Generalizing Kedlaya’s order counting based on Miura theory
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Abstract

K. Kedlaya proposed an method to count the number of F,-rational points in a hyper-
elliptic curve, using the Leschetz fixed points formula in Monsky-Washinitzer Cohomology.
The method has been extended to super-elliptic curves (Gaudry and Giirel) immediately, to
characteristic two hyper-elliptic curves, and to Cy; curves (J. Denef, F. Vercauteren). Based
on Miura theory, which is associated with how a curve is expressed as an affine variety, this
paper applies Kedlaya’s method to so-called strongly telescopic curves which are no longer
plane curves and contain super-elliptic curves as special cases.

1 Monsky-Washinitzer Cohomology

Let k =F,; for some i > 1 with ¢ = p™ and p prime, R = W (k) the Witt ring of k, and K the
quotient field of R. Let A the coordinate ring of a smooth affine variety over k, A a smooth
R-algebra with A ®p k = A, and A™® the p-adic completion of A. Let vp denote the p-adic
valuation on R. Fix z1,---,x, € A® whose reductions Z1, - -, %, generate A over k.

Definition 1 (Monsky-Washinitzer [4]) The week completion A of A is the substring of

A consisting of elements z = Z all...lnxlf .-zl such that

ly-ln

min  vy(ay, ...
Ity =1 p( Iy ln)

[ >d(z) = i

> c(2)
for some d(z) € Z and ¢(z) > 0.

Let © be the A" module of different forms over K generated by symbols dz, = € AT ®p K and
subject to the relations

1. d(z +y) = dx +dy for x,y € AT @p K;
2. d(zy) = xdy + ydx for 2,y € AT ®x K; and
3. dr =0 for x € K.

We define the exterior derivative d : A”Q — A"T1Q by,
w= Zall,'“,lrdmll A ANdxy, — d(w) = Zd(alla“',lr) Ndzy, N+ Ndzy,

where ay, ..;, € AT, the sum runs over 1 <[} < --- < I, <n, and A"Q denotes the r-th exterior
power of €.



Definition 2 (Monsky-Washinitzer [4]) In the sequence of homomorphisms
0— A0 -4 Al % D A
the cohomology groups of the de Rham complex over At @p K

HM (A K) = ker(d: \"Q — ATT1Q)
T im(d T S ATQ)

r=20,---,n, are called the Monsky-Washnitzer cohomology groups, where A~1Q = A"+1Q = 0.
In general, it is known that
1. H(A;K), r=0,1,---,n, are finite dimensional K-vector spaces; and
2. H(A;K) =K

If we lift the p-power Frobenius o of A to an endomorphism o of Af, then the g-power
Frobenius on A will be lifted to an endmorphism F' := ¢™. In general, an endomorphism ¢ of
Al induces an endmorphism ¢, on the cohomology groups.

Theorem 1 (Leschetz fixed point formula [5]) Suppose AT admits an endmorphism F lift-
ing the ¢*-power Frobenius on A. Then, the number of homomorphisms A4 — k equals

n

Y (1) Tr(dF7H (A; K)) (1)

r=0

2 Kedlaya’s Method

Kedraya [2] proposed an order counting method for hyperelliptic curves C : 2 = Q(Z) (Q: a

polynomial of degree 2g + 1 over k without repeated roots, p: odd) using the Lefschetz fixed

point formula. Kedlaya considered the curve c’ excluding the points on § = 0 from C. We

consider the coordinate ring A = k[z,y,y" " for 4> = Q(z). Let A = R[z,y,y~"] for y? = Q(x)

such that A @ k = A, and A! the weak completion of A. Then, the elements of Af can be

viewed as series 22 Z?ﬁo aijzly’ with a;; € R such that
UG S —. s G
j—00 7 j——00 7

>0.

