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Abstract. The object of this paper is the concrete security of recent
multivariate signature schemes. A major challenge is to reconcile some
”tricky” ad-hoc constructions that allow to make short signatures, with
regular provable security. The paper is composed of two parts.
In the first part of this paper we formalize and confront with the most
recent attacks the security of several known multivariate trapdoor func-
tions. For example the signature scheme Quartz is based on a trapdoor
function G belonging to a family called HFEv-. It has two independent
security parameters, and we claim that if d is big enough, no better
method to compute an inverse of G than the exhaustive search is known.
This will allow us to formulate our key assumption on which the provable
security results can be build.
In the second part, we study the security concrete security of signature
schemes under our assumption. We study some general constructions,
that transform a trapdoor function into a short signature scheme, and in
particular these designed to obtain short signatures. On the one hand,
we present generic attacks on such constructions. On the other hand,
we study the possibility to prove or justify the security with some well
chosen assumptions.
Unfortunately for Quartz, our lower and upper security bounds do not
coincide. Still the best attack known for Quartz is our generic attack
using O(280) computations with O(280) of memory. We will also propose
an alternative way of doing short signatures for which both bounds do
coincide. Finally we also apply our results for Flash and Sflash.
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1 Introduction

1.1 Provable Security
Provable security in concrete realistic setting is the new mainstream
paradigm for ”good” cryptography. It makes strong security definitions
that capture all known attacks and allows to prove under well chosen as-
sumptions concrete lower bounds on the security of cryptographic schemes.
The ultimate goal is to make these bound coincide with the upper bounds
obtained by cryptographic attacks on different levels of abstraction. Cur-
rently new cryptographic schemes based on multivariate polynomials have
clearly much less provable security results than for number theory-based
schemes. The ambition of this paper is to partially fill this gap and trace
a roadmap for future research. A major challenge is to reconcile some
”tricky” ad-hoc constructions that allow to make short signatures with
provable security.

1.2 Short Signatures
The shortest signature scheme known in the ”classical cryptography” is
based on Weil pairing and achieves 160 bits with the security of 280 [4].
Only recently schemes with signatures shorter than 160 bits have been
proposed. These new schemes belong to the multivariate cryptography.
Quartz, proposed for standardisation in the European Nessie project,
achieves signatures of 128 bits with a claimed security level of 280. The
McEliece-based signature scheme CFS gives signatures of about 80 bits
[13] but has a substantially bigger public key than Quartz. Both Quartz
and McEliece have features that make them a unique choice for some ap-
plications, while remain excluded from other applications. It seems that,
see [13], the security of McEliece signatures can be proven in the random
oracle model and the lower and upper bounds coincide with respect to
two well known problems. In the present paper we will try to see what
are the lower and upper bounds on the security of Quartz, based on some
well-chosen (but plausible) assumptions.

1.3 Summary
The paper is organized as follows: First we overview the hardness prop-
erties that, given all the known attacks, are believed to hold for such
multivariate trapdoor functions as HFEv-. In particular we formulate the
Assumption 5.0.8 which is the basis of all our subsequent security consid-
erations. In the section 9 we study generic attacks on such meta signature
schemes. Then in the Section 10 and in Appendix B we study if the secu-
rity of Quartz can be proved, or justified, based on our Assumption 5.0.8.
Finally we give our conclusions.



Part I

Security of Multivariate
Trapdoor Functions





2 Basic Notations

Let GF (q) be a finite field. In this paper we usually have q = 2 (but not
always). In general we study multivariate schemes over GF (q), i.e. the
input and the output values consists of several variables, usually n e.g.
x = (x0, . . . , xn−1) denotes a variable in GF (q)n; In the present paper
we always have q = 2 and x = (x0, . . . , xn−1) can simply be viewed as a
string of bits.

Quartz is based on a family of HFEv- multivariate schemes [29] as
described first by Jacques Patarin in the extended version of [29]. A full
description of Quartz requires several pages, and we refer to the speci-
fication submitted to the European Nessie call for cryptographic primi-
tives [33, 34]. Quartz has the following parameters: the integers q, d, h, v, r.
Two additional integers are defined with respect to the above parameters:
n

def
= h + v and m

def
= h− r. In Quartz we have q = 2, d = 129, h = 103,

v = 4, r = 3, and therefore n = 107 and m = 100.

3 Multivariate Quadratic Trapdoor Functions

The public key of a multivariate scheme is usually a system of multivariate
quadratic polynomials G : GF (q)n → GF (q)m, in this paper q = 2.

y0 = G0(x0, . . . , xn−1)
...

ym = Gm−1(x0, . . . , xn−1)

Gi(x0, . . . , xn−1) =
∑

1≤j<k≤h

ζi,j,kxjxk +
∑

1≤j≤h

νi,jxj + ρi,

all the elements ζi,j,k, νi,j and ρi being in GF (q). The private key is some
hidden algebraical or combinatorial structure that allows to inverse G.

Let G be a multivariate (trapdoor or not) function defined by some
probability distribution G. Usually G will have parameters (q, n,m), and
possibly some other that we ignore for simplification. For example G(q, n)
can be a randomly selected basic HFE scheme from [29]. The notation
G ← G(q, n) means that we pick a trapdoor function G : GF (q)n →
GF (q)n from such a distribution.
Similarly we denote by G← HFEv−(2, 107, 100), a random Quartz pub-
lic key, G : GF (2)107 → GF (2)100. We will not enter into details how
the distribution HFEv−(2, 107, 100) is constructed and how the trapdoor
works. We only need to know that it produces trapdoor functions with
n = 107 variables and m = 100 equations over GF (2).



4 Cracking Problems

Definition 4.0.1 (Adversary). A T -time adversary is a probabilistic
Turing machine that stops in time ≤ T and outputs an answer.
The probability of success of the Adversary will be noted ε with ε > 0. We
note that for both T and ε: may be variable and depend on (q, n,m, etc..),
for example T = q × nO(1), or they may be fixed, for example ε = 2−64.

Definition 4.0.2 (The Cracking Problem).
Given G← G, with G : GF (q)n → GF (q)m and a random y ← GF (q)m;
Find with a non-negligible probability at least ε(q, n,m), and in time
bounded by T (q, n,m) (at least) one solution x ∈ GF (q)n to

y = G(x).
We denoteMQ(q, n,m)1 the probability distribution that consists of tak-
ing a random set of m quadratic equations over GF (q) with n variables.
The cracking problem for such a random set of quadratic equations is:

Definition 4.0.3 (MQ problem). Given G←MQ(q, n,m) and a ran-
dom y, find with a non-negligible probability ≥ ε and in time bounded
by T (at least) one solution x to y = G(x).

