
Architectures and Hardware Implementations of the
64-bit MISTY1 Block Cipher

Paris Kitsos

VLSI Design Laboratory
Electrical and Computer Engineering Department

University of Patras, Patras, Greece
e-mail: pkitsos@ee.upatras.gr

 Abstract: Two alternative architectures and VLSI implementations of the 64-bit

NESSIE proposal, MISTY1 block cipher, are presented in this paper. For these

implementations, FPGA devices were used. The first architecture is suitable for

applications with high throughput requirements. A throughput of up to 7.2 Gbps can be

achieved at a clock frequency of 96 MHz. The main characteristic of this implementation is

that uses RAM blocks that are embedded in the FPGA device in order to implement the

necessary by the algorithm S-boxes. The second architecture can be used in applications

with constrained hardware resources. It uses feedback logic and inner pipeline with

negative edge-triggered register. So, it causes the critical path to be shorter, without

increasing the latency of the cipher execution. Compared with an implementation without

inner pipeline, performance improvement of 97% is achieved. The measured throughput of

the second architecture implementation is 561 Mbps at 79 MHz.

Keywords: MISTY1, block cipher, cryptography, NESSIE, inner pipeline, negative edge-

triggered register.

1 Introduction

Due to the rapid development of wireless standards, the security subject in mobile

communications has gained more importance. However, it is far more difficult to develop

new highly qualitative cryptography methods for wireless standards. Some security features

have been added and some existing ones have been improved compared with previous

mobile systems, in order to achieve more efficient and secure offered services.

 Many attempts have taken place in order to establish qualitative cryptography

methods. The New European Schemes for Signatures, Integrity, and Encryption (NESSIE)

project [1] had as a goal to establish a portfolio of strong cryptographic primitives of

various types. For block ciphers a third security level, normal-legacy, has been specified,

which means a block size of 64 bits instead of 128 (the AES [2] does not specify smaller

block size than 128-bit). This was suggested by the project industry board, because the

market will still need this block size for compatibility with present applications (e.g.,

payments with 8-byte personal identification numbers). It is interested in 64-bit block

ciphers which are more secure and efficient than the ones presently used. In February 2003,

it was announced that the 64-bit block cipher included in the NESSIE portfolio is MISTY1

[3, 4]. This cipher is designed in order to provide high-level security against differential and

linear cryptanalysis.

In the third NESSIE workshop [1], a paper for some NESSIE proposal algorithms was

presented [5]. The main purpose of this work was the evaluation of these algorithms in

terms of hardware implementation performance. In this evaluation, only the encryption

mode of operation was implemented and not the decryption one. In addition, only the

unrolled architecture of the algorithm was considered.

Except of this work, for the implementation of the MISTY1 block cipher some other

implementations have been published [6, 7]. The proposed work in [6] is exactly the same

one as the MISTY1 implementation proposed in [5]. As previously mentioned, these

implementations do not support the decryption mode of the cipher. In [7], two MISTY1

software implementations on a Digital Alpha processor were proposed. Nevertheless, it is

well known that the software implementations are much slower than the hardware ones.

In this paper, two architectures and efficient VLSI implementations of the 64-bit

NESSIE proposal MISTY1 block cipher are proposed. These alternative designs implement

both encryption and decryption modes in the same hardware module. The first architecture

is suitable for applications with high throughput requirements. The main feature of this

implementation is the unrolling of the cipher rounds in a 75-stage pipeline. Due to the

increased critical path delay of the logical expressions, for the S-boxes implementation, the

RAM blocks embedded in the FPGA device are used.

The second architecture can be used in applications with constrained hardware

resources. It uses feedback logic and inner pipeline with negative edge-triggered register [8,

9]. So, it causes the critical path to be shorter, without increasing the cipher’s latency, thus

increasing the cipher’s throughput.

The rest of the paper is organized as follows: In section 2, the MISTY1 block cipher is

introduced. In section 3, the two proposed hardware implementations are presented and

explained in detail. Performance analysis and comparison results with other works are

given in section 4, while section 5 concludes the paper.

