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Abstract. The output of the Tate pairing on an elliptic curve over
a �nite �eld is an element in the multiplicative group of an extension
�eld modulo a particular subgroup. One ordinarily powers this element
to obtain a unique representative for the output coset, and performs
any further necessary arithmetic in the extension �eld. Rather than an
obstruction, we show to the contrary that one can exploit this quotient
group to eliminate the �nal powering, to speed up exponentiations and
to obtain a simple compression of pairing values which is useful dur-
ing interactive identity-based cryptographic protocols. Speci�cally we
demonstrate that methods available for fast point multiplication on el-
liptic curves such as mixed addition, signed digit representations and
Frobenius expansions, all transfer easily to the quotient group, and pro-
vide a signi�cant improvement over the arithmetic of the extension �eld.
We also show that the natural embedding of this group into the exten-
sion �eld may be interpreted as a special representation of an algebraic
torus, which for supersingular curves in characteristic three with MOV
embedding degree six, permits a higher compression factor than is pos-
sible in the quotient group. To illustrate the eÆcacy of our methods, we
apply them to the basic arithmetic required in pairing-based cryptogra-
phy using these curves.

1 Introduction

Since �nding their �rst application in the identity-based key agreement and sig-
nature schemes of Sakai, Ohgishi and Kasahara [42], the existence of eÆciently
computable, non-degenerate bilinear maps, or pairings, has allowed cryptog-
raphers to explore avenues of research which had previously been uninstan-
tiable [46]. Originally used as a method of attack on elliptic curve cryptosys-
tems [31, 12], the constructive potential of pairings based on elliptic curves is now
well-studied. Positive uses of pairings include the tripartite DiÆe-Hellman proto-
col of Joux [25], the identity-based encryption scheme of Boneh and Franklin [4],
the short signature scheme of Boneh et al. [5], the identity-based signature
scheme of Hess [24], and numerous others [48, 54, 37, 30]. To support these ap-
plications much research activity has focused on developing eÆcient and easily



implementable algorithms for their deployment [1, 14, 10]: it is to this area this
article contributes.

The natural output of the Tate pairing is an element in the multiplicative
group of an extension of the underlying �nite �eld over which the elliptic curve
group is de�ned, modulo a particular subgroup. Since for applications one re-
quires a unique representative for the output coset, one typically exponentiates
the pairing value by the index of the subgroup to eliminate any ambiguity. What
remains is an element of the subgroup which can then be used in cryptographic
protocols.

In many situations it would be useful to speed up exponentiations in this
subgroup. For example, in pairing-based protocols one typically blinds a point
by an ephemeral random value. The bilinearity property of the pairing allows
the blinding to be performed either on the curve before the pairing evaluation,
or in the extension �eld afterwards. Since a pairing computation is usually sev-
eral times more expensive than either a point multiplication on the curve or
an exponentiation in the �eld, if a pairing value ever needs to be reused, it is
bene�cial compute it once and for all and perform each ephemeral blinding in
the extension �eld.

For instance, in the Boneh-Franklin identity-based encryption scheme [4]
should Bob ever want to send more than one message to Alice he should compute
a single pairing dependent upon Alice's identity and then exponentiate by an
ephemeral value in the extension �eld for each message. Similarly in the identity-
based signature scheme of Hess [24], if Alice needs to sign more than one message
at all she should compute a single pairing and thereafter needs only exponen-
tiate in the extension �eld once per signature. If Bob expects to receive more
than one signature from Alice then he too can save one pairing computation per
veri�cation by precomputing a pairing and exponentiating in the �eld. As a �nal
example consider the certi�cate-based encryption scheme of Gentry [18]. Here
the value being exponentiated is a product of two or more pairings, one of which
can be precomputed. In this scenario it makes no sense at all to blind a point
on the curve since an exponentiation must take place in the extension �eld to
blind the precomputed pairing value.

Fortunately the quotient group to which a pairing value belongs possesses
some useful properties one can exploit. Firstly we show that the de�ning quality
of this quotient group allows one to perform a multiplication more cheaply than
is possible in the extension �eld. This results in an exponentiation algorithm
which is nearly twice as fast as a generalised non-adjacent form ternary cube
and multiply method [7]. The methods we use for exponentiation are derived
from those developed for fast point multiplication on general elliptic curves such
as mixed addition, signed digit representations and Frobenius expansions, which
all transfer easily to the quotient group.

By using the Duursma-Lee algorithm for pairing computation on supersin-
gular curves in characteristic three with embedding degree six [10], the same
de�ning property of the quotient group also allows one to obtain a unique coset
representative for the pairing output without powering. This automatically gives
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a compressed representation of that element, reducing its size by a factor of two.
The powering itself can be regarded as an embedding of the quotient group
into the �eld extension. Our approach shows that this is unnecessary since one
does not need to map to the extension �eld at all: every protocol that uses the
Tate pairing can be performed in the quotient group to which pairing values
naturally belong. Therefore rather than complicating implementations, one can
take advantage of the quotient group to simplify implementations, and obtain a
signi�cant performance improvement by doing so.

Furthermore we show that the natural embedding of the quotient group into
the extension �eld is no more than a special representation of an algebraic torus.
In this representation also the �nal powering usually required to obtain a unique
coset representative is performed implicitly and in addition, all the operations
available for fast exponentiation in the quotient group apply.

The reason for this is that the subgroup of the extension �eld into which
the quotient group embeds has the property that it does not embed into any
sub�eld of the full �eld extension [31, 13], and hence is a subgroup of the cy-
clotomic subgroup [27]. An equivalent de�nition of the cyclotomic subgroup is
the algebraic torus [41]. An algebraic torus over a �nite �eld Fq is just an alge-
braic group whose group law is ordinary multiplication in some extension �eld.
Speci�cally, for any positive integer n one can de�ne an algebraic torus Tn over
Fq such that over Fqn , this variety is isomorphic to �(n) copies of F�q where �(n)
is the dimension of Tn [55, 41]. Hence algebraic tori occur quite naturally in the
context of pairings.

Scott and Barreto [44] note that one is free therefore to use the trace-based
compression methods available for small-degree extensions of �nite �elds [49,
28]. For the main case we consider - supersingular elliptic curves in characteris-
tic three with embedding degree six - using the algebraic torus perspective [41],
we match the compression rate of [44] who use XTR [28], without any extra
computation. In large characteristic the trace-based approach may o�er some
advantages over our methods (see [22] for a comparison between the torus and
trace-based approach). However, in small characteristic, using XTR for expo-
nentation is in fact slower than a naive implementation of Fq6 due to the low
cost of cubing: our algorithms are over twice as fast.

The compression methods we derive have applications to interactive pairing-
based protocols, where pairing values can be transmitted between parties and
hence using these methods provides a reduced bandwidth requirement. Such
schemes include the selective-ID identity-based encryption scheme of Boneh and
Boyen [2], the interactive proof of knowledge in the short group signature scheme
of Boneh et al. [3], and various others [19, 43].

