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Abstract

We give an informal analysis and critique of several typical “provable

security” results. In some cases there are intuitive but convincing argu-

ments for rejecting the conclusions suggested by the formal terminology

and “proofs,” whereas in other cases the formalism seems to be consistent

with common sense. We discuss the reasons why the search for mathemat-

ically convincing theoretical evidence to support the security of public-key

systems has been an important theme of researchers. But we argue that

the theorem-proof paradigm of theoretical mathematics is of limited rel-

evance here and often leads to papers that are confusing and misleading.

Because our paper is aimed at the general mathematical public, it is self-

contained and as jargon-free as possible.
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1 Introduction

Suppose that someone is using public-key cryptography to protect credit card
numbers during online purchases, maintain confidentiality of medical records, or
safeguard national security information. How can she be sure that the system
is secure? What type of evidence could convince her that a malicious adversary
could not somehow break into the system and learn her secret?
At first glance it seems that this question has a straightforward answer. At

the heart of any public-key cryptosystem is a “one-way function” — a function
y = f(x) that is easy to evaluate but for which it is computationally infeasible
to find the inverse x = f−1(y). For example, the system might be based on the
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function y = xe (mod n), where n is an integer whose prime factors are secret
and e is a constant exponent (this is the so-called “RSA function”); or it might
be based on the function y = gx, where g is a fixed generator of a group of prime
order in which the so-called “discrete logarithm” (the inverse of this function)
is believed to be hard to find. Then in order to have confidence in the security
of the system we have to be convinced that no one knows any algorithm that
could invert the one-way function in a reasonable amount of time.
Indeed, a large proportion of all of the mathematical research in public-key

cryptography is concerned with algorithms for inverting the most important
one-way functions. Hundreds of papers in mathematics as well as cryptography
journals have been devoted to index calculus methods for factoring integers and
for finding the discrete logarithm in the multiplicative group of a finite field,
to improved Pollard-ρ algorithms and Weil descent methods for finding discrete
logarithms on elliptic curves, and to searches for “weak parameters,” i.e., RSA
moduli n that are a little easier to factor than most, finite fields over which the
elliptic curve discrete logarithm problem is slightly easier to solve, and so on.
Many mathematicians working in cryptography regard the question of se-

curity of a type of public-key system as equivalent to non-invertibility of the
underlying one-way function. This is in fact the impression conveyed in some of
the mathematically oriented introductions to cryptography. The first books on
cryptography that the two of us wrote in our naive youth1 [35, 41] suffer from
this defect: the sections on security deal only with the problem of inverting the
one-way function.
The problem with this limited view of security is that it fails to anticipate

most of the attacks on a cryptographic system that are likely to occur. The
underlying one-way function is a basic ingredient in the system (in crypto jargon
one calls it a “primitive” or sometimes an “atomic primitive”), but it has to be
incorporated into a particular set of instructions (called a “protocol”) in order
to accomplish a cryptographic objective. Throughout the history of public-key
cryptography almost all of the effective attacks on the most popular systems
have succeeded not by inverting the one-way function, but rather by finding a
weakness in the protocol.
For example, suppose that Alice is receiving messages that have been en-

crypted using RSA. The plaintext messages have to adhere to a certain format,
and if a decrypted message is not in that form Alice’s computer transmits an
error message to the sender. This seems innocuous enough. However, Ble-
ichenbacher [10] showed that the error messages sometimes might compromise
security.
Bleichenbacher’s idea can be illustrated if we consider a simplified version

of the protocol that he attacked in [10]. Suppose that we are using RSA with
a 1024-bit modulus n to send a 128-bit secret key m (for use in symmetric
encryption). We decide to pad m by putting a random number r in front of
it, but since this doesn’t take up the full 1024 bits, we just fill in zero-bits to

1In the case of the first author, “youth” refers not to chronological age at the time, but
rather to the short period that he had been working in cryptography.
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the left of r and m. When Alice receives our ciphertext, she decrypts it, checks
that it has the right form with zero-bits at the left end — if not, she informs us
that there was an error and asks us to resend — and then deletes the zero-bits
and r to obtain m. In that case Bleichenbacher can break the system — in the
sense of finding the plaintext message — by sending a series of carefully chosen
ciphertexts (certain “perturbations” of the ciphertext he wants to decipher) and
keeping a record of which ones are rejected because their e-th root modulo n is
not of the proper form, that is, does not have the prescribed number of zero-bits.
In order to protect Alice and her friends from clever adversaries who are out

to steal their secrets, we clearly need much more elaborate criteria for security
than just non-invertibility of the underlying one-way function.

1.1 The first system with reductionist security — Rabin

encryption

Soon after the earliest papers [24, 47] on public-key cryptography appeared,
many people started to realize that breaking a system was not necessarily equiv-
alent to solving the underlying mathematical problem. For example, the RSA
function y = xe (mod n) was constructed so as to be easily invertible by someone
who knows the prime factors p and q of n = pq, but not by someone who doesn’t.
Number theorists thought that it was highly unlikely that someone would find
a quicker way than factoring n to find e-th roots modulo n. However, no one
could really say for sure. And much more recently, work by Boneh and Venkate-
san [16] suggests that inverting the RSA function might not be equivalent to
factoring.
In 1979 Rabin [45] produced an encryption function that could be proved to

be invertible only by someone who could factor n. His system is similar to RSA,
except that the exponent is 2 rather than an integer e prime to ϕ(n), where
ϕ denotes the Euler phi-function. For n a product of two primes the squaring
map is 4-to-1 rather than 1-to-1 on the residues modulo n, so Rabin finds all
four square roots of a ciphertext y (and in practice chooses the plaintext that
makes sense to the message recipient).2

The most important feature of Rabin’s encryption scheme was the
Reductionist security claim. Someone who can find messages m from the

ciphertext y must also be able to factor n.
Argument. Informally, the reason is that finding m means being able to find

all four square roots of y, because any one of them could be the true plaintext
m. Those square roots are ±m and ±εm, where ε is a residue mod n that is ≡ 1
(mod p) and ≡ −1 (mod q). That means that someone who can find messages
must know the value of ε, in which case n can be factored quickly using the
Euclidean algorithm, since g.c.d.(n, ε− 1) = p.
We also give a slightly more formal argument, called a “reduction,” which

will be the prototype for all the reductionist security arguments that come later.

