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Abstract. In this paper, we propose an authenticated certificateless public
key encryption scheme. The security of the protocol is based on the hardness
of two problems; the computational Diffie-Hellman problem(CDHP) and the
bilinear Diffie-Hellman problem(BDHP). We also give a formal security model
for both confidentiality and authentication, and then show that our scheme is
probably secure in the security model.
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1. Introduction

In 1984, Shamir [15] proposed the idea of an ID based cryptosystem, but

a practical ID based scheme has not been found until recently by Boneh and

Franklin[2, 3]. Boneh-Franklin presented the first fully-functional and provably

secure identity-based encryption(IBE) scheme using bilinear maps over supersin-

gular elliptic curves in 2001. The idea of ID based cryptosystems is to get rid

of public key certificates by allowing the user’s public key to be the binary se-

quence corresponding to an information identifying him in a non-ambiguous way

(E-mail address, IP address combined to a user name, and social security num-

ber can be used). For such a system to work there exists a trusted private key

generator(PKG) that generates the private keys of the entities using their public

keys and a master secret key related to the global parameters for the system. The

most well-known problems of the PKI(public key infrastructure) technology are

the issues associated with certificate management, including revocation, storage,

distribution and the computational cost of certificate verification. Considering

these problems, ID based public key cryptosystem(ID-PKC) have an advantage in

the aspect of the key management as compared with the traditional PKC(public

key cryptosystem). On the other hand, ID-PKC has a significant shortcoming with
1
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respect to the PKG. The dependence on the PKG who can be in a privileged posi-

tion by generating all user’s private keys inevitably causes the key escrow problem

to ID-PKC.

The traditional PKC currently has a well-established technology, PKI, but the

issues of key management (certificates) are somewhat complex. On the other hand,

ID-PKC may get rid of the need to manage certificates, but the issues of key escrow

bring about several problems, for example, an invasion of a privacy, the dishonest

PKG’s masquerading as a regular user and so on. Considering all these problems,

we present an authenticated certificateless public key encryption scheme that do

not require certificates and do not have the key escrow feature. Our scheme does

not suffer from the key escrow property that seems to be inherent in the ID based

PKC. To circumvent the escrow, the users in our model use the Diffie-Hellman key

share from their ephemeral contributions that cannot be known by the PKG. In

our proposed scheme, the long-term keys are used for non-repudiation purpose and

hence authentication. Consequently, our scheme keeps confidentiality even from

the PKG and gives an authentication property. Furthermore, another advantage of

our scheme would be damage control, in other words, disclosure of the master secret

from PKG would not compromise the confidentiality of the encrypted plaintext.

The security of our system is based on both the computational Diffie-Hellman

(CDH) assumption and the bilinear Diffie-Hellman (BDH) assumption. Based on

those assumptions, we first show that our scheme is EUF-CMA secure for integrity

and then show that the scheme is IND-CCA secure for confidentiality.

The rest of our paper is organized as follows. In the second section, we recall

underlying definitions before describing security notions of our scheme. In Section

3, we present our encryption scheme which is not only provably secure against

chosen ciphertext attack but also is existential unforgeable under adaptive chosen

message attack in the random oracle model, assuming that the CDH problem and

the BDH problem are computationally hard. Furthermore, we analyze the security

of the proposed scheme in Section 4. In Section 5, we compare the efficiency and

the security of our proposed scheme with those of other known schemes. Finally,

in Section 6, we give some conclusions.

2. Preliminaries

2.1. Backgrounds
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We first review the admissible bilinear map, which is the mathematical primi-

tive that plays on central role in our public key encryption scheme.

Bilinear map. Let G1 denote an additive group of prime order q and G2 a

multiplicative group of the same order. Let P be a generator of G1. Assume that

the discrete logarithm problem (DLP) is hard in both G1 and G2.

A mapping ê : G1 ×G1 −→ G2 satisfying the following properties is called an

admissible bilinear map.

1. Bilinear ; ê(aP, bQ) = ê(P,Q)ab for all P, Q ∈ G1 and a, b ∈ Zq
∗

2. Non-degenerate ; ê does not send all pairs of points in G1×G1 to the identity

in G2. (Hence, if P is a generator of G1 then ê(P, P ) is a generator of G2)

3. Computable ; There exists an efficient algorithm to compute ê(P, Q) for all

P, Q ∈ G1.

