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Abstract - A new GF(2n) redundant representation is presented. Squaring in the representation 

is almost cost-free. Based on the representation, two multipliers are proposed. The XOR gate 

complexity of the first multiplier is lower than a recently proposed normal basis multiplier when 

CN (the complexity of the basis) is larger than 3n-1.  

Index Terms - Finite field, normal basis, redundant set, Massey-Omura multiplier.  

1. Introduction 

Efficient GF(2n) arithmetic operations are very important in many applications, e.g., coding 

theory and cryptosystems. When GF(2n) elements are represented in GF(2)-bases, polynomial 

bases, triangular bases, dual bases and normal bases (NB) are of particular interest. NB has 

received considerable attention because the squaring in NB is simply a cyclic shift of the 

coordinates of the element and, thus, it has found application in computing inverses and 

exponentiations. Another way to represent field elements is using redundant representation. GF(2n) 

multiplication algorithms based on redundant representation have been proposed in [1], [2], [3], [4] 

and [5]. They are essentially redundant polynomial bases representations, and the number of 

redundant bits is often large. 

In this paper, a new redundant representation of GF(2n) is presented. Field elements are 

represented in n+1 bits, i.e., there is only a single redundant bit. Arithmetic operations in the 

representation are similar to those of the NB, e.g., the squaring operation is simply a cyclic shift 

of all but one coordinate. Based on this representation, we propose two GF(2n) parallel multipliers. 

The first multiplier uses the redundant normal basis representation. It consists of n2 2-input AND 
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gates, and its XOR gate complexity is lower than the best known NB multiplier, namely the 

RR_MO multiplier [6], when CN (the complexity of the NB) is larger than 3n-1. Compared to the 

RR_MO multiplier, the new multiplier needs at most one more XOR gate delay. The architecture 

of the second multiplier is similar to the first one. It possesses some properties of normal bases too. 

This paper is organized as follows: In Section 2, definitions of the redundant normal basis 

(RNB) and the redundant pseudo-normal basis (RPNB) are introduced. The proposed RNB and 

RPNB multipliers are presented in Section 3 and Section 4 respectively. The concluding remarks 

are made in Section 5. 

2. Preliminaries 

Throughout this paper, <x> denotes the non-negative residue of x mod n, and a basis means one 

of GF(2n) over GF(2) unless stated otherwise. 

Let },...,,{ 110 mM  be a subset of GF(2n)*. Sometimes we also use M to denote the 

GF(2n) vector ),...,,( 110 m
. Let Rank(M) be the rank of M. Then M is a basis if and only if 

Rank(M)=n and m=n [7]. Given a basis M, a field element A can be represented uniquely by a 

binary vector (a0,a1,...,an-1) with respect to (w.r.t.) this basis as 
1

0

n

i
iiaA . For example, 

N= },...,,{
110 222 n

 

is a normal basis if Rank(N)=n. 

When Rank(M)=n and m>n we call M a redundant generating set. The coordinate 

representation of an element in the redundant generating set is not unique.  

Definition 1. Let N= },...,,{
110 222 n

 and M= }1,,...,,{}1{
110 222 n

N  be two ordered 

subsets of GF(2n)*. M is called a redundant normal basis (RNB) if Rank(N)=n, i.e., N is a normal 

basis. M is called a redundant pseudo-normal basis (RPNB) if Rank(N)=n-1 and Rank(M)=n. If M 

is a RPNB then  is called a RPNB generator. 

From the definition, we know that if M is a RPNB then }1,,...,,{
210 222 n

 is a basis. In 

Section 3 and 4 we will discuss RNB and RPNB respectively. Here we present one of their 
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common properties. Given a field element 
1

0

2
110 1),,...,(

n

i
innn

i

aaaaaaA , the squaring 

operation of A is simply a cyclic shift of all but one coordinate, i.e., 

nnn

n

i
in aaaaaaaA

i

,,...,,, 2101

1

0

2
1

2 . 

3. Redundant Normal Bases 

In this section, we present a parallel multiplier based on RNB. Let M= }1,,...,,{
110 222 n

 be a 

RNB and 
1

0

2'''
n

i
in

i

aaA  and 
1

0

2'''
n

i
in

i

bbB  be two field elements represented in M. 

