
 1

Elliptic Curve based Signcryption 
 and its Multi-party Schemes 

Yiliang HAN   Xiaoyuan YANG 
Key Lab. On Network and Information Security of Armed Police Force 

Department of Electronic Technology, Engineering College of Armed Police Force 
Xi’an, 710086, CHINA 

yilianghan@hotmail.com 
 
 

Abstract 
 

Signcryption is a novel public key primitive to achieve the combined functionality of 
authentication and confidentiality in an efficient manner. A new Elliptic Curve Cryptosystems based 
Signcryption which combines ECDSA and PSCE-1 is presented in the paper. The signcryption scheme 
is a publicly verifiable scheme which can be verified by the third party after the specific recipient 
removes his key information. Analysis shows that the proposed scheme is secure against the adaptive 
chosen ciphertext attack. The signcryption saves the communication cost at least 1.25 times and 
enhances computation cost 1.19 times over ECDSA-then-PSCE-1. Compared with other signcryption 
schemes, such as Y.Zheng’s ECSCS, the new signcryption uses a uniform elliptic curve cryptosystem 
platform instead of four kinds of cryptosystem components: hash function, keyed hash function, 
symmetric cipher and elliptic curve. While keeping high security and efficiency, the scheme can be 
implemented in software and hardware at low price because of above advantages. Base on the 
signcryption, a broadcast scheme for multiple recipients and a threshold scheme with key distributed 
generation for multiple senders are also proposed. 
Keywords: Threshold Cryptosystem. Signcryption. Distributed Key Generation 

 

1. Introduction 
To avoid forgery and ensure confidentiality of a message, originator will use authentication 
and encryption.  In common sense, the order of authentication and encryption can be divided 
into three classes [8]:  authentication then encryption (AtE), encryption then authentication 
(EtA), encryption and authentication (E&A). The three methods in public key cryptosystems 
setting are: sign-then-encrypt, encrypt-then-sign, sign-and-encrypt.  

The Encrypt-then-Sign is completely insecure against adaptive chosen ciphertext attack, 
even if the underlying encryption scheme is secure against adaptive chosen ciphertext attack. 
Because the sender’s signature public key is easily malleable under adaptive chosen 
ciphertext. The common Encrypt-and-Sign paradigm cannot be generically secure because the 
signature part can reveal some information about the plaintext message, and this may be true 
even though the underlying signature scheme is unforgeable[5]. Though Sign-then-Encrypt is 
an appropriate composition, the high communication cost and computation cost hold its broad 
using. 

Signcryption is a novel public key primitive to achieve the combined functionality of 
authentication and confidentiality in an efficient manner. It is more secure and more efficient 
than the traditional methods such as Sign–then-Encrypt. Y. Zheng proposed the conception of 
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signcryption and the first Discrete-Log based scheme SCS in 1997[4]. The proofs given by [5] 
showed that the SCS scheme was IND-CCA2 secure. J. Malone-Lee and W. Mao proposed a 
RSA based signcryption scheme TBOS and proved its IND-CCA2 security in 2003[10].  
 

2. ECSCS Signcryption Scheme 
Y. Zheng gave an signcryption scheme ECSCS in 1998[9]. The scheme will be described as 
following: 

Parameters public to all: 
C— an elliptic curve over GF(pm), either with p > 2150 and m=1or p=2 and m> 150 

(public to all). 
q— a large prime whose size is approximately of |pm| (public to all). 
G— a point with order q, chosen randomly from the points on C (public to all). 
hash—a one-way hash function whose output has, say, at least 128 bits. 
KH—a keyed one-way hash functions. 
(E,D)—the encryption and decryption algorithms of a private key cipher. 
Keys: 
va—Alice’s private key, chosen uniformly at random from [1,…,q -1]. 
Pa—Alice’s public key (Pa=vaG, a point on C). 
vb—Bob’s private key, chosen uniformly at random from [1,…,q -1]. 
Pb—Bob’s public key (Pb=vbG, a point on C). 

