More Efficient Server Assisted One Time Signatures

Vipul Goyal
Department of Computer Science & Engineeing
Institute of Technology
Banaras Hindu University
Varanasi, India
vi pul g@pan. org

Abstract

Server asdsted one time signature scheme was presented in the last edition of
CT-RSA as a non-repudation service for mobile and constrained devices.
However, the scheme suffered with high storage requirements for the virtual
server and high memory requirements for the mobile dient. We significently
improve the scheme by dramaticdly reducing virtual server storage requirements
as well as mobile dient memory requirements. More predsely, the virtual server
storage requirements in our scheme are more than 80 times lessthan that in the
original scheme. Further, memory requirements for the mobile dient are reduced
by afador of more than 130.

1 Introduction

Computers and communication networks have become an integral part of many people's daily
lives. Systems to fadlit ate mmmercial and other transadions have been built on top of large open
computer networks. These transadions must often have some legal significance if they are to be
useful in red life. Non-repudation is one of the esential services necessary for attaching legal
significanceto transadions and information transfer in general [7].

Non-repudation is usually provided through a digital signature. However, digital signature
generation and even verification are known to be highly computationally intensive processs. It is
not feasible to implement pulic key cryptography and hence digital signatures on a cnstrained
mobil e device having limited computational resources and memory. Hencethe question arisesi.e.
how to provide ameans of non-repudation to such devices on which pubic key cryptography is
not possble.

The answer is to employ a third party. If unconditionally trusted, very efficient non-repudation
service may be provided by the third party. In a straightforward setting, the mobile user, aso
cdled the originator, and the trusted third party may share aseaet key. The originator would
supply the message to be signed encrypted with that key and the third party would sign that
message on behalf of the originator. Clealy, it is easy for the third party to cheat in this stting
sinceit could sign any message on behalf of the user.

Such schemes are of limited usage since they require the originator to have unconditional trust in
the third party. More pradical, though lessefficient, techniques are possble in which if the third
party cheas, the originator is able to prove this cheding to an arbiter. The third party in this
setting is cdled a verifiable server (VS). The first pradicd scheme under this caegory was
devised by Asokan et a [7]. However, it suffered from several serious limitations as discussed in
sedion 3. This sheme was receaitly improved by Bicakci and Baykal [1] to propose server

asdsted one time signatures (SAOTS). SAOTS, dthough very pradicd, suffered from storage
problems. The storage requirements for the VS in this sheme were quite high and ever
increasing. More predsdly, for every signature generated, the VS was required to add
approximately 5 KB to its gorage. Considering minimal parameters, assume that a user signs just
a single message per day and the VS supports just a thousand users, the storage requirements for
the V'S starts becoming prohibitive in just 1 year. Clealy, it is not feasible to use this £heme on a
large scde in a commercia setting. Additionally, the maobil e device was required to store aout
2.7 KB of seaet data in its memory in order to be ale to use this sheme. For a device which
cannot generate or verify signatures, storing this datain its memory could be a so prohibitive.

OUR CONTRIBUTION. We improve the SAOTS construction trying to deaease the storage
requirements for the VS as well as the memory requirements for the mobile dient. By using a
new technique to generate one time signature keys and introducing a new server storage scheme,
we ae ale to dramaticdly reduce the VS storage requirements as well as the mobile dient
memory requirements. Only 60 bytes per signature generation are added to the VS storage instead
of 5 KB in the previous sheme. Further, the memory requirements for the mobile dient are
reduced from 2.7 KB to just 20 bytes. The mmputational requirements in our scheme remain
pretty much the same asin the previous £heme[1].

Rest of the paper is organized as follows- Sedion 2 provides sme badkground material on hash
chains and one time signatures. Sedion 3 discusss the related work. Sedion 4 discusses the
proposed construction of the SAOTS scheme and various isaues involved in it. Sedion 5
concludes the paper.