2Williams [58] developed a variant of Rabin encryption in which a plaintext is modified in
a simple manner so that the plaintext can be uniquely recovered from its square, that is, from
the ciphertext.
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The idea of a reduction argument is that you can show that hardness of one
problem P1 implies hardness of another problem P2 — or, equivalently, that
“easiness” of P2 would imply easiness of P1 — by showing that anyone who had
an algorithm to solve P2 could use it to solve P1 with relatively little additional
effort; in that case one says that P1 reduces to P2. The most familiar use of
reductions is in the theory of NP-completeness [27], where P1 is a well-known
NP-complete problem such as 3SAT and P2 is another NP problem that you
want to prove is NP-complete. In cryptography, P1 is a mathematical problem
such as factoring that is assumed to be difficult, and P2 is a certain specified
type of successful attack on our cryptographic system.
Returning to Rabin encryption, we suppose that there exists an “adversary”

that takes n and y as input and produces one of the square roots of y modulo n.
We think of the adversary as a computer program, and we show how someone
(whom we’ll call Sam) who has that program could use it to quickly factor n.
That is, the adversary is a set of instructions, available for anyone to use, that
produce a successful attack on the encryption scheme. If we thought of it as
a person, we might wonder whether it could change its behavior or refuse to
cooperate with Sam the Simulator. If we think of it as a computer program, we
won’t be tempted to ask such silly questions.
What Sam does is the following. He chooses a random residue x, sets y = x2

(mod n), and inputs that value of y to the adversary. The adversary outputs
a square root m of y mod n. With probability 1/2 the root m is ±εx, and in
that case Sam can immediately compute ε = ±x/m and then factor n. If, on
the other hand, m = ±x, then the value of m won’t help him factor n, and
he tries again starting with a new value of x. There is only a 1/2k chance
that he will fail to factor n in k or fewer tries. We say that this argument
“reduces” factoring n to breaking Rabin encryption mod n (where “breaking”
means recovering plaintext messages). Rabin’s scheme was the first public-
key system to be proposed that was accompanied with a reductionist security
argument. Users of Rabin encryption could be certain that no one could recover
plaintexts unless they knew the factorization of n.

1.2 Chosen-ciphertext attacks

Soon after Rabin proposed his encryption scheme, Rivest (see [58]) pointed
out that, ironically, the very feature that gave it an extra measure of security
would also lead to total collapse if it were confronted with a different type
of adversary, called a “chosen-ciphertext” attacker. Namely, suppose that the
adversary could somehow fool Alice into decrypting a ciphertext of its own
choosing. The adversary could then follow the same procedure that Sam used
in the previous paragraph to factor n. An adversary who could trick Alice into
deciphering k chosen ciphertexts would have a 1− 2−k probability of factoring
n.
The original RSA enciphering scheme (which is often called “naive RSA”

or “basic RSA” or “the RSA primitive”) is also vulnerable to chosen-ciphertext
attack. Namely, suppose that the adversary wants to find a message m from the

4



ciphertext y = me (mod n). If it is allowed to ask Alice for a single decryption,
then it can take random m̃, compute y′ = ym̃e (mod n), send Alice y′ to decrypt,
and divide the resultingm′ by m̃ to recoverm. This is a serious weakness, but it
is not as bad as the one that Rabin encryption suffers from, since the adversary
succeeds in obtaining just one message. In the attack on Rabin it gets the
factorization of n, and hence can read all subsequent secret communications to
Alice.
At this point the reader might wonder why anyone should worry about a

chosen-ciphertext attack. Can’t we assume that Alice knows enough not to give
out decryptions to strangers?
In the first place, one can imagine scenarios where Alice might think that

such a decryption request is reasonable — for example, if the system crashed
and the attacker appears to be a legitimate user who is trying to recover lost
data, or if the attacker is someone who had legitimate business with Alice in
the past, but now wants to steal some data sent to her by someone else, etc.
In the second place, if a system is secure against chosen-ciphertext attacks,

then it is also secure against partial chosen-ciphertext attacks, that is, when
the adversary obtains only part of the information that it would get in a full
chosen-ciphertext attack. Such partial chosen-ciphertext attacks are very real
possibilities. The best-known example is Bleichenbacher’s attack [10] that we
described earlier. He showed how to compromise the security of an RSA protocol
that had been approved by standards bodies and is still used today in real-world
applications. If an RSA protocol had been used that had been shown to be
secure against chosen-ciphertext attacks, then Bleichenbacher’s method would
not have succeeded against it.

1.3 Some basic concepts

Starting in the 1980’s it became clear that there is a lot more to security of
a public-key cryptographic system than just having a one-way function, and
researchers with a background in theoretical computer science set out to sys-
tematically develop precise definitions and appropriate “models” of security for
various types of cryptographic protocols.
One of the seminal ideas of that period was probabilistic encryption [30,

31]. In public-key cryptography, where everyone has the information needed to
encipher, deterministic encryption — in which a given plaintext is enciphered
into one and only one possible ciphertext — has the drawback that the system
is useless if the message is known to belong to a small set. To avoid this defect,
one should use an encryption function fr(m) that depends on a random integer
r as well as the message m. For example, one could append r to m before
applying the RSA function; this is called an RSA “padding.”
In the context of probabilistic encryption, Goldwasser and Micali [30, 31]

were able to define strong notions of security that were later extended by Naor–
Yung [42] and Rackoff–Simon [46] to cover chosen-ciphertext attacks. One basic
concept is that of semantic security. This means that the attacker is unable to
obtain any information at all (except for its bitlength) about the plaintext m∗
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that was encrypted to produce a ciphertext y∗, even if it is allowed to request
the decryption of any ciphertexts of its choosing except for y∗. Another security
notion is called indistinguishability. This means that the attacker chooses two
messages m0 and m1, one of which is then encrypted: y

∗ = fr(mb), b ∈ {0, 1}.
Even though it is allowed to request the decryption of any ciphertexts it wants
(except for y∗) both before and after it chooses m0,m1, the adversary cannot
guess which of the two messages was encrypted with significantly more than 1/2
chance of success. These two strong notions of security are closely related; in
fact, in [30, 31] they were proved to be equivalent against a passive adversary
(that does not request decryptions of chosen ciphertexts). But for a long time
it was not clear whether or not they are equivalent under active attacks.3

It is quite surprising that the equivalence of semantic security and indistin-
guishability in the case of chosen-ciphertext attacks was not considered in the
research literature until 2002. After all, semantic security is really the natural
notion of what one should strive for in public-key encryption, while indistin-
guishability is seemingly an artificial notion. However, in practice it has been
much easier to prove a public-key encryption scheme to be secure using indis-
tinguishability than using the more natural definition, and so all proofs in the
literature use it. The equivalence of indistinguishability and semantic security
under chosen-ciphertext attacks has purportedly been proved in [56] and [29].
If these proofs are correct, then the matter has finally been settled.
The second important theoretical advance in the mid-1980’s was the first

work [32, 33] to give a definition of what it means for digital signatures to be
secure. That definition has stood the test of time and is still widely used to-
day. Goldwasser–Micali–Rivest replace “chosen-ciphertext” (used for encryption
schemes) by “chosen-message” and replace semantic security/ indistinguishabil-
ity by the idea of an existential forger. That is, a signature scheme is said to
be secure against chosen-message attack by an existential forger if an adversary
that has been allowed to request valid signatures for messages mi of its choosing
is unable to produce a valid signature for any message that is different from any
of the mi. A typical reductionist security result for a signature scheme says
that it is secure in this sense provided that certain assumptions (about hard-
ness of an underlying mathematical problem, randomness of some numbers, and
properties of hash functions) hold.
The idea that emerged in the 1980’s of systematically using reduction argu-

ments to convince oneself of the security of encryption and signature schemes
is elegant and powerful. However, it is important always to keep in mind the
limitations of the method. Obviously, it cannot guarantee resistance against
attacks that are not included in the security definition. In particular, the usual
security definitions do not account for attacks that are based on certain features
of the physical implementation of a cryptographic protocol. Such side-channel