The MQ problem is not only worst-case difficult, as it is proven NP-
complete in [21, 31], but it seems very hard for all but a negligible number
of functions and for all but a negligible number of outputs. Following [36]:
Critical Claim 4.0.4. For q = 2, when m ≈ n holds2, and when m ≤
100 no method is known to solve a randomly chosen G ← MQ(q, n,m)
considerably faster that the exhaustive search in qm.

In fact for q = 2 it should hold for bigger m than 100, and it also
should hold for other small q (e.g. q = 3) but only for smaller values of
m, see Section 6.

We define the following (quite strong) property that should hold and
seems to hold for all “interesting” MQ instances:
Definition 4.0.5 (Exhaustive security).
Let G← G(q, n,m) be a function G : GF (q)n → GF (q)m. Let n ≥ m.We
say that G achieves exhaustive security if for all Adversaries A running
in T CPU clocks such that

ε = Pr[G← G(q, n,m), y ← GF (q)m : G(AG,y) = y]
we have the following inequality

ε ≤ T/qm.

1 MQ means Multivariate Quadratic system of equations, see [36, 30].
2 In fact only when m ≈ n the problem is still believed difficult. On one hand when

m >> n the problem becomes much easier, see [36]. On the other hand, when
n >> m, several algorithms much faster than exhaustive search are presented in
[11, 14].



The converse is obviously true for any (trapdoor or not) function:

Theorem 4.0.6 (Generic attack on a trapdoor function).
Let G : GF (q)n → GF (q)m be a function that is computed in an efficient
way (we assume that the computing time is bounded by a small degree
polynomial and neglect it). For all 0 ≤ T ≤ qm there is an adversary that
computes an inverse of G for a given y ← GF (q)m chosen uniformly at
random, with success probability of:

ε ≈ T/qm.

Following the conclusions of the paper [36] we conjecture that:

Conjecture 4.0.7 (Exhaustive security of MQ instances).
Let q = 2 m ≈ n, n ≥ m and m ≤ 100. Then for any random G ←
MQ(q, n,m), G achieves the exhaustive security.

Example 4.0.8. If q = 2, m = 80 we expect to use not less (and not
more) than 240 computations in order to be able to compute a solution
to MQ with probability at least 2−40.

Remark: This conjecture is required in this paper. Again, it should
hold even for bigger m and for other small q (e.g. q = 3) but only for
smaller values of m, see Section 6. At any rate it holds for Quartz and
with respect to all known attacks. In fact, it motivates the current research
in multivariate cryptography:

Design Criterion 4.0.9 (Near-exhaustive security). A good multi-
variate cryptographic scheme should have a security close to the exhaus-
tive search (qm here).

The idea is that it should be considerably better than the square
root (qm/2 here) of the exhaustive search. Otherwise no one probably
will bother with multivariate cryptography and use extensively studied
group-based schemes such as RSA and Elliptic Curves. Their drawback
is that on any group there are generic algorithms, precisely much faster
than the exhaustive search (in the square root of the group size), such as
Pollard’s rho algorithm.

4.1 Distinguishability Problems

The strongest security claims made in cryptography are usually about
indistinguishability with respect to some (ideal or real) random objects.

Definition 4.1.1 (the Distinguishability Problem). It is the prob-
lem of distinguishing G← G from the random set of quadratic polynomi-
als G′ ←MQ(q, n,m).



Definition 4.1.2 (Distinguishers). A T -time distinguisher is a T -time
adversary that takes as an input a given G ← G(q, n,m) and outputs a
yes or a no (0 or 1). The probability it outputs 1 on G← G is denoted by

Pr[G← G(q, n,m) : AG = 1]

Definition 4.1.3 ((T, ε)-Pseudo Random MQ). Let A be a T -time
distinguisher. We define the distinguisher’s advantage as:

AdvPRMQ
G (A)

def
=

∣∣∣Pr[G← G : AG = 1]− Pr[G′ ←MQ : AG′ = 1]
∣∣∣

We say that G is (T, ε)-indistinguishable from MQ (or a (T, ε)-PRMQ)
if we have:

Max
T -time A AdvPRMQ

G (A) ≤ ε

Definition 4.1.4 (PRMQ). We say that G : GF (q)n → GF (q)m is a
PRMQ if it is (T, ε)-PRMQ for all (T, ε) such that

ε > T/qm.

Design Criterion 4.1.5 (PRMQ trapdoors). A good multivariate
cryptographic trapdoor function should be a PRMQ.

We denote HFEv-(q, n,m) the trapdoor function generator used in
Quartz, see [34] and [29] for the exact description. In the current state of
knowledge it seems that:

Conjecture 4.1.6. The Quartz public key generator HFEv-(2, 107, 100)
is a PRMQ.

This conjecture holds with respect to all known attacks on HFE family
of cryptosystems. We study this in more details in Section 8.



5 Hardness of HFEv-

We may now easily show that:

Theorem 5.0.7 (Exhaustive security of HFEv-).
Let q = 2, m ≈ n, n ≥ m and m ≤ 100. Let G randomly chosen as
G ← HFEv−(q, n,m). If the Conjectures 4.0.7 and 4.1.6 hold then G
achieves the exhaustive security.

This result will be treated as an assumption in the remaining part of
the paper. Since we don’t really know if the Conjectures 4.0.7 and 4.1.6
are true, we would like to base the security on one single assumption. It
can be rewritten as follows:

Critical Assumption 5.0.8 (Strong One-wayness of HFEv-).
Let G a random public key G ← HFEv−(q, n,m) with q = 2, m ≈ n,
n ≥ m and m ≤ 100. For any Adversary A running in T CPU clocks, given
random y ← GF (qm), the probability that A outputs some x = G−1(y)
with probability ε, satisfies:3:

ε ≤ T/qm.

3 The assumption and all our results might be reformulated when T/qm is replaced
by any other function E(T, q, n). However we would no longer achieve, neither the
same bounds, nor such short signatures as in Quartz.



6 More on Hardness of MQ vs. Recent Algebraic Attacks

In this section we consider the validity of our Critical Claim 4.0.4 and our
(related but stronger) Conjecture 4.0.7, beyond our assumptions: when q
becomes bigger than 2, and m being potentially bigger than 100. This is
an ongoing research topic.

In general, the maximum m such that these hold, will depend on q.
When q = 2. For q = 2 we expect in fact that our Conjecture 4.0.7

holds for m bigger than 100, this bound is conservative and due to over-
optimistic estimations of [36] on the behaviour of the XL algorithm.

Asymptotic aspects: Moreover, these over-optimistic estimations of
[36] seems to suggest that XL would be subexponential for MQ over small
finite fields and when m ≈ n. This is not at all confirmed by the special-
ists of Gröbner bases. Apparently, applying the Buchberger algorithm to
ideals generated in XL over GF (2) [36, 10] has single exponential worst
case complexity, see [17] or [2]. It is therefore possible that our Conjec-
ture 4.0.7 holds in practice for bigger m. Yet probably not for any m
[Jean-Charles Faugère, Magali Bardet, private communication, see also
[18, 19]].