Since N= },...,,{
110 222 n

 is a NB, it is well known that 1)(
1

0

2
n

i

i

Tr . Multiplying both 

sides of this identity by an-1', we have 0
1

0

2'
1

'
1

n

i
nn

i

aa . Thus A' can also be represented as: 

2

0

2'
1

''
1

'' )()(
n

i
ninn

i

aaaaA .                                                                                        (1) 

Now we define ai=ai'+an-1', where i=0,1,...,n. Please note that an-1=0. Using this definition, we 

have A'=an+A, where 
2

0

2
n

i
i

i

aA . Similarly, we have B'=bn+B, where 
2

0

2
n

i
i

i

bB . 

The coordinate representation of D=(d0,d1,...,dn-1,dn)=A'B' w.r.t. M can be computed by the 

following formula: 

D=A'B' =(an+A)(bn+B)=anbn+anB+bnA+AB
2

0

2)(
n

i
ininnn

i

abbaABba .                        (2) 

Since N itself is a NB, the bases conversions between M and N are described by the expression: 

1

0

2''
1

0

2''' )(
n

i
ni

n

i
in

ii

aaaaA . 

In [6], Reyhani-Masoleh and Hasan proposed a new architecture for the NB parallel multiplier, 

which is applicable to any arbitrary finite field and has significantly lower circuit complexity 

compared to the original Massey-Omura NB parallel multiplier. The multiplier is called the 

reduced redundancy Massey-Omura (RR_MO) multiplier. Since N= },...,,{
110 222 n

 is a NB 
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and 
2

0

2
n

i
i

i

aA  and 
2

0

2
n

i
i

i

bB , AB may be computed by the RR_MO multiplier. So 

D=(d0,d1,...,dn-1,dn)=A'B' can be computed by the following architecture, which is called the RNB 

multiplier:             

(a)          

             (b) 

Fig. 1. The architecture of the RNB multiplier. 

Conversion operations of (1) are performed in Fig. 1 (a). Fig. 1 (b) corresponds to (2). While 

the RR_MO multiplier needs 2n bits input signals, only 2(n-1) bits input signals (an-1=bn-1=0) are 

needed in the modified RR_MO multiplier of Fig. 1 (b). The modified RR_MO multiplier is 

implemented by eliminating product terms including an-1 or bn-1 in the original RR_MO multiplier. 

Obviously, the AND gate complexity of the proposed RNB multiplier is 1+2(n-1)+(n-1)2=n2. 

The XOR gate complexity is described by the following theorem: 

Theorem 1. The upper bound of the number of the two-input XOR gates in the RNB parallel 

multiplier is 
2

24)2( 2 nnCn N .                                                                                             (3) 

a0       a1      ...      an-2                an 

a0'       a1'      ...     an-2'   an-1'   an'

 

dn-1    dn

 

an  

bn-2

 

bn-3

  

  
... 

b1 

b0 

bn   

an-2

 

an-3

  

  
... 

a1 

a0 

    

Optimized

 

   RR_MO 

                                    n-1 3-input XOR gates                            S 

        

d0  d1          ...       dn-2 

...

 

...

 

n-1

b0       b1      ...      bn-2                bn 

b0'       b1'      ...     bn-2'   bn-1'   bn'
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Proof: We will use the following two definitions introduced in [6]: 

even for                   2/

odd for            2/)1(

nn

nn
v  and 

even for        5.0

odd for            1

n

n . 

First we compute the XOR gate complexity of the modified RR_MO multiplier in Fig. 1 (b). 

Since an-1=bn-1=0, we need only to eliminate product terms including an-1 or bn-1 in the original 

RR_MO multiplier of [6]. So we assume that the reader is familiar with the architecture of the 

RR_MO multiplier. Now, let us count these terms using Fig. 1 of [6]. 

In block B0, only an-1bn-1 needs to be eliminated. Now we consider blocks Bi for 11 vi . 

Since xn-1,i=an-1bn+i-1+bn-1an+i-1=0 and xn-i-1,i=bn-1an-i-1+an-1bn-i-1=0, two corresponding blocks Bi are 

needed to be eliminated. Because the input line x (subscripts are omitted) of the pass-thru module, 

which is just the output line of Bi, is connected to its )( iH  output lines, thus the total number of 

terms to be eliminated in both Bi and the corresponding pass-thru module is )(22 iH . 

For block Sv, if n is odd terms xn-1,v and xn-v-1,v are zeros, and if n is even only terms xv-1,v is zero. 