3Apparently [48], in the chosen-ciphertext setting one needs to make a more complicated
definition of semantic security than in [30, 31]. Namely, one has to allow the attacker to
choose a probability distribution which Alice uses to choose the target plaintext m∗; the
indistinguishability test is then the special case when Prob(m0) = 1/2, Prob(m1) = 1/2,
Prob(m∗) = 0 for m∗ 6= m0, m1.
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attacks utilize information leaked by the computing devices during the execu-
tion of private-key operations such as decryption and signature generation. The
kind of information that can be exploited includes execution time [36], power
consumption [37], electromagnetic radiation [1], induced errors [13], and error
messages [38].
Finally, we should mention two fundamental contributions in the 1990’s to

the theoretical study of security issues, both by Bellare and Rogaway. In [6] they
studied the use of the “random oracle model” for hash functions in reductionist
security arguments. The systematic use of the assumption that hash functions
can be treated as random functions made it possible for security results to be
obtained for many efficient and practical schemes. We shall have more to say
about the random oracle model in later sections.
In addition, Bellare and Rogaway developed the notion of “practice-oriented

provable security” (see [3]). As a result of their work, reductionist security
arguments started to be translated into an exact, quantitative form, leading,
for example, to specific recommendations about keylengths. The objective of
the work has been to move the subject away from its roots in highly theoretical
computer science and closer to real-world applications.

1.4 Outline of the paper

The main body of the paper consists of informal (but accurate) descriptions
and analyses of the reductionist security arguments for four important practical
public-key cryptographic systems. Two of them are encryption schemes (one
based on RSA and one based on the so-called “discrete log” problem in the
multiplicative group of a finite field), and two are signature schemes (one based
on RSA and one on discrete logs). By presenting these constructions and results
with as few technicalities as possible, we hope to make them accessible to the
broad mathematical public. At the same time, some of the conclusions we draw
from our analyses are in sharp disagreement with prevailing views.
We then discuss some recent work that purportedly undermines the random

oracle model, but which we argue actually supports it, and we conclude with
some informal remarks about whether “proving” security is an art or a science.

2 Cramer–Shoup Encryption

We start by describing the basic ElGamal encryption scheme [25]. Let G be
the subgroup of prime order q of the multiplicative group of the prime field of p
elements, where q|p− 1, and let g ∈ G be a fixed element (not the identity). (In
practice, p might be a 1024-bit prime and q a 160-bit prime.) We suppose that
p, q and g are publicly known. Alice chooses a random integer z, 0 < z < q, as
her private key; her public key is e = gz.
The sender Bob’s message m is an element of the finite field. To encrypt m,

he first chooses a random r, 0 < r < q, and computes u = gr and w = erm. He
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sends the pair (u,w) to Alice, who deciphers it by dividing w by uz (where she
uses her secret key to compute uz = gzr = er).
Like naive RSA, this naive version of ElGamal is vulnerable to chosen-

ciphertext attack. Namely, the attacker, who has the ciphertext (u,w) and
wants to learn what m is, chooses r′ and m̃ at random, sets u′ = ugr

′

and
w′ = wer

′

m̃, and gets Alice to decrypt (u′, w′) for him. She sends the attacker
mm̃, after which he simply divides by m̃ to obtain m.
A first attempt to fix this problem might be to require that any ciphertext

include a string of bits that can be used to test that it was formed correctly,
that is, that whoever is sending the ciphertext knew the plaintext message from
which it was generated. This string of bits is a sort of “fingerprint” of the
message, called its “hash value.”
More precisely, a hash function H is a map from strings of σ bits to strings

of ν bits, where generally σ is much greater than ν, that is easy to compute
but not to invert (this is called the “one-way” property). That is, given h, it is
not feasible to find any m such that h = H(m). Usually a somewhat stronger
property, called “collision-resistance,” is assumed. This means that it is not
feasible to find any pair m, m′ such that H(m) = H(m′).
If the ElGamal ciphertext includes h = H(m), then Alice can verify that

(gr, erm,h) is a valid ciphertext by checking that h = H(m) after she decrypts.
If the attacker sends her (gr+r′ , er+r′mm̃, h), then she will reject it, because
H(mm̃) 6= h. Note that we’re assuming that the attacker will not be able to
find any m̃ such that H(mm̃) = h.
The problem with this solution is that it fails completely in a situation where

the message m is known to be one of a small set {mi} (for example, it’s either
“yes” or “no,” or it’s the date when an invasion is planned). In that case all the
adversary needs to do is run through the values H(mi) until it comes to h.
Ideally, we would like the encryption system to have the property that, even

if the adversary knows that the plaintext is one of two messages m0 or m1, and
even if the adversary is allowed to choose the two messages and then see an
encryption y∗ of one of them, still it would not have appreciably more than a
50% chance of determining whether m0 or m1 had been encrypted — even if it
can ask for decryptions of any ciphertexts of its choosing both before and after
selecting the messagesm0, m1 (except that after it receives the target ciphertext
y∗, it is not, of course, allowed to ask for y∗ to be decrypted). As mentioned in
the Introduction, if the encryption scheme is secure in this sense, we say that it
is indistinguishability-secure from chosen-ciphertext attack.
Before stating the Cramer–Shoup result, we need to describe three number-

theoretic problems in the group G of prime order q:
• (The Discrete Logarithm Problem) Given an element g 6= 1 of G and

another element u, find x ∈ {0, 1, . . . , q − 1} such that u = gx. (The solution x
is called the “discrete log” of u to the base g and is often denoted either logg u
or else indgu.)
• (The Computational Diffie–Hellman Problem) Given elements g 6= 1, u1

and u2 in G, find u3 such that x3 ≡ x1x2 (mod q), where xi = logg ui.
• (The Decision Diffie–Hellman Problem) Given a 4-tuple (g1, g2, u1, u2),
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determine whether or not logg1 u1 = logg2 u2. (A formulation that is easily
seen to be equivalent is the following: Given a 4-tuple (g, u1, u2, u3), determine
whether or not x3 ≡ x1x2 (mod q), where xi = logg ui.)

These three problems are listed in order of decreasing difficulty, in the sense that
an algorithm that finds discrete logarithms can be used to immediately solve
the computational Diffie–Hellman problem, and an algorithm that solves the
computational Diffie–Hellman problem will also answer the decision version of
the problem. The reverse implications are not known, although there is evidence
that the first two problems may be equivalent [39, 14] and the last two probably
aren’t [11].

2.1 The Cramer–Shoup encryption scheme and security

claim

We are now ready to state the Cramer–Shoup
Reductionist security claim. If the Decision Diffie–Hellman Problem is hard

in the group G and if the hash function H is collision-resistant,4 then the mod-
ified ElGamal encryption scheme described below is indistinguishability-secure
from chosen-ciphertext attack.

