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 Abstract: Two alternative architectures and VLSI implementations of the 64-bit 

NESSIE proposal, MISTY1 block cipher, are presented in this paper. For these 

implementations, FPGA devices were used. The first architecture is suitable for 

applications with high throughput requirements. A throughput of up to 7.2 Gbps can be 

achieved at a clock frequency of 96 MHz. The main characteristic of this implementation is 

that uses RAM blocks that are embedded in the FPGA device in order to implement the 

necessary by the algorithm S-boxes. The second architecture can be used in applications 

with constrained hardware resources. It uses feedback logic and inner pipeline with 

negative edge-triggered register. So, it causes the critical path to be shorter, without 

increasing the latency of the cipher execution. Compared with an implementation without 

inner pipeline, performance improvement of 97% is achieved. The measured throughput of 

the second architecture implementation is 561 Mbps at 79 MHz. 
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1 Introduction 

Due to the rapid development of wireless standards, the security subject in mobile 

communications has gained more importance. However, it is far more difficult to develop 

new highly qualitative cryptography methods for wireless standards. Some security features 

have been added and some existing ones have been improved compared with previous 

mobile systems, in order to achieve more efficient and secure offered services. 

 Many attempts have taken place in order to establish qualitative cryptography 

methods. The New European Schemes for Signatures, Integrity, and Encryption (NESSIE) 

project [1] had as a goal to establish a portfolio of strong cryptographic primitives of 

various types. For block ciphers a third security level, normal-legacy, has been specified, 

which means a block size of 64 bits instead of 128 (the AES [2] does not specify smaller 

block size than 128-bit). This was suggested by the project industry board, because the 

market will still need this block size for compatibility with present applications (e.g., 

payments with 8-byte personal identification numbers). It is interested in 64-bit block 

ciphers which are more secure and efficient than the ones presently used. In February 2003, 

it was announced that the 64-bit block cipher included in the NESSIE portfolio is MISTY1 

[3, 4]. This cipher is designed in order to provide high-level security against differential and 

linear cryptanalysis.  

In the third NESSIE workshop [1], a paper for some NESSIE proposal algorithms was 

presented [5]. The main purpose of this work was the evaluation of these algorithms in 

terms of hardware implementation performance. In this evaluation, only the encryption 



mode of operation was implemented and not the decryption one. In addition, only the 

unrolled architecture of the algorithm was considered.  

Except of this work, for the implementation of the MISTY1 block cipher some other 

implementations have been published [6, 7]. The proposed work in [6] is exactly the same 

one as the MISTY1 implementation proposed in [5]. As previously mentioned, these 

implementations do not support the decryption mode of the cipher. In [7], two MISTY1 

software implementations on a Digital Alpha processor were proposed. Nevertheless, it is 

well known that the software implementations are much slower than the hardware ones.  

In this paper, two architectures and efficient VLSI implementations of the 64-bit 

NESSIE proposal MISTY1 block cipher are proposed. These alternative designs implement 

both encryption and decryption modes in the same hardware module. The first architecture 

is suitable for applications with high throughput requirements. The main feature of this 

implementation is the unrolling of the cipher rounds in a 75-stage pipeline. Due to the 

increased critical path delay of the logical expressions, for the S-boxes implementation, the 

RAM blocks embedded in the FPGA device are used. 

The second architecture can be used in applications with constrained hardware 

resources. It uses feedback logic and inner pipeline with negative edge-triggered register [8, 

9]. So, it causes the critical path to be shorter, without increasing the cipher’s latency, thus 

increasing the cipher’s throughput.  

The rest of the paper is organized as follows: In section 2, the MISTY1 block cipher is 

introduced. In section 3, the two proposed hardware implementations are presented and 

explained in detail. Performance analysis and comparison results with other works are 

given in section 4, while section 5 concludes the paper. 



 

2 MISTY1 Block Cipher 

The MISTY1 [3, 4] block cipher operates with 64-bit block size plaintext and 128-bit 

secret key. The respective 64-bit ciphertext is produced after a number of n rounds, where n 

is a multiple of four. In [10] a number n=8 is recommended for use in real applications. 

Two are the main parts of the MISTY1 block cipher, the data randomizing and the key 

scheduling. In the following these two parts are described. 

2.1 MISTY1 Data Randomizing Part 

The MISTY1 data randomizing part for n=8 is shown in Fig.1. It consists of 8 identical 

stages (rounds) with an additional substage (subround). 