Thus the number of terms to be eliminated in block Sv is )(22 vH . 

Since the upper bound of the 2-input XOR gate of the RR_MO multiplier is n(CN+n-2)/2 

[6,Theorem 2], the upper bound of the modified RR_MO multiplier is 

1

1

)(22)(221
2

2 v

i
iv

N HH
nCn . 

Now we compute the upper bound of the RNB multiplier. Obviously, conversion operations in 

Fig. 1 (a) need 2n XOR gates, and n-1 3-input XOR gates in block S of Fig. 1 (b) may be 

implemented by 2(n-1) 2-input XOR gates. Using the identity 
2

1
)()(

1

1

N
v

j
jv

C
HH  of [6], 

the upper bound of the 2-input XOR gate in the RNB multiplier is 

)1(22)1(11
2

2
nnnC

nCn
N

N 

= 13
2

2
nC

nCn
N

N ,                                                                                                  (4) 

which reduces to (3) after simplification.                                                                                        

 

From (4) we know that if CN>3n-1 then the RNB multiplier requires CN-3n+1 fewer two-input 

XOR gate than the original RR_MO multiplier. 
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The gate delay in Fig. 1 (a) is 1TX due to the parallelism, where TX is the delay of one 2-input 

XOR gate. Now we assume that CN>3n-1. Obviously, the number of terms used to generate the 

coefficient of the basis element k2  ( 10 nk ) in the modified RR_MO multiplier is less than 

that of the original RR_MO multiplier. So compared to the original RR_MO multiplier, the RNB 

multiplier needs at most one more XOR gate delay. 

4. Redundant Pseudo-Normal Bases 

Now we consider the redundant pseudo-normal basis. Let N= },...,,,{
1210 2222 n

 and 

M= }1,,...,,,{
1210 2222 n

, where M is a RPNB. From the definition of RPNB, we know that 

Rank(N)=n-1 and Rank(M)=n. First we determine all the RPNB in GF(2n) that n is odd. Then we 

will show that no RPNB exists in GF(2n) that n is even. 

Theorem 2. Let n be odd, SNB={x|x is a normal element of GF(2n)} and SRPNB={x|x is a RPNB 

generator of GF(2n)}. The map f : SNB SRPNB defined by f(x)=x+x2 is bijective. 

Proof: First we show that for any 
NBS , 

RPNBS2 .  

Let },...,,,{
1210 2222 n

N , },,...,,,{
0112322110 2222222222 nnn

L 

and }1,,...,,,{
12322110 22222222 nn

V .  

Since N is a NB, we can represent V in N as V=NP, where P is the following matrix: 

nn

P

11...000

11...000

..................

10...100

10...110

10...011

10...001 

By using elementary row operations and noting that n is odd, we know that P is not singular. 

Thus V is a basis and Rank(L) 1n . Since 0)( 2Tr , we have Rank(L)<n. This shows that 

Rank(L)=n-1 and 
RPNBS2 . Thus f is well-defined. 

Next we show that if 
NBSts,  and ts  then 22 ttss . Assume the contrary that 

s+s2=t+t2. We have s+t=(s+t)2, i.e., s=t or s+t=1. But ts , so we obtain s+t=1 and 
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Tr(s)+Tr(t)=Tr(1). Since n is odd and s and t are normal elements, we know that 

Tr(s)=Tr(t)=Tr(1)=1, which is a contradiction. Thus f is injective. 

Finally, we show that f is surjective.  

RPNBSu . Since Rank( },...,,{
110 222 n

uuu )=n-1, Tr(u)=0. Thus the equation x+x2=u has two 

distinct roots, namely t and 1+t. Without loss of generality, we assume that Tr(t)=1. Now we show 

that t is a normal element. 

From the normal basis theorem, we assume that },...,,{
110 222 n

L  is a NB. Let 
1

0

2
n

i
i

i

at . 

},...,,{
110 222 n

tttT  can be represented in L as T=LP, where P is the following matrix: 

nnnnn

nnnn

n

nn

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

P

01321

10432

34012

23101

12210

...

...

..................

...

...

... 

Since t+t2=u, }1,,...,,{
210 222 n

uuuU  can be represented in the NB L as U=LQ, where Q is the 

following matrix: 

nnnnnnnn

nnnnnnn

n

nnn

nnnnn

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

Q

1...

1...

..................

1...

1...

1...