Description of the Cramer–Shoup encryption scheme. Let x = (x1, x2),
y = (y1, y2), z = (z1, z2) denote pairs of integers between 0 and q − 1; let
g = (g1, g2) and u = (u1, u2) denote pairs of elements of G; and let r denote
a random integer between 1 and q − 1. We use the notation gx = gx1

1 gx2

2 ,
grx = grx1

1 grx2

2 , and so on.
The group G of prime order q in the field of p elements (where q|p− 1) and

two random non-identity elements g1, g2 are publicly known. We suppose that
the collision-resistant hash function H takes triples of integers mod p to integers
between 0 and q−1 (that is, it takes bit-strings of length 3dlog2 pe to bit-strings
of length dlog2 qe— in practice, this might mean that it maps 3072-bit numbers
to 160-bit numbers). Alice’s private key consists of three randomly generated
pairs x, y, z, and her public key consists of the three group elements c = gx,
d = gy, e = gz.
To send a message m ∈ G, Bob chooses a random r, sets u1 = gr1, u2 = gr2,

and w = erm, and computes the hash value h = H(u1, u2, w) of the concatena-
tion of these three mod p integers. He computes v = crdrh, and sends Alice the
ciphertext 4-tuple (u1, u2, w, v). In this ciphertext the element v allows Alice to
check that Bob enciphered the message properly (after which she is confident
that he is not really an adversary using the attack on naive ElGamal that was
described above); w contains the message m “disguised” by the “mask” er; and
u1 and u2 are the clues she needs to remove the mask.
More precisely, to decipher the 4-tuple (u1, u2, w, v) Alice first computes

h = H(u1, u2, w) and uses her secret key to find u
x+hy (that is, ux1+hy1

1 ux2+hy2

2 ),

4They used a slightly weaker assumption in [23], namely, that H is a member of a universal
one-way hash family; however, collision-resistance is just as good in practice. Note that they
do not make the random oracle assumption.
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which should be equal to v (because ux+hy = grx+ryh = crdrh). If it is not equal
to v, Alice rejects the message. If the ciphertext passes this test, she proceeds
to decrypt by dividing w by uz. Since uz = grz = er and w = erm, this gives
her the plaintext m. This concludes the description of the cryptosystem.5

We say that a 4-tuple (u1, u2, w, v) is invalid — not a possible ciphertext
— if logg1 u1 6= logg2 u2. It is important to note that an invalid ciphertext will
almost certainly be rejected by Alice. Cramer–Shoup explain this by regarding
the two pairs x, y as elements of a 4-dimensional vector space V over the field of
q elements. Alice’s public key — the relations c = gx, d = gy — constrain x, y
to a 2-dimensional subspace S. If r = logg1 u1 = logg2 u2, then the verification

equation v = ux+hy holds either everywhere on S or nowhere on S (depending
on the value of v), whereas if logg1 u1 6= logg2 u2, then the equation v = ux+hy

imposes another independent linear condition on x, y (regardless of the value of
v). That is, the 4-tuple (u1, u2, w, v) is accepted only if x, y lie on a line in S,
and the chance of that is 1/q, which is negligible.

2.2 The reductionist security argument

Reductionist security argument. We must show that if there is an adversary
(which, as mentioned before, should be thought of as a computer program)
that makes decryption queries and is eventually able to distinguish whether a
target ciphertext y∗ is an encryption of m0 or m1, then someone (whom we’ll
call Sam) is able to use this adversary program to determine whether or not a
4-tuple (g1, g2, u1, u2) has the Diffie–Hellman property logg1 u1 = logg2 u2. Sam
can simulate attacks by the adversary, during which he wants to choose his
input and responses so as to answer the Diffie–Hellman question.
So suppose that Sam is given a 4-tuple (g1, g2, u1, u2). He starts by playing

the role of Alice generating her keys; that is, he chooses three random pairs
x, y, z and sets c = gx, d = gy, e = gz. He sends the public key (c, d, e) (and
also g1, g2) to the adversary, which makes decryption queries (u

′
1, u

′
2, w

′, v′). Sam

decrypts just as Alice would, rejecting the message unless v′ = u′
x+h′y

, where
h′ = H(u′1, u

′
2, w

′), in which case he responds with the decryption w′/u′
z
. When

the adversary outputs the two plaintexts m0 and m1 for the distinguishability
test, Sam chooses b ∈ {0, 1} at random and sets the target ciphertext equal to
y∗ = (u1, u2, w, v) with w = uzmb and v = ux+yh, where h = H(u1, u2, w).
Now the adversary must decide whether y∗ is the encryption of m0 or m1.

If (g1, g2, u1, u2) has the Diffie–Hellman property, then y∗ is a true encryption
of mb (with r = logg1 u1 as Bob’s random number), and so the adversary will
have a probability significantly greater than 1/2 of correctly guessing b.
What if the 4-tuple (g1, g2, u1, u2) does not have the Diffie–Hellman prop-

erty? The adversary can ask for decryptions of ciphertexts y′ = (u′1, u
′
2, w

′, v′)
that are not identical to y∗ = (u1, u2, w, v) in the hope of learning whether y

∗

encrypts m0 or m1. If, for example, the adversary could find w
′ 6= w such that

H(u1, u2, w
′) = h = H(u1, u2, w), then it could set y

′ = (u1, u2, w
′, v), which

5The actual Cramer–Shoup cryptosystem in [23] is the special case with z2 = 0.
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would pass Sam’s test (since v = ux+hy). Sam would give the adversary the
decryptionm′, from which it could computemb = m′w/w′ just as in the chosen-
ciphertext attack on naive ElGamal. The adversary’s success would lead Sam
to falsely believe that his 4-tuple has the Diffie–Hellman property (see the con-
cluding paragraph of this argument). Fortunately, the adversary has negligible
probability of finding w′ 6= w such that H(u1, u2, w

′) = H(u1, u2, w) because
the hash function has been assumed to be collision-resistant. That is, the only
way the adversary could get the same hash value h = H(u1, u2, w) is to take
y′ = (u1, u2, w, v

′) with v′ 6= v (since y′ 6= y∗), in which case Sam would reject
y′ because v′ 6= ux+hy.
Whenever the adversary asks for a decryption of an invalid 4-tuple

(u′1, u
′
2, w

′, v′), Sam rejects it (except with negligible probability); this follows
by an argument similar to the one at the end of §2.1. Thus, the adversary gets
some information only when r′ = logg1 u

′
1 = logg2 u

′
2, in which case it learns just

the decryption m′ = w′/u′
z
= w′/er

′

(it learns this provided that y′ passes the

test v′ = u′
x+h′y

). Nothing in the adversary’s view, even after its decryption
queries, constrains Sam’s private key pair z = (z1, z2) further than the single
relation e = gz coming from the public key. In other words, all values of z in
the plane over the field of q elements that lie on a certain line will agree with
the adversary’s view. But only one point on that line — namely, the value of z
that also satisfies the relation w = uzmb, which is independent of the relation
e = gz because logg1 u1 6= logg2 u2 — is consistent with the choice of b ∈ {0, 1}.
This means that (except with negligible probability) what the adversary sees is
independent of b. So if Sam’s 4-tuple fails to have the Diffie–Hellman property,
the adversary will have only a 50% chance of guessing b.
In order to decide whether or not his 4-tuple has the Diffie–Hellman property,

Sam will run this simulated attack several times with different x, y, z. If the
adversary correctly determines b significantly more than half the time, Sam is
almost certain that the 4-tuple has the Diffie–Hellman property. Otherwise, he
is almost certain that it doesn’t. This completes the reduction argument.