In the encryption mode operation, the 64-bit plaintext is transformed into the 64-bit 

ciphertext by applying bitwise XOR operations and the sub-functions FOi (1 ) and 

FL

8≤≤ i

10≤≤ ii (1 ). In the beginning the 64-bit plaintext is divided into two 32-bit strings, the 

left and the right one. The subfunction FOi uses a 48-bit sub-key KIi and a 64-bit sub-key 

KOi . The subfuntion FLi uses a 32-bit sub-key KLi. The output of each round (stage) is 

produced by the following equations. 

For the odd rounds (i = 1, 3,…, 7) : 

Right string:   and ),( 1 iii KLLFLR −=



Left string:   ),,(),( 11 iiiiii KIKOLFOKLRFLL ⊕= +−  

For the even rounds (i = 2, 4,…, 8) : 

Right string:   and  1−= ii LR

Left string:   ),,(1 iiiii KIKOLFORL ⊕= − . 

For the last round (i = 9) : 

Left string:    and  ),( 989 KLLFLR =

Right string:  . ),( 1089 KLRFLL =

The final 64-bit ciphertext is produced from the concatenation of L9 and R9. 

The decryption mode operation of MISTY1 is similar to the encryption mode. The only 

differences are the reverse order of the sub-keys and the replacement of the function FL by 

the function FL-1. Similarly to the encryption mode, in the decryption one the 64-bit 

ciphertext is divided into the left and right 32-bit strings, which are transformed into the 64-

bit plaintext by applying bitwise XOR operations and the sub-functions FOi ( ) and 

FL

18 ≥≥ i

i ( ). The output of each round is described with the same equations as in 

encryption if the FL function is replaced by the FL

110 ≥≥ i

-1. The resulting plaintext is produced by 

the concatenation of the final left and right 32-bit strings that are produced by the last 

subround.  
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Fig. 1. Data Randomizing Part  

 



The structure of the FL function is shown in Fig. 1. The 32-bit data is split into two 16-

bit halves. KLL is the left and KLR is the right part of the KL 32-bit sub-key respectively. 

After AND, OR, and XOR operations between the data and the sub-key a 32-bit string is 

produced. In the decryption mode the FL-1 function is used instead of the FL one. 

The 32-bit input data of function FO is split into two 16-bit strings (Fig. 1). Then, these 

strings are correlated with KOj ( 41 ≤≤ j ) and KIj ( 31 ≤≤ j ) by using bitwise XOR 

operations and the sub-functions FI. KOj and KIj are the left j-th 16 bits of KO and KI, 

respectively. 

The 16-bit input data of the function FI is split into two 9-bit and 7-bit strings (Fig. 1). 

After transformations, bitwise XOR operations and the usage of the substitution tables (S-

boxes) S7 and S9, the output string is produced. At the beginning and at the end of FIj 

function, the 7-bit string is zero-extended (through the ZE module). The ZE adds two zero 

bits in front of the 7-bit string, and in the middle part, the 9-bit string is truncated (through 

the TR module) to 7 bits. The TR module truncates the two most significant bits of the 9-bit 

string. KIL and KIR are the left 7 bits and the right 9 bits of KI, respectively. 

The two S-boxes (S7 and S9) have been designed so that they can be easily implemented 

in combinational logic as well as by a look-up-tables. Three criterias are considered in 

order to select these S-boxes.  

• Their average differential/linear probability must be minimal, 

• Their delay time in hardware is as short as possible, 

• Their algebraic degree is high, if possible. 



2.2 MISTY1 Key Scheduling Part 

MISTY1 has a 128-bit key K, which is sub-divided into eight 16-bit sub-keys K1, K2, …, 

K8 where K=K1||K2||K3||K4||K5||K6||K7||K8 (|| symbolizes concatenation). From these sub-

keys a second set of sub-keys, Ki’ (1 8≤≤ i ) is produced as is shown in Fig. 2. 
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Fig. 2. Second Set of Sub-keys 

 

In Table I, the sub-keys that are used in each round are shown.  