2 Background on Hash Chains and One Time Signatures

2.1 Hash Chains

Hash chains are based a public function h that is easy to compute but computationally infeasible
to invert, for suitable definitions of “easy” and “infeasible”. Such functions are cdled one-way
functions (OWF) and were first employed for use in login procedures by Neadham [16]. If the
output of a one-way function is of fixed length, it is cdled a one-way hash function (OWHF).
More predsely, the definition of OWHF is given as [15]-

Definition A function h that maps bit strings, either of an arbitrary length or a predetermined
length, to strings of afixed length isa OWHF if it satisfies three alditional properties-

- Given x, it is easy to compute h(x)

- Given h(x), it is hard to compute x

- Itishard to findtwo values x and y such that h(x) = h(y), but x £ y.

The ideaof “hash chain” was first proposed by Lamport [1] in 1981and suggested to be used for
safeguarding against passwvord eavesdroppng. However being an elegant and versatil e low-cost
technique, the hash chain construction finds alot of other applicdions.

A hash chain of length N is constructed by applying a one-way hash function h() reaursively to an
initial seed values.
hV(s) = h(h(h(...h(s)...))) (N times)

The last element hV(s) also cdled thetip T of the hash chain resembles the public key in public
key cryptography i.e., by knowing h"(s), hV(s) can not be generated by those who do not know

the value s, however given hV(s), its corredness can be verified using h(s). This property of
hash chains has diredly evolved from the property of one-way hash functions.

In most of the hash-chain applications, first hN(s) is ®arely distributed and then the dements of
the hash chain are spent (or used) one by one by starting from h™*(s) and continuing urtil the
value of sis readed. At this point the hash chain is said to be exhausted and the whole process
should be repeaed again with a different sto reinitiali ze the systems.

2.2 One Time Signatures

The Concept of One time signatures (OTS) has been known for over two decales. It was initially
proposed by Lamport and was the first digital signatures <heme ever designed. Interestingly,
OTS schemes employ nothing more than OWHFs. The cncept of OTS was subsequently
enhanced by Merkle [17-18], Winternitz [17] and Bicakci et al [22]. Bleichenbadher et al [19-21]
formali zed the concept of OTS using directed acyclic graphs (DAGs).

SIGNING A ONE BIT MESSAGE. The signer chooses as the seaet key two values x1 and x2
(representing ‘0" and ‘1) and publishes their images under a one-way function y1 = h(x1) and y2
= h(x2) as the public key. These x’s and y’s are cdled the secret key components and the public
key components, respedively. To sign a single bit message, reved the pre-image corresponding to
the adual ‘0’ or ‘1’ i.e. reved x1 or x2 based upon whether the message to be signed is 0 or 1.

For signing longer messages, several instances of this basic scheme may be used. Thus we note
that to sign an n bit message, 2n X's and thus 2n y's are required and the size of signatures
generated is equal to n X'si.e. ntimes the size of random number.

There ae several improvements to this basic scheme. Merkle [17, 18] proposed an improvement
which reduces the number of pulic as well as aet key components in the Lamport method by
amost two-fold. Instead of generating two X' s and two y's for ead bit of the message, the signer
generates only one x and one y for ead hit of the message to be signed. When ore of the bitsin
the message to be signed isa ‘' 1’, the signer releases the wrresponding value of x; but when the
bit to be signed is a ‘0’, the signer releases nothing. Becaiuse this all ows the receiver to pretend
that he did not receve some of the x’s, and therefore to pretend that some of the ‘1" bitsin the
signed message were ‘0’, the signer must also sign count of the ‘0" bits in the message. Now,
when the recever pretendsthat a‘1’ bit was adually a‘0’ bit, he must also increase the value of
the count field, which can’'t be done. Becaise the munt field has only log(n) bits in it, the
number of pulic and seaet key componentsis deaeased by amost afactor of twoi.e. from 2nto
n + log(n) (or to n + [log(n)] + 1 if nis not a power of 2). This also results in the deaease of
signature size by almost afador of two.

As an example, if we wished to sign the 8-bit message ‘0100 1110 we would first count the
number of ‘0’ bits (there are 4) and then append a 3-bit count field (with the value 4) to the
original 8-bit message producing the 11-bit message ‘0100 1110 100’which we would sign by
releasing X[2], X[5], x[6], X[7] and x[9]. The recaver cannot pretend that he did na recave x[2],
becaise the resulting erroneous message ‘0000 1110 100 would have 5 ‘O's in it, not 4.
Similarly, pretending he did not receve x[9] would produce the eroneous message ‘0100 1110
000 in which the cunt field indicates that there should beno ‘0’s at al. There is no combination
of X’s that the recaver could pretend rot to have recaved that would let him concoct a legitimate
message.