Cramer–Shoup encryption attracted a lot of attention when it was proposed
in 1998 because it was the first practical scheme for which a strong security
property could be demonstrated under a “standard” hash function assumption
(such as collision-resistance) rather than the stronger “random oracle model.”
But this weakening of the hash function assumption came at a price: Cramer–
Shoup needed to make a rather strong number-theoretic assumption, namely,
hardness of the Decision Diffie–Hellman Problem. As mentioned above, this
decision problem is likely to be strictly easier than the Computational Diffie–
Hellman Problem; in fact, promising new cryptographic protocols have recently
been developed (see, for example, [15]) based on the “gap” in difficulty between
these two problems in certain groups. On the other hand, these “Diffie–Hellman
gap groups” seem to be very exceptional (the best examples are supersingular
elliptic curves). In the groups that Cramer–Shoup would use, as far as we know
there is no way to solve Decision Diffie–Hellman that is faster than finding dis-
crete logarithms. So their assumption that the Decision Diffie–Hellman Problem
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is hard seems reasonable in the setting of their scheme.6

3 The Security of RSA Signatures

We first recall how Alice signs a message using the basic RSA system. Her
public key consists of a modulus n (which is a product of two primes) and an
encryption exponent e (which is relatively prime to ϕ(n)); and her secret key is a
decryption exponent d (which is the inverse of emodulo ϕ(n)). To sign a message
m (which is an arbitrary sequence of bits), Alice first applies a publicly known
and easily computable hash function H(m) which takes values in the interval
0 ≤ H(m) < n. We say that this is a “full-domain” hash function because its
values range through the full interval [0, n) rather than a smaller subinterval.
Just as in encryption schemes, the hash function acts like a “fingerprint”; in
practice, one usually assumes that it is computationally infeasible to find two
different messages that have the same hash value (“collision-resistance”). In
what follows we assume a stronger property, namely, that the hash function
is chosen at random from the set of all possible functions taking values in the
interval {0, 1, . . . , n−1}. We then say that we are “in the random oracle model.”
Alice computes the least nonnegative residue of H(m)d modulo n. That

value s is her signature. Suppose that Bob receives the message m and the
signature s. He computes H(m) and also the least residue of se modulo n.
If H(m) ≡ se (mod n), then he is satisfied that Alice truly sent the message
(because presumably only Alice knows the exponent d that inverts the expo-
nentiation s 7→ se) and that the message has not been tampered with (because
any other message would presumably have a different hash value).
We now describe one of the classic “provable security” results for the above

RSA signature [6]. Our version is less formalistic than the published proofs, but
it is essentially complete.
Recall from §1.3 the notion of an “existential forger” that is allowed to make

“chosen-message attacks in the random oracle model.” This means that the
forger (which, as before, we should think of as a computer program, not a
person) initially knows only Alice’s public key (n, e). It is permitted to question
Alice by sending her a sequence of (a bounded number of) test-messages mi. In
each case, if it’s the first time the particular message has been queried, Alice
responds by sending its hash value; if it’s the second time, then she sends the
signature. At the end, with high probability the forger will be able to produce
a valid signature for one of the messages mi that Alice has not signed.
Notice that in the random oracle model the forger does not have an algorithm

to produce a hash value, but rather must obtain these values one message at
a time through queries. Since the forger can easily determine H(mi) from the

6It is worth noting that Shoup [51] has given a variant of the Cramer–Shoup encryption
scheme for which he can show indistinguishability under chosen-ciphertext attack either with
the assumptions in §2.1 or else with the assumption that the Computational Diffiei–Hellman
Problem is hard and the hash function is given by a random oracle (that is, with a weaker
number-theoretic assumption and a stronger hash function assumption).
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valid signature that Alice sends, without loss of generality we may assume that
every signature query is preceded by a hash query.

Reductionist security claim. With the above notation and definitions, if the
problem of inverting x 7→ xe (mod n) is intractable, then the RSA signature with
full-domain hash function is secure in the random oracle model from chosen-
message attack by an existential forger.

Argument. Suppose that we are given an arbitrary integer y, 0 ≤ y < n,
and asked to find x such that y ≡ xe (mod n). The claim follows if we show
how we could find x (with high probability) if we had a forger that can make
chosen-message attacks.
So suppose that we have such a forger. We give it Alice’s public key (n, e)

and wait for its queries. In all cases but one, we respond to the hash query for
a message mi by randomly selecting xi ∈ {0, 1, . . . , n− 1} and setting the hash
value hi equal to x

e
i (mod n). For just one value mi0 we respond to the hash

query by setting hi0 = y (recall that y is the integer whose inverse under the
map x 7→ xe (mod n) we are required to find). We choose i0 at random and
hope that m = mi0 happens to be the message whose signature will be forged
by our existential forger. Any time a message mi with i 6= i0 is queried a second
time, we send xi as its signature. Notice that this will satisfy the forger, since
xei ≡ hi (mod n). If the forger ends up outputting a valid signature si0 for mi0 ,
that means that we have a solution x = si0 to our original equation y ≡ xe

(mod n) with unknown x. If we guessed wrong and mi0 was not the message
that the forger ends up signing, then we won’t be able to give a valid response
to a signature query for mi0 . The forger either will fail or will give us useless
output, and we have to start over again. Suppose that q is the bound on the
number of queries of the hash function. If we go through the procedure k times,
the probability that every single time we fail to solve y ≡ xe (mod n) for x
is at most (1 − 1/q)k. For large k, this rapidly approaches zero; so with high
probability we succeed. This completes the argument.

3.1 An informal analysis

We now reexamine the claim and the argument to support it in a stripped down
form, without superfluous features and cryptographic terminology. Because of
the assumption regarding randomness of the hash function, the choice of mes-
sages mi is irrelevant. What the forger has to work with is a random sequence
of values hi (i 6= i0) along with the corresponding xi (which are the e-th roots
mod n), and the forger is required to produce the e-th root mod n of a random
hi0 . The security claim is that this is no easier than producing the e-th root
mod n of a random number without having the sequence of pairs (hi, xi). The
proof amounts to the rather trivial observation that, since both the hi and the
xi are randomly distributed over the interval {0, 1, . . . , n − 1}, you can obtain
an equally good sequence of pairs (hi, xi) by starting with the random xi and
finding hi = xei (mod n). In other words, a sequence of random (hi, h

d
i mod n)

is indistinguishable from a sequence of random (xei mod n, xi). It makes no dif-
ference whether you look at your sequence of pairs left-to-right or right-to-left.
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Thus, the proof boils down to the following tautology: the problem of solving an
equation is equivalent to the problem of solving the equation in the presence of
some additional data (hi, xi) that are irrelevant to the problem and that anyone
can easily generate.
There is a difference between the conclusions of the formal argument and

the informal, “stripped down” one. In the reduction we saw that the forgery
program would have to be used roughly O(q) times (where q is the number of
hash queries) in order to find the desired e-th root modulo n. A result of Coron
[21] shows that this can be improved to O(qs), where qs denotes a bound on the
number of signature queries. (Thus, q = qs + qh, where qh is a bound on the
number of hash function queries that are not followed later by a signature query
for the same message.) On the other hand, the informal argument basically says
that, since the queries are of no help to the forger, the amount of time needed
for the forgery is the same as for solving the RSA e-th root problem.
From the standpoint of practice (as emphasized, for example, in [3]) this

difference is important. What it means is the following. Suppose that you’re
using a large enough RSA modulus n so that you’re confident that e-th roots
modulo n cannot be found in fewer than 280 operations. Suppose that you
anticipate a chosen-message attack where the attacker can get away with making
up to 220 signature queries. Then Coron’s result says that you can be sure only
that a successful forger will require time at least 260, whereas the informal
argument says that the forger will need as much time, namely 280, as to find an
e-th root modulo n.
Assuming that Coron’s result cannot be improved to give a tight reduction

argument (which he essentially proves to be the case in a later paper [22]),
we’re confronted with a discrepancy between the informal argument and the
result coming from formal reduction. Who is right? What is going on here?