2 MISTY1 Block Cipher

The MISTY1 [3, 4] block cipher operates with 64-bit block size plaintext and 128-bit

secret key. The respective 64-bit ciphertext is produced after a number of n rounds, where n

is a multiple of four. In [10] a number n=8 is recommended for use in real applications.

Two are the main parts of the MISTY1 block cipher, the data randomizing and the key

scheduling. In the following these two parts are described.

2.1 MISTY1 Data Randomizing Part

The MISTY1 data randomizing part for n=8 is shown in Fig.1. It consists of 8 identical

stages (rounds) with an additional substage (subround).

In the encryption mode operation, the 64-bit plaintext is transformed into the 64-bit

ciphertext by applying bitwise XOR operations and the sub-functions FOi (1) and

FL

8≤≤ i

10≤≤ ii (1). In the beginning the 64-bit plaintext is divided into two 32-bit strings, the

left and the right one. The subfunction FOi uses a 48-bit sub-key KIi and a 64-bit sub-key

KOi . The subfuntion FLi uses a 32-bit sub-key KLi. The output of each round (stage) is

produced by the following equations.

For the odd rounds (i = 1, 3,…, 7) :

Right string: and),(1 iii KLLFLR −=

Left string:),,(),(11 iiiiii KIKOLFOKLRFLL ⊕= +−

For the even rounds (i = 2, 4,…, 8) :

Right string: and 1−= ii LR

Left string:),,(1 iiiii KIKOLFORL ⊕= − .

For the last round (i = 9) :

Left string: and),(989 KLLFLR =

Right string: .),(1089 KLRFLL =

The final 64-bit ciphertext is produced from the concatenation of L9 and R9.

The decryption mode operation of MISTY1 is similar to the encryption mode. The only

differences are the reverse order of the sub-keys and the replacement of the function FL by

the function FL-1. Similarly to the encryption mode, in the decryption one the 64-bit

ciphertext is divided into the left and right 32-bit strings, which are transformed into the 64-

bit plaintext by applying bitwise XOR operations and the sub-functions FOi () and

FL

18 ≥≥ i

i (). The output of each round is described with the same equations as in

encryption if the FL function is replaced by the FL

110 ≥≥ i

-1. The resulting plaintext is produced by

the concatenation of the final left and right 32-bit strings that are produced by the last

subround.

FL / FL-1

FO

Plaintext / Ciphertext
64

32
KL1/10 KL2/932

48

KO1/8

32
KL3/8 KL4/732

32
KL9/2 KL10/132

Ciphertext / Plaintext

64

FL / FL-1

FO

FL / FL-1FL / FL-1

FO

FO

FL / FL-1FL / FL-1

AND

OR

KLL

KLR

AND

OR

KLR

KLL

FL-1FL

FIi

KO1

KI1

FIi

KO2

KI2

FIi

KO3

KI3

KO4

32

32

S9

16

S7

KIL

ZE

TR

KIR

S9

ZE

16

32 32

32

1616

32

32

1616

32

L0 R0

16 16

16 16

32 32

9 7

7 9

1616 1616

L1 R1

L2 R2

L7 R7

L8 R8

L9 R9

KI1/8

64

48

KO2/7KI2/7

64

48

KO3/6KI3/6

64

48

KO8/1KI8/1

64

FO

FI

round1

round2

round3

round8

Fig. 1. Data Randomizing Part

The structure of the FL function is shown in Fig. 1. The 32-bit data is split into two 16-

bit halves. KLL is the left and KLR is the right part of the KL 32-bit sub-key respectively.

After AND, OR, and XOR operations between the data and the sub-key a 32-bit string is

produced. In the decryption mode the FL-1 function is used instead of the FL one.

The 32-bit input data of function FO is split into two 16-bit strings (Fig. 1). Then, these

strings are correlated with KOj (41 ≤≤ j) and KIj (31 ≤≤ j) by using bitwise XOR

operations and the sub-functions FI. KOj and KIj are the left j-th 16 bits of KO and KI,

respectively.