 
Signcryption of m by Alice the Sender 
v ∈R [1,…, q-1] 
(k1, k2)= hash(vPb) 
c=Ek1 (m) 
r=KHk2(m, bind_info) 
s=(v/(r+ va)) mod q 
(c, r ,s) will be sent to Bob. 
Unsigncryption of (c, r, s) by Bob the Recipient 
u= svb mod q 
(k1, k2)= hash(uPa+urG) 
m= Dk1 (c) 
Accept m only if KHk2 (m ,bind_info)=r. 
In contrast, ECSCS uses the same manner as the SCS scheme except using the DCDLP 

to replace DLP. Hence, ECSCS had the same security as SCS under the consumption that 
ECDLP is hard. ECSCS used four kinds of cryptosystem components: hash function, keyed 
hash function, symmetric cipher and elliptic curve. Especially, the encryption component was 
a symmetric cipher. So the scheme can be hardly called a perfect elliptic curve based 
signcryption. Because of the disadvantage, applications (software or devices) must contain 
four kinds of cryptosystem platforms can implement the scheme, which is not applicable in 
practice. 

 

3. A New Signcryption scheme based on ECC 
We propose the first signcryption scheme which is really based on Elliptic Curve 
Cryptosystem in this section.  
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There is a message m which will be signcrypted and sent to a specific recipient. Alice is 
a sender. Bob is a specific recipient. 

 
3.1 Description of the new scheme 
Choosing an elliptic curve E(Fq) on a finite field Fq (q>max (n, s), is a prime number), G is 
a base point, ord(G)=l. Hence there is a subgroup generated by base point G. Choosing a 

secret number Zqs∈ , we can compute Q=sG easily. Computing s via Q and G is an ECDLP 

which is hard in our scheme. H( ) is a strong one way hash function. 
 
Key generation: A random number sA ∈{1,…,l-1}is the private key of Alice. Her public 

key is a point PA= sAG. Bob’s private key is a random number sB ∈{1,…,l-1}. His public key 
is a point PB= sBG.  

 
Signcrypt: Alice will complete the following operations to signcrypt the message. 
Step 1: Chooses e∈{1,…,l-1}at random, and computes r=H(m‖e). 
Step 2: Computes R=rG=( x1 , y1). 
Step 3: Computes rPB =( x2 , y2). 
Step 4: Computes c=(m‖e)⊕x2 .  
Step 5: Computes y= r -1 (H(m)+ x1sA)  mod p. 

    The triplet (R, c, y) is the signcryption and will be sent to Bob.  
 
Unsigncrypt: Bob can verify if the signcryption is sent by Alice. 
Step1: Computes sBR=( x2′ , y2′). 
Step2: Computes (m′‖e′)= c⊕ x2′. 
Step3: Computes r′=H(m′‖e′).Checks if R≠r′G, rejects m′. 
Step4: Computes y -1. 
Step5: Computes u= y -1H(m′), v= y -1x1. 
Step6: Computes (x1′ , y1′) =uG +vPA. Checks if x1 ≠ x1′, rejects m′, else return m= m′. 
The check in step 3 guarantees that c is a legal ciphertext. Therefore an adversary has no 

chance to forge an illegal ciphertext and access the unsigncrypt oracle.  
 

3.2 Security of the new scheme 
3.2.1 Attack Model and Security Notions for Signcryption 
The security of signcryption is different to common signature schemes. We use random oracle 
to describe the attack model for signcryption. We provide two oracles for adversary: 
signcryption oracle and unsigncryption oracle.  

 In common public key cryptosystems, adversary can encrypt a plaintext as his own 
because the public key is known to all. So the CPA (Chosen Plaintext Attack) is not 
meaningful. In the case of signcryption scheme, the private key of the sender is required in 
signcryption. So the adversary is not able to produce signcryptions on its own. We provide the 
adversary a signcryption oracle for the key of sender. We allow the adversary to choose the 
randomness inputs by the signcryption oracle, except for challenge signcryption.  