3.2 A tale of two RSA problems

We can shed light on this question by looking at the basic RSA problem (given
n, e, and y, you are asked to find x with xe ≡ y (mod n)) and the following
variant, which we’ll call RSA1 — or, more precisely, RSA1(qs, qh):

Given n, e, and a set of qs + qh values yi chosen at random from the interval
{0, 1, . . . , n − 1}, you are permitted (at whatever stages of your work that you
choose) to select up to qs of those yi for which you will be given solutions xi to
xei ≡ yi (mod n). You must produce a solution xei ≡ yi (mod n) for one of the
remaining yi.

Obviously, if you can solve RSA, you can solve RSA1 in essentially the same
time. It is easy to see the converse when qs = 0. Namely, given n, e, and y, you
create an instance of RSA1(0, qh) by choosing random z1, . . . , zqh

and setting
yi = yzei . An answer to RSA1(0, qh) is a solution xei ≡ yi (mod n) for one of
the yi. Then just set x = xi/zi.
The above informal argument for the equivalence of forgery and the RSA

problem boils down to the claim that the two problems RSA and RSA1(qs, qh)
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are indistinguishable in practice, in the sense that if you can solve RSA1(qs, qh)
(for any qs, qh), then you can solve the RSA problem in essentially the same
amount of time. But the best reduction known from RSA to RSA1 — the one
obtained by translating Coron’s construction [21] to the terminology of these
two problems — leads to the weaker conclusion that you can solve RSA in time
of order O(qs) times the amount of time needed to solve RSA1.
Is it reasonable to conjecture the equivalence in practice of RSA and RSA1?

It seems to us that in this context it is. After all, a very strong assumption
is already being made — that the RSA problem is intractable. In practice,
what people mean by making that assumption is that the integer factorization
problem is hard, and that there is no way to solve the RSA problem that is
faster than factoring n. This assumption is being made in the face of the dra-
matic result of Boneh and Venkatesan [16] that makes it doubtful that there is
a reduction of factorization to the RSA problem. Despite this negative result,
though, people continue making the assumption that in practice the RSA prob-
lem is indistinguishable from factorization. We maintain that the equivalence
in practice of RSA and RSA1 is at least as plausible as the equivalence of RSA
and factoring.
Notice that in neither case is the word “equivalence” meant in the sense of

a reduction argument. Because of [22] it is not reasonable to hope for a tight
reduction from RSA to RSA1, and because of [16] it is not reasonable to hope for
a reduction from factoring to RSA. But in both cases it is reasonable to believe
that in the foreseeable future no one will find a way to solve RSA1 without
being able to solve RSA in essentially the same amount of time and no one will
find a way to solve RSA without being able to factor the modulus.
Tight formal reductions are nice to have. But sometimes in cryptography

one wants to assume that P1 is as hard as P2 even if there is no prospect of
constructing such a reduction from P2 to P1.

3.3 Piss on PSS

If we are correct about the equivalence in practice of the RSA and RSA1 prob-
lems, then one consequence is that the Probabilistic Signature Scheme (PSS)
version of RSA signatures [8] — which was constructed in order to have a tight
reduction argument between the RSA problem and chosen-message existential
forgery — gives no more security against chosen-message attacks than does the
original full-domain hash version.
Let’s take an informal look at the question of the relative security of the two

signature schemes. We first describe (a slightly simplified version of) PSS. Here
the signer first pads the message m with a random sequence of bits r and then
proceeds as before. That is, she applies the hash function to (m, r) and then
raises H(m, r) to the power of her decryption exponent modulo n.
If all we care about is formalistic “proofs,” then we might easily be misled

into thinking that the PSS system is provably more secure than the original
RSA signature scheme. If we use the language of practice-oriented provable
security, then we might say that by switching to PSS we’ve gained a factor of
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qs in the time a forger requires to complete its nefarious task. As we’ve seen,
such a conclusion is highly debatable.
Unless one believes that there is a difference in real-world intractability be-

tween the RSA problem and the RSA1 problem, there is no point in wasting time
and energy on replacing classical full-domain hash RSA by PSS. One possible
reason, in fact, for not adopting PSS is that it requires an additional crypto-
graphic assumption — randomness of some r-value — that is absent from the
original full-domain hash RSA. Since randomness is often poorly implemented
in practice, it is wise to avoid such a step if it is easy to do so, as in this case.
Our conclusion is that, despite a quarter century of research on RSA, the simple
“hash and exponentiate” signature protocol that has been known since the late
1970’s (with the condition that the image of the hash function be the full set of
residues) seems still to be the one to use.7

4 The Search for Optimal RSA Encryption

In 1994, Bellare and Rogaway [7] proposed a protocol for encrypting mes-
sages that they called Optimal Asymmetric Encryption Padding (OAEP). Their
method was mainly intended to be used with the RSA function y = xe (mod
n) — in which case it was called RSA-OAEP — but it could also be used
with other trapdoor one-way functions. This was the first time that a prac-
tical public-key encryption scheme was proposed along with an accompanying
reductionist security argument (see below).
Here is how OAEP works. We send a plaintext m of µ bits with ν zero-bits

appended. Let m0 denote the resulting σ-bit string, where σ = µ + ν. The
purpose of the zero-bits is to ensure that only an insignificant proportion of all
σ-bit strings are of the required form. As in Cramer–Shoup encryption (see
§2), Alice performs a test before accepting a message: she first checks that a
deciphered bit string m0 is of the proper form and, if not, rejects it.
In addition to her RSA public key (n, e) and private key d, Alice chooses a

random function G from ν-bit strings to σ-bit strings and a random function
H from σ-bit strings to ν-bit strings. The two functions G and H are public
knowledge; that is, the sender Bob can compute them. A reasonable choice of
µ, ν, and σ = µ+ ν might be 864, 80, and 944, respectively, if Alice is using a
1024-bit modulus n. The bitlength of the modulus should be σ + ν = µ+ 2ν.
If Bob wants to send a µ-bit message m to Alice, he first chooses a ν-

bit random number r. He evaluates G(r), sets m0 equal to m with ν zeros
appended, and computes s = m0 ⊕ G(r) (this is the XOR of m0 and G(r),
that is, the component-wise sum modulo 2). Next, he evaluates H(s), computes

7Our purpose here is to highlight the comparison between PSS and full-domain hash RSA.
There may, however, be other RSA type signature schemes that are superior to both. For
example, Bernstein [9] argues in favor of a version of Rabin signatures [45] for which he gives
a tight reductionist security argument. Also, Katz and Wang [34] give a slight modification
of full-domain hash RSA for which they provide a tight reduction to hardness of the RSA
problem.
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t = r⊕H(s), and sets x equal to s concatenated with t. Finally, he exponentiates
y = xe (mod n); his ciphertext is y.

rm 0

ννµ

tsx

s = m0 ⊕G(r)

t=r ⊕H(s)

Figure 1: OAEP padding.