The 16-bit input data of the function FI is split into two 9-bit and 7-bit strings (Fig. 1).

After transformations, bitwise XOR operations and the usage of the substitution tables (S-

boxes) S7 and S9, the output string is produced. At the beginning and at the end of FIj

function, the 7-bit string is zero-extended (through the ZE module). The ZE adds two zero

bits in front of the 7-bit string, and in the middle part, the 9-bit string is truncated (through

the TR module) to 7 bits. The TR module truncates the two most significant bits of the 9-bit

string. KIL and KIR are the left 7 bits and the right 9 bits of KI, respectively.

The two S-boxes (S7 and S9) have been designed so that they can be easily implemented

in combinational logic as well as by a look-up-tables. Three criterias are considered in

order to select these S-boxes.

• Their average differential/linear probability must be minimal,

• Their delay time in hardware is as short as possible,

• Their algebraic degree is high, if possible.

2.2 MISTY1 Key Scheduling Part

MISTY1 has a 128-bit key K, which is sub-divided into eight 16-bit sub-keys K1, K2, …,

K8 where K=K1||K2||K3||K4||K5||K6||K7||K8 (|| symbolizes concatenation). From these sub-

keys a second set of sub-keys, Ki’ (1 8≤≤ i) is produced as is shown in Fig. 2.

FI

1616161616 161616

K1 K2 K3 K4 K5 K6 K7 K8

K’1 K’2 K’3 K’4 K’5 K’6 K’7 K’8

FI FI FI FI FI FI FI
1616161616 161616

Fig. 2. Second Set of Sub-keys

In Table I, the sub-keys that are used in each round are shown.

Table I. Round Sub-keys Mapping Table

Round KO1 KO2 KO3 KO4 KI1 KI2 KI3 KLL KLR

1 K1 K3 K8 K5 K’6 K’2 K’4 K1 K’7

2 K2 K4 K1 K6 K’7 K’3 K’5 K’3 K5

3 K3 K5 K2 K7 K’8 K’4 K’6 K2 K’8

4 K4 K6 K3 K8 K’1 K’5 K’7 K’4 K6

5 K5 K7 K4 K1 K’2 K’3 K’8 K3 K’1

6 K6 K8 K5 K2 K’3 K’4 K’8 K’5 K7

7 K7 K1 K6 K3 K’4 K’5 K’1 K4 K’2

8 K8 K2 K7 K4 K’5 K’6 K’2 K’6 K8

9 - - - - - - - K5 K’3

3 Hardware Implementations

Usually each proposal of a new algorithm is accompanied with a software

implementation in a commonly used language. But, it is well known that the software

implementations are much slower than the hardware ones. In this section, two alternative

hardware implementations of the MISTY1 block cipher are proposed. These

implementations are based on the following Eight and One Round Architectures.

3.1 The Eight Rounds Architecture

As previously mentioned, the two main parts of the MISTY1 block cipher are the data

randomizing and the key scheduling. In Fig. 3, the data randomizing part of the eight

rounds architecture is illustrated. By using this architecture both encryption and decryption

operations can be performed. This is opposed to the [5, 6], where only the encryption

process is considered and implemented.

Round 1

Round 2

Round 9

Register

64

Plaintext / Ciphertext

Register

Ciphertext / Plaintext

64

Clock

enc_dec

KL9/2

KL10/1

KL1/10

KL2/9

KI1/8

KO1/8 64

48

32

32

KL3/8

KL4/7

KI2/7

KO2/7 64

48

32

32

32

32

KL2/9

32
48

KO1/8KI1/8

64

FL / FL-1

FO

FL / FL-1

9

enc_dec enc_dec

32

KL1/10

64

32 32

32 32

9

FO
9

48

KO2/7KI2/7

64

32 32

32 32

3

Fig. 3. Eight Rounds Data Randomizing Part Architecture

Compared with previous designs, an alternative architecture for the S-boxes

implementation is introduced. For the implementation of the S-boxes (S7 and S9), RAM

blocks are used instead of logical expressions. Thus a, significant reduction of the critical

path delay is achieved. In order to synchronize the S-boxes operations (ROM-based

operations) three 1-stage pipeline registers have been inserted in the right branch of the

architecture, one for each corresponding ROM (Fig. 4a).