Bigger q. Recent advances (PKC 2004 [8]) on improved versions
on the XL algorithm from [36, 10, 12] and (very closely related) efficient
methods for computing Gröbner bases [18, 19] indicate that our Conjec-
ture 4.0.7 can only be true for very small q such as 2. For example for
q = 27, n ≥ m = 26 it is possible to solve the equations in 258 while
qm = 2182, see [8] for details of the attack. Another example from [8] is
the example of HFE Challenge 2, in which q = 24, n ≥ m = 32. Then the
best attack given in [8] gives about 263 while qm/2 = 2128.

Is it really hard ? We face the problem of the hardness of MQ
that is a fundamental problem of cryptography underlying the security
of many cryptosystems including AES, see [8, 15]. More research on this
topic is needed. Even though attacks on such problems have known huge
progress in the recent years, see [36, 10, 12, 18, 19, 8], it is possible to see
that the efficiency of all these methods is limited by some algebraic in-
variant properties of the ideal generated by the system of polynomials.
They are also limited by the speed of well known fundamental algorithms
such as linear algebra.



7 Confronting the Assumption 5.0.8 with Recent Attacks
for Sflash and Variants

Our Assumption 5.0.8 (Strong One Wayness) is based on two require-
ments: Indistinguishability (Conjecture 4.1.6) and the one-wayness of the
underlying generic problem (Definition 4.0.5). We will see that the only
the first requirement is satisfied for Sflash and version of it.

7.1 About Indistinguishability (Conjecture 4.1.6) of Sflash

The Results of Joux-Faugère Applied to Sflash
In [16] it is shown that Gröbner bases attacks, can distinguish Sflash from
MQ for systems over GF (2), and for the number of removed equations r
being not too big (but may be > 2). Joux and Faugère fully develop and
this attack in [24].

We will explain that for systems over GF (2k), k > 1, this attack does
not extend well. We will explain this in the light of the paper [24] by
Joux and Faugère.

For this, we will view the public key of Sflash (and other systems) as
a function G : GF (qn)→ GF (qn) (such univariate representation is used
for example in [37, 24]). From [28] we know that for Sflash over GF (q)
with 0 equations removed, Then, if Y = G(X), there exists the following
equation in GF (qn) (that is a consequence of hidden algebraic structure
of G, see [28]):

A(X, Y ) =
∑
ij

αijX
qi

Y qj
+

∑
i

βiX
qi

+
∑

i

γiY
qi

+ δ = 0

Now, if we consider Sflash with r last public multivariate equations
removed and replaced by arbitrary r multivariate equations, and again
we see it as a univariate function G : GF (qn)→ GF (qn), we obtain that
if Y = G(X), we have: ∏

∆∈{(0,...,0)}×GF (q)r

A(X, Y + ∆) = 0

Then, when q = 2 and r = 1, 2, 3 the degree of this equation is not too
high. this explains the nice results obtained in [16]. However when q = 27,
even for r = 1 this equation does not give multivariate relations that will
be detectable in practice. We confirmed this by computer simulations.



7.2 Our Simulations - Distinguishing Sflash from MQ
In the Table 1 we present results of our simulations, to see if Sflash can
be distinguished from a random MQ system.

The value r is critical parameter. When it is zero, then Sflash becomes
the Matsumoto-Imai cryptosystem also called C∗, easy to distinguish from
random, by Patarin equations A(X, Y ) from [28] that we discussed above.

The object of our simulations is to see what is the maximum r for
which we may distinguish the two cases by simulations that would take
less than day on a PC. This allows to see if Sflash has or not a good
security margin.

Conclusion: Our simulations show clearly that it is very hard to dis-
tinguish (by algebraic methods) Sflash from a random system of multi-
variate quadratic equations (MQ) even when a few equations are removed.

In practice, for q = 27 we have sometimes found some relations for
r = 1, being probably of different origin than Joux attack above. For
r = 2 we have found nothing, not even for n = 5 variables. This should
mean that there is none either for any r ≥ 2 and any n ≥ 5). In Sflash we
have r = 11 equations removed, and these simulations show that it has
an excellent security margin with respect to the existence of detectable
multivariate relations.



Table 1. Distinguishing Sflash from Random MQ over GF (27) with XL-based method

n

m

D

D′

R

T

Free
Sflash

MQ

5 5 5 5 5

5 5 5 5 5

3 4 5 6 7

0 0 0 0 0

30 105 280 630 1260

56 126 252 462 792

29 89 205 405 725

30 95 220 430 760

5 5 5 5 5

5 4 4 4 4

3 3 4 9 15

0 0 0 0 0

30 25 84 3168 34272

56 35 126 2002 15504

29 24 78 1874 15280

30 24 78 1874 15280

5 5

4 4

3 3

0 1

25 30

35 56

24 29

24 30

n

m

D

D′

R

T

Free
Sflash

MQ

5 5 5 5 5 5

4 4 3 3 3 3

3 3 3 3 9 15

0 1 2 2 8 14

25 30 24 39 3663 37332

35 56 56 56 2002 15504

24 29 24 36 1934 15388

24 30 24 36 1934 15388

n

m

D

D′

R

T

Free
Sflash

MQ

7 7 7 7 7

7 7 7 7 7

3 4 5 6 7

0 0 0 0 0

56 252 840 2310 5544

120 330 792 1716 3432

56 231 672 1589 3304

56 231 672 1589 3304

7 7 7

6 6 6

3 4 6

0 0 0

48 216 1980

120 330 1716

48 201 1460

48 201 1460

7 7 7 7

6 6 6 6

3 3 4 6

0 2 1 5

48 84 224 2772

120 120 330 1716

48 78 209 1652

48 78 209 1652

n

m

D

D′

R

T

Free
Sflash

MQ

17 17 17 17

17 16 16 16

3 3 4 3

0 0 0 1

306 288 2736 306

1140 1140 5985 1140

305 288 2616 305

306 288 2616 306

17 17

15 15

3 4

1 3

288 3705

1140 5985

288 3330

288 3330

Legend:
n number of variables.
m number of equations.
D is the total degree of the XL equations
D′ is the degree of the additional monomials in the xi added to the system.
R number of equations generated (independent or not).
T number of monomials of degree ≤ D.

Free number of linearly independent equations among the R equations.



7.3 Underlying One-way Problem for Flash and Sflash

As expected from the Joux attack on Sflash from [24], we discovered that
in practice for Sflash, even when only 2 equations are removed, algebraic
methods such as [24, 18, 19, 5, 16] cannot in practice distinguish Sflash
from a random MQ. This is confirmed by all our computer simulations
(in Table 1.)

Unfortunately recent attacks [8] show that the security of the generic
MQ problem is lower than expected, our Definition 4.0.5 and our Hardness
Assumption 5.0.8 does not hold for these schemes, see Appendix B.3 and
[8].