Typically the map ê will be derived from either the Weil or Tate pairings on

an elliptic curve over a finite field. The security of our scheme is based on the

difficulty of computational Diffie-Hellman Problem(CDHP) and Bilinear Diffie-

Hellman (BDHP). Now we give formal descriptions of such hard problems.

Bilinear Diffie-Hellman Problem. Let G1,G2 be two groups of prime order q.

Let ê : G1 × G1 −→ G2 be an admissible bilinear map and let P be a generator

of G1. The BDH problem in < G1,G2, ê > is as follows : Given < P, aP, bP, cP >

for some a, b, c ∈ Zq
∗. Compute W = ê(P, P )abc ∈ G2.

Algorithm A has advantage ε in solving BDHP in < G1,G2, ê > if

Pr[ A (P, aP, bP, cP) = ê(P, P )abc ] ≥ ε

where the probability is over the random choice of a, b, c in Zq
∗, and the random

bits of A.

Bilinear Diffie-Hellman Parameter Generator. As in [2, 3], a randomized

algorithm IG is a BDH parameter generator if IG takes a security parameter

k > 0, runs in time polynomial in k, and outputs the description of an admissible

pairing ê : G1 ×G1 −→ G2.

Bilinear Diffie-Hellman Assumption. We say a BDH parameter generator IG,

satisfies the BDH assumption if the following is negligible in k for all probabilistic

polynomial time algorithm A :

Pr [ (G1,G2, ê) ← IG (1k) ; P ← G1 ; a, b, c ← Zq
∗ : A (G1,G2, ê, P, aP, bP,

cP)= ê(P, P )abc]
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For the remainder of the paper we make use of some fixed BDH parameter

generator IG that satisfies the BDH assumption, and use the symbols G1,G2, ê, q

to represent the constituents of its output.

Computational Diffie-Hellman Problem. Given P, aP, bP for some a, b ∈ Zq
∗,

compute abP .

Computational Diffie-Hellman Assumption. There exists no algorithm running

in expected polynomial time which can solve the CDH problem with non-negligible

probability.

2.2. Security Notions

In the next section, we prove confidentiality and unforgeability for our scheme

in the random oracle model based on the BDH assumption, CDH assumption and

the Fujisaki-Okamoto transformation [8]. We first give the formal definitions of

confidentiality and unforgeability for our purpose.

2.2.1 Confidentiality

We say that a scheme is IND-CCA secure if no polynomially bounded adversary

has a non-negligible advantage against the challenger in the following game.

Setup The challenger takes a security parameter k and runs the Setup algorithm

to obtain parameters and a master key s. It gives the adversary parameters with

the value s such that Ppub = sP .

Although our scheme is no longer ID based, a third party (PKG) issuing long-

term private keys of communicating parties exists in the system. To avoid the

misbehavior of the PKG, our security model is strengthened more than the security

models of other encryption schemes to handle adversaries. In short, we assume

that the adversary can access to the master-key.

Phase 1 The adversary issues queries q1, q2, · · · , qm where qi is one of ;

Extraction query of the form IDI On receiving such a query, the challenger

runs Extract(IDI) and responds with SI = xIdI , where dI is a long-term private

key generated by the PKG.

Encryption query of the form (IDI , IDJ ,M) On receiving such a query,

the challenger runs Extract(IDI) = SI followed by Encrypt(SI , IDJ ,M). The

response is the resulting ciphertext.
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Decryption query of the form (IDI , IDJ , C) On receiving such a query

the challenger runs Extract(IDJ) followed by Decrypt(IDI , SJ , C). The response

is the plaintext M .

These queries may be asked adaptively, that is, each query qi may depend on

the replies q1, q2, · · · , qi−1.

Challenge Once the adversary decides that Phase 1 is over it outputs two equal

length plaintexts M0,M1 ∈ M and two identities, IDA and IDB, on which it

wishes to be challenged. The only constraint is that ID did not appear in any

extraction query in Phase 1. The challenger pick a random bit b ∈ {0, 1} and

runs Extract(IDA) followed by Encrypt(SA, IDB, Mb). It returns the resulting

ciphertext C∗ to the adversary.

Phase 2 During this phase, the adversary may make more queries qm+1, · · · , qn

of the types described in Phase 1 with the restriction below.

• The Extraction query IDA and IDB are not permitted.