Like common public key cryptosystems, signcryption must be unsigncrypted via 
recipient’s private key. So we must provide the adversary an unsigncrytion oracle and allow 
him to access the unsigncryption oracle for the key of recipient. 

The security notions of signcryption and the definition of IND-CCA2 security for 
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signcryption were given in [5][10].  
A signcryption scheme is secure if the following conditions are satisfied:[11] 
Non-repudiation: It is computationally feasible for a third party to settle a dispute 

between Alice and Bob in an event where Alice denies the fact that she is the originator of a 
signcrypted text with Bob as its recipient. 

Unforgeability: It is computationally infeasible for an adaptive attacker to masquerade 
Alice in creating a signcrypted text. 

Confidentiality: It is computationally infeasible for an adaptive attacker to gain any 
partial information on the contents of a signcrypted text. 

The following sub-sections are devoted to discussion of the security of the new 
signcryption scheme. 

 
3.2.2Unforgeability of the scheme 
Just like signature schemes, all of the people have chances to forge a Alice’s signcryption. But 
there is a difference in the ability to forge signatures between the third party and the dishonest 
specific recipient. In a signature scheme, signer generates a signature using his private key 
and a secret random number which are confidential to others. In a signcryption scheme, 
signcryption is generated by the sender using receiver’s public key as well as his private key 
and secret random number. A dishonest recipient has more power to forge, because only the 
recipient knows the responding private key. We will discuss the probabilities to forge a 
signcrypion for a dishonest recipient and the third party. 

(a) Forged by a dishonest recipient. 
Dishonest Bob is the most powerful attacker to forge a signcryption, because he is the 

only person who knows the private key sB which is required to directly verify a signcryption 
from Alice. 

Given a signcryption(R, c, y), Bob can use his private key sB to decrypt the message 
m=cx2

-1. Then the problem will turn into the verification of the signature (R, m, y) which is a 
normal ECDSA signature to m. ECDSA is known to be unforgeable against adaptive attacks. 
Therefore the signcryption scheme is unforgeable against adaptive attacks. 

(b) Forged by the third Party. 
Public keys of sender and recipient are known to a third party. We can also make the 

signcrypt and unsigncrypt algorithm public to him. Namely, the third party can access both of 
signcryption oracle and unsigncryption oracle for his randomness input except the challenge 
signcryption. Given a signcryption (R, c, y), adversary will try to forge a triplet (R′, c′, y′) 
which will be considered as a legal signcrytion originated from Alice. If the adversary can 
obtain some information about the private key and secret random number of sender, he has 
opportunities to success. Under the assumption that H() is a strong one-way function and 
ECDLP is hard, no information about e will reveal via r=H(m‖e) and R=rG. If e is chosen 
uniformly at random, y= r -1 (H(m)+ x1sA) can guarantee the confidentiality of private key.  

In this case, the advantage of an polynomial-time adversary Adv(A)=|2Pr[(R, c, y)=( R′, 
c′, y′)]-1| is a negligible function.  

 
3.2.3 Non-repudiation of the scheme 
Like others, the proposed signcryption scheme seems to lose the non-interactive repudiation 
settlement. Bob follows the unsigncryption procedure up until Step 3. Non-repudiation can be 
acquired. The triplet (R, H(m′), y) can be given to the third party and be verified the validity 
as a common ECDSA. If the triplet couldn’t match the equation in Step 4, we will consider 
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that the signcryption is a fake. 
 

3.2.4Confidentiality of the scheme 
Firstly, we discuss the confidentiality of the encryption component in the scheme. Given the 
triplet(R, c, y), (R, c) is the ciphertext which generated as follow:  

r=H(m‖e). 
R=rG=( x1 , y1). 
rPB =( x2 , y2). 
c=(m‖e)⊕x2  mod p.  