Summary: Our Hardness of Assumption 5.0.8 does not hold for Flash
and different versions of Flash and Sflash, not for structural reasons but
because the underlying one-way problem does not achieve a security level
close to exhaustive search (Definition 4.0.5) when q = 27.

Remark: For smaller q we would not have this problem. But then the
attacks described in [16] would become more efficient, see our explanation
based on the Joux-Faugère paper in Section 7.1.



8 Confronting the Assumption 5.0.8 with Recent Attacks
on Quartz

8.1 Hardness of HFEv-

The main reason that such a (very, very) strong assumption can be made
for HFEv-/Quartz is the following: The cryptosystems of the HFE family
have two independent security parameters: the extension degree h and
the degree of the hidden polynomial d. Quite often they also have addi-
tional security parameters (for example v and r here). This makes the
study of their security much more complex than for cryptosystems that
basically one security parameter such as RSA. However it also makes the
multivariate cryptographic schemes much more flexible than the usual
schemes. For example one parameter (in our case h) can usually be small
to achieve cryptosystems that operate on small blocks (and allows e.g.
short signatures), and the other parameters can be independently ad-
justed to achieve the desired security level. In other words, if it turns
out that HFEv- does not satisfy our Assumption 5.0.8 above, it probably
does when d is increased 4. What is the value d that should be chosen,
and whether Quartz is then practical or not5, are two different questions
that are out of the scope of this paper. In a way this paper studies the
security that can be achieved given the first parameter h and (and also v
and r), while assuming simply that d is big enough6.

4 This assuming that the generic problem MQ is as hard as expected, i.e. if for this
system the Conjecture 4.0.7 holds. This is not always true see Section 7.3. Further
research will determine if for equations over GF (2) this conjecture is indeed true.

5 The major drawback of Quartz is its slowness. This is currently the price to pay for
such a short signature scheme and only two other short signature schemes known
that give less than 160 bits of the Weil-pairing scheme [4]. The McEliece scheme
from Asiacrypt 2001 is about as slow as Quartz, and has a much bigger public key
of about 1Mbyte instead of 71 Kbytes, see [13]. There is also the degree 3 Dragon
scheme (also based on HFE) which seems quite fast, but also has a very big public
key, see [30, 25] and it is possible that a careful analysis of the security of this scheme
will require that the parameter d would have to be revised, and it would end up
being quite slow too.

6 Finally, our Assumption 5.0.8 probably boils down to this.



8.2 Recent Attacks on HFEv-, Contributions and Inaccurate
Claims of the Faugère-Joux Crypto 2003 Paper

The recent work of Joux [24] is definitely an important breakthrough, in
allowing to understand the nature and the origin of the algebraic attacks
on HFE and variants, previously discovered (experimentally) by Courtois
et al. in [5, 16].

However, several claims and statements of this paper are inaccurate
and misleading.

1. Second paragraph, page 45: Relinearization is not a well suited tech-
nique for solving HFE in the Shamir-Kipnis paper [37]. A highly con-
fusing paragraph. Relinearization is a method to handle the second
step of the Shamir-Kipnis attack. It is highly inefficient and not neces-
sary at all to break HFE by Shamir-Kipnis method. The second step
can and should be replaced by a better method, one of the algorithms
for the MinRank problem, as suggested by Courtois in [5] or [14]. This
will make the attack much more efficient.

2. The paper clearly states in the conclusion that its main result is es-
tablishing that, when the degree d of the hidden polynomial is fixed,
the security of HFE grows polynomially in the number of variables n.
Here, Faugère and Joux, has deliberately and in full knowledge, chosen
to attribute to themselves a result, that exists in not less than 5 pre-
viously published works [29, 37, 14, 5, 16]. As we will explain now, all
these already give a method that allows to break HFE in polynomial
time (when d is fixed):
a. First of all, this result was already known to Patarin, the inventor

of HFE. It is shown in Section 4 of the published version of [29]
and in Section 7.2. of the extended version of [29] that can be
found at http:/www.hfe.info. Fearing that the word ”polynomial
complexity” would make people believe that HFE is insecure, the
author does not use this word in [29], but the attack is clearly and
fully described in [29]. In fact, HFE has very little to fear from this
attack. It is easy to see that, though it is polynomial in n when
d is fixed, it can be seen to be exponential in d, which makes it
highly impractical even for quite small values of d, e.g. 17.

b. The possibility of break HFE-type systems efficiently have been
undoubtedly discovered by Courtois, in [5, 14], written in 19987

7 This attack did not came out of nowhere, and extends even earlier algebraic attack
of Patarin that at Crypto 95 breaks the Matsumoto-Imai cryptosystem, a special
case of HFE, see [27, 28].



and submitted to Crypto, at the same time as the Shamir-Kipnis
paper [37].

c. This precise Shamir-Kipnis paper [37], is also a (very different)
method that can allow to break some instances of HFE efficiently,
but only when combined with improvements of Courtois (submit-
ted to the same conference), and published finally only in 2001,
see [5, 14].
Important: Both the above attacks [b] and [c] are still polynomial
in n when d is fixed, but now they are exponential in log d, not in
d. This the reason why several HFE systems can be broken in prac-
tice, and all the work of Faugère [20, 5] is exploiting and improving
on this initial discovery of Courtois [5] without due acknowledg-
ment. In particular, in [20] Faugère is not the first to break HFE
Challenge 1. It was first done in [14, 5], with a complexity that
is lower than exhaustive search, and the attack [20] is mainly a
matter of optimisation of this earlier Courtois attack.

d. Daum and Felke were first to discover that HFE with ”variations”,
such as HFE- or HFEv, are also susceptible to be broken by alge-
braic attacks. They presented their results at Yacc 2002 conference
(without formal proceedings) and later it was published by Cour-
tois Daum and Felke at PKC 2003 [16]. Thus again, Faugère and
Joux are not the first to discover that practical attacks on these
”variations” are possible. The paper of Faugère and Joux [24] was
however the first to propose a systematic construction of algebraic
attacks for arbitrary HFEv- systems, and to evaluate their com-
plexity.
Note: Unfortunately the complete attack evaluation for Quartz is
not given in [24].





Part II

Security of Generic (Short)
Signature Schemes





9 Feistel-Patarin Construction

9.1 Generic Threats

The classical way to compute digital signatures with a trapdoor function
G : GF (q)n → GF (q)m is to compute a hash H, and the signature is
given as:

σ = G−1(H)
As a direct consequence of 4.0.6, such a signature can be forged in

the square root of exhaustive search. This attack is generic: it does not
depend on G. We produce a lists of qm/2 G(σi) and a list of qm/2 hashes
of different messages (or different versions of the same message). Then we
expect to be able to produce at least one valid pair (message, signature),
which is an existential forgery.