• The Decryption query (IDA, IDB, C∗) is not permitted

These queries may be asked adaptively as in Phase 2.

Guess Finally, A outputs a bit b
′ ∈ {0, 1} and wins the game if b = b

′
.

We refer to such an adversary A as an IND-CCA attacker. We define the

advantage of A to be Adv(A) = |Pr[b = b
′
] - 1

2 |. The probability is over the

random bits used by the challenger and the adversary.

2.2.2 Unforgeability

We say that a scheme is secure against ciphertext forgery if no polynomially-

bounded adversary has a non-negligible advantage in the following game.

Setup The challenger takes a security parameter k and runs the Setup algorithm

to obtain parameters and a master key s. It gives the adversary parameters with

the value s such that Ppub = sP .

Attack During this phase the adversary makes the queries described below to

the challenger.

Extraction query of the form IDI On receiving such a query the challenger

runs Extract(IDI) and responds with SI = xIdI , where dI is a long-term private

key generated by the PKG.
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Encryption query of the form (IDI , IDJ ,M) On receiving such a query the

challenger runs Extract(IDI) followed by Encrypt(SI , IDJ ,M). The response is

the resulting ciphertext.

Decryption query of the form (IDI , IDJ , C) On receiving such a query the

challenger runs Extract(IDJ) followed by Decrypt(IDI , SJ , C). The response is

the resulting plaintext M. (Sometimes the adversary is notified that the issued

ciphertext is invalid.)

Forge The adversary attempts to output any valid ciphertext C from a sender

A to a receiver B, provided it has not queried the private keys of A and B in the

previous step. The adversary wins if the ciphertext is valid.

We call such an adversary an EUF-CMA attacker.

3. An Authenticated certificateless encryption scheme

Our scheme can be naturally divided four distinct algorithms : Setup, Key

Extraction, Encrypt, Decrypt

Setup : Given a security parameter k, the algorithm works as follows:

(1) Run IG on input k to generate a prime q, two groups G1,G2 of order q, and

an admissible bilinear map ê : G1 × G1 −→ G2. Choose an arbitrary generator

P ∈ G1.

(2) Pick a random s ∈ Zq
∗ and set Ppub = sP .

(3) Choose cryptographic hash functions H1 : {0, 1}∗ −→ G∗1, H2 : G∗1 −→
{0, 1}n, H3 : {0, 1}n × G2 −→ {0, 1}n, H4 : {0, 1}n × {0, 1}n −→ Zq

∗ and

H5 : {0, 1}n −→ {0, 1}n.

Then, output the system parameters < G1,G2, q, ê, P, Ppub,H1,H2,H3, H4,H5 >

and the master key s. The message space is M = {0, 1}n. The ciphertext space is

C = G1 × {0, 1}n × {0, 1}n.

Key Extraction : For a given string ID ∈ {0, 1}∗, the algorithm does ;

(1) Compute QID = H1(ID) ∈ G∗1.
(2) Pick a random xID ∈ Zq

∗, set public keys XID = xIDP and YID = xIDQID.

(3) Set the private keys dID to be dID = sQID and then set SID = xIDdID =

xIDsQID, where s is the master key.

Encrypt : To encrypt M ∈M, do the following ;

(1) Choose a random σ ∈ {0, 1}n.

(2) Set r = H4(σ,M).
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(3) Compute xAXB = T .

(4) Set the ciphertext to be C =< rQA, σ⊕H3(H2(T ), ê(dA, YB)r), M⊕H5(σ) >,

where YB = xBQB is the public key of the receiver.

Decrypt : Let C =< U, V,W >∈ C. To decrypt this ciphertext using the private

key SB = xBdB, perform the followings.

(1) Compute xBXA = T

(2) Compute V ⊕H3(H2(T ), ê(U, SB)) = σ, where SB = xBdB.

(3) Compute W ⊕H5(σ) = M

(4) Set r = H4(σ,M) and test if U = rQA. If not, reject the ciphertext.

(5) Output M as the decryption of C.

The consistency is easy to verify by the bilinearity. We have ê(dA, YB)r =

ê(sQA, xBQB)r = ê(rQA, xBQB)s = ê(rQA, xBsQB) = ê(U, xBdB) = ê(U, SB).

The receiver can be convinced of the origin of the encrypted message by checking

if the condition rQA = U holds. Even if the received message would be encrypted

under the wrong public key, the receiver could detect the error by testing the final

condition.