Due to the aforementioned advantages over other useful groups, in this article
we restrict our attention to the use of supersingular elliptic curves in character-
istic three. These curves also o�er some bene�ts over other parameter selections.
The embedding degree of six, while not optimal in terms of the relative security
requirements for discrete logarithm algorithms in characteristic three �nite �elds
and elliptic curves, still o�ers a good security/eÆciency trade-o� for contempo-
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rary key-size recommendations. In particular the Duursma-Lee algorithm for the
Tate pairing is considerably faster than the BKLS algorithm available for even
and large characteristics [10, 1]. Hence we focus on optimising this instantiation
of the Tate pairing.

One may regard our methods as a characteristic three version of [22] tailored
for pairings. They are developed assuming only that the embedding degree of
the curve is even since in practice these curves are more eÆcient than the al-
ternative [1]. As such they may also be applied to supersingular binary curves
from embedding degree four with almost no modi�cations, although since pair-
ings based on these curves possess an inferior security/eÆciency trade-o� [13],
we comment on this application only briey.

The remainder of the article is organised as follows. In the next section we give
some background on algebraic tori and the Tate pairing. In Section 3 we develop
fast arithmetic for the quotient group and introduce our special representation
for the relevant algebraic torus. In Section 4 we give algorithms for eÆcient
exponentiation and in Section 5, describe the �eld representation we use. In
Section 6 we give a fast implementation of the Tate pairing, and in Section 7,
give our implementation results. Lastly, we make some concluding remarks and
present a number of open problems.

2 Preliminaries

In this section we briey provide some mathematical background, and introduce
some notation.

2.1 Algebraic Tori

In 1985 El-Gamal made the suggestion that DiÆe-Hellman key exchange, digital
signatures and El-Gamal encryption be performed in the multiplicative group of
an extension of Fp [11]. At the time there was no real application. Since then we
have learnt that in doing so one can exploit the algebraic structure not available
in prime �elds to obtain compression of elements and eÆcient arithmetic.

Due to the observation of Pohlig and Hellman [38], one typically works in
a prime order subgroup of suÆcient size in the multiplicative group of the ex-
tension �eld. To ensure that a particular subgroup does not embed into any
sub�eld of the extension �eld, it must belong to the cyclotomic subgroup [27],
which conjecturally attains the discrete logarithm security of the extension �eld.
The public key cryptosystem XTR [28] exploits compression of elements in the
cyclotomic subgroup of F�p6 by taking their trace with respect to the quadratic
sub�eld, to obtain a compression factor of three.

Rubin and Silverberg [41] proposed the notion of torus-based cryptography
as an alternative way to obtain compression of elements in the cyclotomic sub-
group of a suitable �eld extension, which is isomorphic to an algebraic torus
(see Lemma 1). The public key system CEILIDH proposed in that paper uses
the torus T6(Fp ). This torus has the property that it is birationally isomorphic
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to two dimensional aÆne space over Fp , which means that its elements can be
represented by only two elements of Fp in polynomial time, rather than the six
elements of Fp ordinarily required.

It was also shown in [41] that e�orts to �nd a natural extension of the trace-
based method of XTR using symmetric functions can not work [6]. It is an open
conjecture whether or not Tn is `rational' for all n, in which case one could
compress elements of Tn by a factor of n=�(n) [55, 41]. This conjecture is known
to be true when n is either a prime power, or the product of two prime powers.
However, for the applications that concern us here, the status of the conjecture
is unlikely to have any impact, as we explain in Section 6.

The torus Tn(Fq ). Let Fq be a �nite �eld where q is a power of a prime, and
let �n be the n-th cyclotomic polynomial. We write Gq;n for the subgroup of
F�qn of order �n(q), and let A n (Fq ) denote the n-dimensional aÆne space over
Fq , i.e. the variety whose points lie in Fnq .

De�nition 1. Let k = Fq and L = Fqn . The torus Tn is the intersection of the
kernels of the norm maps NL=F , for all sub�elds k � F ( L:

Tn(k) :=
\

k�F(L

Ker[NL=F ]:

The following lemma provides some essential properties of Tn [41].

Lemma 1. 1. Tn(Fq ) �= Gq;n.

2. #Tn(Fq ) = �n(q).

3. If h 2 Tn(Fq ) is an element of prime order not dividing n, then h does not
lie in a proper sub�eld of Fqn =Fq .

2.2 The Tate Pairing

In this section we review current algorithms for the computation of the Tate
pairing, the body of which is due to the much cited but unpublished work
of Miller [33]. It was demonstrated independently by Barreto et al. [1] and
Galbraith et al. [14] that much of the computation of the original algorithm
is redundant. In terms of performance, and with a suitable choice of parameters,
the recommendations of the former paper provide the better alternative, and
we refer to their algorithm as the reduced Tate pairing, or the BKLS algorithm.
Also, in common with the authors of [44], we refer to the later improvements of
Duursma and Lee as the modi�ed Tate pairing, but note that the algorithm is
essentially a fast method to compute the earlier algorithms of Galbraith et al.
and Barreto et al. Throughout the paper, since we are concerned primarily with
pairing-based systems in characteristic three, where relevant we write exponents
in ternary.
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The reduced Tate pairing. We �rst introduce some notation. Let E be an
elliptic curve over a �nite �eld Fq , and let OE denote the identity element of the
associated group of rational points on E(Fq ). For a positive integer l coprime
to q, let Fqk be the smallest extension �eld of Fq which contains the l-th roots

of unity in Fq . Also, let E(Fq )[l] denote the subgroup of E(Fq ) of all points of
order dividing l, and similarly for the degree k extension of Fq . From an eÆciency
perspective, k is usually chosen to be even [1]. For a thorough treatment of the
following, we refer the reader to [1] and also [14], and to [47] for an introduction
to divisors. The reduced Tate pairing of order l is the map

el : E(Fq )[l]�E(Fqk )[l]! F�qk =(F
�
qk )

l;

given by el(P;Q) = fP;l(D). Here fP;l is a function on E whose divisor is equiva-
lent to l(P )�l(OE), D is a divisor equivalent to (Q)�(OE), whose support is dis-
joint from the support of fP;l, and fP;l(D) =

Q
i fP;l(Pi)

ai , where D =
P

i aiPi.
It satis�es the following properties:

{ For each P 6= OE there exists Q 2 E(Fqk )[l] such that el(P;Q) 6= 1 2
F�qk =(F

�
qk )

l (non-degeneracy).

{ For any integer n, el([n]P;Q) = el(P; [n]Q) = el(P;Q)
n for all P 2 E(Fq )[l]

and Q 2 E(Fqk )[l] (bilinearity).

{ Let L = hl. Then el(P;Q)
(qk�1)=l = eL(P;Q)

(qk�1)=L.
{ It is eÆciently computable.