Remark: This generic attack is not an issue for most well-known sig-
nature schemes such as RSA, DSA, McEliece etc. It is because for all these
functions there already exists an attack in the square root of exhaustive
search (or less) and the parameters have already been chosen sufficiently
large to avoid it. The situation is somewhat different for multivariate
quadratic schemes such as HFE. For several such schemes, there is no
attack known noticeably smaller than the exhaustive search. Therefore
if the signature is computed as σ = G−1(H) for a scheme such as HFE
or HFEv-, qm/2 should be at least 280 and it implies that the signatures
should have at least 160 bits. For this reason, when it comes to shorter
signatures, multivariate quadratic schemes usually compute a signature
in different, somewhat strange way.

9.2 Removing Existential Forgeries

We assume m = n (this condition will be relaxed later). How to compute
a signature using a trapdoor function ? On one hand, the owner of the
private key should use the computation of G−1() at least once, so that he
will be the only person to be able to compute a signature. On the other
hand, the verification should be in the implicit form Verif(σ,H) in order
to avoid meet-in-the middle attacks. On the Figure 1 we show an example
of such a construction derived from the Feistel scheme, in which the hash
is divided in two pieces and the signature is computed as (cf. Fig. 1):

H(M) = (H1(M),H2(M))

σ = H1 ⊕G−1(H2 ⊕G−1(H1))

Now, the meet-in-the middle attack fails: we can still produce two
lists of candidate messages and candidate signatures, but we are unable
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Fig. 1. 2-round Feistel applied to signature generation

to detect which signature correspond to which message by just sorting
two lists. It is necessary to run the verification algorithm on each pair
(message, signature) and it gives a complexity of qm.

Security: Clearly, the Feistel-based (meta) signature scheme described
above is better than the (ordinary) signature scheme, but still not per-
fect. In [30] Patarin explains that that a signature can still be forged in
q

2m
3 instead of q

m
2 previously. For this, we precompute q

2m
3 values f(X)

for some q
2m
3 values for X. It allows to compute an inverse of G with

probability q−
m
3 . Thus one can compute two consecutive inverses with

probability q−
2m
3 . Then, given q

2m
3 messages we are able to forge a signa-

ture of (about) one of them. In general we have:

Theorem 9.2.1 (Generic attack on signature schemes).
Let G : GF (q)n → GF (q)m. Any deterministic signature scheme that
combines K inverses and message hash values can be broken in q

K
K+1

m.

Proof. We precompute q
K

K+1
m values f(X) for some q

K
K+1

m values for X.
It allows to compute an inverse of G with probability q−

1
K+1

m and thus
to compute iteratively K inverses with probability q−

K
K+1

m. Thus with
q

K
K+1

m messages we are able to forge a signature. ut

Remark: For a function G : GF (q)n → GF (q)m the complexity is q
K

K+1
m

with q
K

K+1
m of memory. It is in fact the best known attack against Quartz

and gives 280 computations with 280 of memory.
It is obvious that when K grows, the complexity of the attacks tends

to qm of the exhaustive search. Unfortunately using the Feistel structure



cannot easily be extended to more rounds: we will not have enough in-
formation to verify the signature anymore. Still the formula it gives can
be generalized and in many different ways:

9.3 Extending to any Number of Inverses
For example we may consider the following (cf. Fig. 2):

H(M) = (H1(M),H2(M), . . . ,HK(M))
σ = G−1(HK ⊕ . . .⊕G−1(H3 ⊕G−1(H2 ⊕G−1(H1)) . . .)

We call it the Feistel-Patarin signature scheme, though it has little to
do (now) with the original Feistel scheme.

σ ← 0
for i = 1 to K do

{
σ ← σ ⊕Hi(M)
σ ← G−1(σ)

}
return σ

Fig. 2. Basic Feistel-Patarin scheme with K inverses

9.4 Extending to m 6= n

We need to generalize the above construction to trapdoor functions with
input and output spaces of different sizes G : GF (q)n → GF (q)m, and
m 6= n. In this paper we limit to m ≤ n, see [14] for the case m > n. The
adaptation consists of cutting off and publishing the additional (m − n)
symbols obtained in every round, as they are a necessary ingredient in
the signature verification process. It makes signatures somewhat longer.
More precisely we do the following (Fig. 3):

σ ← 0
for i = 1 to K do

{
σ ← σ ⊕Hi(M)
U ∈ G−1(σ)
σ ← U1→m

Xi1|| . . . ||Xi(n−m) ← U(m+1)→n

}
return σ||X11|| . . . ||XK(n−m)

Fig. 3. Generalized Feistel-Patarin with m ≤ n

This is precisely used in Quartz with K = 4, as represented on Fig. 4.
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H = (H1, H2, H3, H4)

|H| = 4 ∗ 100 bits

σ = (S||X4||X3||X2||X1)

|σ| = 100 + 7 + 7 + 7 + 7 =

= 128 bits

G−1

G−1

G−1

G−1

S

X4
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X1

H1

H2

H3

H4

Y1

Y2

Y3
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X ′
1

X ′
2

X ′
3

G: trapdoor function

G : GF (2)100+7 → GF (2)100

Y = G(X)

G−1

X0→99X100→106

Fig. 4. Signature generation in Quartz



9.5 The Signature Length
The signature length in the generalized Feistel-Patarin construction is:

|σ| = ( m + K(n−m) ) · log2(q) bits
Given the Theorem 9.2.1, the signature length at a given security level

2SF is:
|σ| =

⌈
K + 1

K
· SF

⌉
+ K(n−m) log2(q) bits

We note that the length decreases for small K, and then it increases.
Therefore at some point the signature is the shortest. In Quartz the min-
imum is |σ| = 128 bits, achieved for both8K = 3 and K = 4.
10 Is it possible to Prove the Security of Quartz ?
We established lower bounds for the attacks on signature schemes such as
Quartz. The question is now whether these lower bounds are also upper
bounds, and more importantly, can the perfect correspondence between
the generic attack 4.0.6 and the Assumption 5.0.8, be extended to Quartz
? This problem is studied in this section, and in more details in Appendix
B. Though several open problems remain, we will prove several interesting
results about the security of Quartz, Flash and Sflash.

We restrict to no-message attacks. The goal is to prove that an adver-
sary cannot compute a valid pair (message, signature) given the public
key. We assume the random oracle model with Q being the number of
queries. It is a very powerful tool for security proofs. It allows an immedi-
ate reduction for a signature scheme of the form G−1(h): if the adversary
computes a valid pair (message, signature) for some h taken out of the Q
oracle answers, then we can transform this adversary into a machine that
computes G−1(h) for one out of Q given values. This remains true not
only for Q random values, but also for with probability very close to 1 to
any set of chosen Q values. Indeed our reduction must behave exactly in
the same way as with truly random values, provided that this set cannot
be distinguished from random (which is in most cases easily achieved).