 

Table I. Round Sub-keys Mapping Table 

Round KO1 KO2 KO3 KO4 KI1 KI2 KI3 KLL KLR

1 K1 K3 K8 K5 K’6 K’2 K’4 K1 K’7

2 K2 K4 K1 K6 K’7 K’3 K’5 K’3 K5

3 K3 K5 K2 K7 K’8 K’4 K’6 K2 K’8

4 K4 K6 K3 K8 K’1 K’5 K’7 K’4 K6

5 K5 K7 K4 K1 K’2 K’3 K’8 K3 K’1

6 K6 K8 K5 K2 K’3 K’4 K’8 K’5 K7



7 K7 K1 K6 K3 K’4 K’5 K’1 K4 K’2

8 K8 K2 K7 K4 K’5 K’6 K’2 K’6 K8

9 - - - - - - - K5 K’3

 

3 Hardware Implementations 

Usually each proposal of a new algorithm is accompanied with a software 

implementation in a commonly used language. But, it is well known that the software 

implementations are much slower than the hardware ones. In this section, two alternative 

hardware implementations of the MISTY1 block cipher are proposed. These 

implementations are based on the following Eight and One Round Architectures. 

3.1 The Eight Rounds Architecture 

As previously mentioned, the two main parts of the MISTY1 block cipher are the data 

randomizing and the key scheduling. In Fig. 3, the data randomizing part of the eight 

rounds architecture is illustrated. By using this architecture both encryption and decryption 

operations can be performed. This is opposed to the [5, 6], where only the encryption 

process is considered and implemented.  
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Fig. 3. Eight Rounds Data Randomizing Part Architecture 

 

Compared with previous designs, an alternative architecture for the S-boxes 

implementation is introduced. For the implementation of the S-boxes (S7 and S9), RAM 

blocks are used instead of logical expressions. Thus a, significant reduction of the critical 

path delay is achieved. In order to synchronize the S-boxes operations (ROM-based 

operations) three 1-stage pipeline registers have been inserted in the right branch of the 

architecture, one for each corresponding ROM (Fig. 4a). 

The structure of all the odd and even rounds are identical. For synchronization reasons, 

pipeline registers are inserted between the functional units. So, after the first input register a 

pipeline register with 3-stage delay is added. These pipeline registers are inserted in order 



to synchronize the key generation part with the data randomizing part. The explanation is 

given in the following. The insertion of the pipeline registers (9-stage delay) in the odd and 

even rounds architectures results in an architecture with a 75 pipeline stages. 

Fig. 4b, indicates the insertion places of the added pipeline registers in the FO function 

architecture. Due to the FI function architecture (Fig. 4a) that uses three 1-stage pipeline 

registers, for the synchronization of the FI functions in FO function architecture, 3-stage 

pipeline registers are needed.  
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Fig. 4. Architecture of the (a) FI, (b) FO, and (c) FL Functions 

 



 The structure of the MISTY1 decryption procedure is similar to the encryption one. 

In order the proposed architecture to be also suitable for decryption operation, the process 

of reversing the sub-keys order and replacing the function FL with FL-1 are needed. The 

first one is performed in the proposed MISTY1 key scheduling part and is described in the 

following. The latter one is achieved by designing a unit, which implements both FL and 

FL-1 functions. The value of the control signal (enc_dec) in conjuction with the inserted 

multiplexer (Fig. 4c) selects the proper output.  

The MISTY1 key scheduling part architecture is shown in Fig. 5. The proposed scheme 

allows on-the-fly computation of the sub-keys. The sub-key input in each FI function is 

delayed with the usage of the 2-stage pipeline registers. This is necessary because inside the 

FI unit the KIL and KIR sub-keys are entered with a 2-stage delay after the latch of the key 

value. So, the second array of the sub-keys, Ki’, is generated with a 3-stage delay. In order 

to synchronize the key generation part with the data randomizing part, an additional 3-stage 

pipeline register is inserted after the input register and before the start of the data 

randomizing part (Fig. 3).  
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Fig. 5. Eight Rounds Key Scheduling Part Architecture 

 

In order the same architecture to be used for both encryption and decryption operations, 

multiplexers (controlled by the enc_dec signal) are added. For example, during the 

encryption operation the value of the sub-key KO31 has the same value as K3, while during 

the decryption operation the same value as K6. So, with the usage of a 2-input 16-bit 

multiplexer the proper value is selected. Moreover, a Sub-keys Delay Unit (Fig. 5b) is 

necessary in order to add additional delays. In this unit, 16-bit shift registers are used, so as 

in each round to add the sub-keys with the proper delay. 