01433221

10544332

34100112

23211001

12322110 

Since 
RPNBSu , we know that U is a basis. So Q is nonsingular. 

Recall that 1)(
1

0

n

i
iatTr , thus P can be reduced to Q after simple elementary column 

operations. So P is also nonsingular and t is a normal element. 

The proof is complete.                                                                                                                 

 

Theorem 2 creates a one-to-one correspondence between the NB and the RPNB in GF(2n) that 

n is odd. Now we prove that all the RPNB are completely determined by Theorem 2. 

Theorem 3. GF(2n) has a redundant pseudo-normal basis if and only if n is odd. 
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Proof: From Theorem 2, we need only to show that no RPNB exists in GF(2n) if n is even. 

Let },...,,,{
1210 2222 n

N  and M= }1,,...,,,{
1210 2222 n . Assume the contrary that M is a 

RPNB, then }1,,...,,,{
2210 2222 n

T  is a basis. 

By the normal basis theorem, we assume that },...,,{
110 222 n

L  is a NB of GF(2n) and 

1

0

2
n

i
i

i

a . Then we have T=LP, where P is the following nonsingular matrix: 

nnnnn

nnn

n

nn

aaaa

aaaa

aaaa

aaaa

aaaa

P

1...

1...

..................

1...

1...

1...

1321

0432

4012

3101

2210 

Since n is even and Rank(N)=n-1, we have Tr(1)=0 and 0)(
1

0

n

i
iaTr . After simple 

elementary row operations, we know that P is singular, which is a contradiction.                          

 

Now we present the RPNB multiplier for GF(2n) that n is odd. We also define v=(n-1)/2. Let 

M= }1,,...,,{
110 222 n

 be a RPNB, and 
1

0

2'''
n

i
in

i

aaA  and 
1

0

2'''
n

i
in

i

bbB  be two field 

elements represented in M. Since 0)(
1

0

2
n

i

i

Tr . Multiplying both sides of this equation by 

an-1', we obtain 0
1

0

2'
1

n

i
n

i

a . Thus A' can be rewritten as: 

2

0

2'
1

''' )(
n

i
nin

i

aaaA .                                                                                                     (5) 

Now define an=an' and ai=ai'+an-1', where i=0,1,...,n-1. We have A'=an+A, where 
2

0

2
n

i
i

i

aA . 

Similarly, we have B'=bn+B, where 
2

0

2
n

i
i

i

bB . 

The coordinate representation of D=(d0,d1,...,dn-1,dn)=A'B' in M can be computed by the 

following formula: 

D=A'B' =(an+A)(bn+B)=anbn+anB+bnA+AB.                                                                              (6) 
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For 10 ni , let us define 
i

i
21:  and its coordinate representation w.r.t. M as 

1

0

2
,,

n

j
jinii

j
,                                                                                                               (7) 

where )2(, GFji
.  

We call the following n (n+1) matrix the multiplication matrix of the RPNB M. 

nj
nijiT

0
,10,
.                                                                                                                         (8) 

Let CM denote the number of nonzero terms in matrix T. CM is called the complexity of the 

RPNB M. In [11], the trace function is used to show that the NB with maximum complexity can 

be used to design low complexity multipliers. The method is also applicable here. Since 

0)(
1

0

2
n

i

i

Tr , (7) can be rewritten as 
1

0

2
,, )1(

n

j
jinii

j
. Using this identity, we 

can make the Hamming weight of the binary vector ( i,0, i,1,... i,n-1) not greater than (n-1)/2. 

The coordinate representation of AB w.r.t. M can be computed by the following formula: 

2

0

22
2

0

n

i
j

n

j
i

ji

baAB
v

i
jjij

n

j
ji

n

i
ii

jii

abbaba
1

2)12(
2

0

2

0

2)12( )(
0

.                   (9) 

Now, let us denote  

yj,i=(ajbi+bjai), ni0 , nj0 .                                                                                        (10) 

(9) can be rewritten as: 

v

i

n

k
ki

n

j
jij

v

i

n

j
jijni

n

j
jj

kjj

yybaAB
1

2
1

0
,

2

0
,

1

2

0
,,

2

0

2 1

.                         (11) 

Using (10) and (11) in (6), we obtain the following formula of D=A'B': 

D=
v

i

n

j
jijninn yba

1

2

0
,,

 

v

i

n

k
ki

n

j
jij

n

j
jj

n

j
jn

kjjj

ybay
1

1

0

2
,

2

0
,

2

0

2
2

0

2
,

1

.                                          (12) 