The non-degeneracy condition requires that Q is not a multiple of P , i.e. that Q
is in some order l subgroup of E(Fqk ) disjoint from E(Fq )[l]. When one computes
fP;l(D), the value obtained belongs to the quotient group F�qk =(F

�
qk )

l, and not
F�qk . In this quotient, for a and b in F�qk , a � b if and only if there exists c 2 F�qk

such that a = bcl. Clearly, this is equivalent to

a � b if and only if a(q
k
�1)=l = b(q

k
�1)=l;

and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between F�qk =(F

�
qk )

l and the elements of order l in F�qk
given by this exponentiation makes it possible to compute fP;l(Q) rather than
fP;l(D) [1]. It also removes the need to compute the costly denominators in
Miller's algorithm.

The modi�ed Tate pairing. Duursma and Lee introduced their algorithm
in the context of pairings on a family of hyperelliptic curves. Restricting to the
elliptic curve case, it applies to a family of supersingular curves in characteristic
three, including those in Figure 1, upon which we base our implementation.
The �rst column gives the �eld over which each curve is de�ned, and the second
lists the corresponding irreducible polynomials de�ning the �eld extensions. The
third lists the curve equations and the fourth gives the order of the subgroup
used. The �nal column gives the bit-length of the smallest �nite �eld into which

6



Fig. 1. Field de�nitions and Curve equations

Field Field Polynomial Curve Order MOV security

F379 t79 + t26 + 2 Y 2 = X3 �X � 1 379 + 340 + 1 750
F397 t97 + t12 + 2 Y 2 = X3 �X + 1 (397 + 349 + 1)=7 906
F3163 t163 + t80 + 2 Y 2 = X3 �X � 1 3163 + 382 + 1 1548
F3193 t193 + t12 + 2 Y 2 = X3 �X � 1 3193 � 397 + 1 1830
F3239 t239 + t24 + 2 Y 2 = X3 �X � 1 3239 � 3120 + 1 2268
F3353 t353 + t142 + 2 Y 2 = X3 �X � 1 3353 + 3177 + 1 3354

the pairing value embeds, which is always a degree six extension in these cases.
These parameter values were generated simply by testing which prime extension
degrees yielded orders for supersingular curves that are prime, or almost prime,
i.e. those possessing a small cofactor.

The modi�ed Tate pairing improves on the reduced variant in three ways.
Firstly, using the third property listed above, instead of computing the Tate
pairing of order l, one uses the pairing of order q3+1, which eliminates the need
for any point additions in Miller's algorithm. Secondly, while this apparently
increases the trit-length of the exponent by a factor of three, Duursma and Lee
show that the divisor computed when processing three trits at a time has a very
simple form, and hence no losses are incurred. Lastly, they provide a closed form
expression for the pairing, thus simplifying implementations.

3 The Quotient Group

In this section we demonstrate that the quotient group to which a Tate pairing
output belongs allows one to obtain unique representatives easily, permits fast
multiplication, and provides automatic compression by a factor of two.

In this context a quotient group is just the multiplicative group of a �nite
�eld modulo a subgroup, and hence is the set of orbits of the �rst group under
multiplication by elements of the subgroup. In particular, the output of the Tate
pairing of order q3 + 1 is an element of the quotient group

G = F�q6 =(F
�
q6 )

q3+1:

For any a 2 F�q6 we have aq
3+1 2 F�q3 , and so G simpli�es to F�q6 =F

�
q3 . Hence

for e = fP (�(Q)) 2 G, multiplication by an element of F�q3 does not change the
coset represented by e. Let Gl � F�q6 denote the subgroup of order l. The two
properties

gcd(l; q3 � 1) = 1 and eq
3
�1 2 Gl

imply that e = gh for some g 2 Gl, h 2 F�q3 . Hence powering e by q
3 � 1 gives

eq
3
�1 = (gh)q

3
�1 = gq

3
�1;

7



which can then be used in protocols. If a particular protocol requires an expo-
nentiation of this value by some integer k mod l, this is performed in Fq6 .

Alternatively one can do the following. Let Fq6 = Fq3 [�]=(�
2 + 1) which is

the extension we use for the Duursma-Lee algorithm. Writing e = e0 + e1� and
g = g0 + g1�, by the above we have e = gh = g0h+ g1h�. Since the represented
coset remains invariant under multiplication by elements of F�q3 , we can divide
by e1, giving

e0 = ee�11 = e0=e1 + � = g0=g1 + �:

This also eliminates h and may equally well be used as a canonical representative
of the coset to which e belongs.

This element of the quotient group can be represented simply by the Fq3
element e0=e1, and thus compresses the coset representation by a factor of two.
Computationally, this involves a division in Fq3 . To power by q3 � 1 involves a
division in Fq6 since

eq
3
�1 =

e0 � e1�

e0 + e1�
;

so the saving is not signi�cant. However if one exponentiates this value by some
integer k mod l, this operation will be faster than if one had �rst powered e
by q3 � 1, since multiplying a generic element of G by this element is cheaper
than multiplying two generic elements. To see this let g = g0=g1 = e0=e1 and
a0 + a1� 2 G. Then

(g + �)(a0 + a1�) = (ga0 � a1) + (ga1 + a0)�;

which costs just two Fq3 multiplications, and not the three required if both
elements are generic; the arithmetic is identical to that of Fq6 . If one assumes
cubings and additions are essentially free, then for whatever practical method
one uses to exponentiate, this method will always be roughly one third faster.
The de�ning property of the quotient group G thus reduces the cost of basic
arithmetic.

3.1 Arithmetic in G

We �rst introduce some terminology to clarify the operations available in G. The
property that a given coset is invariant under multiplication by elements of F�q3
is suggestive of the projective line

P1(Fq3 ) = f(x; y)=� 2 F2q3 n f(0; 0)gg

where (x1; y1) � (x2; y2) if and only if a � 2 F�q3 exists such that (x1; y1) =

(�x2; �y2). The reduction of e to e0=e1 may also be viewed as a map to the
aÆne line A 1 (Fq3 ). With this analogy we introduce the following.

De�nition 2. GP is the projective line P1(Fq3 ) endowed with the group opera-
tion induced by the arithmetic of the quadratic extension Fq6 = Fq3 [�]=(�

2 + 1)
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via the map (x; y) ! x + y�. The identity element is represented by the points
(�; 0) for any � 2 F�q3 .

GA is the aÆne part of the line GP . The aÆne point corresponding to (x,y) is
X = A(x; y) = (x=y). Via this map the identity element is the point at in�nity
which we denote by OG.

With this terminology it should be clear that we can mimic the mixed addition
method for point multiplication on elliptic curves. The use of signed digit rep-
resentations follows since as we show below inverses are cheap, and in Section
4 we derive an exponentiation algorithm using a split exponent method. Since
the group operation is essentially multiplication in the �eld Fq6 we write the
operation multiplicatively.