The structure of all the odd and even rounds are identical. For synchronization reasons,

pipeline registers are inserted between the functional units. So, after the first input register a

pipeline register with 3-stage delay is added. These pipeline registers are inserted in order

to synchronize the key generation part with the data randomizing part. The explanation is

given in the following. The insertion of the pipeline registers (9-stage delay) in the odd and

even rounds architectures results in an architecture with a 75 pipeline stages.

Fig. 4b, indicates the insertion places of the added pipeline registers in the FO function

architecture. Due to the FI function architecture (Fig. 4a) that uses three 1-stage pipeline

registers, for the synchronization of the FI functions in FO function architecture, 3-stage

pipeline registers are needed.

FIi

KOi1

KIi1

FIi

KOi2

KIi2

FIi

KOi3

KIi3

KOi4

32

32

3

3

3

S9
ROM

16

KIiL

ZE

TR

KIiR

ZE

16

Clock

Clock

Clock
S9

ROM

S7
ROM

Clock

Clock

Clock

(b)(a)

AND

OR AND

OR

MUX

KLL

KLR

KLR

KLL

enc_dec

16 16

16 16

9 7

7 9

32

32 32

16 16

16 16

32

16 16

16 16

32

32

(c)

1

1

1

Fig. 4. Architecture of the (a) FI, (b) FO, and (c) FL Functions

 The structure of the MISTY1 decryption procedure is similar to the encryption one.

In order the proposed architecture to be also suitable for decryption operation, the process

of reversing the sub-keys order and replacing the function FL with FL-1 are needed. The

first one is performed in the proposed MISTY1 key scheduling part and is described in the

following. The latter one is achieved by designing a unit, which implements both FL and

FL-1 functions. The value of the control signal (enc_dec) in conjuction with the inserted

multiplexer (Fig. 4c) selects the proper output.

The MISTY1 key scheduling part architecture is shown in Fig. 5. The proposed scheme

allows on-the-fly computation of the sub-keys. The sub-key input in each FI function is

delayed with the usage of the 2-stage pipeline registers. This is necessary because inside the

FI unit the KIL and KIR sub-keys are entered with a 2-stage delay after the latch of the key

value. So, the second array of the sub-keys, Ki’, is generated with a 3-stage delay. In order

to synchronize the key generation part with the data randomizing part, an additional 3-stage

pipeline register is inserted after the input register and before the start of the data

randomizing part (Fig. 3).

FI

1616161616 161616

K1 K2 K3 K4 K5 K6 K7 K8

K’1 K’2 K’3 K’4 K’5 K’6 K’7 K’8

2 FI 2 FI FI FI FI FI FI2 2 2 2 2 2

Register

128

Key

MUX

KL1L

MUX

KI12

MUX

KO31

MUX

KL3R

enc_dec enc_dec enc_dec enc_dec

(a)

Sub-keys Delay Unit

KI11 KI12 KI13 KO11 KO12 KO13 KO14 KL10LKL10R

KI11 KI12 KI13 KO11 KO12
KO13KO14 KL10LKL10R

(b)

Fig. 5. Eight Rounds Key Scheduling Part Architecture

In order the same architecture to be used for both encryption and decryption operations,

multiplexers (controlled by the enc_dec signal) are added. For example, during the

encryption operation the value of the sub-key KO31 has the same value as K3, while during

the decryption operation the same value as K6. So, with the usage of a 2-input 16-bit

multiplexer the proper value is selected. Moreover, a Sub-keys Delay Unit (Fig. 5b) is

necessary in order to add additional delays. In this unit, 16-bit shift registers are used, so as

in each round to add the sub-keys with the proper delay.