Thus we get machine that given some Q random (or chosen, but ran-
domly looking values), outputs G−1(h) for one of them. By injecting a
chosen value into a list of length Q, we get a a machine able to invert
G with probability at least 1/Q. However from the Assumption 5.0.8 we
know that this success probability cannot be bigger than T/qm, and thus
1/Q ≤ T/qm. Reading the oracle takes time and thus we have Q ≤ T .
Combining these two equations gives: T ≥ Q ≥ qm/T and thus T ≥ qm/2.
A signature cannot be forged in less than qm/2 for no-message attacks.
8 The reasons for which the K = 4 has been chosen, and not K = 3, is that the authors

wanted some internal value, namely h = m + r to be a prime, with m =
⌈

K+1
K
· 80

⌉
and r = 3, see [34, 33].



We note that this argument could also be applied to Sflash-v2 [6–9]. If
it satisfies our (quite strong) Assumption 5.0.8, then a signature cannot be
forged in less than 291, again only for no-message attacks. Unfortunately
recent attacks show that these schemes do not satisfy the assumption, see
Appendix B.3 and [8].

It also applies for the first G−1 in Quartz: its entry is given entirely
by the oracle, see Fig. 4. A Quartz signature cannot be forged in less than
250, quite disappointing compared to the claimed security level of 280.

Now let us assume that in a signature scheme, several inverses G−1,
say K inverses, are computed for several Hi, such that all the Hi are
independent parts of an output of one single application of a hash func-
tion. Then an adversary that can do an existential forgery, is able, with
probability 1/Q, to solve the inversion problem simultaneously for K
independent instances Hi. Our Assumption 5.0.8 says that the proba-
bility of finding an inverse is at most T/qm. It is therefore legitimate
to think that the probability to compute K inverses in parallel will 9

be at most (T/qm)K . The adversary does with probability 1/Q some-
thing that can only be done with probability (T/qm)K . Thus, we get
1/T ≥ 1/Q ≥ (T/qm)K . This gives T ≥ q

K
K+1

m. We obtain a lower bound
that is the exact converse of our generic attack 4.0.6 !

From this one might think that it is possible to prove the security of
Quartz and obtain an upper and a lower bound that coincide, thus achiev-
ing the exact security level of 280 for no-message attacks. Unfortunately
our argument does not apply to Quartz, the entries of the three other
G−1 functions are not given by the random oracle, see Fig. 4. We are here
at the heart of the problem of short signatures. Is it possible to have a
signature scheme for which a lower bound on an attack can be proven
that is more than qsignature size/2 ? The answer is yes and in Section B.4
we show a very surprising way to compute signatures, in which the signer
does compute G−1 for two independent values H1 and H2, but in which
the signature length is only the size of one G−1(Hi).

9 It is not a consequence of our Assumption 5.0.8 and requires an additional assump-
tion (cf. Assumption B.2.1 in Appendix B). It does not contradict any known attacks
for Quartz. We need to assume that K is small. We may deduce this result, assuming
that the only way to compute K inverses is to use the best algorithm to compute
one inverse K times. For example the owner of the private key can compute 1 in-
verse with probability 1, and K inverses with probability at most 1K = 1, even here
there is no contradiction. For the algorithms that does not contain the private key,
we expect it to be true, because it seems that the only thing they can do to find
solutions is to guess them, and our assumption is obviously true for any algorithm
that is just guessing.



11 Conclusion

Quartz is based on a trapdoor function G that belongs to a family called
HFEv-. It has two independent security parameters and if d is sufficiently
large, there is no better method known to compute inverses of G, than
simple guessing. We formalized this, and we studied what kind of security
can be achieved by a general class of (short) signature schemes, under
this assumption and in the random oracle model. On the one side we
studied generic attacks on such signature schemes and gave exact lower
security bounds. On the other side, we studied the security reductions that
could give security upper bounds under some well chosen assumptions.
Unfortunately for Quartz, our lower and upper bounds do not coincide.
We also proposed a new method for computing short signatures for which
the two bounds do coincide, however it is less general than the scheme of
Quartz.

In practice it seems that Quartz, though lacking a tight security re-
duction, is still a correct way to achieve short signatures. The best attack
known for Quartz is our generic attack using O(280) computations with
O(280) of memory. In practice memory is very expensive and the fastest
”memoryless” attack known requires as much as 2100 computations.

The methodology used in this paper is meant to allow formal security
treatment of short signature schemes such as Quartz. It does not apply
well for Flash and Sflash: these schemes do not satisfy our assumptions,
and they are not meant to provide very short signatures.
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A About Security Proofs for Short Signature Schemes

A.1 What is a secure signature scheme

According to the most common requirements, initially proposed by Gold-
wasser, Micali and Rivest, a secure signature scheme should be existen-
tially unforgeable against chosen-message attacks, see [23, 35, 3]. There
are two interpretations of non-forgeable:

Unforgeability: The adversary should be able to compute a valid
pair (message, signature) for a new message that has not been signed by
the signature oracle (that is simulating the legitimate signer). It does not
matter if he is able to produce another signature for the same message
and it is not required at all that two message should not have the same
signature.

Strong Unforgeability: The adversary should be able to compute a
valid pair (message, signature), even for an old message that has already
been legitimately signed by the signature oracle. In this case, one needs to
prevent also computing a different signature for the same message (a.k.a.
duplicate signatures, see [3]). However, it is still not a problem at all,
should two messages have the same signature.

Discussion. There is some controversy whether unforgeability under
Chosen-Message Attacks (CMA), the first version, would imply signa-
ture non-repudiation, but it certainly does imply message non-repudiation
which is sufficient in practice. Most people seems to believe that unforge-
ability is enough, for digital signatures and that strong unforgeability and
strong is too strong. We may define strong non-repudiation as strong un-
forgeability under CMA. Strong unforgeability may be required for some
stronger primitives, for example in ”signcryption” [1]. Indeed if the mes-
sage have already been signed by the legitimate signer, all signatures are
perfectly valid, there is no doubt about the fact that the the holder of the
private key did indeed sign this message M, he cannot deny any respon-
sibility.
In practice, some problems may however arise if for example, in a simpli-
fied payment system, where the user is only required to sign the time and
amount of the transaction, the vendor may claim that the user ordered
several identical items on the same day.



A.2 Quartz and Strong Unforgeability
In this paper, all the security proofs are done under No-Message Attacks
(NMA) in which the adversary is only given the public key. In this case
there is no difference between unforgeability and strong unforgeability.