Let P = (x; y) 2 GP with corresponding aÆne representation (X) 2 GA. We
refer to the generator of Gal(Fq6 =Fq ) as the q-Frobenius, i.e. the automorphism
given by powering by q. As already stated computing the inverse of an element is
virtually free. This follows since the order of G is jF�q6 =F�q3 j = (q6�1)=(q3�1) =

q3 + 1, and so applying the cube of the Frobenius gives the inverse: P�1 =
(x;�y) or (�X) in aÆne. Cubing is also straightforward since we are working
in characteristic three: P 3 = (x3;�y3).

For multiplication of two points P1 = (x1; y1); P2 = (x2; y2) 2 GP with aÆne
representations (X1); (X2) 2 GA, we use the following easy lemma.

Lemma 2. Let M and I represent the cost of a multiplication and inversion
respectively in Fq3 . Then the group operation for combinations of point repre-
sentations is computed as follows:

P1 P2 P1 � P2 Formula Cost

GA GA GA (X1X2 � 1)=(X1 +X2) 2M + I
GA GA GP (X1X2 � 1; X1 +X2) 1M
GP GP GA (x1x2 � y1y2)=(x1y2 + x2y1) 4M + I
GP GP GP (x1x2 � y1y2; x1y2 + x2y1) 3M
GA GP GA (X1x2 � y2)=(X1y2 + x2) 3M + I
GA GP GP (X1x2 � y2; X1y2 + x2) 2M

Squaring can naturally be performed with slightly fewer Fq3 muliplications than
above; the corresponding formulae are easily deduced. Besides the precomputa-
tion necessary for the exponentiation algorithms we present in Section 4 however,
squarings are not required.

With regard to exponentiations, it is clear that the mixed multiplication
shown in the �nal row is the most eÆcient. If we want to compute P k for some
k mod l, we �rst convert P to aÆne and for each non-zero trit in the expansion of
k perform a mixed multiplication of this point with the projective representation
of the intermediate value. A multiplication with both points in projective form
is equivalent to an ordinary multiplication in Fq6 , so the mixed multiplication
is essentially what allows the savings over arithmetic in Fq6 . We expolit these
observations in the exponentiation algorithms developed in Section 4.
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3.2 An equivalent representation of the quotient group

The above method may appear to be an ad hoc trick to speed up exponentiation.
In this next section we give an alternative interpretation of G as an algebraic
torus. This viewpoint allows a compression of pairing values by a factor of three
rather than two, without any further computation.

Given e = fP (�(Q)) it is possible to compute the embedding eq
3

=e of e into
Fq6 and maintain invariance under multiplication by elements of F�q3 . This may
seem strange since Fq6 does not possess this property. However our choice of
representation of elements in the subgroup of order q3 + 1 makes this possible.
Again let e = e0 + e1�. Then

eq
3

= e0 � e1�;

and hence

eq
3
�1 =

e0 � e1�

e0 + e1�
2 Gl � Fq6 : (1)

One can perform this division in Fq6 and use the ordinary polynomial represen-
tation. Here we choose to leave this fraction unevaluated. Note that multipliying
the numerator and denominator of (1) by any element of F�q3 leaves the repre-
sented element unchanged.

An interesting property of this representation is that when multiplying two
fractions of this form, the coeÆcients of the numerator and the denominator
correspond exactly. To see this let

c =
c0 � c1�

c0 + c1�
; d =

d0 � d1�

d0 + d1�
;

with ci; di 2 Fq3 . Then using the fact that �2 + 1 = 0, we observe that

cd =
(c0d0 � c1d1)� (c0d1 + c1d0)�

(c0d0 � c1d1) + (c0d1 + c1d0)�
:

This allows one therefore to work with the denominator only, since one knows
that the coeÆcients of the numerator will be identical. Hence one may view
our previous operations in the quotient group without powering equivalently
as operating purely on the denominator of (1) after powering, and so all the
arithmetic carries over unchanged. We note that this method also works for any
quadratic extension.

Moreover, the fraction (1) is actually a compressed representation of the
algebraic torus T2(Fq3 ), as we now demonstrate.

Lemma 3. There is an isomorphism

� : T2(Fq3 )
���!
�
b� �

b+ �
; b 2 Fq3

�
[ f1g;

where for a = a0 + a1� 2 T2(Fq3 ) n f1g,

�(a) =

�
b� �

b+ �

�
; (2)
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with b = �(1 + a0)=a1 if a1 6= 0 and b = 0 otherwise.

Proof. By De�nition 1 the torus T2(Fq3 ) is the set of elements in Fq6 such that

Ker[NF
q6
=F

q3
] = 1, which is just the set of elements that satisfy aq

3+1 = 1. For

all b 2 Fq3 , we see that NF
q6
=F

q3
((b � �)=(b + �)) = 1, and counting also the

identity, we have all q3+1 possible solutions. Solving a0+a1x = (b��)=(b+�)
for b gives two linear equations, which give the stated relations. Equating the
two solutions gives a20 + a21 = 1, which is just the condition that a be in the
stated kernel.

�

Thus the representation (1) of the embedding G ,! Fq6 given by powering by
q3 � 1 is just the representation of T2(Fq3 ) given above. The reason it is a
compressed representation is that one can specify an element uniquely with
b 2 Fq3 , rather than an element of Fq6 . Geometrically, b is related to the classical
rational parametrisation of the circle S1 over Fq3 . Let t be the intersection of
the a1� axis and the chord joining (�1; 0) to (a0; a1) on the unit circle. Then
b = �1=t which gives a one-dimensional parametrisation of the torus T2 (Figure
2). Of course b is just the value e0=e1 belonging to the quotient group.

(-1,0)

(0,t)

(a0,a1)

Fig. 2. A rational parametrisation of T2

One may ask why we use the arithmetic of T2(Fq3 ) when the order l subgroup
is in fact in T6(Fq )? The reason is that there seems no obvious way to utilise
the extra structure provided by T6(Fq ) [22], though we do not rule out such a
possibility. We know though that since jT6(Fq )j = (q2�q+1)j(q3+1) = jT2(Fq3 )j
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we can use the properties of the latter and apply them to the former, and make
use of the improvements derived over the extension �eld representation.

3.3 Further compression using T6(Fq )

We have shown that one can easily compress pairings by a factor of two if it
is desirable. While one can not easily exploit the additional structure of T6(Fq )
over T2(Fq3 ) to speed up multiplications, one can utilise it for better compres-
sion. Rubin and Silverberg showed that since T6 is birationally isomorphic to
A 2 (Fq ) [41], one can map nearly all its elements to the aÆne plane and use this
representation instead for data transmissions.

Complementing this result, in this section we devise a method to compress
elements of T6(Fq ) by a factor of three without mapping to the aÆne plane at
all. Given an element already compressed by a factor of two as in the previous
section, our method results in compression by a further factor of 3/2, for free. A
particular bene�t of our method is that since we do not have to map to A 2 (Fq ),
we do not miss any points by compressing, as is inevitable with the original
parametrisation of T6 given in [41].