Based on this formula, we can present a new bit-parallel multiplier. The architecture is shown 

in Fig. 2 and is hereafter referred to as RPNB multiplier. Conversion operations of (5) are 
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performed in Fig. 2 (a), and Fig. 2. (b) corresponds to formula (12). In Fig.2 (b), we assume that 

terms y (subscripts are omitted) have been generated. In this architecture, blocks B0 and B1 

generate anbn+
2

0

2 1
n

j
jj

j

ba  and 
2

0

2
,

n

j
jn

j

y  respectively. They are essentially pass-thru 

modules, i.e., signals in block B0 and B1 are connected directly to block S. 

The remaining terms of (12) are generated by block Si (i=1,2,...,v). Block Si consists of n+1 

binary trees of XOR (BTX). The binary coordinate representation of i=( i,0, i,1,... i,n-1, i,n) 

depends on the RPNB M, and it is known. If i,u is 1 then input line yi,<i+j> (j=0,1,...,n-2) of Si is 

connected to the u-th BTX. Thus each input line is XORed to H( i) BTXs, where H( i) refers to 

the Hamming weight of the binary vector i=( i,0, i,1,... i,n-1, i,n). Block Si has the output 

1

0

2
,

2

0
,

2

0
,,

n

k
ki

n

j
jij

n

j
jijni

kj

yy .              

(a)                  

   (b) 

Fig. 2. The architecture of the RPNB multiplier. 

From (6), we know that the AND gate complexity of the RPNB multiplier is  

                                                     n+1 BTX                                               S

 

  yn,0

 

  yn,1

 

  ...   

yn,n-3

   

yn,n-2

  

   B1

  

  a0b0 

   a1b1 

 ... 
  an-2bn-2

 

  anbn 

  B0 

D=A'B' 

...

 

1

 

y0,1 

y1,2  

  
... 

yn-4,n-3

 

yn-3,n-2

   

   n+1

  

 BTX

    

   S1

 

2

 

y0,2 

y1,3  

  
... 

yn-4,n-2

 

yn-2,0 

  

   n+1

  

 BTX

    

   S2

 

v

 

y0,v 

y1,v+1 

  
... 

yv-1,n-2

 

yn-v,0 

  
... 

yn-2,v-2

   

   n+1

  

 BTX

    

   Sv

 

a0       a1      ...      an-2                  an 

a0'       a1'      ...     an-2'   an-1'   an'

 

b0       b1      ...      bn-2                  bn 

b0'       b1'      ...     bn-2'   bn-1'   bn'
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1+2(n-1)+(n-1)2=n2. 

The XOR gate complexity of the RPNB multiplier is described by the following theorem: 

Theorem 4. The upper bound of the number of the two-input XOR gates in the RPNB parallel 

multiplier is 
2

64)2( 2 nnCn M .                                                                                           (13) 

Proof: Obviously, conversion operations in Fig. 2 (a) need 2(n-1) XOR gates. In blocks B1, n-1 

XOR gates are required to generate input signals yn,j. Since an-1=bn-1=0, we know that yn-i-1,n-1=0 

( vi1 ) and block Si consists of n-2 input signals y. So (n-2)v XOR gates are needed to 

generate input signals of all the blocks Si ( vi1 ). 

We now count the total number of input signals of all the BTXs in blocks Si and S. (12) shows 

that the coefficient of the basis element 1 is 
v

i

n

j
jijninn yba

1

2

0
,,

. Since yn-i-1,n-1=0, the 

coefficient of the basis element 1 consists of 1+hn(n-2)/2 signals, where hn refers to the Hamming 

weight of the last column of the multiplication matrix T defined in (8), i.e., hn=H( 0,n, 1,n,..., n-1,n). 

Now we only consider coefficients of basis elements 
k2  ( 10 nk ). Both blocks B0 and B1 

contribute n-1 signals to block S (anbn is included in the coefficient of the basis element 1). Since 

each input line of Si ( vi1 ) is XORed to hi=H( i,0, i,1,... i,n-1) BTXs, the total number of 

signals to be XORed in block Si is hi(n-2). 

From the definition of 
i

i
21: , we know that 

inin

iin
221  for 11 ni . So it is 

easy to see that hi=hn-i and  

v

i
inM hhC

1

21 .                                                                                                               (14) 

Thus the total number of input signals of all the BTXs is  

2

1
)2(12)2()1(2

2

)2(
1

1

M
v

i
i

n C
nnnhn

nh . 