Winternitz [17] proposed an improvement which reduces the signature size by severa folds at the
expense of increased computational effort. In Winternitz's method, the OWF is applied to two
seaet key components iteratively for a fixed number of times, resulting in a two-component
pulic key.

3 Related Works

Server asgsted signatures can be explained in threesubgroups depending on the trust relationship
between the user and the server. More spedficdly, the server employed may be either (1) fully
trusted, (2) un-trusted, or (3) verifiable.

In the first category, after recaving an authentic message from a user (A MAC algorithm which
can be implemented very efficiently may be used for authentication), a more powerful proxy
server on behalf of the user generates a pubdic key digital signature for the message [2]. Notice
that the user himself does not need to perform any pulblic key operation, he just computesaMAC
using seaet key cryptography. The drawbadk here is that this smple design is only applicable
when the user fully trusts the proxy server i.e. the server can generate forged signatures and the
cheding cannot be proven by the user. On the other extreme, atotally un-trusted server might be
utilized i.e. the server exeautes only non-seaurity sensitive computations for the user.
Unfortunately, there are not many seaure and pradicd schemes under this caegory. Most of the
schemes proposed so far in this category have been found flawed. For instance the protocol
proposed by Bequin and Quisquater [4] was later broken by Nguyen and Stern [5]. To aur
knowledge, for RSA signatures, designing a seaure server-asdsted protocol that utilizes an
untrusted server is dill an open problem. But the situation for DSA is not the same. A seaure and
unkroken example for DSA is the interesting approach of Jakobson and Wetzd [6]. However in
their approach, to generate the signature, pulic key operations although in reduced amount are
still needed to be performed on the constrained device

The last server-asdsted signature dternative is to employ a verifiable server (VS). A VSis the
one whose theding can be proven to an arbiter. This approach can be considered somewhere in
between the other two since the server in this case can chea but subsequently, the user would
have the adili ty to prove this stuation to ather parties (e.g. an arbiter).

The first work that aims to reduce the computational costs to generate digital signatures for low-
end cevices by employing a powerful VSis SAS protocol [7]. In [8], the authors extend this work
by providing implementation results and some other details of the scheme. Now we provide a
brief summary of SAS protocol. For a more comprehensive treament, the reader is referred to the
original papers|[7, §].

There is an initidizaion phase in which ead user (originator) gets a certificate from an offline
cettificaion authority spedfying H'(s), the tip of the hash chain, where s is kept seaet by the
originator O. In addition, O should register to a VS (which has the traditional public-key based
signing capabili ty) before operation. Then the SAS protocol works in threerounds-

1. The originator (O) sends m and h(s) to VS where

—misthe message

— h"(s) is the i™ element of the hash chain. The unter i is initialy set to 1 and
incremented after ead run.

2. Having receved O'srequest, VS checks the followings:

— Whether O’s certificae is revoked or not.

— Whether h'(supplied i™ link) = hV(s) or in amore dficient way h(suppied i link) = h™"
() sinceh“"*(s) has already been recéved asthe (i-1)" link

If these chedks are OK, VS signs m concaenated with h'(s) and sends it badk to O.

3. After recaving the signed message from VS, O verifies the VS's dgnature, attaches
h"(s) to this message and sendsiit to the recéver R.

Upon recept of the signed message, the recever verifies VS's dgnature and chedks
whether h(h""(s)) = hV'(s)

Note that VS may try to sign m’ instead of m once O releases the i™ link. But then, since O
verifies the signature, it would not release the (i-1)™ link thus rendering the signature on m’
incomplete. The best VS can do is to sign two messages m and m' with the same link embedded
in both signatures. For this, O should store every message signed by the VS corresponding to
ead link in the hash chain. This leaves O with a cryptographic proof of server fraud if she
encounters any other message singed by the server since O can then produce two message signed
by VS with the same hash chain link embedded in them.

