{1}}{x_{2}^{s_{2}} \cdots x_{n}^{s_{n}}} \tag{23}
\end{equation*}
$$

with $s_{n}=t_{n}-m_{n}$.
Therefore, if $t_{j} \geq m_{j}$ for all $i=2, \cdots, n,(23)$ can be applied to reduce the degrees of the denominator. If $0 \leq t_{j} \leq m_{j}-1$ for some j, by multiplying denominator and numerator by $x_{j}^{m_{j}}$ and $h_{j}\left(x_{1}\right)$, respectively, we can keep the degree of x_{j} between $-m_{j}+1$ and 0 . If $m_{l} \leq t_{l}$ for some $2 \leq l \leq j-1$ and $0 \leq t_{j} \leq m_{j}-1$, then multiply denominator and numerator by $x_{j}^{m_{j}}$ and $h\left(x_{1}, \cdots, x_{j-1}\right)$, respectively. In any case, the differential forms are generated by the basis, which consists of $2 g$ elements given by Theorem 1 with $w_{*}=x_{2}^{m_{2}-1} \cdots x_{n}^{m_{n}-1}$. Even if $t_{j+1}=\cdots=t_{n}=0$, if $m_{j} \not t_{j}$, there exist $B^{\prime}{ }_{s_{2}, \cdots, s_{j}} \in K\left[x_{1}\right]$ such that

$$
\begin{equation*}
B\left(x_{1}\right) \frac{d x_{1}}{x_{2}^{t_{2}} \cdots x_{j}^{t_{j}}} \equiv \sum_{0 \leq s_{2} \leq m_{2}-1, \cdots, 0 \leq s_{j} \leq m_{j}-1} B_{s_{2}, \cdots, s_{j}}^{\prime}\left(x_{1}\right) \frac{d x_{1}}{x_{2}^{s_{2}} \cdots x_{j}^{s_{j}}} \tag{24}
\end{equation*}
$$

Notice that the degrees of x_{j} and x_{j}^{-1} in x_{j}^{σ} and $\left(x_{j}^{-1}\right)^{\sigma}$ are $-p m_{j} l+1$ and $-p m_{j} l-1$, $l=0,1, \cdots$, and that they cannot be divided by m_{j}. Also, $\left(d x_{1}\right)^{\sigma}=x_{1}^{p-1} d x_{1}$. This implies:

Theorem 7 If $p \nmid m_{2}, \cdots, m_{n}$, then

$$
\begin{equation*}
\left\{\sum_{h \in H(A)} K x^{M_{A}(h)} \omega_{*}\right\}^{\sigma} \equiv \sum_{h \in H(A)} K x^{M_{A}(h)} \omega_{*} \tag{25}
\end{equation*}
$$

Let M be the matrix of the action σ, and denote the product by $\mathcal{M}=M M^{\sigma} M^{\sigma^{2}} \cdots M^{\sigma^{m-1}}$.
Finally, we derive that the number of k-rational points in the curve is $q^{i}+1-\operatorname{Tr}(\mathcal{M})$. In fact, if we define for $j=2, \cdots, n$,

$$
C_{j}:=\left\{\left(\bar{x}_{1}, \cdots, \bar{x}_{j}\right) \in k \mid \bar{F}_{l}\left(\bar{x}_{1}, \cdots, \bar{x}_{l}\right)=0, l=2, \cdots, j\right\} \cup\left\{P_{\infty}\right\}
$$

$C_{j}^{0}:=\left\{\left(\bar{x}_{1}, \cdots, \bar{x}_{j}\right) \in C_{j} \mid \bar{x}_{j}=0\right\}$, and $C_{j}^{1}:=C_{j-1}-C_{j}^{0}$, we have