The essential point is that Kedlaya found for the curve C' an admissible endomorphism o
over AT that is obtained by lifting the p-power Frobenius of A, which is needed to apply the
Leschetz fixed point formula. We can lift the p-power Frobenius to an endomorphism o by
defining it as the cannonical Witt vector Frobenius on R, then extending to R[z] by mapping
€ Af to 2P € AT and y € A to

z)” — Q(x)? (1/2)(1/2 —=1)---(1/2—=1+1 z)7 — Q(z)P)!
Q( )Q(x)g())1/2:yp2(/)(/ )“ (1/ + )(Q()yszQ()) At

y" =y (+
=0

Then, the de Rham cohomology of .,fl splits H' (A; K) into eigenspaces under the hyperelliptic
involution: a positive eigenspace H'(A; K), generated by z'dx/y? for [ = 0,---,2g — 1, and a



negative eigenspace H'(A; K)_ generated by z'dz/y for | = 0,---,2g — 1. In fact, using the
formula
dr=0,ze Alopr K ,

any form Y250 S ' qalde/y7 can be reduced either to 327 bztdx [y or to 320 batda /y?,

j=—00
with b; € K, depending on whether j is odd or even. Since (dz)°* = pzP~'dz and
o —pip, Q@) )12 o (=1/2)(=1/2 = 1) - (=1/2 = 1 + 1) (Q(x)” — Q(x)")"
()7 =y (1+— -3t i s )
y Q(x)P pre ! y(204+1)p

we have a matrix M = (m;;), m;; € K such that

2g—1
z'dx zldx
(=)= > my——
Y =0 Y

For the Monsky-Washnitzer cohomology groups, since deAdy = dyAd(1/y) = d(1/y)Adx =0
for A, we have

1. H'(A; K) = Q; modulo dz, x € AT @ K; and
2. HO(“ZLK) :Oa 7":2,3,"',71;

Based on the Leschetz fixed point formula, Kedraya showed q' +1—#C (k) equals the trace
of ¢'F, ' on the negative eigenspace H YA K) of H Y(A; K) for all i > 0: for another coordinate
ring A' = k[z,y72] for 4> = Q(z), we have H*(A'; K) =0, r = 2,3,---,n, so that

#C(k) —d = #C'(k)

= Tr(d'F7' HY (A K)) - TT( F7LHY (A K))
= Tr(d'F;  HY (A K) = Tr(¢'F' HY (A K)4) = Tr(d' B HY (A K) )
= Tr(¢F;" H' (A K) = Tr(¢' 7' HY (A K)) = Tr(g' 7 H (A K)-)
= ¢+1-d-Tr(¢'F,", H' (4 K).)
where d = #{(z,7) € k*|7®> = Q(z),7 = 0}. (Note that the Leschetz fixed point formula has

been applied in the second and last equlities for A and A’, respectively.)
By the Weil conjectures, there exists a polynomial

2?9 + a7 4+ oay, (2)

whose roots a, - -, agg satisfy ajagj =¢qfor j=1,---,g, |oj| = /g for j =1,---,2¢g, and
¢ +1—#C(k Za

with & = [ for all ¢ > 0. Thus, the eigenvalues of qF7 ! on H'(A;K)_ are precisely the aj,
as are the eigenvalues of F, itself. Since a; = ag,—_j, it suffices to determine ay,---,a,. Since
ai,- -, agg are the roots of (2), the coefficients ag, - - -, a4 are bounded by

|ai| < ( 21 ) 12 < 9294917
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Thus to determine the zeta function, it suffices to compute the action of F} on a suitable basis
of H'(A; K)_ modulo pV for N > (g/2)m + (2¢ + 1) log,, 2.

dx xd 29-1q
If 27« = 2M for z = [—x, a x,---,x m] and some M € K?9%29 then
Y

Y Y

1

2 m—
A = MMM - MO

Hence, if we compute the product M = MMM ot ... M°""" and its characteristic polyno-
mial modulo pV, we can recover the characteristic polynomial of Frobenious from the first g
coefficients.

3 Miura Theory

Let F/K be an algebraic function field of one variable over K with a place Py, of degree one.
Without loss of generality, we suppose the set of pole numbers of P, Mp_ , is some monoid <
A > generated by n positive integers in A = {ay,---,a,} such that a; €< a1, --,aj-1,a541, -, an >
for 1 <j <n and ged(ay,---,a,) =1.

Let z; € F, 1 < j <n, be functions such that (2;)s = @;jPsx. Then,

L(00Py) := Uy L(mPy) = Klx1, -+, 2] .
Hence, the mapping

6_{K[X1,---,Xn] — K[z, -+, z5] = L(00Px)
) f(XlaaXn) = f(mla"'amn)

gives a surjective homorphism, i.e., K[Xy,---, X, ]/Ker © ~ L(0c0Py).
Let N be the nonnegative integers. We wish to obtain Ker ©. To this end, we define
Ug: N = < A>by Uy(sy, - +,8,) = 2?21 ajs;.