3.2 The One Round Architecture

In Fig. 6 the data randomizing part of the one round architecture is shown. The full

MISTY1 block cipher execution requires nine loops of this single round. The output of

each round is used as input (through the multiplexers) of the next round. The output of the

left branch is used as input in the next right branch, and the output of the right branch is

used as input in the next left branch. Both encryption and decryption operation are

supported.

The MISTY1 single round, consists of two multiplexers (MUX A) in order the

appropriate value between the Plaintext / Ciphertext or the output of the previous round is

selected. The input registers are necessary in order to store the input data during the

operation of the FL / FL-1. The FL / FL-1 unit is structured as described in the eight rounds

architecture (Fig. 4c). The second layer of multiplexers (MUX B) select either the output of

the FL / FL-1 unit or the output of the input registers, when an odd or an even round is

executed, respectively.

FL/FL-1

FO

Plaintext / Ciphertext
64

KLi KLi+1

Ciphertext / Plaintext

64

FL/FL-1

Input
Register

Input
Register

Output
Register

Output
Register

Register

Register

Register

48

KOiKIi

64

32 32

32 32

32 32

32 32

32 32

MUX A MUX A

MUX B MUX B

Fig. 6. One Round Data Randomizing Part Architecture

 The architectures of the FO and FI functions are shown in Fig. 7. In order to reduce the

overall system hardware resources, for the S-boxes (S7 and S9) implementation logical

expressions are used.

FIi

KOi1

32

KIi1

16

FIi

16

FIi

16

16

32

KOi2

KOi3

KOi4

16

16

16

KIi2

KIi3

Register

S9

16

S7

KIijL

ZE

TR

KIijR

S9

ZE

16

Fig. 7. FO and FI Functions Architecture

For the FO function implementation an inner pipeline with negative edge-triggered

register is used (Fig. 6, 7). The usage of this technique results in a significant reduction of

the round’s critical path delays. The negative edge-triggered register is inserted in the FO

function (Fig. 7), which is roughly in the middle of the round data path (Fig. 6, heavy line).

The execution time of each round is one system clock cycle. In order to synchronize the

processing data paths similar registers are inserted in the left and right branches of each

round (Fig. 6). The result of this insertion is the reduction, roughly in half, of the clock

period while the throughput is roughly doubled. A small area penalty is paid from the usage

of these pipeline registers. We have to note that the implementation of the negative edge-

triggered register (flip-flop) is easily implemented in FPGA with an insertion of an inverter

to the clock line.

The usage of positive (rising) and negative edge-triggered pipeline registers (that capture

data on both clock edges) demands a duty cycle of 50 %. Deviation from a 50 % duty cycle

may lead to timing failures in the critical paths [8]. The assumption of a perfect clock with

50 % duty cycle is optimistic, giving signals half the clock cycle to propagate from one

register to the next. In the low level design, the duty cycle, may not be perfect, and the

actual time available for signals to propagate can be smaller. In order to avoid this problem,

the worst-case duty cycle of the clock must be accurately modeled in synthesis and timing

analysis [11].

For the execution of the whole MISTY1 block cipher nine system clock cycles are

required. The proposed architecture is suitable for area restricted devices because the

required hardware resources are reduced relative to the eight rounds architecture.

The one round MISTY1 key scheduling part architecture is illustrated in Fig.8.

FI

1616161616 161616
K1 K2 K3 K4 K5 K6 K7 K8

K’1 K’2 K’3 K’4 K’5 K’6 K’7 K’8

FI FI FI FI FI FI FI

Register

128

Key

(a)

Sub-keys Delay Unit

K1 K2 K3 K6 K7 K8

KI11 KI12 KI13 KO11 KO12 KO13 KO14 KL10L KL10R

(b)

K’1 K’2 K’3 K’6 K’7 K’8

enc_dec

Fig. 8. One Round Key Scheduling Part Architecture

The addition of extra delays is achieved, in the Sub-keys Delay Unit (Fig. 8b), by using

counters. In this unit, a 2-input 16-bit multiplexer is used in order for the same hardware

part to be suitable for both encryption and decryption operations. The multiplexer is

controlled by the enc_dec signal.