   The encryption component of the scheme is PSEC-1 which is semantically secure or 
non-malleable against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random 
oracle model under the elliptic curve decision Diffie-Hellman (EC-DDH) assumption [12]. 
Thus an adversary couldn’t recover any information about message from ciphertext. 
    Secondly, the common Encrypt-and-Sign paradigm cannot be generically secure because 
the signature part can reveal some information about the plaintext message, and this may be 
true even though the underlying signature scheme is unforgeable[5].  

In the scheme, the signature part is (R, y) which generated as follow: 
 r=H(m‖e) 
R=rG=( x1 , y1) 

 y= r -1 (H(m)+ x1sA)  
H( ) is a strong one way function which guarantee that no information about message is 

revealed via r=H(m‖e) and y= r -1 (H(m)+ x1sA). Thus, the signature part is confidentiality. 
 

3.3 Efficiency of the new scheme 
The most significant advantage of signcryption over Sign-then-Enc lies in the computation 
cost and communication cost[11]: 

Cost(signcryption)<Cost(Signature)+Cost(Encryption). 
In this section, the advantage in details will be shown. 

The new signcryption scheme combines the ECDSA and PSEC-1. So we construct the 
ECDSA-then-PSEC-1 composition as an usual Sign-then-Enc scheme. The cost of two 
schemes will be compared in the subsection. 
 
3.3.1 Communication Cost 
Definition 1: In a cryptosystem, |m| denotes the length of plaintext, |c| denotes the length of 
all the information that must be transferred. Message Rate can be defined as following: 

    
c
m

RM = .  

It will be used to measure the communication efficiency of a cryptosystem in this section. 
For the same plaintext m, the length of all transferred information in signcryption is 

|R|+|c|+|y|, while Sign-then-Enc is |x1|+|y|+|R|+|c| (x1 is x coordinate of a point). If | q | =192, 
the signcryption can save 192 bit at least. 
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The signcryption enhance the Message Rate 1.25 times over Sign-then-Enc. 
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3.3.2 Computation Cost 
In the signcryption scheme, the number of computations of multiples of points is 6 ( 2 in 
signcryption and 4 in unsigncryption.). A multiple can be obtained in about 1.5|l| point 
additions[9]. Adapting fast computation, the computation cost for aG +bPA is (1+ 3/4|q|) point 
additions, or equivalently 1.17 point multiples. That is, the number of computations of 
multiples of points can reduced from 6 to 5.17. 

In contrast, there are 7 multiples of points in Sign-then-Enc scheme (3 in signing and 
encryption and 4 in verifying and decryption.). The number can reduced from 7 to 6.17 too. 

The numbers of other computations of the two schemes are equal. The signcryption 
scheme saves 1 multiples of points at least.  

The signcryption enhance the computation efficiency 1.19 times over Sign-then-Enc. 
 

4. The Scheme for Multiple Recipients 
The scheme can be used to broadcast a message to multiple users in a secure and 
authenticated manner. Security, unforgeability, non-repudiation and consistency of a message 
are the major concerns with broadcasting to multiple recipients. Expect the above secure 
notions, we must prevent a particular recipient form being excluded from the group by a 
dishonest message originator. The traditional standard practice uses each recipient’s public 
key encrypts the message-encryption key and attach the ciphertext to the signed and 
encrypted message. A RSA based scheme was given in RFC1421 [13]. Y. Zheng also gave a 
similar scheme using his SCS signcryption in 1998[11]. Using elliptic curve based signcryption 
proposed in section 2, we will give a elliptic curve based scheme for multiple recipients.  

A message m will broadcasted to t recipients P1, P2,…, P t through a multi-cast channel 
which allows all recipients will receive an identical part of a broadcast message. 