 



3.2 The One Round Architecture 

In Fig. 6 the data randomizing part of the one round architecture is shown. The full 

MISTY1 block cipher execution requires nine loops of this single round. The output of 

each round is used as input (through the multiplexers) of the next round. The output of the 

left branch is used as input in the next right branch, and the output of the right branch is 

used as input in the next left branch. Both encryption and decryption operation are 

supported. 

The MISTY1 single round, consists of two multiplexers (MUX A) in order the 

appropriate value between the Plaintext / Ciphertext or the output of the previous round is 

selected. The input registers are necessary in order to store the input data during the 

operation of the FL / FL-1. The FL / FL-1 unit is structured as described in the eight rounds 

architecture (Fig. 4c). The second layer of multiplexers (MUX B) select either the output of 

the FL / FL-1 unit or the output of the input registers, when an odd or an even round is 

executed, respectively. 
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Fig. 6. One Round Data Randomizing Part Architecture 

 

 The architectures of the FO and FI functions are shown in Fig. 7. In order to reduce the 

overall system hardware resources, for the S-boxes (S7 and S9) implementation logical 

expressions are used.  
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Fig. 7. FO and FI Functions Architecture 

 

For the FO function implementation an inner pipeline with negative edge-triggered 

register is used (Fig. 6, 7). The usage of this technique results in a significant reduction of 

the round’s critical path delays. The negative edge-triggered register is inserted in the FO 

function (Fig. 7), which is roughly in the middle of the round data path (Fig. 6, heavy line). 

The execution time of each round is one system clock cycle. In order to synchronize the 

processing data paths similar registers are inserted in the left and right branches of each 



round (Fig. 6). The result of this insertion is the reduction, roughly in half, of the clock 

period while the throughput is roughly doubled. A small area penalty is paid from the usage 

of these pipeline registers. We have to note that the implementation of the negative edge-

triggered register (flip-flop) is easily implemented in FPGA with an insertion of an inverter 

to the clock line.  

The usage of positive (rising) and negative edge-triggered pipeline registers (that capture 

data on both clock edges) demands a duty cycle of 50 %. Deviation from a 50 % duty cycle 

may lead to timing failures in the critical paths [8]. The assumption of a perfect clock with 

50 % duty cycle is optimistic, giving signals half the clock cycle to propagate from one 

register to the next. In the low level design, the duty cycle, may not be perfect, and the 

actual time available for signals to propagate can be smaller. In order to avoid this problem, 

the worst-case duty cycle of the clock must be accurately modeled in synthesis and timing 

analysis [11].  

For the execution of the whole MISTY1 block cipher nine system clock cycles are 

required. The proposed architecture is suitable for area restricted devices because the 

required hardware resources are reduced relative to the eight rounds architecture.  

The one round MISTY1 key scheduling part architecture is illustrated in Fig.8.  
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Fig. 8. One Round Key Scheduling Part Architecture 

 

The addition of extra delays is achieved, in the Sub-keys Delay Unit (Fig. 8b), by using 

counters. In this unit, a 2-input 16-bit multiplexer is used in order for the same hardware 

part to be suitable for both encryption and decryption operations. The multiplexer is 

controlled by the enc_dec signal.  

 

4 Measurements and Comparisons 

The proposed architectures and implementations were captured by using VHDL, with 

structural description logic. The encryption and decryption operation were verified by using 



the test vectors provided by the NESSIE submission package [1]. The VHDL codes of the 

two designs were synthesized by using FPGA devices of Xilinx [12]. The correct 

functionality of the two hardware implementations was verified with simulations. The 

measurements of the performance analysis are shown in Table II. In the same table, 

measurements from other designs are added (only the faster software implementation is 

added [7]). 

 

Table II. Performance Analysis Measurements 

Architecture Process FPGA  
Device 

CLB  
Slices 

F  
MHz 

Throughput  
(Mbps) 

Throughput/
Area 

(Mbps/Area) 

[5] Encryption XCV1000 
BG560-6 8386 140 8960 1.07 

[6] Encryption XCV1000 
BG560-6 6322 159 10176 1.6 

[6] Encryption XCVII2000 
BG575-6 6322 303 19392 3 

[7] Encryption/ 
Decryption Software - 500 288 - 

Proposed 
Eight Round 

Encryption/ 
Decryption 

XCV1000 
BG560-6 4735 96 7200 1.5 

Proposed 
Eight Round 

Encryption/ 
Decryption 

XCVII3000 
BF957-6 

4039 168 12600 3.3 

Proposed  
One Round 

Encryption/ 
Decryption 

XCV400 
EBG432-8 1865 79 561 0.3 

 

The architectures proposed in [5] and [6] are identical, but the authors have reported 

better implementation performance results in [6] than in [5]. Most probably this difference 

is due to better VHDL code synthesis of [6]. Finally, in these implementations only the 

unrolling architecture has been considered.  