Since T6(Fq ) = Ker(NF
q6
=F

q3
)\Ker(NF

q6
=F

q2
), to obtain a suitable represen-

tation we just need to parametrise those elements of the form (2) which have
norm equal to one in the second factor.

As in (2) let b = b0 + b1� + b2�
2 where �3 � � � 1 = 0 de�nes the cubic

extension we later use for the pairing computation. Then we obtain an equation
in b0; b1, and b2 by the condition

�
b+ x

b� x

�1+q2+q4

= 1:

This is equivalent to 1+b21�b0b2�b22 = 0, which one can parametrise easily with
just b1 and b2, since b0 = (1+ b21� b22)=b2. It is therefore suÆcient to specify only
b1 and b2 to describe all points on T6(Fq ) bar the identity, and this is essentially
all that we need. We therefore have a map  : Fq � F�q ! T6(Fq ) n f1g given by

 (b1; b2) =
((1 + b21 � b22) + b1b2y + b22y

2) + b2x

((1 + b21 � b22) + b1b2y + b22y
2)� b2x

;

The inverse map  �1 : T6(Fq )nf1g ! Fq �F�q is given as above, i.e. we just take
the second and third coeÆcients in the fractional expression for �(a), with a 2
T6(Fq ). Note that Fq �F�q and T6(Fq )nf1g both have cardinality q2�q. In terms
of G, this means that once e0=e1 is computed one can use the second and third
coeÆcients to parametrise the element, which involves no further computation.

Remark. In the context of compression, in [40] it was shown how one can com-
press BLS short-signatures [5] by using the Weil restriction of scalars of an
elliptic curve de�ned over a composite �eld extension. This method provides a
compression factor of n=�(n) also, where gcd(n; 2) = 1, and can be applied to any
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pairing-based protocol where one is required to transmit a point on the curve,
such as [25]. However, building upon an idea of Semaev [45], Gaudry has shown
that such curves are weaker than those de�ned over a �eld with prime exten-
sion degree [17]. Hence this method should be regarded with some caution. We
point out that this form of pre-compression is distinct from the post-compression
described here, and thus these attacks do not apply.

3.4 Application to characteristic two supersingular curves

For suitable supersingular elliptic curves in characteristic two the embedding
degree is four. Here one can use T2(Fq2 ), although there is no correspondingly
simple version of the Duursma-Lee algorithm for the Tate pairing. This means
part of the �nal powering needs to be computed as follows.

Let e 2 F�q4 =(F
�
q4 )

l be the output of the Tate pairing where l = q + 1�p2q.
To obtain a unique value one needs to raise e to the power (q + 1�p

2q)(q2 �
1). Performing an exponentation by just the �rst term, which costs just one
application of the q-Frobenius, a few squarings and two multiplications, the
resulting element then belongs to the quotient group F�q4 =(F

�
q4 )

q2+1 = F�q4 =F
�
q2 .

This allows us to ignore the powering by (q2 � 1) as before and one can then
apply to this group all the methods we have developed for G, including fast
exponentiation and compression by a factor of two.

3.5 Application to MNT Curves

Miyaji, Nakabayashi and Takano have described an eÆcient method for the gen-
eration of non-supersingular elliptic curves with small embedding degree [34].
As security requirements adapt to growing computational power, the optimal
embedding degree will rise from the current recommendation of six to perhaps
twelve or even higher. Since the embedding degree available for supersingular
curves is restricted to six, in the long term such curves will likely become promi-
nant in the deployment of identity-based technologies.

Letting the embedding degree be 2k, which is always the case in practice [1],
we can again use the quotient group G to simplify the �nal powering, and to
speed up later arithmetic operations on a pairing value.

One needs to compute the Tate pairing of order l, where lj�2k(q). To obtain a
unique representative one needs to raise the output e by the power (q2k�1)=l. In
exactly the same way as for even characteristic we raise by the power (qk+1)=l to
obtain an element in the the quotient group F�q2k =F

�
qk and can apply the methods

of G once again.
In large characteristic there are particularly fast methods for exponentiation

using special �eld representations when the extension degree is a multiple of
six [51], or indeed a fast version of XTR [52]. If the embedding degree is even,
then one has the choice of either using G or LUC [49], the latter being faster
on account of squaring or cubing no longer being free. However given that the
computation of the Tate pairing on general MNT curves with current algorithms
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is orders of magnitude slower than in characteristic three, whether to use large
characteristic curves or not is still an issue requiring further research.

4 Exponentiation

In this section we describe fast algorithms for exponentation in G, Fq6 and point
multiplication in E(Fq ). For ease of notation we write the group operation for
all three groups multiplicatively, and for each of the above we compare four
exponentiation methods, which we detail in turn. The input to each algorithm
is a base e and an integer k mod l in standard ternary format. The output is
ek. When applicable, precomputed values are stored in aÆne to facilitate the
mixed multiplication. We note that in all three groups inversions are essentially
for free, so we consider signed digit representations.

Method 1: Signed ternary expansion

Using the generalised non-adjacent form, or G-NAF [7], one can take the ternary
expansion of an exponent k mod l and transform it into an equivalent signed
ternary representation. Such a representation is easy to compute and reduces the
average density of non-zero trits from two thirds to one half. The precomputation
involves just a single squaring of the base.

Method 2: Signed nonary expansion

This is the same as Method 1 except we use a base nine expansion of k. This
essentially halves the trit-length of k for the cost of precomputing ei; i = 1; :::; 8.
Again using the G-NAF, the average density of non-zero `nits' in this expansion
is four �fths.

Method 3: Sliding window ternary expansion

We use an unsigned ternary expansion of k with a sliding window of width
three [32][Chapter 14, Algorithm 14.85]. To do so one needs to precompute and
store ei for 0 < i < 27. Note that in this method and the previous one all
precomputed values for which i = 0 mod 3 can be computed very cheaply.

Method 4: Frobenius expansion

For e 2 G the q-Frobenius map is easily computed. Moreover, the q-th power of a
reduced element is reduced itself. Since the Frobenius map satis�es q2�q+1 = 0
and the group order divides q2�q+1, one can split the exponent k in two halves
k1 and k2 where k1; k2 are approximately half the trit-length of l and satisfy
k � k1 + k2q mod l [51]. One can �nd k1 and k2 very quickly having performed
a one-time Gaussian two dimensional lattice basis reduction.
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Thus a single exponentiation can be transformed into a double exponentiation
for half the trit-length of k, for the cost of performing a double exponentiation
instead. To compute ek for a random k mod l, we perform the double exponenti-
ation ek1(eq)k2 using Shamir's trick, originally due to Straus [53]. We detail the
required precomputation in the next Section.

For each of k1; k2 we invoke the G-NAF. The average density of non-zero
trits in each of their ternary expansions is 1=2 and hence the average number of
non-zero trits in the paired ternary expansion of k1; k2 is 1� (1=2)2 = 3=4. We
therefore expect to perform on average (3=4) �m=2 = (3=8)m multiplications of
mixed type during an exponentiation.