4. Security Analysis of our Scheme

4.1. Proof of Integrity

The following theorem shows that our scheme is secure against ciphertext forgery

without key escrow, assuming the BDH problem on G1 and G2 is hard and the

CDH problem on G1 is hard.

Theorem 1. Let the hash functions H1,H2,H3,H4 and H5 be random oracles.

Then our scheme is a ciphertext-unforgeable public key encryption assuming the

BDHP and the CDHP are hard in groups generated by IG. Concretely, suppose A
is a polynomially-bounded adversary that can forge a ciphertext with advantage

ε and makes at most qE extraction queries and at most qH1 , qH2 , qH3 respectively.

Then there exists a polynomially bounded algorithm B that solves the BDHP and

the CDHP with advantage ε/
(qH1

2

)2
qD.

Proof. Algorithm B has as input random and uniformly distributed instances

(P, aP, bP, cP ), (P, xP, yP ) of the BDHP and CDHP respectively. For finding the

value ê(P, P )abc and xyP with A’s assistance, B has control over the hash functions

H1, H2 and H3. To respond to these hash queries, B maintains a list LH1 that

stores information on H1-queries, a list LH2 that stores information on H2-queries
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and a list LH3 that stores information on H3-queries. All lists are initially empty.

For simplicity, we assume that all H1-queries are distinct (as replies can be cached)

and that any query involving an IDA is preceded by the H1-query for IDA. There

are several assumptions we may make out A’s behavior when interacting with the

decryption oracle.

• Before A gives its guess, A issues a decryption query on it.

• A does not issue decryption queries on ciphertexts it has received from the

encryption oracle or ciphertexts it can compute because it has previously asked

for the private key of the sender or receiver.

• Given the above assumptions, we may assume that after every decryption

query on a ciphertext, if the answer is a plaintext (i.e. the ciphertext it queried is

valid) then A stops and outputs this ciphertext.

B works by interacting with A as follows.

Setup : At the beginning of the game, B gives A the system parameters <

G1,G2, q, ê, P, Ppub,H1,H2,H3,H4,H5 > with the value s such that Ppub = sP .

H1-queries : B chooses two random numbers I, J between 1 and qH1 with I 6= J .

When A asks a polynomially bounded number of H1-queries on identities of his

choice. B responds as follows.

(i) At the Ith H1-queries, B answers bIQI , where QI is an arbitrary public

value. Precisely, if IDA does not already appear on the list and IDA is the Ith

distinct H1-query made by A, then B chooses bI ∈ Zq
∗, adds < IDI , bIQI , bI ,⊥>

to the list LH1 and answers H1(IDI) = bIQI .

(ii) At the Jth H1-query, B answers bJQJ , where QJ is an arbitrary public

value. Precisely, if IDA does not already appear on the list and IDA is the Jth

distinct H1-query made by A then B chooses bJ ∈ Zq
∗, adds < IDJ , bJQJ , bJ ,⊥>

to the list LH1 and answers H1(IDJ) = bJQJ .

(iii) For H1(IDe) where e 6= I, J , B chooses be, αe ∈ Zq
∗ and adds < IDe, beP, be, αe >

to the list LH1 and answers H1(IDe) = beP .

H2-queries : A H2-query on IDA, IDB is handled as follows ;

(i) If IDA and IDB are not the identities IDI and IDJ then B computes αAαBP

adds < IDA, IDB, αAαBP, h2 > to the list LH2 and answers h2.

(ii) In the case IDA and IDB are the identities IDI and IDJ , B chooses z ∈ Zq
∗,

adds < IDI , IDJ , zP, h2 >to the list LH2 and answers h2 = H2(zP ).
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H3-queries : A can issue a H3-query request for (h2, U, IDA, IDB) at any time.
B runs the H3-simulation algorithm to respond A’s query as follows.

(i) In the case of IDA = IDI , and IDB = IDJ , LH2 is examined for an entity
of the form < IDA, IDB, αP, h2 > for some α.
• If such entities are found, LH2 must contain < IDI , IDJ , zP, h2 >. Now B

chooses d∗ ∈ G1
∗ randomly, computes ê(U, d∗) = w and h3 = H3(h2, w), adds the

tuple < IDI , IDJ , U, (h2, w), h3 > to the list LH3 , and then answers h3.
• Otherwise, B chooses a random z

′ ∈ Zq
∗ and then adds < IDI , IDJ , z

′
P, h2

′
>

to the list LH2 . Similarly, B repeats the remaining process with the new tuple in
the LH2-list, until obtaining a tuple < IDI , IDJ , U, (h2

′
, w

′
), h3

′
>.