From (12) we know that each of the n+1 BTXs of block S consists of at least one input signal. 

So 
2

1
)2(2)1(

2

1
)2(12 MM C

nnn
C

nn  XOR gates are needed to XOR these 

signals. 
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Thus the total number of XOR gates required by the RPNB multiplier is  

2

1
)2(2)2()1()1(2 MC

nnvnnn , 

which reduces to (13) after simplification.                                                                                      ¨

 
The gate delay in Fig. 2 (a) is 1TX due to the parallelism. Generating input signals y in blocks 

B1 and Si also needs 1TX. From the proof of the above theorem, we know that the coefficient of the 

basis element 1 is the summation of 1+hn(n-2)/2 signals. Formula (12) shows that the coefficient 

of the basis element k2  ( 21 nk ) is the summation of 
v

i
ih

1

2  signals. Please note that 

coefficients of 02 and 12n  need 1 fewer input signal than those of k2  ( 21 nk ). Now 

using (14), we know that the total gate delay of the RPNB multiplier is 

TA+2TX+Max{
XnMXn ThCTnh )2/)1(2(log   ,)2/)2(1(log 22

}, 

where TA is the delay of one 2-input AND gate. 

Table 1 compares the gate and time complexities of the two proposed multipliers and the 

RR_MO multiplier. 

TABLE 1: Comparison of three parallel multipliers. 

Multipliers

 

#AND

 

#XOR (upper bound) Time Delay (CN>3n-1) 

RR_MO n2 n(CN+n-2)/2 TA+ )1(log2 NC TX 

RNB n2 

2

24)2( 2 nnCn N

 

TA+(e+ )1(log2 NC )TX, e=0 or 1 

RPNB n2 

2

64)2( 2 nnCn M

 

TA+2TX+Max{
Xn Tnh )2/)2(1(log2

, 
XnM ThC )2/)1(2(log 2 } 

 

Similar to [9], we call a RPNB of small value of CM an optimal one. Although we have not 

found a formula of the optimal RPNB for the general case of an arbitrary GF(2n), Exhaustive 

computer searches show that the minimal value of CM is less than the minimal value of CN in some 

GF(2n)s, e.g. GF(27) and GF(219). 
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Table 2 lists minimal values of CM and CN for odd values of n from 3 to 25. The XOR gate and 

time complexities of the corresponding RPNB and RR_MO multipliers are also compared. 

TABLE 2: Complexities of minimal values of CM and CN. 

# XOR # XOR gate delay (TX)

 
n 

Min CN 

[10] 
Min CM

 
RR_MO

 
RPNB RR_MO RPNB 

3 5 5 9 10 3 4 

5 9 9 30 33 4 5 

7 19 17 84 78 5 6 

9 17 23 108 136 5 6 

11

 

21 39 165 255 5 7 

13

 

45 45 364 355 6 7 

15

 

45 67 435 575 6 8 

17

 

81 83 816 798 7 8 

19

 

117 103 1273 1091 7 8 

21

 

95 129 1197 1485 7 9 

23

 

45 107 759 1431 6 8 

25

 

93 161 1450 2211 7 9 

 

5. Conclusions 

In this article, a new redundant basis representation of GF(2n) has been presented. The main 

advantage of the proposed representation is that it possesses many properties of normal bases. 

Since there is only a single redundant bit, the proposed representation has the lowest redundancy. 

When a finite field processor is implemented for large value of n. True bit-parallel input/output 

operations are difficult. A more practical approach to these input/output operations is to split the 

operand into several blocks. The block size w can be 8, 16, 32, or 64 bits to make the processor 

chip compatible with other devices [8]. So if w   n, then no additional cost is needed to transport 

the single redundant bit. 

Based on this representation, we have proposed two GF(2n) parallel multipliers: the RNB 
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multiplier and the RPNB multiplier. The XOR gate complexity of the RNB multiplier is lower 

than the best known NB multiplier, namely RR_MO multiplier, when CN is larger than 3n-1. The 

architecture of the RPNB multiplier is similar to the RNB multiplier. Although the RPNB 

provides a new way to design GF(2n) multipliers, there is still an important problem need to be 

settled, i.e., how to construct a RPNB of low complexity? 
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