Definition 3 (C4 order) a >4 § for « = (a1, -+, ) and 8= (B1,---,0,) € N* if
1. \I/A(Ckl,"' aan) > \I/A(Bl,"',ﬁn), or

2. Walar, -yan) =VA(B1,-+,0,) and oy = 1, -+, oj—1 = Bj—1, 5 < B for some 1 < j <
n.

If we define
B(A) := {the least M € N" w.r.t. C4 order|¥4(M) e< A >}
and
V(A) :={L e N'\B(A)|L =L; + Ly, L; e N*\B(A) Ly e N* = Ly = (0,---,0)},

then one easily checks

N*\B(4) = V(A) + N* .



Let oM := Iz} for M = (My,---,M,) € N'. Since U4 : B(A) »< A > is bijective
and dimy(L((I + 1)Px)/L(IPx)) < deg Py, = 1 for each | > 0, {z™|m € B(A)} is a k-basis of
L(00Ps). Furthermore, for each M € N"\B(A), there exists a relation such that

oM +apat + Z ayz™ =0, (3)
NEB(A),¥A(N)<W (L)

where L is the unique element in B(A) satisfying W4 (M) = U4(L), and o # 0, ay € K.
Let
F(M) ::XM-FCVLXL-{- Z aNXN,
NEB(A),¥A(N)<W (L)

where we donote HjX;-nj by XM for M = (my,---,m,) € N’. Then, we have

Theorem 2 (Miura [3])
Ker © = {FIM|M e V(A)} .

The affine algebraic set Ker © associated with (F/K, Py,) is a smooth affine variety with
coordinate ring K[z, -, x,].

Example 1 (Cy curves) A = {a,b} with gcd(a,b) = 1. Then,
BA)={(m,Hl0<l<a-1,m=0,1,--}

and
V(A)={(0,a)} .

Hence, the curve C' is defined by the equation:

Vo=awX’+ Y omen XY, (4)
ma-+lb<ab

where agp, Qe € K. By transforming the variables X and Y to o), X and asz with s,t € Z,
respectively, we can set aq, = 1. (Note ged(a,b) =1). If aypgrpy =0 for I # 0 (ged(aq,p) =1 is
required), the curve is called super-elliptic.

Example 2 A ={4,6,5}. Then,

B(A) = {(0,0,0),(1,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0),(0,1,1),
(3,0,0),(2,0,1),(2,1,0),(1,1,1),(4,0,0),---}

and
V(4) ={(0,2,0),(0,0,2)} .

Hence, the curve C' is defined by the equations:
V?=B1X? 4+ BuY Z + B1oXY + BoXZ + BsY + B Z + BuX + o

Z? =710 XY + %X Z + %Y + BZ + X+,
where 3;,v; € K.



Without loss of generality, we fix an element a1 € A such that (a1,p) = 1. Such an a1 exists
because the number of gaps, g, is finite, and (aj,p) = 1 for some j. Let b; denote the minimal
be<ag,---,ap > such that b=1mod a1, =0,1,---. Clearly, b; = bj4pq, for m =0,1,---.

Let T(A) := {(s1,52,--,5n) € B(A)|s1 = 0}. Then,

Theorem 3 (Miura [3])
T(A):{MEB(AH\IIA(M):I)I’I:O’I’aal_l}? (5)
#T(A) = a1, and {2 |M € T(A)} is a K[z1]-basis of K[zy,---,z,].

Example 3 If A = {a,b} with gcd(a,b) = 1, then T'(A) = {(0,0), (0,1),---,(0,a — 1)}, so that
the coordinate ring is
Klz,y] = K[z] + k[z]y + - + K[a]y*™!

_..b [
for y* ="+ 37 icap Ymativ®™Y', Where apayp € K.

Example 4 If A = {4,6,5}, then T(A) = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)} and by = 0,by =
5,by = 6,b3 =9, so that the coordinate ring is

K(z,y,z] = K[z] + K[z]z + K[z]y + K[z]yz
for
y? = Bi2a® + Bi1yz + Broxy + Boxz + Bey + Boz + Bax + Bo
2% = Y102y + Yoz + Y6y + V37 + V4T + Y0
where 3;,v; € K.