[1] observes the following limitations of SAS protocol -

1. Veifying VS's signature: In step 3 of the SAS protocol, before sending the signed
message to R, O should verify the VS's dgnature to be safe against the posshility of
changing the message ather by an adversary in transit or by the VS itself. Remember that
for some a@nstrained devices, public key cryptography is simply untenable no matter it is
used for signing o verifying. Even when pulbic key cryptography is acceptable for the
user’s device, the efficiency provided by this protocol is based on an assumption which is
not aways vaid. More predsely, if the VS uses RSA [14] signature scheme, where
verification is much more dficient as compared to signature generation, SAS brings
efficiency. On the other hand, if instead of RSA, other digital signature schemes like DSS
[12] where verification is at least as costly as sgning are used to sign the message, SAS
protocol apparently becomes less-efficient than even the traditi onal signing methods.

2. Incompatible Verificaion: As observed in [8], unlike the proxy signatures, SAS
signatures are not compatible with other primary signature types i.e. the signature
generated by the SAS protocol is not a standard signature. Therefore, the recever must
utili zethe austom-built verification method of SAS protocol.

3. Storing VS's dgnatures: In SAS protocol, the user must store al the signatures generated
by VS on its behalf in order to be életo prove VS's cheding to an arbiter [1]. For many
devices having alimited storage cgpadty, this might also be an urredistic assumption.

4. Network Overhead: One of the fadors that affed the overall performance of the SAS
protocol is the round-trip delay between O and VS which is related to the number of steps
in the protocol exeaution. SAS has an extra step in which the VS returns badk the
generated signature to the user in order to enable him to verify this sgnature. Other
server asssted signature schemes like SAOTS (explained next) have only 2 steps as
compared to 3in SAS.

SAS was recently improved by Bicakci and Baykal [1] to propose server assisted one time
signatures (SAOTS) which is the first VS based approach where the user does not need to
perform any public key operation at al. SAOTS is completely transparent to verifiers since the

signatures are indistinguishable from standard signatures. Further, in SAOTS unlike other
aternatives, the VS not the user is required to save the signatures for dispute resolution.
Operating in two rounds as opposed to threg SAOTS diminates al the four aforementioned
drawbadks of SAS protocol. The basic ideais that the user signs the message with a one time
signature key pair and sends it to VS which in turn stores the user’s one time signature and signs
the message with the traditional pulic key.

For system setup, every user registers to the VS and generates a one-time key pair by randomly
generating seaet key components. In a seaure fashion, the user distributes the public key to the
server.

For getting a message signed by the V'S, the user precomputes a second one-time key pair. When
the message to be signed is ready, he mncatenates the message with the new one-time pulic key
and signs this by his previous one-time private key. He then sends the message and the new one-
time pubic key as well as the one-time signature to VS. VS verifies the recsived one-time
signature using the one time public key recaved in the previous dep. He stores the new one-time
pulic key the user has ggned for the verificaion of next message. VS aso stores the receved
signature. He is how realy to sign the message with the user’s private key. Finaly, the signed
message is transmitted to the intended recever(s).

The user can sign any further messages easily by repeding the above steps. Dispute resolution is
straightforward since VS stores al the public keys and signatures recaved form the user.

The main problems in this heme are the high storage requirements for the VS and memory
requirements for the user. Recdl that for SHS and merkle’s construction of one time signatures,
the number of seaet (or pulic) key components = 160 + log(160 = 168. Hence for every
signature, sincethe VS is required to store the message to be signed = 20 bytes, the public key =
16820 = 3360 hytes and the signature = (1682)*20 = 1680 lytes, the total storage aldition for
every signature is 20 + 3360+ 1680 = 5060 bytes or approximate 5 KB. As explained in sedion
1, even for the minimal parameters, the storage requirements for the VS start becming
prohibitive soon in such a setting. Further, the user is required to remember the last seaet key
components in order to be ale to sign the next message. For 128 hit random numbers, the user
memory requirements comes out to be aout 16816 = 2.7 KB approx. This can aso be
prohibitive for a devicewhich cannot even generate or verify signatures.

4 The Proposed Construction

Before going further, we introduce some basic notations used in this dion-

U The mobil e user or the originator

VS Verifiable Server

R Recaver of the signature

L Length of the output of OWHF employed e.g. 160 kit for SHS

m Number of pubic/seaet key components used in the OTS scheme. Equal to

L+logy(L) for Merkle' s construction

p Average number of componentsin aone time signature. Usually equal to m/2.