(ii) In case IDA 6= IDI , IDB 6= IDJ , B searches a tuple < IDA, IDB, αP, h2 >

for some α in the list LH2 .
• If such a tuple is found, B executes the same process in case (i). B computes

w
′′

= ê(U,αBdB). B could obtain αBdB = αBsbBP from the LH1-list because
IDB 6= IDJ . He puts the tuple < IDA, IDB, U, (h2, w

′′
), h3

′′
> in the list LH3 and

answers h3
′′
.

• Otherwise, B chooses a random z∗ ∈ Zq
∗, adds < IDA, IDB, z∗P, h2

∗ > to
the LH2-list and computes w∗ = ê(U,αB

∗dB). With (h2
∗, w∗), B simulates the H3-

oracle and then obtains h3
∗ = H3(h2

∗, w∗). It adds < IDA, IDB, U, (h2
∗, w∗), h3

∗ >

to the list LH3 and answers h3
∗.

Key extraction query : When A asks a key extraction query on IDB,
(i) If IDA = IDI or IDJ , then B fails and stops.
(ii) If IDA 6= IDI , IDJ , then the list LH1 must contain < IDA, bAP, bA, αA >.

The decryption key corresponding to IDA is αAsQA = αAsbAP = αAbAsP . It is
computed by B and returned to A.

Encryption query : At any time, A can perform Encrypt query for a plaintext
M and identities IDA and IDB.

(i) If IDA = IDI and IDB = IDJ , B chooses random values r ∈ Zq
∗, σ ∈

{0, 1}n, αB ∈ Zq
∗, computes U

′
= rQA = rbIQI , V

′
= σ ⊕H3(H2(zP ),

ê(U
′
, αBsbJQJ)), W

′
= M ⊕H5(σ) and then answers C

′
= < U

′
, V

′
, W

′
>.

(ii) If IDA 6= IDI , IDB 6= IDJ , B computes the private key corresponding IDA.
So the ciphertext is computed as described by the PKC algorithm.

Decryption query : Suppose A issues an decryption query for a ciphertext
C =< U, V,W > between identities IDA and IDB.
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(i) If IDA = IDI , IDB = IDJ , LH3-list is examined for an entry of the form

< IDI , IDJ , U, (h2, w), h3 >. If such an entry is present, p = (h2, w) is added to

the list Lp. A is notified that C is invalid, even if C is valid.

(ii) If IDA 6= IDI , IDB 6= IDJ , the list LH3 must contain the entry < IDA, IDB, U,

(h2, w
′′
), h3

′′
> and so αBsbBP is a decryption key for IDB. Then the ciphertext

is decrypted as outlined in the description of the IBE scheme. If it is valid, the

plaintext is given to A (and A wins).

Eventually, A terminates. Any output is ignored. Now if Lp is empty, then B
fails. Otherwise B outputs a random element of Lp.

Analysis. The probability that A never issues a key extraction query on one

of the guessed ID is at least 1/
(qH1

2

)
. (We call any identity that the asked ID is

equal to one of values IDI , IDJ a guessed identity.) If A has submitted a valid

ciphertext then with a probability greater than 1/
(qH1

2

)
, A has successfully forged

as ciphertext between the guessed identities (but is returned that the ciphertext

is invalid). If p = (H2(xyP ), ê(P, P )abc) is not in the Lp-list then A’s view is

independent of a correct forgery. Hence the probability that A queries H3(p) is at

least ε. If this happens then B cannot fail and then outputs the correct value with

probability at least 1
qD

. We then have Adv(B) ≥ ε/
(qH1

2

)2
qD. ¤

4.2 Proof of Security for Message Confidentiality

The security of our scheme relies on the intractability of the BDHP and the

CDHP. We can state a theorem similar to Theorem 1.

Theorem 2. Let the hash functions H1,H2,H3,H4 and H5 be random oracles.