4 Measurements and Comparisons

The proposed architectures and implementations were captured by using VHDL, with

structural description logic. The encryption and decryption operation were verified by using

the test vectors provided by the NESSIE submission package [1]. The VHDL codes of the

two designs were synthesized by using FPGA devices of Xilinx [12]. The correct

functionality of the two hardware implementations was verified with simulations. The

measurements of the performance analysis are shown in Table II. In the same table,

measurements from other designs are added (only the faster software implementation is

added [7]).

Table II. Performance Analysis Measurements

Architecture Process FPGA
Device

CLB
Slices

F
MHz

Throughput
(Mbps)

Throughput/
Area

(Mbps/Area)

[5] Encryption XCV1000
BG560-6 8386 140 8960 1.07

[6] Encryption XCV1000
BG560-6 6322 159 10176 1.6

[6] Encryption XCVII2000
BG575-6 6322 303 19392 3

[7] Encryption/
Decryption Software - 500 288 -

Proposed
Eight Round

Encryption/
Decryption

XCV1000
BG560-6 4735 96 7200 1.5

Proposed
Eight Round

Encryption/
Decryption

XCVII3000
BF957-6

4039 168 12600 3.3

Proposed
One Round

Encryption/
Decryption

XCV400
EBG432-8 1865 79 561 0.3

The architectures proposed in [5] and [6] are identical, but the authors have reported

better implementation performance results in [6] than in [5]. Most probably this difference

is due to better VHDL code synthesis of [6]. Finally, in these implementations only the

unrolling architecture has been considered.

For the hardware implementation of the proposed MISTY1 eight round architecture two

Xilinx Virtex devices (XCV1000BG560-6 and XCVII3000BF957-6) were selected. The

proposed implementation did not fit in the Virtex-II device, which is used in [6], because

the proposed implementation uses more embedded RAM blocks than the available ones in

this device. The XCV1000BG560-6 device has 128K bits of embedded RAM

(BlockSelectRAM+), divided in 32 RAM blocks that are separated from the main body of

the FPGA. The XCVII3000BF957-6 device has 1728K bits of embedded RAM

(BlockSelectRAM+), divided in 96 RAM blocks. For the proposed design 79K bits of

embedded RAM are used in order to map the necessary for the block cipher S-boxes.

In the Eight Rounds Architecture, for the addition of the sub-keys delays (necessary in

the key scheduling part) a 16-bit shift register is used. The Virtex architecture is well suited

to easily implement, fast, and efficient shift register by the usage of the SRL16 feature [13].

Whit this feature, shift registers are implemented without using flip-flop resources. The

SRL16 is used to implement a progressive delay line, thereby saving logic resources and

producing the highest performance [13]. So, each 16-bit shift register is implemented by

one Look-Up-Table (LUT). The implementation in the XCV1000BG560-6 device achieves

an operation frequency of 96 MHz and a throughput of 7.2 Gbps, while the implementation

in the XCVII3000BF957-6 device achieves a frequency of 168 MHz and a throughput of

12.6 Gbps. The critical path delay is determined by the S-box S9 (RAM block) delay.

The One Round architecture was optimized with the covered area constraint. For this

architecture implementation the Xilinx Virtex XCV400EBG432-8 was selected. The

achieved throughput is 561 Mbps for both encryption and decryption operation. The clock

frequency is 79 MHz. For one block encryption or decryption operation nine system clock

cycles are needed. In order to evaluate the influence of the inner pipeline (negative edge-

triggered register), the operation frequency was measured without these pipeline registers.

An operation frequency of 40 MHz and a throughput of 284 Mbps were measured. Thus, a

major improvement in terms of throughput approximately 97% is achieved.