Key generation: A random number sA ∈{1,…,l-1}is the private key of Alice. Her public 
key is a point PA= sAG. P1, P2,…, Pt. is t recipients. A random number sBi∈{1,…,l-1} is Pi’s 
private key. The responding public key is a point PBi= sBiG. Where i =1,…,t. H( ) is a strong 
one-way hash function. 

Signcrypt: Alice will complete the following operations to signcrypt the message. 
Step 1: Chooses k∈{1,…,l-1}at random, and computes h= H(m‖k). 
Step 2: Combines the message and its authentication code via w= m‖h. 
Step 3: Computes c=w ⊕k . 
Step 4: Creates a signcryption of k for each recipient Pi, i =1,2,…,t. 

(a) Chooses ei∈{1,…,l-1}at random, and computes ri= H(k ‖ei). 
(b) Computes Ri=riG=( x1i , y1i). 
(c) Computes riPBi =( x2 i , y2 i). 
(d) Computes ci= (k ‖ei)⊕x2i  mod p. 

        (e) Computes yi = ri
-1 (H(w)+x1isA)  mod p. 

Alice broadcasts (c, R1, c1, y1,…, Rt, ct, yt ) to all recipients. 
Unsigncrypt: 
Recipient Pi find (c,Ri, ci, yi) in (c, R1, c1, y1,…, Rt, ct, yt ) and verify if the signcryption is 

sent by Alice. 
Step 1: Unsigncrypts k: 
    (a) Computes sBiRi=( x2i′ , y2i′). 

(b) Computes k ′‖ei ′= ci⊕x2′-1. 
(c) Checks if Ri ≠ H (k ′‖ei ′)G, rejects c. 
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Step 2: Computes w′= c⊕k ′, and splits w′ into m′ and h′. 
Step 3: Computes yi

-1 . 
Step 4: Computes ui = y i

-1H(w′), vi = y i
-1x1i. 

Step 5: Computes (x1i′ , y1i′) =uiG +viPA. 
Checks if x1 = x1′ and h =H (m′‖k′), return m= m′, else reject m′. 
Only if both of the checks success, Pi will accept m as a legal message originated from 

Alice. 
 

5. The threshold Signcryption with Distributed Key Generation 
When the sender is a group which consisted of n members, a threshold signcryption with 
distributed key generation will proposed in this section.  
 
5.1 Verifiable Secret Sharing Scheme for Elliptic Curve 
Since Shamir and Blakley presented the Secret Sharing Scheme independently in 1979[1]. Lots 
of investigations have been done in the topic. Verifiable Secret Sharing proposed by B.Chor, 
S.Goldwasser, Micali S. and B.Awerbuch in 1985 is a useful tool to resolve Multi-party 
computation problems[2]. Feldman proposed the first non-interactive VSS in 1987[14]. An 
implementation of Feldman’VSS on elliptic curve was described in [15]. Pedersen proposed a 
non-interactive and information-theoretic secure verifiable secret sharing scheme in 1991[16]. 
Pedersen’VSS based on Shamir’s scheme is a (t, n) threshold. A trusted dealer is required to 
charge the whole process. In this section, the scheme will be described in an elliptic curve 
point group. We call it EC-Pedersen Scheme in the following section.  

Choosing an elliptic curve E(Fq) on a finite field Fq (q>max (n, s), is a prime number), 
G is a base point, ord(G)=l. Hence there is a subgroup generated by base point G. The secret 

to be shared is a private key Zqs∈ , public key is Q=sG. A point H on E(Fq) is generated by 

G.  
Secret Splitting 

Step 1: Dealer chooses t∈{1,…,l-1}at random, computes a commitment to s: C0= C(s,r) 
=sG+rH and open it.  

Step 2: Dealer chooses a secret polynomial lxfxf
t

i

i
i  ∑

−

=

=
1

0
mod )()( , computes si=f(i) 

(i=1,…, n). 
Set f0=s, it is the secret to be shared. 
Dealer chooses g0,…,gt-1∈{1,…,l-1}, computes a commitment Ci =C(fi, gi) = fiG+ gi H 

(i=0,…, t-1). 