Proposition 1
a1—1

g=#M\ <A>)=>"|h/ai], (6)

1=0
where | 2] is the largest integer no more than z.

We fix the order of ay,--+,a, € A as A = (a, -, ap).

Definition 4 (Nijenhuis-Wilf [6]) A = (a1,---,a,) satisfying

aj/dj e< al/dj,l,---,aj,l/dj,l >, (7)
where d; = ged(aq, -+, aj), is said to be telescopic. Furthermore, any curve with a K-rational
point P, such that

1. Mp_ =4

2. an ordered A of A is telescopic

is said to be telescopic. In particular, if n = 2, the curve is telescopic.

Example 5 A = (4,6,5) satisfies (7) although A = (4,5,6) does not. However, the curve with
Mp,_ = A is telescopic for A.



Theorem 4 (Nijenhuis-Wilf [6]) In general,

n
d;_
g<[1+ (= = Dajl/2, (8)
j=t
where dy = 0. The equation follows if and only if A = (a1, --,a,) is telescopic.

Theorem 5 (Miura [3]) If a curve with A is telescopic, then
1. T(A) = {(O,tQ,--- ,tn)|0 < tj < dj_l/dj —-1,5=2,--- ,n}
2. V(A4) ={(0,---,0,dj_1/d;,0,---,0)|j =2,---,n} .

Example 6 If A = {4,6,5}, then T(A) = {(0,0,0),(0,1,0),(0,0,1),(0,1,1)} and V(A) =
{(0,2,0),(0,0,2)}. Furthermore, (bg,b1,b2,b3) = (0,5,6,11) with a; = 4, so that ¢ = 4 from
Proposition 1, which is also obtained from Theorem 4.

If Ker © = {FIM)|M € V(A)} is given by
{Fj(leaX])L] :2,3,---,71}
for some Fj := X;-ij_l/dj —hj(X1,---,Xj1), hj € B[Xy,---, X 4], j =2,---,n, then the curve

is said to be strongly telescopic.

4 Cohomology of Smooth Curves

We consider the coordinate ring A = k[Z1, T2, -, Ty, 9251, -,z for some

Fj(i‘la"'ajn)zoa

j =2,---,n, and assume that the curve is smooth. Let A = R[x1,z9,- - ,xn,mgl, - 2,1 such
that A ®g k = A, and A" the weak completion of A.
For monomial 3?111 oo Tl with (#1)eo = a1, (Tn)oo = ap and Iy, -+, 1, € N, we define for
A= {al’...’an}
\Il(jlll o j%) = \IIA(llﬂ e aln) 3
which is extended for polynomial Z]- rjﬁclljl fﬁ{" € k[zy,---,2y,) with r; € k and lj1,---, 1, €

N, as
,l]'l ,l]'n 7lj1 —ljn
\Il(g riZ{ - xp") = max V(z] ---xq") .
, J
j

Let F; be the lifted polinomial associated with Fj, J =2,---,n. From the equations dF; = 0,
j =2,---,n, we obtain the unique relation

dry dx,
Wy i =——————— == ————————— (9)
fi(ze, - zn) falzr, - xp)
where fj(z1,---,2,) = 0, j = 1,---,n, have no common zero. This is possible because, if
fi =1tf; at P € Pp with vp(f;) = 0 for j = 1,---,n, where ¢ is a uniformaizer at P, then we
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can replace f; by f7. Since, if P # Py, vp(dzj) > 0 and vp(f;) > 0, and since deg(w.) = 29 -2,
we have
(we) = (29 — 2) P . (10)

Since (f;) is a principle divisor, ¥(f;) = a; +2g — 1. )

In this section, we find 2g independent elements in H Y(A4; K) over K. Hereafter, we denote
w = 0 if differntial w € Q is exact, say H'(A; K) = Q. We can eliminate the highest degree
monomial in f;(z1,- -, z,)w. with respect to >4 by the relation dz; = fi(z1, -, z,)ws =0 for
1=1,---,n.

For b €e< A >, let M 4(b) denote the M € B(A) such that ¥4 (M) = b.