Interestingly enough, this method also works for the elliptic curve. Clearly,
one can use the same expansion of k on E(Fq ), with powering by q is re-
placed by scalar multiplication by q. Somewhat surprisingly, on the curve also,
multiplication by q is an eÆciently computable automorphism since [q]P =
(x � (m mod 3)b;�y) for P = (x; y) on the curve (where the curve equation
is Y 2 = X3 � X + b). Thus we arrive at a novel application of the Gallant-
Lambert-Vanstone exponent split method using fast automorphisms [15].

We note that for supersingular curves over characteristic three there is also
an eÆcient scalar multiplication algorithm due to Koblitz [26] based on the curve
automorphism mapping the point (x; y) to (x3; y3).

4.1 Precomputation

The necessary precomputation for Methods 1,2 and 3 is straightforward. For
Method 4 we can take advantage of the q-Frobenius to reduce the cost. We use
the notation of G. Let e = e0 + e1�. In order to use Shamir's trick, we need to
know the values

(e0=e1 + �)i+qj i; j 2 f0;�1;�2g (3)

in aÆne. Let (i; j) represent the corresponding term in (3). Then we can use

the fact that for any e 2 G, we have eq2�q+1 = OG and that the Frobenius map
of an aÆne element is cheap and still aÆne, to generate most of the required
terms easily. To achieve this, one applies the q-Frobenius iteratively to obtain
(i; j)q = (�j; i+ j). We list these operations in Algorithm 1. In Fq6 we use the
same method, having �rst powered e by q3 � 1, but clearly without needing to
obtain aÆne representatives.

5 Field Representation

We briey describe eÆcient arithmetic for Fq and the required extensions.

Field Arithmetic in Fq

Let Fq = F3m . Let a = am�1x
m�1 + � � �+ a1x+ a0 be an element of Fq , held in

a polynomial basis, so that ai 2 F3 . We follow other work [14, 23] and represent
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Algorithm 1: Online Pre-computation for Double Exponentiation

input : e = e0 + e1� 2 G

output : Representatives in GA of

(i; j) := (e0 + e1�)
i+jq; i; j 2 f0;�1;�2g

(1; 0) A(e)
(0; 1) �(1; 0)q

(�1; 1) �(0; 1)q

(�1; 0) �(�1; 1)q

(0;�1) �(�1; 0)q

(1;�1) �(0;�1)q

(2; 0) mul((1; 0); (1; 0))
(2; 0) A((2; 0))
(0; 2) �(2; 0)q

(�2; 2) �(0; 2)q

(�2; 0) �(�2; 2)q

(0;�2) �(�2; 0)q

(2;�2) �(0;�2)q

(1; 1) mul((1; 0); (0; 1))
(1; 1) A((1; 1))
(�1; 2) �(1; 1)q

(�2; 1) �(�1; 2)q

(�1;�1) �(�2; 1)q

(1;�2) �(�1;�1)q

(2;�1) �(1;�2)q

(1; 2) mul((1; 0); (0; 2))
(1; 2) A((1; 2))
(�1;�2) �(1; 2)

(2; 1) mul((2; 0); (0; 1))
(2; 1) A((2; 1))
(�2;�1) �(2; 1)

(2; 2) mul((2; 0); (0; 2))
(2; 2) A((2; 2))
(�2;�2) �(2; 2)

16



the element a as two bit-vectors aH and aL. If we let aH [i] and aL[i] denote bit
i of aH and aL respectively, the vectors aH and aL are constructed from a such
that for all i

aH [i] = ai div 2

aL[i] = ai mod 2:

That is, aH and aL are a bit-sliced representation of the coeÆcients of a where aH
holds the high bit and aL the low bit of a given coeÆcient. Given a representation
of this type, we can perform a component-wise addition ri = ai + bi of two
elements a and b using the following word-wise logical operations

rH [i] = (aL[i] _ bL[i])� t

rL[i] = (aH [i] _ bH [i])� t

where

t = (aL[i] _ bH [i])� (aH [i] _ bL[i]):

Subtraction, and hence multiplication by two, are equally eÆcient since the
negation of an element a simply swaps the vectors aH and aL over and can
therefore be implemented by the same function as addition.

On a given computer with word-size w, we hold the bit-vectors aH and aL
that represent a as two word-vectors of length n = dm=we and hence apply
logical operations in parallel to w coeÆcients at a time. However, since our rep-
resentation remains bit-oriented we can borrow further techniques developed for
�elds of characteristic two. Speci�cally, it is possible to construct multiplication
using a variation of the often cited comb method [29] and inversion by altering
the binary extended Euclidean algorithm. We used a Karatsuba method to ag-
gressively split the multiplication operands into word sized chunks, an option
that provided signi�cant performance improvements. Unlike elements in char-
acteristic two, squaring in characteristic three is only marginally less expensive
than general multiplication. However, cubing can be performed very quickly us-
ing table-lookup in an analogous way to the so called coeÆcient thinning method
in characteristic two.

Field Arithmetic in Fq3

Let Fq3 = Fq [�]=(�
3 � �� b), with b = �1 depending on the curve equation. Let

a = a0+ a1�+ a2�
2 and b = b0+ b1�+ b2�

2 be two generic elements. We require
the following operations.

q-Frobenius: Since �3 = � + b we have �3
m

= � + (m mod 3)b and (�2)3
m

=
(�3

m

)2 = �2+2b(m mod 3)�+(m2 mod 3). Hence a3
m

= (a0+ a1�+ a2�
2)3

m

=
(a0 + a1b(m mod 3) + a2b) + (a1 � a2b(m mod 3))�+ a2�

2.

Multiplication: Let t00 = a0b0, t11 = a1b1, t22 = a2b2, t01 = (a0+a1)(b0+ b1),
t12 = (a1 + a2)(b1 + b2), and t20 = (a2 + a0)(b2 + b0). Then ab = (t00 + (t12 �
t11 � t22)b) + (t01 � t00 + t11 + t12 + t22(b� 1))�+ (t20 � t00 + t11)�

2.
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Cubing: This is straightforward in characteristic three. since a3 = (a30 + a32 +
a31b) + (a31 � a32b)�+ a32�

2.

Inversion: Since the extension degree is small, we can perform this directly.
Let t00 = a20, t11 = a21, t22 = a22, t01 = a0a1, t12 = a1a2, t20 = a2a0, and let
� = a30 + a31b+ a32 + t20(a2 � a0)� a1(t01 + t22b). Then a

�1 = ��1((t00 � t20 +
t22 � t11 � t12b) + (t22b� t01)�+ (t11 � t20 � t22)�

2).

Field Arithmetic in Fq6

Let Fq6 = Fq3 [�]=(�
2 + 1). Let c = c0 + c1� and d = d0 + d1� with ci; di 2 Fq3

be two generic elements. The arithmetic is as follows.

q-Frobenius: Since �2 = �1, we have that �3 = �� and asm is odd, we obtain
c3

m

= c3
m

0 � c3
m

1 �.