For the hardware implementation of the proposed MISTY1 eight round architecture two 

Xilinx Virtex devices (XCV1000BG560-6 and XCVII3000BF957-6) were selected. The 

proposed implementation did not fit in the Virtex-II device, which is used in [6], because 

the proposed implementation uses more embedded RAM blocks than the available ones in 

this device. The XCV1000BG560-6 device has 128K bits of embedded RAM 

(BlockSelectRAM+), divided in 32 RAM blocks that are separated from the main body of 

the FPGA. The XCVII3000BF957-6 device has 1728K bits of embedded RAM 

(BlockSelectRAM+), divided in 96 RAM blocks. For the proposed design 79K bits of 

embedded RAM are used in order to map the necessary for the block cipher S-boxes. 

In the Eight Rounds Architecture, for the addition of the sub-keys delays (necessary in 

the key scheduling part) a 16-bit shift register is used. The Virtex architecture is well suited 

to easily implement, fast, and efficient shift register by the usage of the SRL16 feature [13]. 

Whit this feature, shift registers are implemented without using flip-flop resources. The 

SRL16 is used to implement a progressive delay line, thereby saving logic resources and 

producing the highest performance [13]. So, each 16-bit shift register is implemented by 

one Look-Up-Table (LUT). The implementation in the XCV1000BG560-6 device achieves 

an operation frequency of 96 MHz and a throughput of 7.2 Gbps, while the implementation 

in the XCVII3000BF957-6 device achieves a frequency of 168 MHz and a throughput of 

12.6 Gbps. The critical path delay is determined by the S-box S9 (RAM block) delay.  

The One Round architecture was optimized with the covered area constraint. For this 

architecture implementation the Xilinx Virtex XCV400EBG432-8 was selected. The 

achieved throughput is 561 Mbps for both encryption and decryption operation. The clock 

frequency is 79 MHz. For one block encryption or decryption operation nine system clock 



cycles are needed. In order to evaluate the influence of the inner pipeline (negative edge-

triggered register), the operation frequency was measured without these pipeline registers. 

An operation frequency of 40 MHz and a throughput of 284 Mbps were measured. Thus, a 

major improvement in terms of throughput approximately 97% is achieved.  

 The proposed implementations support encryption and decryption in the same 

dedicated FPGA device. In order to incorporate this feature, a large number of 2-input 16-

bit multiplexers are used. In addition, extra FL-1 functions and 2-input 32-bit multiplexers 

are necessary. So, in the performance comparisons with other architectures that support 

only encryption [5, 6], this feature must be considered. Of course, the penalty is the minor 

increase of the allocated hardware resources. 

Looking at the Table II, the Throughput/Area ratio illustrates that MISTY1 is efficient 

and suitable for FPGA implementation. Finally, the proposed Eight Round Architecture 

implementations in XCVII3000 BF957-6 FPGA is more efficient, compared with the 

implementation in [6] in the same FPGA family, as the Throughput/Area measurements 

show.  

 

5 Conclusions 

Two different VLSI architectures for the design and implementation of the MISTY1 

block cipher have been presented. In contrast to previous implementations, both 

architectures support encryption and decryption. In the first architecture, the rounds are 

unrolled and RAM blocks embedded in the FPGA are used for the implementation of the S-



boxes. A 75-stage pipeline is inserted that achieves a throughput of 72 Gbps at an operation 

frequency of 96 MHz. This architecture can be applied in high-speed applications. The 

second architecture uses feedback logic in order to reduce the required hardware resources. 

The usage of inner pipeline reduces the critical path of the round, without increasing the 

algorithmic latency, thus maximizing the throughput. This architecture reaches a 

throughput of 561 Mbps at an operation frequency of 79 MHz and it is suitable for area-

constrained devices. 
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