Alice starts her decryption as in naive RSA, using her secret exponent d to
find x. She applies H to s, which is the first σ bits of x, and takes the XOR
of H(s) with the last ν bits of x; this gives her r. She then evaluates G(r) and
takes the XOR of G(r) with s to get m0. If m0 does not have ν zero-bits at the
end, she rejects the message. If m0 does have the expected number of zero-bits,
she deletes them to recover m. Notice that the steps in Alice’s decryption after
the exponentiation are very simple, much like the “back substitution” stage in
an elementary linear algebra problem.
The idea of XOR-ing m0 with G(r) and then XOR-ing r with H(m0 ⊕

G(r)) is a familiar construction from classical symmetric cryptography, called
a “two-round Feistel cipher.” (The famous DES is a 16-round Feistel cipher.)
Its purpose is to scramble everything badly, while allowing rapid and simple
decryption. The other two features of OAEP are the ν zero-bits (used to give
Alice a way to check legitimacy of the text) and the ν bits of padding r.

4.1 Reductionist security of RSA-OAEP

We now give an informal version of the original reductionist security argument
of Bellare and Rogaway [7]. Note that G and H are assumed to be random
functions; that is, the argument uses the “random oracle” assumption.

Reductionist security claim. The encryption system RSA-OAEP is indis-
tinguishability-secure against chosen-ciphertext attack in the random oracle
model if the RSA problem is intractable.

Argument. What the claim says is the following. Suppose that there is an
adversary (which again should be thought of as a computer program) that takes
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the RSA public key (n, e) as input, makes some queries for values of the functions
G and H and for decryptions of various ciphertexts that it chooses, and then
selects two plaintext messages m0 and m1. It is now given an encryption y

∗ of
one of the mb (with b ∈ {0, 1} chosen at random), after which it makes some
more queries (but it is not, of course, allowed to ask for the decryption of y∗),
and finally guesses b with probability significantly greater than 1/2 of being
correct. If such an adversary exists, then Sam the Solver (also known as Sam
the Simulator), who has been given an arbitrary y, will be able to interact with
the adversary in such a way as to determine the solution x of xe ≡ y (mod n).
We make the reductionist security argument by describing how Sam sets up a
simulated attack that he uses to find x.
The description of what Sam does in this simulated attack is simple. He sets

y∗ equal to the value y for which he must find the e-th root modulo n, and he
uses random values for G(r) and H(s) when answering queries for such values,
unless the same value of r or s has been queried before, in which case he must
give the same answer. Sam keeps a record of all r and s that are queried and
all of his answers G(r) and H(s) to those queries.
In response to the attacker’s request for the decryption of some y 6= y∗, Sam

runs through the previously queried (r,G(r)) and (s,H(s)). In each case he
checks whether the concatenation of s and r ⊕H(s) gives y when raised to the
e-th power modulo n. If it does, then he sets m0 = s⊕G(r) and checks whether
the ν right-most bits of m0 are zero. If so, he deletes those zero-bits and outputs
the resulting message m; if not, he outputs the words “invalid ciphertext.” If
Sam finishes running through all of the previously queried pairs (r, s) and none
leads to a valid decryption m, then Sam answers the decryption query with
“invalid ciphertext.”
At some point the attacker sends Sam m0 and m1, and Sam responds by

sending y∗ (which is the integer whose e-th root modulo n Sam wants to find).
One question that might occur to the reader is: What if y∗ is not the encryption
of m0 or m1? In that case it would not be proper input to the adversary. The
answer is that the adversary must function as if the values of G and H are values
chosen at random at the time that a query is made; this is what the random
oracle assumption says. The values of G and H that are used in the encryption
of mb almost certainly have not been specified at the time when y∗ is given.
Since it is easy to see that there exist values s∗, H(s∗), r∗, and G(r∗) such that
the concatenation of s∗ with r∗ ⊕ H(s∗) is the e-th root of y∗ modulo n and
such that s∗ ⊕ G(r∗) is m0

b , the adversary must be able to guess mb when the
target ciphertext is y∗.
We are now ready to conclude the Bellare–Rogaway argument. Since the

target message m0
b is equal to s

∗ ⊕ G(r∗) with G(r∗) random (where s∗ is the
first σ bits of the e-th root of y∗ modulo n), the only way the adversary would
know any information about m0

b (and hence mb) is to have queried G(r
∗). This

means that the adversary must have known what value of r = r∗ to query.
Since r∗ = t∗ ⊕H(s∗) (where t∗ is the last ν bits of the e-th root of y∗ modulo
n), the adversary must also have queried H(s∗). Now Sam has a record of the
r, s,G(r), H(s) from all of the queries. He runs through all pairs (r, s) in his
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list of queries and in each case checks to see whether the concatenation of s
and r ⊕H(s) gives y∗ when raised to the e-th power modulo n. When he gets
to the pair (r∗, s∗), he finds the desired solution to the RSA problem. This
concludes the argument for indistinguishability-security of RSA-OAEP against
chosen-ciphertext attack.
If we think for a minute about this argument, we are struck by how much it

seems to give for little effort. Not only do we get a strong form of security against
powerful attackers, but the argument doesn’t use any specific features of RSA or
any assumptions about our parameters µ and ν; in fact, the reductionist security
claim seems to apply equally to the OAEP construction with RSA replaced by
any other trapdoor one-way function (and, indeed, such a generalization was
given in [7]). We might get suspicious, and remind ourselves of the adage, “If it’s
too good to be true, then it probably isn’t.” Our first response might be to doubt
the validity of the random oracle model, which seems to allow Sam to “cheat”
by leaving the values of the functions to be defined later (whereas in practice
an algorithm for computing them is publicly available from the beginning).
Another possible response is to point out the lack of tightness in the reduc-

tion. That is, Sam must check all pairs (r, s) that were queried until he comes to
(r∗, s∗). Since the number of queries could be of the same order of magnitude as
the adversary’s running time t, this means that the upper bound on the number
of steps Sam needs to solve the RSA problem is O(t2). In other words, if we
want a guarantee that the adversary will need at least 280 steps to succeed in
its attack (in which case we say that we have “80 bits of security”), the above
argument says that we should ensure that the RSA problem requires at least
2160 steps. According to present estimates of the running time of the number
field sieve factoring algorithm, we should use roughly a 5, 000-bit RSA modulus
to achieve 80 bits of security. This would be pretty inefficient. So the practical
guarantee we get is not very useful.