Step 3: Let lxgxg
t

i

i
i  ∑

−

=

=
1

0
mod )()(  , and let ri=g(i) (i=1,…, n). 

Dealer computes a secret share (si, ri)(i=1,…, n) and send the share to player Pi through a 
perfect private channel. 

Dealer computes commitments Cj =fjG (j=0,…, t-1) which will be broadcasted to the 
whole group and be used to verify the shares later. 
Sharers verify 
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When a player receives (si, ri), he checks if ∑
−

=

=
1

0
),(

t

j
j

j
ii CirsC .  

If the test fails, ri will be rejected because it is an illegal data. 
Secrets reconstruct 

Only t players out of group can reconstruct the secret polynomial by Lagrange Polynomial 
Interpolation as following 

l
hj
hxsxf

t

j

t

jh
h

j mod)(
1 1
∑ ∏
=

≠
= −

−
= . 

Let x=0, with the formula l
jh

hss
t

j

t

jh
h

j mod
1 1
∑ ∏
=

≠
= −

= , the secret s can be recovered. 

    The scheme can defend the attack launched by (n -1)/3 players. 
 
5.2 A Secure Distributed Key Generation for ECC 
The above scheme requires a trusted dealer to manage the whole process. Unfortunately, we 
can hardly to look for a trusted dealer in substantial circumstances. Distributed Key 
Generation (DKG) is a novel protocol which can distribute a secret in a group. Pedersen 
proposed the first DKG scheme in 1991[3]. R.Gennaro pointed out the scheme is insecurity 
and give a secure DKG scheme for Discrete-Log Cryptosystems in 1999[4]. We will give an 
implantation of the Gennaro’s DKG scheme which will be called EC-DKG in the following. 
Under the assumption that ECDLP is hard, EC-DKG has the equal security as original scheme 
while more efficient.  
 

1. Each player Pi performs a Pedersen-VSS of random number zi as a dealer: 
(a) Pi chooses two random polynomials fi(z), f ′i(z) over Zq of degree t: 

∑
=

=
1

0
 (z)

-t

j

j
iji zaf , ∑

=

=′ 1

0
 (z)

-t

j

j
iji zbf  

Let zi = zi0 = fi(0). Pi broadcasts Cik=aikG+bikH  for k=0,…,t-1. Pi computes the shares 
sij=fi(j), s′ij=f ′i(j) for j=1,2,…,n and sends sij, s′ij to player Pj. 

(b) Each player Pi verifies the shares he received from the other players. 

For each i=1,…,n, Pj checks if (1)          )(
1

0
∑
=

=′+
-t

k
ikijij CHsGs kj  

If the check fails for an index i, Pj broadcasts a complaint against Pi. 
(c) Each player Pi who, as a dealer, received a complaint from player Pj broadcasts the 

values sij, s′ij that satisfy Eq 1. 
(d) Each player marks as disqualified any player that either received more than t 

complaints in Step 1b, or answered to a complaint in Step 1c with values that falsify Eq.1. 
2. Each player then builds the set of non-disqualified players QGroup. 

3. The distributed secret value ∑
∈

=
QGroupi

izx , but it is not explicitly computed by any 

party. 
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Each player Pi sets his share of the secret as ∑
∈

=
QGroupj

jii sx   and ∑
∈

′=′
QGroupj

jii sx . 

4. Each player i∈QGroup exposes Gzi=iPK via Feldman VSS: 

(a) Each player Pi, i∈QGroup, broadcasts Aik =aikG for k=0,…,t-1. 
(b) Each player Pj verifies the values broadcast by the other plalyers in QGroup, namely, 

for each i∈QGroup, Pj checks if  

∑
=

=
1

0
(2)         

-t

k
ik

k
ij Ajs G  

If the check fails for an index i, Pi complains against by broadcasting the values sij, s′ij 
that satisfy Eq. 2 but do not satisfy Eq. 2. 