 The proposed implementations support encryption and decryption in the same

dedicated FPGA device. In order to incorporate this feature, a large number of 2-input 16-

bit multiplexers are used. In addition, extra FL-1 functions and 2-input 32-bit multiplexers

are necessary. So, in the performance comparisons with other architectures that support

only encryption [5, 6], this feature must be considered. Of course, the penalty is the minor

increase of the allocated hardware resources.

Looking at the Table II, the Throughput/Area ratio illustrates that MISTY1 is efficient

and suitable for FPGA implementation. Finally, the proposed Eight Round Architecture

implementations in XCVII3000 BF957-6 FPGA is more efficient, compared with the

implementation in [6] in the same FPGA family, as the Throughput/Area measurements

show.

5 Conclusions

Two different VLSI architectures for the design and implementation of the MISTY1

block cipher have been presented. In contrast to previous implementations, both

architectures support encryption and decryption. In the first architecture, the rounds are

unrolled and RAM blocks embedded in the FPGA are used for the implementation of the S-

boxes. A 75-stage pipeline is inserted that achieves a throughput of 72 Gbps at an operation

frequency of 96 MHz. This architecture can be applied in high-speed applications. The

second architecture uses feedback logic in order to reduce the required hardware resources.

The usage of inner pipeline reduces the critical path of the round, without increasing the

algorithmic latency, thus maximizing the throughput. This architecture reaches a

throughput of 561 Mbps at an operation frequency of 79 MHz and it is suitable for area-

constrained devices.

References

[1] “NESSIE. New European Schemes for Signatures, Integrity, and Encryption”,

https://www.cosic.esat.kuleuven.ac.be/nessie/

[2] “Advanced Encryption Standard Development Effort,” http://www.nist.gov/aes,

2000.

[3] Mitsuru M. Specification of MISTY1 – a 64-bit Block Cipher. New European

Scheme for Signatures, Integrity, and Encryption (NESSIE) Project. On line available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html

[4] Mitsuru M. New block encryption algorithm MISTY. In Fast Software Encryption

1997, vol. 1267 of LNCS, pages 54-68. Springer-Verlag, 1997.

[5] Standaert F-X, Rouvroy G, Quisquater J-J, Legat J-D. Efficient FPGA

Implementations of Block Ciphers KHAZAD and MISTY1. In Proceedings of the Third

NESSIE Workshop, November 6-7 2002, Munich, Germany.

[6] Rouvroy G, Standaert F-X, Quisquater J-J, Legat J-D. Efficient FPGA

Implementation of Block Cipher MISTY1. In Proceedings of the 10th Reconfigurable

Architectures Workshop (RAW 2003), April 22, Nice, France.

[7] Nakajima J and Matsui M. Fast Software Implementations of MISTY1 on Alpha

Processors. IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, Vol. E82-A, No. 1, pp. 107-116, January 1999.

[8] Chung W, Lo T, and Sachdev M. A Comparative Analysis of Low-Power Low-

Voltage Dual-Edge-Triggered Flip-Flop. IEEE Transaction on Very Large Scale

Integration (VLSI) Systems, Vol. 10, No. 6, pp. 913-918, December 2002.

[9] Strollo A G M, Napoli E, and Cimino C. Analysis of Power Dissipation in Double

Edge-Triggered Flip-Flops. IEEE Transaction on Very Large Scale Integration (VLSI)

Systems, Vol. 8, No. 5, pp. 624-629, October 2000.

[10] Matsui M Supporting Document of MISTY1. version 1.1. On line available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html

[11] “Reuse Methodology Manual for System-on-Chip Designs”, by Michael Keating, and

Pierre Bricaud, Kluwer Academic Publishers, 101 Philip Drive, Assinipi Park, Norwell,

Massachusetts. 1999.

[12] Xilinx Inc., San Jose, Calif., “Virtex, 2.5 V Field Programmable Gate Arrays,” 2001,

www.xilinx.com

[13] LeonardoSpectrum, Synthesis and Technology Manual. Software Release v2001.1,
February 2001.