Multiplication: Let t00 = c0d0, t11 = c1d1, and t01 = (c0 + c1)(d0 + d1). Then
cd = (t00 � t11) + (t01 � t00 � t11)�.

Cubing: c3 = c30 � c31�.

Inversion: Let � = c20 + c21. Then c
�1 = ��1(c0 � c1�).

6 Pairing Algorithm

In this section we detail how to eÆciently implement the Duursma-Lee algorithm
for the computation of the modi�ed Tate pairing.

Let P = (x1; y1) and Q = (x2; y2) be points of order l. Then the modi�ed
Tate pairing on the supersingular curve E(Fq ) : Y

2 = X3�X+b is the mapping

fP (�(Q))
q3�1 where � : E(Fq ) ! E(Fq6 ) is the distortion map �(x2; y2) =

(�� x2; �y2) (Algorithm 2).

Algorithm 2: The Duursma-Lee Algorithm

input : point P = (x1; y1), point Q = (x2; y2)

output : fP (�(Q)) 2 G

f  1
for i = 1 to m do

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g  �� ��� �2; f  f � g
x2  x

1=3
2 ; y2  y

1=3
2

end

return f

LetM denote the cost of an Fq multiplication. Each iteration of the loop requires
2M to compute �2 and y1y2, and an Fq6 multiplication to compute f �g. Since a

18



generic Fq6 multiplication costs 18M , in [44] it was claimed that besides the nec-
essary cubings and cube roots, each loop iteration costs 20M . However, in each
iteration g is sparse, and this can be exploited to reduce the cost of multiplying
g and f , which is not sparse in general, to 13M (we thank Keith Harrison for
pointing this out to us). This total of 15M improves on the trace-based method
suggested by Scott and Barreto and hence the proposed method does not seem
to provide any improvement. In fact one can reduce the cost for each loop itera-
tion in the ordinary Duursma-Lee algorithm to just 14M , by unrolling the main
loop and better exploiting the sparsity of g.

Algorithm 3: A Re�ned Duursma-Lee Algorithm.

input : point P = (x1; y1), point Q = (x2; y2)

output : fP (�(Q)) 2 G

f  1
for i = 1 to (m� 1)=2 do

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g1  �� ��� �2

x2  x
1=3
2 ; y2  y

1=3
2

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g2  �� ��� �2

g  g1g2; f  f � g
x2  x

1=3
2 ; y2  y

1=3
2

end

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g �� ��� �2; f  f � g
return f

We demonstrate this technique in Algorithm 3 which provides a saving since
in each loop, multiplying g1 by g2 costs only 6M . Multiplying g by f in each
loop costs 18M since they are both generic Fq6 elements. Both �2 and y1y2
are computed twice in each loop: once for g1 and once for g2. In total the cost
therefore is (6M+4M)(m�1)=2+18M(m�3)=2+13M = 14mM�19M , which
is equivalent to about 14M per loop iteration of Algorithm 2. If one performs the
same loop unrolling for the trace method of [44], the �rst stage equals 6M +4M
also, however the equivalent of multiplying f and g then costs 27M , and so there
seems no way to make this method as fast as the ordinary �eld multiplication
proposed here.

This cost analysis ignores the cost of computing cubings and cube roots.
Because of the large number of times each of these operations are invoked, it
has been suggested that one should use normal bases to accommodate them
eÆciently, since they are then implemented using cyclic shifts. Normal bases
are well-studied in even characteristic, but for characteristic three one can not
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construct optimal, type one normal bases with prime extension degree [16, 36],
although type two bases are available for some values of m. As a result, the cost
of general multiplication in software is relatively large, even when variations of
high performance methods in characteristic two are used [39, 35]. For example,
we found that when m = 239 normal basis multiplication is between two and
three times slower than a polynomial basis multiplication. However, in hard-
ware implementations on a smart-card for example, normal bases still seem the
obvious choice since they can match the multiplication speed of polynomial ba-
sis while o�ering inexpensive cube and cube root operations, although perhaps
at the cost of exibility. We do not quote results from our work in this area,
preferring to leave a more thorough investigation for further work.

To reduce the cost of computing cube roots using a polynomial basis, we
observe that the successive cube roots of x2 and y2 can be computed more easily
in reverse order and stored for the duration of the algorithm. Since for any

x2 2 Fq , we have x2 = x3
m

2 , the required values x
1=3i

2 can be computed as x3
m�i

2 ,
and thus one does not need to compute any cube roots at all. The memory
requirement for this is only about 2�11m2 Kb and the time taken is just the
cost of 2m cubings. If memory is at a premium, one can reduce this to about
2�4:5m3=2 Kb with double the number of cubings using further loop unrolling
and pebbling strategies.

6.1 Comparison with trace-based method

We have shown that the Duursma-Lee algorithm can be implemented very ef-
�ciently. We consider the cost of a typical protocol run consisting of a pairing
evaluation and an exponentiation in G.

The cost of a mixed multiplication in G is 12M . Since l � 3m, for an expo-
nentiation Method 4 costs on average about 4:5mM . This improves considerably
on the 12mM required by the trace method of [44]. Even without mixed multi-
plication, this exponentiation still only requires 6:75mM , and with neither the
exponent splitting nor the mixed multiplication, this cost is only about 9mM .
Hence even naive �eld arithmetic is better than the proposed trace method,
which in fact can be reduced further to about 10:3mM using a Euclidean algo-
rithm, but is still slow [52].

With regard to the trace-based proposal for computing the Tate pairing,
ignoring the �nal powering and assuming the same pre-computation strategy for
cube roots for the Duursma-Lee algorithm, a simple cost estimate of an entire
protocol run as described amounts to 29mM + (20=3)mC. For our algorithms,
the corresponding cost is just 18:5mM + 5mC plus a small amount of pre-
computation. In summary therefore we combine the fastest known method for
the Tate pairing evaluation, and also later exponentiations.

Remark. In [44], an open problem was suggested asking if it possible to perform
the pairing computation directly in compressed form for some compression factor
� 3 on ordinary (non-supersingular) curves in characteristic p > 3. For pairing-
based applications, the desirable extension degrees in the near future are likely to
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remain small, and no larger than twenty. Since the maximum compression factor
possible for a given extension degree n is n=�(n), assuming one has compression
mechanisms that achieve these values, for n < 20 the maximum possible is only
three, which is already available.

With respect to the problem proposed, whether the computation of the pair-
ing is in compressed form or not is not particularly relevant unless one is comput-
ing in a memory-constrained environment. The computation of the compressed
pairing in [44] is in fact not compressed at all, since it requires a ladder of three
elements of Fq2 to be held throughout, and thus is equivalent to storing an ele-
ment of Fq6 . The memory footprint of the computation is even higher. The issue
of compression should therefore be restricted to communication and not compu-
tation, and for both ours and the trace-based system, the compression factor is
clearly the same, and is optimal for all practical purposes.