(c) For players Pi who receive at least one valid complaint , i.e. values which satisfy Eq. 
1 AND NOT Eq. 2, the other players run the reconstruction phase of Pedersen-VSS to 
compute zi, fi(z), Aik, for k=0,…,t-1 in the clear. For all players in QGroup, set PKi = Ai0 =zi G. 

Compute ∑
∈

=
QGroupi

jPKPK  . 

5.3 The Threshold Protocol of the Scheme with Distributed Key Generation 
In this section, we will construct a threshold protocol about the above scheme, which is a 

multi-party secure computation problem. 
 

5.3.1 Secret Distributed Generation 
 

We use KDG scheme showed in section 5.2 to generate and verify the secret. In the 
protocol, Group={p1´, p2´,…, pn´ } is a group including n players which will generate share 
the secret s (a private key of Group) and random number e distributed. QGroup={p1, p2,…, pt} 
is a qualified subset of Group including t out of n players. All the players perform the 
protocol in section 5.2. At the end of the protocol, each player Pi ∈QGroup will have a 
private key share si and a secret number share ei.  

 
5.3.2 Signcryption with Distributed Key Generation 
 

In this stage, QGroup will signcrypt a message for Bob. Bob verifies whether the 
signature is correct, then decrypt the cipher. 

Threshold Signcryption generation 
No subset of t-1 players of Group can generate a signcryption. Each player Pi ∈ QGroup 

complete the following steps:  
Step 1: Generates a uniform random number. 

(a)Computes Ei=eiG, which called random point, and broadcasts it. 
(b) Chooses t random points, computes a point E by Lagrange Polynomial 

Interpolation as following: 

),()mod(
1 1

eei

t

i

t

jh
h

yxGel
jh

hE =
−

= ∑ ∏
=

≠
=

. 

(c) Sets e=xe. It will be used as a random number in signcryption. 
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Step 2: Compute r=H(m‖e). 
Step 3: Computes R=rG=( x1 , y1). 
Step 4: Computes rPB =( x2 , y2). 
Step 5: Computes c=(m‖e)⊕x2 .  
Step 6: Computes yi = r -1 (H(m)+ x1 si)  mod p. 

    The triplet (R, c, yi) is the signcryption piece and will be sent to Bob.  
 
Unsigncrypt: After received t pieces of signcryption generated by the QGroup. Bob can 

verify if the signcryption is sent by Group. 

Step1: Computes the public key of QGroup via ∑
∈

=
QGroupi

jPKPK  . 

Step2: Chooses t pieces of signcryption, constructs y by Lagrange Polynomial 
Interpolation. 

He can obtain a new triplet (R, c, y) which is a signcryption generated by QGroup. Then 
he can unsigncrypt it follows the steps in section 2.  

 

6. Conclusion  
The proposed signcryption scheme combines ECDSA and PSEC-1. Both of the schemes are 
secure against the adaptive chosen ciphertext attack. The results in section 3.2 show that the 
attacks against confidentiality, unforgeablity and non-repudiation of the proposed scheme are 
equivalent to attacks against ECDSA and PSEC-1 separately. So the proposed scheme is 
secure against the adaptive chose ciphertext attack too. 

Compared with ECSCS, the signcryption scheme proposed in this paper uses a uniform 
elliptic curve cryptosystem computation platform and a set of parameters. While Y. Zheng’s 
ECSCS scheme uses four kinds of cryptography components: symmetrical cipher, hash 
function, keyed hash function and elliptic curve based computation. Though its computation 
cost is lightly loser than our signcryption, ECSEC’s high prices in practice make it not 
applicable. In other word, an application (software or device) which must contain four kinds 
of cryptosystem platform can implement ECSCS. Hence the proposed scheme is more 
feasible than others. 
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