P! i™ one time pubic key of user U. Equal to the colledion (or Concaenation) of m
. pulic key components

S i™ one time seaet key of user U. Equal to the lledion (or Concatenation) of m

seaet key components

SJ'(M) The message M signed with the one time seaet key S,'. Equal to the colledion (or
Concaenation) of the relevant seaet key components required to sign M

Py Traditional pubic key of the user U

Su(M) Message M signed with the traditi onal secret key of the user U

4.1 Setup

In order to initialize the system, the mobile user U initiates a counter i = 1 and generates the
following-
1) A secret key K
2) A onetimekey pair asfollows-
S ={h(K,i, 1), h(K,i,2), ..., h(K, i, m)}
P.'={h*K,i, 1), h*(K,i,2), ... , h(K, i, m)}

Now, the user seaurely stores K and i and transfers Py* to the VS in a non-repudable manner.

This can be acomplished by a pulic key signature if U has a caabili ty of traditional signing or

paper means or by getting a certificate from a CA spedfying the one-time pubic key Py
U->VsS P!

In addition, to produce traditional public key signatures on behalf of the user, the VS generates a

pulic/seaet key pair i.e. Py/Sy on behalf of the user and obtains a cetificae from the CA
spedfying the public key Py. Note that the seaet key Sy isnot revealed even to U itself.

4.2 Operation

User Su'(h(M)), h(Py"™%) Server
h(M), Py .
Su(h(M))
\ 4
Receiver

Figure 1. Operation of the Proposed Scheme

For generating thei" signature, the protocol works as foll ows-

1) The user precomputes the next i.e. (i+1)" one time public/seaet key pair (see sedion
4.1). When the message to be signed is realy, he concaenates the hash of the message

with the hash of the computed one-time pulic key and signs the resulting quantity with
his current i.e. i™ one time seaet key. He then sends this sgnature dong with the hash of
the message and the computed public key to VS.

U->VS SJ(h(M)), h(Py™), h(M)), Py"™*

2) VS chedks the validity of the receved signature using the stored Py'. It then stores the
following-
a) h(M) .
b) h(Su'(h(M;), h(Py"™)))
¢) h(Py))

VS then replaces the stored Py' with the recéved Py'™*. Now, VS produces a traditi onal
pulbic key digital signature to sign the message h(M;) using user's eaet key Sy. This
signature is then dredly sent to the recever R if spedfied in the user's request.
Alternatively, the signature may also be returned to the user.

VS>R: Syh(M)

This completes our description d the proposed scheme. Observer that as with SAOTS, the
scheme is fully transparent to the receiver since the signature is a standard signature. The
certificate of the user spedfying Py may be suppied along with the signature if required®. The
recaver does not neal to have a aistom built software to chedk the validity of the signature. This
is in contrast to SAS. Further, the user is not required to perform any pullic key operations
whereasin SAS, digital signature verification was required by the user.

4.3 Analysis

First observe that for every signature generated, the VS has to add 3 hash valuesto its goragei.e.
for the i"" signature, the V'S has to store the following- 1) h(M;), 2) h(Sy'(h(M3), h(Py"*Y))), and 3
h(Py"). Thus, asignature sts only 60 bytes to the VS. Clealy, thisis a significant improvement
over [1] in which the VS had to add about 5 KB to its gorage & explained in sedion 3. After
generating i signatures for the user U, the VS stores the following-

{h(M), h(Su'(h(M1), h(Pu?)), h(Pu)}, {h(M2), h(Su*(h(M.), h(Py M P, -, {h(vy),
h(Su'(h(M3), h(PJ™)), h(PY)}, Py™

Now, consider memory requirements for the mobil e user. In our scheme, the user is only required
to store the 128 hit seaet key K along with the counter i. Assuming a 32 hit counter, the memory
requirements for the user comes out to be 20 bytes. This is about 135 times lessthan that in the
original scheme [1] for which the requirements are about 2.7 KB as explained previously.