Theorem 6
Klzy, -, zplws = Z KoMa(h),
heH(A)
with H(A) =[{lj+29 —1—a1v,0 <l <a; —1l,v=1,---} U{2¢ — 1}]N < A >. In particular,
#H(A) = 2g.
Proof. From Theorem 3,

a;—1

R[l‘l, T 7',1:77.] = Z R[ml]yl )
=0

where y; := M) Then, from (9), we find 9501, y1, -+, Ya—1) € R[x1,- -+, 2,] such that
d’?
we = arl (11)
9 (T1, Y1+ Yay 1)

for (jal) € G(al) = {(jal)|j =0,1,---,0<0 <a1 — 1}\{(0a0)}a and obtain

\I/(ng) = ja1 + bl + 29 —1. (12)

From day; = 0 with (5,1) € G(ay), caMaliortbit20-Dy, with ¢ € K can be reduced to lower
degree terms. Hence, Q modulo exact differentials is spanned by {zMa(My, |h € H(A)}.

If we define by ¢; the minimal ¢; (0 <[ < ay — 1) such that ¢, = b; + 29 — 1 mod aq, then ¢
ranges over 0 <[ < a; — 1, which means ) ,(b; +29 — 1 —¢;) =) ;(b; + 29 — 1 —[). Hence,

a—1

by +2g9g—1 . bl+29—1—6l_ bl—l-Zg—l—l_ by — 1 .
ZLTJ—Z a1 —Za—l—z - +29g—1=3¢g—-1,
! ! ! 1=0
where Proposition 1 has been applied in the last equality. So, we have
a—1
by +2g9g—1
#H(A) :ZLTJ —g9+1=2
1=0
if 29 —1 €< A > (29 — 1 is a nongap), and
a—1
bp+2g —1
#H(A) =3 =]~ (g = 1) =29

=0

if2g —1¢< A> (29 —1isagap). O



Example 7 If A = {a,b} with ged(a,b) = 1, Proposition 1 implies g = (a — 1)(b — 1)/2, thus
2g—1 =b(a—1) —a. We know there exists an injective ¢ : {0,---,a—1} — {0,---,a — 1} such
that by = ¢(1)b and ¢(0) = 0. Since

bi+29g—1—ja=bp(l)+ab—a—b—ja=0b(p(l) —1)+a(lb—1—j) € H(A)

for1 <l <a—land1 < j <b—1. However, for] =0, bg+29—1—ja = ab—(j+1)a—b €< a,b >.
Thus, we have
H(A) = {ja+b0<j<b—20<I<a—2}.

Hence, Q is generated by {z7y'w,|0 < j <b—2,0 <[ < a—2} over K modulo exact differentials.
If the curve is superelliptic, the equation (4) with ¢, 5 = 1 reduces to

b—1
VO=X" 4 a X7 (13)
=0

d
Then, w, = and K[z, y|w, for (13) is generated by {xj—f|0 <j<b-21<Il<a-1}
)

a a—1"

over K modulo exact differentials.
Example 8 If A = {4,6,5}, then H(A) = {0,4,5,6,8,9,10,14}. Hence,  is generated by
{wy, zw,, 22wy, 2wy, T2Ws, YWy, LYW, x2y2w*}
over K modulo exact differentials. Furthermore, if the curve is defined by
2 _ 3 2 _
y =z2"+z+1, 2“=zy+z+1, (14)
then
dx dy dz

vz 2822+ 1)/2 2322+ 1)/2+yly+1)’
and K[z,y, z]w, for (14) is generated by

Wy =

1 T 22 1 T 22

1
—dz, —dz,—dz, —dz, —dz, —dz, Edac, —ydm}
yz yz yz 'y y z =z z

{

over K modulo exact differentials.

5 Kedlaya’s Method for Strongly Telescopic Curves
We apply Kedlaya’s method to strongly telescopic curves in n variables z1, o, - - -, Z, with
I_ = {j’gm = BZ(jl)ang3 = B3(j17j2)7 T 7j:Lnn = Bn(jla T 7jn*1)} ) (15)

where ﬁj €k, -, %j1),j=2,---,n.
Let C be such a curve, and C' the affine curve obtained from C' by deleting the support of

the divisors of Zg, -+, Z,; then the coordinate ring A of C' is k[Z1, T, - - ,in,jgl, ooyt for
I.



We fix A = R[xl,xQ,---,mn,xgl,---,xgl] for I such that A ®p k = A, where
I = {23 = ha(21), 25" = ha(21,22), -+, 23" = hn(21,-,T01)}

and h; € Rlxy, -+, zj-1], j =2,--+,n, and let At be the weak completion of A.