In this paper we prove that Quartz is unforgeable against CMA with
a concrete bound of qm/2 which is insufficient in practice. It seems also
that Quartz is unforgeable against CMA with exactly the same concrete
lower bound qm· K

K+1 but this not certain and has not been proven so far.
In addition it seems that Quartz could be unforgeable against CMA

with the (not satisfactory) concrete security bound qm/2. However Quartz
is NOT unforgeable against CMA in practice, and this bound can be met,
as shown in [26]. Given a valid pair (message,signature), it is possible to
compute a second signature, within 2k/2 computations, by a very simple
method, that consists of finding a second pre-image for the last inverse
G−1 in the signature computation process, see [26].

Below we prove our result on unforgeability of Quartz under NMA,
and also propose a new, different way of doing short signatures for which
a much better lower bound can be proven.

B Black-box Reductions For No-Message Attacks
In this section we study the security of some signature schemes based, as in
Quartz on computation of one or several inverses y 7→ G−1(y), provided
that the trapdoor function G is difficult to inverse, as specified by the
Strong One-wayness Assumption 5.0.8. We limit ourselves to no-message
attacks, i.e. for the usual case with the adversary trying to forge a valid
pair (message, signature) given (only) the public key (and no signature
oracles). We need to build a black-box reduction, from the forger, to a
machine that solves some difficult problem. It is done for a scheme that
is similar to Quartz, but not identical: the signature is longer and it does
not involve chaining of the G−1 as in Quartz. Later we will see if the
result can be extended to Quartz.

B.1 The Black-Box Reduction
First of all, it is easy to prove the security of the usual signature scheme
σ = G−1(H(M)) in the random oracle model. The point is that the value
H(M) on which the trapdoor function G is inverted, is produced by the
hash function. It does not only mean that it is completely random, and
therefore G is inverted on random y, but also that the value may in fact
be chosen by the random oracle, and as long its probability distribution
is indistinguishable from random source, the adversary cannot say the dif-
ference. Therefore the adversary may as well be used to compute inverses



of some chosen values: we have a black-box reduction that is achieved by
replacing the random oracle by a given source (if it is random-looking).
Similar black-box reduction works for signature schemes that compute
several inverses and we have the following:
Theorem B.1.1 (Security reduction for signatures scheme that
compute inverses of hashed values). Let G be a trapdoor one-way
function. Assume that a signature scheme satisfies:
– it computes G−1(Hi) for some K values Hi ∈ GF (q)m,
– all the Hi are independent parts of a (single) output of a hash function:

H(M) = (H1,H2, . . . ,HK) .
– all the K values G−1(H1), . . . , G−1(HK) can be completely recovered

in the signature verification,
If an attacker having (only) the access to the public key is able to

compute a valid pair (message, signature) with probability ε, in random
oracle model, and with Q queries to the hashing oracle.
Then it can be then transformed into a machine than given a random K-
tuple (y1, y2, . . . , yK) will with probability ε/Q output all the K inverses:(
G−1(y1), G−1(y2), . . . , G−1(yK)

)
.

Proof. In the adversary’s interaction with the hash oracle, the oracle
gives a random and independent K-tuple (H(i)

1 ,H
(i)
2 , . . . ,H

(i)
K ) each time

it is called for i = 1 . . . Q. We replace a randomly chosen K-tuple by
(y1, y2, . . . , yK). Since both lists are random and independent, even a
computationally unbounded adversary cannot distinguish between two
situations. Consequently the result will be the same: he will, with prob-
ability ε output, a valid pair (message, signature), and with probability
ε/Q it will contain the inverse of the chosen K-tuple.

B.2 Security Arguments

It turns out that our Strong One-wayness Assumption 5.0.8 is not enough.
Assumption B.2.1 (Super-Strong One-wayness of HFEv-).
Let K be a small integer. Let G a random public key G← HFEv−(q, n,m)
with m ≈ n, n ≥ m and m ≤ 100. For any Adversary A running in T CPU
clocks, given random K-tuple (y1, . . . , yK) ← GF (qm)k, the probability
that A computes all the inverses xi = G−1(yi) with probability ε′ is
upper-bounded by:

ε′ ≤ (T/qm)K .

It is not a consequence of the Assumption 5.0.8. There may be algorithms
that compute all K inverses xi = G−1(yi) faster than applying K times,
the best algorithm to compute one inverse. Cf. also the footnote 10, p.
26.



Theorem B.2.2. Let K be a small integer. Let G be a trapdoor one-way
function G : GF (q)n → GF (q)m with m ≤ n. Assume that G satisfies
the Assumption B.2.1. Assume that in a signature scheme, given a valid
(pair message, signature), K inverses G−1(Hi) can be computed, with
H(M) = (H1,H2, . . . ,HK) . We assume that H is a random oracle. Let
A be an Adversary, having (only) the access to the public key, running
in time T , and able to compute a valid pair (message, signature) with a
success probability ε. Then:

T ≥ ε
1

K+1 · qm· K
K+1 .

Proof. From Theorem B.1.1, we obtain a machine that inverts G in par-
allel for K random values y1, . . . , yK and with probability ε′ = ε/Q. Fol-
lowing our Assumption, the attacker is able to do with probability ε/Q
something that can only be done with a probability at most (T/qm)K .
Thus:

ε/Q ≤ (T/qm)K .

Finally, since the oracle queries take time, we have Q ≤ T and obtain:

ε/T ≤ ε/Q ≤ (T/qm)K , from this we get TK+1 ≥ ε(qm)K , and finally

T ≥ ε
1

K+1 · qm· K
K+1 .

ut

Corollary B.2.3. Let G be a trapdoor one-way function G : GF (q)n →
GF (q)m with m ≤ n. Assume that the only method known for to obtain
G−1(yi) for some values yi is to guess them and apply G. Assume that
in a signature scheme, given a valid pair (message, signature), K inverses
G−1(Hi) are be computed, with H(M) = (H1,H2, . . . ,HK) . Let A be an
Adversary having (only) the access to the public key and running in time
T that is able to compute a valid pair (message, signature). Then, under
the random oracle assumption,

T ≥ qm· K
K+1 .

We obtained an exact, tight converse of the Theorem 9.2.1. It gives
the exact security level of the described signature schemes (but not for
Quartz).



B.3 Applications, K = 1, consequences on Flash and Sflash
All well known signature schemes constructed as σ = G−1(H) satisfy the
assumption of the signature scheme we used in Theorems B.1.1 and B.2.2.
However that trapdoor functions they use, for example RSA encryption,
admit attacks asymptotically much faster than the exhaustive search, and
therefore do not satisfy our very strong hardness Assumption 5.0.8 used
in Theorems B.2.2.

Currently the only convincing trapdoor functions that seem to satisfy
our Strong One-wayness Assumption 5.0.8 are multivariate cryptographic
trapdoor functions of HFE family [29, 5] and only for small10 q, see Section
6.

For the signature schemes Flash and Sflash 11, submitted to European
call for cryptographic primitives [6–9], things are less simple.