We assume our scheme is ciphertext-unforgeable. Then our scheme is a chosen ci-

phertext secure public key encryption (IND-CCA) assuming the BDHP and the

CDHP are hard in groups generated by IG. Concretely, suppose A is a poly-

nomially bounded IND-CCA adversary with advantage ε and makes at most qE

extraction queries, at most qD queries and at most qH1 , qH2 , qH3 queries to the hash

functions H1,H2 and H3 respectively, then there exists a polynomially bounded

algorithm B that solves the BDHP and the CDHP with advantage ε/qH2

(qH1
2

)2.

Proof. The proof follows the similar steps to the proof of Theorem 1, but differs

in the decryption query: since we assume our scheme is ciphertext unforgeable,

the decryption oracle’s operation must be changed. H1,H2 and H3 hash queries
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are treated by B as in the proof of Theorem 1. To simulate Encryption and Key

extraction queries by A, B acts exactly as in the proof of Theorem 1. So we only

make mention of the decryption queries.

Phase 1 : Whenever A issues a decryption query, it is notified that the given

ciphertext is invalid. By the hypothesis of ciphertext-unforgeability, A cannot

distinguish between this simulation of a decryption oracle and a real one.

Challenge : After a polynomially bounded number of queries, A chooses a

pair of identities on which he wishes to be challenged. When A produces his two

plaintexts M0,M1 and IDA, IDB, B responds as follows.

(i) If queried identities are not guessed IDs then B fails and stops.

(ii) Otherwise, the ciphertext is computed as described by the IBE scheme for

any random values r ∈ Zq
∗, σ ∈ {0, 1}n,Mb ∈ {M0,M1}.

B answers the challenge C =< U, V, W >.

Phase 2 : Key extraction, Encryption, Decryption query ; B responds to these

queries in the same way it did in the phase 1 of Theorem 1 (except decryption

query). But the usual restrictions on A’s behavior apply in this phase.

• If A asks the private keys of IDI or IDJ before choosing his target identities,

B fails because he is unable to answer the question.

• If A actually chooses to be challenged on IDI and IDJ then he cannot ask

the key extraction query for IDI or IDJ ’s.

• A cannot make a decryption query on the challenge ciphertext for the com-

bination of the challenge identities and involving public keys that were used to

encrypt Mb.

Guess : Eventually, A outputs its guess b
′
for b and wins if b = b

′
. Now if Lp is

empty then B fails. Otherwise, B outputs a random element of Lp.

Analysis. We know that B fails if A asks the private key associated to the

guessed identity during the simulation. We also know that there are
(qH1

2

)
pairs

of identities, at least one of them will never be the subject of a key extraction

query from A. Then, with the probability at least 1/
(qH1

2

)
, A does not ask the key

extraction of the guessed identities IDI and IDJ . Further, the probability A’s

challenge identities are the guessed identity pair (IDI , IDJ) is 1/
(qH1

2

)
. If A has

never queries H3(p) for p = (H2(xyP ), ê(P, P )abc) then A’s view is independent

of M , so in this case A is unable to tell that it is in a simulation, and has no
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advantage. Hence, the probability that A queries H3(p) is at least ε. If A has
queries H3(p) then it may be able to distinguish the simulation from the real life,
but p will be cached on Lp. B wins if he guesses the correct element of Lp to output.
But, the size of this list is bounded by qH2 . Therefore, Adv(B) ≥ ε/

(qH1
2

)2
qH2 . ¤

5. Comparison

The following table gives a comparison between our scheme and other schemes
in terms of efficiency and security properties. Security is indicated as follows:
Authentication, without key Escrow, ciphertext Unforgeability, and message Conf

-identiality.
scheme # pairings # multi # expn Authen. Escrow Unforge Conf

BF [2, 3] 2 1 1 X X X O
L [13] 2 0 0 O X O O
AP [1] 4 1 1 O(half)∗ O O O

our scheme 2 3 1 O∗∗ O O O
∗ The scheme satisfies only unilateral authentication.

∗∗ Two real-time communicating parties mutually assure each other’s identity.

6. Conclusions

In this paper, we proposed an authenticated public key encryption scheme. We
provided proofs of confidentiality and existential unforgeability under the Bilinear
Diffie-Hellman and the Computational Diffie-Hellman assumptions.

The scheme presented in [1] is somewhat similar to our construction. However,
our scheme satisfies mutual authentication, while Al-Riyami and Paterson’s scheme
provided only unilateral authentication. Moreover, two communicating parties in
our model perform encryption/decryption by using a Diffie-Hellman shared secret
from their ephemeral contribution.
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