$$
\begin{aligned}
\# C_{j}-\# C_{j}^{0}= & \operatorname{Tr}\left(q^{i} F_{*}^{-i} \mid K\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i} \mid H^{1}\left(k\left[x_{1}, x_{2}, \cdots, x_{j}, x_{2}^{-1}, \cdots, x_{j}^{-1}\right] /(\bar{I}), K\right)\right) \\
= & \operatorname{Tr}\left(q^{i} F_{*}^{-i} \mid K\right)-\operatorname{Tr}\left(q^{i} F_{*}^{-i} \left\lvert\, \sum_{0 \leq s_{2} \leq m_{2}-1, \cdots, 0 \leq s_{j-1} \leq m_{j-1}-1} \frac{K[x] d x}{x_{2}^{s_{2}} \cdots x_{j-1}^{s_{j-1}} x_{j}^{m_{j}}}\right.\right) \\
& -\operatorname{Tr}\left(q^{i} F_{*}^{-i} \left\lvert\, \sum_{0 \leq s_{2} \leq m_{2}-1, \cdots, 0 \leq s_{j-1} \leq m_{j-1}-1,1 \leq s_{j} \leq m_{j}-1} \frac{K[x] d x}{x_{2}^{s_{2}} \cdots x_{j}^{s_{j}}}\right.\right) \\
= & \# C_{j}^{1}-\operatorname{Tr}^{(j)}
\end{aligned}
$$

for all $j=2, \cdots, n$, and $\# C_{1}=q^{i}+1$ where

$$
\operatorname{Tr}^{(j)}=\operatorname{Tr}\left(\left.q^{i} F_{*}^{-i}\right|_{0 \leq s_{2} \leq m_{2}-1, \cdots, 1 \leq s_{i} \leq m_{j}-1} \frac{K[x] d x}{x_{2}^{s_{2}} \cdots x_{j}^{s_{j}}}\right),
$$

and Leschetz fixed point formula has been applied in the first and last equations as $\overline{\mathcal{A}}=$ $k\left[x_{1}, x_{2}, \cdots, x_{j}, x_{2}^{-1}, \cdots, x_{j}^{-1}\right]$ for \bar{I} and $\overline{\mathcal{A}}=k\left[x_{1}, x_{2}, \cdots, x_{j}, x_{2}^{-1}, \cdots, x_{j-1}^{-1}, x_{j}^{-m_{j}}\right]$ for \bar{I}.

Hence,

$$
\begin{aligned}
\# C_{n} & =q^{i}+1-\sum_{j=2}^{n} \operatorname{Tr}^{(j)} \\
& =q^{i}+1-\operatorname{Tr}\left(q^{i} F_{*}^{-i} \left\lvert\, \sum_{0 \leq s_{2} \leq m_{2}-1, \cdots, 0 \leq s_{n} \leq m_{n}-1} \frac{K\left[x_{1}\right] d x_{1}}{x_{2}^{s_{2}} \cdots x_{n}^{s_{n}}}\right.\right) \\
& =q^{i}+1-\operatorname{Tr}\left(q^{i} F_{*}^{-i} \mid \sum_{h \in H(A)} K x^{M_{A}(h)} \omega_{*}\right) .
\end{aligned}
$$

From a similar discussion in Section 2, we obtain the number of \mathbb{F}_{q}-rational points $\# C_{n}$ to be $q+1-\operatorname{Tr}(\mathcal{M})$.

Example 9 For Example 7, the same basis, shown in Example 5, is obtained as the one Gaudry and Gürel [1] showed for superelliptic curves with two variables.

Acknowledgements: This work was partially done while the author was staying in Brown University (2001-2002). Discussion with Professor Joseph H. Silverman was helpful.

References

[1] F. Gaudry and N. Gürel. "An Extension of Keedlaya's Point-Counting Algorithm to Superelliptic Curves", Asiacrypt 2002.
[2] K. Kedlaya. "Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology", J. Ramanujan Math. Soc. 2001.
[3] S. Miura. Error Correcting Codes based on Algebraic Curves (in Japanese). Doctorial Thesis, University of Tokyo, 1998.
[4] P. Monsky and G. Washnitzer, "Formal cohomology. I", Ann. of Math. (2) 88 (1968), 181-217.
[5] P. Monsky and G. Washnitzer, "Formal cohomology. III". Fixed point theorems, Ann. of Math. (2) 93 (1971), 315-343.
[6] A. Nijenhuis and H. S. Wilf, "Representations of integeres by linear forms in nonnegative integers", J. Number Theory 4 (1972), 98-106.
[7] R. Schoof, "Elliptic Curves over finite fields and the computation of square roots mod p ", Math Comp 44 (1985), 483-494.
[8] J. Silverman. Arithmetic of Elliptic Curves Graduate Texts in Mathematics 106. SpringerVerlag, 1986.
[9] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, 1986.
[10] J. Denef, F. Vercauteren. "Computing zeta functions of $C_{a b}$ curves using MonskyWashnitzer cohomology". Preprint October 2003