7 Implementation Results

In order to provide some concrete idea of the practical cost of our own and other
methods, we implemented the proposed �eld arithmetic, pairing algorithms and
exponentiation methods. We used a GCC 3.3 compiler suite to build our imple-
mentation and ran timing experiments on a Linux based PC incorporating a 2.80
GHz Intel Pentium 4 processor. The entire system was constructed in C++. We
accept that further performance improvements could be made through aggres-
sive pro�ling and optimisation but are con�dent our results are representative
of the underlying algorithms and allow a comparison between them.

Figure 3 shows the result of timing this implementation using a variety of
di�erent base �eld sizes. In the pairing section, Algorithms 3 refers to the aug-
mented version of Duursma-Lee presented in this paper, with the cube root
precomputation strategy and the loop unrolling. The BKLS method is included
as a reference. We do not include timings for the methods of [44] since our op-
eration count clearly shows they will be slower than our alternatives. Figure 4
gives timings for the underlying �eld operations.

We note �rst that our implementation of Algorithm 3 is between two to three
times faster than the BKLS algorithm. With regard to exponentiation, Method
4 is the most eÆcient for all �eld sizes and in all three groups, and in G is nearly
twice as fast as Method 1 in Fq6 . Contrary to a claim of Koblitz [26] that the
ratio of the time required for an exponentation in Fq6 to the time required for
a point multiplication in E(Fq ) is 12, our results demonstrate that for �elds of
a cryptographic size, this value is in fact closer to 1:3, when using G. This is a
strong result since one may have inferred from the fact that the extension �eld
is six times larger than the �eld of de�nition for E, that exponentiations in Fq6
are bound to be signi�cantly inferior. Combining all our methods, we see this is
not the case. We conceed that while we have not implemented Koblitz's complex
multiplication exponentiation method, due to the estimated large preprocessing
time required, we do not think it would a�ect this comparison signi�cantly.
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Fig. 3. Pairing and Exponentiation Timings.

F379 F397 F3163 F3193 F3239 F3353

Pairing

BKLS 13:96ms 23:60ms 79:11ms 123:21ms 179:30ms 527:56ms
Algorithm 3 4:67ms 8:41ms 29:26ms 45:67ms 65:73ms 197:58ms

Exponentiation in Fq6

Method 1 3:65ms 6:14ms 20:98ms 33:21ms 44:72ms 130:27ms
Method 2 4:57ms 7:25ms 21:53ms 31:61ms 43:56ms 119:16ms
Method 3 3:67ms 5:79ms 17:85ms 26:69ms 36:45ms 101:75ms
Method 4 3:06ms 5:10ms 16:55ms 24:67ms 34:74ms 99:56ms

Exponentiation in G

Method 1 2:55ms 4:27ms 14:15ms 21:67ms 30:69ms 88:06ms
Method 2 2:62ms 5:21ms 13:21ms 20:38ms 26:97ms 74:90ms
Method 3 3:69ms 4:72ms 15:78ms 22:96ms 37:96ms 73:29ms
Method 4 2:32ms 4:07ms 11:84ms 17:63ms 24:73ms 69:30ms

Point Multiplication in E(Fq )

Method 1 1:83ms 3:11ms 10:62ms 16:94ms 24:11ms 69:78ms
Method 2 1:72ms 2:84ms 9:47ms 14:73ms 21:15ms 60:70ms
Method 3 1:82ms 3:01ms 9:66ms 14:95ms 21:19ms 58:70ms
Method 4 1:18ms 1:95ms 8:11ms 12:75ms 19:04ms 55:93ms

Furthermore, due to our direct inversion method, the ratio of inversion time
to multiplication time in Fq3 is under three for all �eld sizes. This means our
compression method in G costs roughly 4=3 multiplications in Fq6 , and is there-
fore very eÆcient.

8 Conclusion and Open Problems

We have shown how to take advantage of the quotient group to which a pairing
value naturally belongs in order to speed up exponentiations, and to obtain fast
compression of pairing values. We have also proposed some simple re�nements
to the Duursma-Lee algorithm which improve upon other suggestions for its
implementation. Our results strongly indicate that there are de�nite advantages
to implementing pairing-based cryptographic protocols in characteristic three:
the often quoted value of ten for the ratio of the speed of a pairing evaluation
to a point multiplication on the curve is really closer to three or four.

Some issues remain. One could certainly improve the exponentiation times for
all three groups if there exists an eÆciently computable ternary analogue of the
Joint Sparse Form [50]. With regard to side channel attacks, such a method may
be undesirable since one can not render cubing and multiplication in charcteristic
three �elds indistinguishable without a serious detriment to performance. As
such, a cube-and-multiply-alwaysmethod using the exponent splitting of Method
4 will half the cost of a secure full length expansion.
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Fig. 4. Timings for Field Operations.

F379 F397 F3163 F3193 F3239 F3353

Fq

Add 0:55�s 0:53�s 0:58�s 0:63�s 0:61�s 0:64�s
Square 4:42�s 6:07�s 12:99�s 16:48�s 19:48�s 40:97�s
Cube 0:85�s 0:84�s 0:96�s 1:26�s 1:24�s 1:77�s
Invert 23:18�s 33:26�s 70:10�s 97:20�s 136:86�s 303:27�s
Multiply 4:06�s 6:02�s 12:80�s 17:83�s 19:42�s 43:11�s

Fq3

Add 0:60�s 0:60�s 0:80�s 0:90�s 0:90�s 0:50�s
Cube 2:10�s 2:10�s 2:30�s 2:50�s 3:20�s 4:20�s
Invert 65:00�s 94:70�s 204:40�s 275:90�s 350:60�s 741:80�s
Frobenius 1:10�s 0:90�s 1:10�s 1:00�s 1:30�s 1:40�s
Multiply 26:10�s 37:80�s 74:20�s 98:00�s 115:50�s 249:00�s

Fq6

Add 0:90�s 0:90�s 0:90�s 1:10�s 1:00�s 1:10�s
Cube 2:80�s 4:60�s 4:40�s 4:00�s 5:00�s 5:60�s
Invert 165:50�s 237:20�s 497:40�s 670:10�s 817:10�s 1709:50�s
Frobenius 2:00�s 2:10�s 1:90�s 2:00�s 2:10�s 2:10�s
Multiply 75:70�s 106:10�s 227:10�s 296:80�s 347:30�s 745:10�s

Also the exact security of the discrete logarithm problem in characateristic
three using the ternary analogue of Coppersmith's method has yet to be inves-
tigated [8, 9]. Preliminary research into this problem using Adleman's Function
Field Sieve has been conducted [20, 21] but the problem should still be considered
open.

Lastly, do there exist methods for fast pairing evaluation using MNT curves,
and how might they compare to those presented here?
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