Let v, denote the p-adic valuation on R. Then, Z Sty 7tnac§1 S xf{” € AT, St et €
t1>0,t2,tn €EZ
R, if and only if
Uy (St ...
lim inf min VSt (16)
T—=00 {1 >0,r=|t14-+tn| r
We can lift the p-power Frobenious to an endomorphism o of Af by deﬁning it as the canonical
Witt vector Frobenius on R, then extending to R[ml] by mapping z; to x}. Apparently, p divides
z§ — 2 = 0. If p divides z§ — 2b, - - TG — ]_1, then p divides
xi — 95? = hj(z1,- -+, 25-1)7 = (@1, z5-0)"

Thus, p divides hj(z1, -, 2-1)7 —hj(z1,---,xj—1)P forall j =1,---,n, and

hi(zy, - @i 1) —hi(x1, -, 2_1)P .
T — LP(1 J > Q) J > Q) 1/m;
K Gt hj(zy, - zj-1)P )
e - (B RTIT Lay p cee e )P
= &Y Vmiy (il o j01) ,/(ml’ i) ¢ pteopk . (17)
J g;‘l.)mj
1=0 j
_ _ h~(m1 x-_l)”—h-(acl $‘—1)p _ 4
-l\o _ “P(q] J > ) ] > ) 1/m;
(z7) z; " (1+ hj(l'l,"',xjfl)p )
o0
_ —1/m; (z1,---,2j_1)" — hj(xy,---,z;_1)P)
= pZ / & : xpm]f / e Al wr K. (18)
J

Let F = ¢'°9; then F is a lift of the g-power Frobenius, so we may apply the Lefschetz fixed
point formula to it and use the result to compute the zeta function of C
Any form can be written as Z Z stl,...,tnm? .- gl"dx,. Then, there are h; (1,--+,2j-1) €

t1>0 ta,tn
Klzi,---,xj_1], j = 2,---,n, such that

dry dzo dxy

Wy 1= — = — == (19)
gt gt h*( Pags o gt hy (21, Tn-1)
and no common zero in the denominators. Then, the denominator mg”_l -o-x™ =1 has degree

Z;’L:Z aj(m;—1) equal to a; +2¢—1, which means the curve is telescopic (see Theorem 4). Thus,
ift; >0 for j =2,---,n, from the theory in the previous section and (19), they are reduced to
some in Z KxMA(h)w*
heH(A)
From smoothness of C, for any B € K[z{]and tj,j = 2,---,n, thereexist U,V € K[z, -+, zp_1]
such that

B(z1)
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= Uz, -, xp_1)ho(x1) - hp(z1, -, 2pn_1)
+V (21, -+, xp_1)[c2hs(z1)hs (21, 22) - - - hp (21, -+, Tp—1)

+ezzohy (21, 22)ha(w1, w2, 23) - - h(21,++  Tp—1) +

+cnx2xn_1h:;(m1’,xn_1)] (20)
if ¢; # 0 for some j = 2,---, n. In fact, each pair of z; and h}(x1,---,2;-1), j = 2,---,n, cannot
be zero at the same time, so that we obtain U,V € K[x1,--+,2,_1] such that

1 = Ua1, 2n1)ho(@1) -+ hol@s, -+, 2n_1)
+V(x1,- -, xn_1)[c2hy(z1)hs(z1, 22) - - hp (21, -+, Tp—1)
+cgxohy(z1, x2)ha(z1, 29, 23) + - + Cpxa - xp_1hy (z1, -+, 2n—1)]