4.4 Dispute Resolution

A dispute aisesin case auser U claimsthat the VS has sgned a message M on his behalf which
he did not request the VS to sign. The prerequisite for this claim is that U shodd produce the
signature on M generated by the VS on his behalf. Now, the arbiter asks VS to prove that the
message M was indeed requested by U to be signed. Additionally, since in our scheme the VS

! Here one possble option is to have the VS sign the message with its own pullic key after appending a
statement to the message indicéing the user on whaose behalf it has sgned the message. The alvantage of
this approadc isthat the VSis nat heeded to dotain anew certificate for each registered user.

does not store full one time signatures and public keys, the abiter also asks U to cogperate in the
process(athough U may not do so honestly).

At this point, assume that V'S has generated n signatures on behalf of the user U. Thus, VS stores
the foll owing-

{h(M2), h(Su'(h(M1), h(PL))), h(Py)}, {h(M2), h(Su*(h(M2), h(Pu?)), h(PL?)}, .. , {h(My),
h(Su"(h(Ma), h(Pu™)), h(P,)}, P™

The dispute resolution protocol proceeds in steps. The i step of the process takes place as
followsfor1<i<n

(1) The VS submits the stored h(Sy'(h(M), h(Py'"%))) to the abiter.

(2) VS demands Py and Sy/(h(M;), h(Py™*") from U after supplying him h(M yand h(Py"™).
U generates S and Py’ using the seaet key K (see foatnote %) and signs the
concaenation of supgied h(M;) and h(PU'+1) usmg Sy'. U cannot supply a wrong P’
smcehesgned h(P.") in the previousi.e. (i-1)™ step®. He cannot suppy awrong signature
SU'(h(M;), h(Py'™)) sincethe signature can be verified using the supplied key P'.

(3) The abiter computes the hash of the signature h(Sy'(h(M;), h(Py'™))) suppied by U and
matches it with hash of the signature submitted by VSin (1). If they do not match, the VS
is concluded to be the dheaer. Otherwise, the abiter concludes the foll owing-

a) VSwasrequested by U to sign h(M;) .
b) Hash of the next one time public key to be suppied by U should be h(Py'*%).

If the hash of the disputed message i.e. h(M) equals h(M;), the dispute is resolved in the favour of
VS. Elseif i equa n, i.e. al message stored by VS have been chedked and rone equals M, the
dispute is resolved in the favour of the user U. Otherwise, i is incremented and the process
continues with (1) again.

Now, we summarize the computational and storage requirements for SAOTS and our scheme for
al the 3 partiesinvolved-

Notations:-

H: hash computation

S: generation of traditional pubic key signature

V: verificdion of traditional pubic key signature

E: OTS encoding computation (costs less than one hash)
p: number of hash computationsto verify OTS

m: number of pubdic key componentsin the OTS scheme
K: size of seaet key of the user

C: sizeof the signature unter

% Note that it isimmaterial how U generates one time key pairs S;"”s and Py s. VS cannot and donat need
to ensure that U is following the aorrect formula for generating one time key pairs during any phase in the
scheme. The sole purpose of spedfying a formula for S' and Py' is to put the responsibility of suppying
signatures and pubdic keyson U instead of the VS.

3 fori =1, U cannot supdy a wrong key since Py* was the initial key registered using non-repudiable
means.

Party Name SAOTS origina Proposed Construction
User 1H + 1E 1H + 1E
Computational Requirements Server 1E + (p+2)H + 1S 1E + (p+3)H + 1S
Recever 1H + 1V 1H + 1V
User mH 1K +1C
Storage Requirements Server (m+p+1)H 3H
Receaver _ _

Table 1: Objedive comparison of the proposed scheme with the original SAOTS scheme

5 Conclusion

Server asdsted signature schemes try to provide a means of non-repudation for constrained and
mobil e devices having limited computational and memory resources. SAOTS seams to be the
most pradicd server asssted signature scheme. However, the main problem with SAOTS was
high storage requirements for the VS and memory requirements for the mobil e dient.

We improved the SAOTS construction by addressng both of the above problems. By using a new
technique to generate one time signature keys and introducing a new server storage scheme, we
were @le to dramaticdly reduce the VS storage requirements as well as the mobile dient
memory requirements. Only 60 bytes per signature generation are alded to the VS storage instead
of 5 KB in the previous heme. Further, the memory requirements for the mobile dient are
reduced from 2.7 KB to just 20 bytes. The resulting construction seems to be practicd from both
computational as well as gorage point of view.