These schemes use a trapdoor function G : GF (q)37 → GF (q)26 with
respectively q = 256 for Flash and q = 128 for Sflash-v2. Thus by the
Theorem B.2.2 and the converse given by the Theorem 9.2.1 we have:
Corollary B.3.1 (Exact security of Flash and Sflash). If the trap-
door function used in Flash/Sflash satisfied the Strong One-wayness As-
sumption 5.0.8, the security of these respective signature schemes [6–9]
against no-message attacks would be exactly:

qm/2 = 2104 for Flash and 291 for Sflash-v2.

Unfortunately, recent results [8, 9] show that neither Flash, nor Sflash-
v1, nor Sflash-v2 do satisfy the assumption. It is not true for the most
recent Sflash-v3 either, see [8]. This however does not mean that Sflash-
v3 is insecure, but the theory of this paper is more adapted to Quartz
(designed to make very short signatures) than to Sflash (designed to make
very fast signatures but as short as in Quartz).

B.4 Applications with K ≥ 2, Differential Signature scheme
It is trivial to construct a signature scheme for which the Theorem B.2.2
applies, for any small K, and based on any trapdoor function. For this
we need just to compute in parallel K signatures σi = G−1(Hi) and the
signature will be given by a K-tuple

(
G−1(H1(M)), . . . , G−1(HK(M))

)
.

Unfortunately such a signature will be K times as long as when K = 1.
10 Small means q ≤ 16 or less. It is however not clear if q = 2 is the best choice: there

is a tradeoff between the hardness of the basic one-way problem MQ, see Conjecture
4.0.7 and section 6, and the structural attacks from [5, 16, 24] mentioned in Section
8.2

11 We refer here to the updated version of Sflash-v2 that is very similar to Flash, see
[7–9].



Differential Signatures It is highly non-trivial to construct a sig-
nature scheme for which the Theorem B.2.2 applies, but with shorter
signatures. For K = 2, it is possible to have a complete signature com-
pression. For example we may compute the signature as follows:

σ = G−1(H2)−G−1(H1)

This surprising signature scheme has a non-trivial verification proce-
dure. The signature compression is based on the fact that the two values
x = G−1(H1) and x + σ = G−1(H2) can be completely recovered given
their difference σ, as the equation G(x + σ)−G(x) = H2 −H1 becomes
linear in the xi after σ, H1 and H2 are known (the degree 2 terms will just
cancel out). This scheme is called the ”Differential Signature” scheme. It is
not completely generic: it works only when G is a Multivariate Quadratic
(MQ) function and only for K = 2.
Example: For example we may use the differential signature scheme with
the following set of parameters for HFEv-:

q = 2
h = 127
r = 7
v = 1
d = 257
n = 128
m = 120

For these parameter values12, we have:
Corollary B.4.1. Let ε = 1, m = 120, n ≥ m, K = 2. Then the exact
security of the differential signature scheme for no-message attacks is

Security = 2
2
3
m = 280.

This follows immediately from Theorems B.2.2 and 9.2.1. The differ-
ential signature scheme allows, unlike Quartz, to have digital signatures
of 128 bits with proven exact security of 280 (for no-message attacks).

B.5 Application to Quartz and Similar Schemes

Unfortunately, in the construction used in Quartz as represented on Fig.
4 and more generally for generalized Feistel-Patarin with K > 1, only one
of the values for which we have to compute the inverse G−1 is given by
the hashing oracle. Our reduction, the Theorem B.1.1, cannot be applied
for K = 4. We may however apply the Theorem B.1.1 and thus B.2.2
12 We note that h = 127 is a prime as in Quartz (though yet no attacks are known

when it isn’t).



with K = 1, only considering the first inverse, that is indeed given by
the random oracle. This shows that the security of this scheme is at least
qm/2, which is not very satisfactory, knowing that the the Theorem 9.2.1
gives an attack in qm K

K+1 . Concretely, our lower bound for the security of
Quartz under the Assumption 5.0.8 is 250, and the upper bound is 280.
They do unfortunately not coincide.

C Chosen-Message Security

The chosen-message security of schemes such as Quartz remains an open
problem. In the extended version of this paper, available from the au-
thor, it is shown that, for some special trapdoor function, and without
an additional assumption, they are not in general secure against such
attacks. However, it is conjectured that if the signature is computed in
deterministic way, with random coins being derived from the message by
a pseudo-random generator using an additional secret key, such schemes
should be secure also against this (the most general) class of attacks. Such
a solution is used in Quartz.

C.1 Chosen-Message Security

In this section we will again consider the security of the generalized
Feistel-Patarin signature meta-scheme used in Quartz, but against the
most general, adaptively chosen-message attacks. We are in fact studying
a very large class of known signature schemes including many versions of
RSA: the ”usual” way of computing digital signatures with a trapdoor
function is just a special case of Generalized Feistel-Patarin signature
scheme with K = 1. In the section B we showed that (modulo appro-
priate assumptions) such schemes can be (to some extend) proven secure
against passive attacks with an adversary that only has access to the pub-
lic key. We contend that in general they are not necessarily secure against
known, or chosen message attacks.

The problem will arise for trapdoor functions, such as Rabin or mul-
tivariate schemes, that are not-bijective. Let Y be an uniform random
variable in GF (q)m. Let G : GF (qn)→ GF (qm) with n ≥ m. On average
we have about qn−m solutions, but the actual number varies. The problem
depends very much of how in details, the meta-scheme deals with this.
There are in fact two problems with this:

1. For example, if the root is chosen in a deterministic way, then let
E(y) be some (internal) values that decide which root is chosen. If E



is (partially or totally) known to the attacker, he may choose y, obtain
x = G−1(y) from the signature oracle, and compute E(y). Thus he
will obtain triples x,E(y), y that leak information about some internal
values in the hidden structure of G. Suche triples might eventually
help to recover this hidden structure and therefore break the trapdoor
function G.

2. Making H non-deterministic does not help either, for example let G
be a Rabin trapdoor function. If the adversary obtains two different
signatures for the same message, with good probability he will be able
to factor the modulus.

Clearly, we showed that without further precisions, the generalized
Feistel-Patarin scheme is not secure in general, against chosen-message
attacks. For Rabin trapdoor function, the problem arises when it is ran-
domized and it seems that making the inverse deterministic solves the
problem. However following point 1, for multivariate schemes, the deter-
ministic solution is bad too.

C.2 Avoiding Chosen-Message Attacks

The suggested solution to the dilemma, already used in Quartz, is deter-
ministic, in order to have always the same signature for a given message.
It chooses one of the existing13 solutions in a deterministic way, according
to some pseudo-random function H. However, the difference is that H is
(in a sense) secret. More precisely Quartz uses a cryptographic pseudo-
random function with two parameters H(y, ∆), with a secret quantity
∆ of 80 bits.

13 In Quartz we have on average qn−m = 27 = 128 solutions.