and U =UB,V =VB € K|[z1,-+,2,_1]. On the other hand,

_ S(xla"'amn—l)
0 = d[m§2_m2 . x%"im"]
= dS(ZL‘l,"',ZL'n,I)ZL'g‘L27t2 ...mrnn”_t"
—(ty —mo)S(zq,--- ,mn,l)mglrl*hxg”?’*t?’ ce g
= (ty = mp)S (@1, Ty ) a2 g T e g L g
2 n—1 n
= dS(mla e ,wn_l)hQ(Qfl) e hn($1, e axn—l)/mgz e men
lp —my
—S(wq,- - Jn—l)[mhz(ml)%(ml,@) o hp(Tr, e Tn)
t3 —m "
e 2@ m)ha (@, v we) ()
tn — Mmp B dry 51
+"'+m$2"'$n—1 n(mla“‘amn—l)]m (21)
for any S € K[z, ,zp—1] if t; # m; for some j =2,--- n.
Combining (20) and (21), there exist U,V € K[z1,---,2,—1] such that
B(xl) dml = U(acl,---,xn_l)dam +dV(w1,---,mn_1) (22)
m§2 - mf{” m§2 -m2 mf{” —Mn
Furthermore, from (19) and (22),
ov ov
v = —d s —d
Ey r1 + + oz, In
oV ovd ov d
— [— —ﬂ ..._’__ﬁ]dml
ox1 Oxodxy 0xy dxy
[8_‘/ OV hj(z1) e a4 hfl(m,---,xnfl)]dx
oy 0o g;gm*l ox,, g;gmfl .. len"_l !
Hence, there exist B, ..., € K[z1] such that
dx dx
B(Qil)ﬁ = Z BS2,"',5n(x1)82715n (23)
Ty rerdn s2<t2,+Sn—1<ln—1 To ot tn
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with s, = ¢, — my,.

Therefore, if t; > m; for all i = 2,---,n, (23) can be applied to reduce the degrees of the
denominator. If 0 < ¢; < m; — 1 for some j, by multiplying denominator and numerator by
x;nj and hj(x1), respectively, we can keep the degree of x; between —m; +1 and 0. If m; <t
for some 2 < < j—1and 0 <¢; < mj — 1, then multiply denominator and numerator by

x;nj and h(zi,---,xj_1), respectively. In any case, the differential forms are generated by the
basis, which consists of 2¢g elements given by Theorem 1 with w, = mg”_l oM™=l Even if
tiv1=---=1t, =0, if m; ft;, there exist B', ... ;. € K[r1] such that
dz1 dzq
B(a)—4———F = > Blgyos; (@1) ———5 - (24)
2 .. I
T2 L 0<s2<ma—1,-,0<s;<m;j—1 2 J

a
J
[ =0,1,---, and that they cannot be divided by m;. Also, (dz1)” = m’l’fldacl. This implies:

Notice that the degrees of z; and xj_l in 7 and (xj_l)" are —pm; l + 1 and —pm;l — 1,

Theorem 7 If p fmy,---,my, then

{ Z KaMah), 10 = Z KaMalh)y,, (25)
)

heH (A he H(A)

Let M be the matrix of the action o, and denote the product by M = MMM ... Mo
Finally, we derive that the number of k-rational points in the curve is ¢* + 1 — Tr(M). In
fact, if we define for j = 2,---,n,

C] = {(fla"'af]‘) €k|E(i’1?"'ai’l) :Oal :2a’]}U{POO}

C]U = {(i’l, SR ,i’j) € Cj|i’j = 0}, and le = Cj_l — C]U , we have

#CJ - #CJO = Tr(qu*_Z|K) - T’f’(ti*_i|H1(k[$1,l’2, e ,xj,l‘;l, U 71:;1]/(1_)71{))

i i i i K|z|dz
= Te(q'FK) - Tr(g'F > )

e e
0<s2<mo—1,-,0<s;_1<m;_1—1 2 J—17j
o Klz]dx
3 —1
~Tr(¢'F'| > )
0<s2<ma—1,+,0<s;_1<my_1—1,1<s;<m;—1 ~2 j

J
1 j
= #C; — IrU)

for all j = 2,---,n, and #C; = ¢* + 1 where

Tr) = Tr(g F7| 3y Mdij) :

52
0<s2<ma—1,+,1<s;<m; —1 Ly L

and Leschetz fixed point formula has been applied in the first and last equations as A =
k[ml,mQ,---,xj,mgl,---,mj*l] for I and A = k[xl,xg,---,mj,xgl,---,xj:ll,mj " for 1.

12



Hence,

#C, = ¢ +1-) 17V
71=2

. S K[ml]dxl
2 n

0<s2<ma—1,---,0<5, <mn,—1

= ¢ +1-Tr(¢'F | Z KaMahy, )
heH(A)

From a similar discussion in Section 2, we obtain the number of [F,-rational points #C;, to

be ¢ +1—Tr(M).

Example 9 For Example 7, the same basis, shown in Example 5, is obtained as the one Gaudry
and Giirel [1] showed for superelliptic curves with two variables.
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