References

[1] Kema Bicakci and Nazfe Baykal, “Server Asdsted Signatures Revisited”, T. Okamoto
(Ed.): CT-RSA 2004 LNCS 2964 pp. 143-156, 2004.

[2] M. Burnside, D. Clarke, T. Mill's, A. Maywah, S. Devadas, and R. Rivest. Proxy- Based
Seaurity Protocols in Networked Mobile Devices. Proceedings of the 17" ACM
Symposium on Applied Computing (Security Track), March 2002

[3] A. Boldyreva, A. Palado, and B. Warinschi. Seaure Proxy Signature Schemes for
Delegation of Signing Rights. Cryptology ePrint Archive, Report 2003096, 2003,
http://eprint.iaa.org.

[4] P. Beguin and J. J. Quisquater. Fast server-aided RSA signatures faure against adive
attadks. CRYPTO 95, LNCS No. 963 Springer-Verlag, 1995

[5] P. Nguyen and J. Stern. The Beguin-Quisquater server-aided RSA protocol from Crypto
'95isnot seaure. ASIACRYPT 98, LNCS No. 1514 Springer-Verlag, 1998

[6] M. Jakobsson and S. Wetzd. Seaure Server-Aided Signature Generation. In Proc. of the
International Workshop on Pradice and Theory in Public Key Cryptography (PKC 2001),
LNCS No. 1992 Springer, 2001

[7] N. Asokan, G. Tsudik and M. Waidners. Server-supported signatures. Journal of
Computer Seaurity, November 1997,

[8] X. Ding, D. Mazzocchi and G. Tsudik. Experimenting with Server-Aided Signatures.
Network and Distributed Systems Seaurity Symposium (NDSS02), February 2002.

[9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22

K. Bicakci and N. Baykal. SAOTS: A New Efficient Server Asssted Signature Scheme
for Pervasive Computing. In Proc. of 1st International Conference on Security in
Pervasive Computing, SPC 2003 LNCS No. 2802 March 2003 Germany.

K. Bicakci and N. Baykal. Design and Performance Evaluation of a Flexible and Efficient
Server Asssted Signature Protocol. In Proc. of IEEE 8th Symposium on Computers and
Communications, ISCC 2003 Antalya, Turkey.

R. Gennaro and P. Rohatgi. How to Sign Digital Streams. CRYPTO 1997, LNCS No.
1294, Springer-Verlag, 1997.

National Institute for Standards and Technology. Digital Signature Standard (DSS.
Federal Register, 56(169), August 30, 1991.

National Institute of Standards and Technology (NIST), "Announcing the Seaure Hash
Standard”, FIPS 180-1, U.S. Department of Commerce, April 1995

R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems’, Communicaions of the ACM, 21(2):120-126, 1978.

T.A. Berson, L. Gong and T.M.A. Lomas, Seaure, “Keyed, and Collisionful Hash
Functions, Technicd Report” SRI-CSL-94-08, SRI International, May 1994

M. V. Wilkes, “Time-Sharing Computer Systems’, New Y ork: Elsevier, 1972

R.C. Merkle, A Digital Signature Based on a Conventional Encryption Function, Proc.
CRYPTO'87, LNCS 293 Springer Verlag, 1987 pp 369-378.

R.C. Merkle, A Certified Digital Signature, Proc. CRYPTO'89, LNCS 435, Springer
Verlag, 199Q pp 218238

D. Bleichenbacher and U.M. Maurer, Direded Acyclic Graphs, One-way Functions and
Digital Signatures, Proc. CRYPTQO' 94, LNCS 839, Springer Verlag, 1994 pp 75-82.

D. Bleichenbacher, U.M. Maurer, Optimal TreeBased Onetime Digital Signature
Schemes, Proc. STACS 96, LNCS 1046 Springer-Verlag, pages: 363374, 1996.

D. Bleichenbadher, U.M. Maurer, On the dficiency of one-time digital signatures, Proc.
ASIACRYPT’' 96, LNCS 1163 Springer-Verlag, pages: 145158 1996

K. Bicakci, G. Tsudik, B. Tung, How to construct optimal one-time signatures, Computer
Networks (Elsevier), Vol.43(3), pp. 339349, October 2003.