4.2 Shoup’s objection

However, the best objection to the “too good to be true” reductionist security
argument in [7] was discovered only seven years later, and it caught everyone by
surprise. In 2001, Shoup [52] showed that the argument is fallacious, because
it assumes that the adversary cannot work with the input y∗ to get useful
information.
As Shoup pointed out, it is, for example, conceivable that the adversary

is able to find s∗ (which is the first σ bits of the solution x∗ to the equation
x∗e ≡ y∗ (mod n)) and is also able to solve the following problem: Given y∗

and a subset S of at most ν + 1 bit positions, determine y′ such that the bits of
the e-th roots modulo n of y∗ and y′ agree except on the subset S, where they
disagree. No one knows how to solve this problem without being able to find
e-th roots modulo n, but the possibility cannot be ruled out. In such a case the
adversary would find s∗ and query H(s∗). It would then set s′ equal to s∗ with
the first bit switched, query H(s′), and choose the set S of at most ν+1 bits to
consist of the first bit along with the bits in the last ν positions that correspond
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to 1-bits of H(s∗)⊕H(s′) (in other words, the positions where the bits of H(s∗)
and H(s′) differ). The adversary would find y′ such that the solution x′ to
x′

e
≡ y′ (mod n) differs from x∗ in precisely the bits of S. It would then ask for

the decryption of y′. It is easy to see that the answer to this decryption query
must be the secret plaintext mb with its first bit switched. Thus, the adversary
will have succeeded without ever needing the random r∗ used for the target
ciphertext. So the argument that G(r∗) must have been queried is wrong.
Fortunately, Shoup [52] also showed that not all was lost for RSA-OAEP.

First of all, the original argument of Bellare–Rogaway was partly correct, in
that the adversary must query H(s∗). Moreover, Shoup showed that if ν is
much less than σ (which would be true in practice) and if e = 3 (a restriction
that was later removed by Fujisaki–Okamoto–Pointcheval–Stern [26]), then the
Bellare–Rogaway reductionist security claim is valid for RSA-OAEP (but not
for OAEP with other trapdoor one-way functions). The crucial point is that
if you know s∗ and y∗, then the equation x∗3 = (2νs∗ + t∗)3 ≡ y∗ (mod n)
can be solved for t∗ using Coppersmith’s method [20] for finding small roots of
polynomials modulo n.
In addition, Shoup [52] proposed a modification of OAEP, which he called

OAEP+ (“optimal asymmetric encryption padding plus”), for which he showed
that the original Bellare–Rogaway argument is valid. He modified OAEP by
replacing the string of ν zeros in m0 by H̃(m, r), where H̃ is another random
function from strings of σ bits to strings of ν bits, and defining s as m ⊕ G(r)

concatenated with H̃(m, r), where G now maps ν-bit strings to µ-bit strings.

4.3 Boneh brings us back to Rabin

At this point it might have appeared that the search for optimal RSA encryp-
tion had ended with Optimal Asymmetric Encryption Padding Plus. However,
Boneh [12] was able to improve upon Shoup’s result. He simplified the construc-
tion by reducing the number of Feistel rounds from two to one, and he showed
that the reductionist security claim still holds. In other words, Boneh would
apply the RSA function to ((m, H̃(m, r))⊕G(r), r).
But Boneh shows that it’s actually much better to apply Rabin encryption

(squaring modulo n, see §1.1) rather than the RSA function, for two reasons:
(1) the assumption that finding e-th roots modulo n is hard is replaced by
the weaker and more natural assumption that factoring n is hard (this was
why Rabin introduced his encryption method in 1979); and (2) the reduction
argument is tight.
Of the three objections to OAEP mentioned above — use of the random

oracle model in the security argument, lack of tightness in the reduction, and
a fallacy in the original reductionist security argument — only the first one
would apply to Boneh–Rabin. However, in §6 we shall describe evidence that
we believe supports the reliability of the random oracle assumption. Thus, in our
view Boneh–Rabin is currently the optimal choice for an RSA type encryption
system.
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It is ironic that after a quarter century we come full circle and return to
Rabin encryption, which was the very first public-key system designed so as to
have a reductionist security property. Boneh shows that all it needed was some
random padding and hashing and just one Feistel round to go from being totally
insecure to totally secure against chosen-ciphertext attack.
Unfortunately, the Boneh–Rabin system will probably not be widely used

in the real world, at least not any time soon. The first reason is psychological.
Cryptographers still think of Rabin encryption as the classic example of com-
plete vulnerability to chosen-ciphertext attack. There’s a saying, “Once bitten,
twice shy.” Even if Boneh’s randomized Rabin is immune from chosen-ciphertext
attack, people will wonder whether perhaps there is some other extreme vul-
nerability that’s hiding around the corner. This fear is not logical (since there
is no basis for believing that such a possibility is more likely for Boneh–Rabin
than for any other system), but it is powerful nonetheless.

4.4 The credibility problem

The second reason is that “provable security” results seem to have much less
credibility in the real world than one might expect. Non-specialists usually
find the terminology and formalistic proofs hard to penetrate, and they do not
read the papers. Moreover, the strange history of OAEP — where a “proof”
was accepted for seven years before a fallacy was noticed — hardly inspires
confidence. Stern, Pointcheval, Malone-Lee, and Smart [54] comment:

Methods from provable security, developed over the last twenty
years, have been recently extensively used to support emerging stan-
dards. However, the fact that proofs also need time to be validated
through public discussion was somehow overlooked. This became
clear when Shoup found that there was a gap in the widely be-
lieved security proof of OAEP against adaptive chosen-ciphertext
attacks.... the use of provable security is more subtle than it ap-
pears, and flaws in security proofs themselves might have a devas-
tating effect on the trustworthiness of cryptography.

One has to wonder how many “proofs” of security are ever read carefully
with a critical eye. The purported proof of Bellare–Rogaway in [7] was short
and well-written, and the result attracted much interest (and caused OAEP to
be included in the SET electronic payment standard of MasterCard and Visa
[3]). If this proof went essentially unexamined for seven years, one cannot help
asking whether the lengthy and often poorly-written “proofs” of less famous
security claims are ever read carefully by anyone.
In theoretical mathematics, one of the reasons why theorems engender con-

fidence and trust is that the proof of a major result is almost always scrutinized
carefully by referees and others before publication. The most famous example of
this occurred in 1993, when Andrew Wiles submitted his 200-page manuscript
purporting to prove Fermat’s Last Theorem. Within two months a referee found
a subtle gap in the long, extremely difficult proof — a gap that was fixed a little
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over a year later by Taylor and Wiles [55, 57]. A more recent example of the
scrutiny that a dramatic new result gets in mathematics is the response to the
theorem that “Primes is in P” of Agrawal–Kayal–Saxena [2]. Their proof, while
ingenious, was relatively short and elementary; within a few days of the paper’s
posting, several of the world’s top number theorists had meticulously gone over
it with a fine-tooth comb and found it to be correct.
We would feel a little more at ease with “provable security” results if the same

tradition of careful examination of all important papers existed in theoretical
cryptography.

* * *

The last three sections have dealt with Diffie–Hellman type encryption (that
is, encryption using a discrete-log-based primitive), RSA type signatures, and
RSA encryption. We next consider a signature scheme based on a discrete-log
primitive.

5 Schnorr Signatures and the Forking Lemma

5.1 The equivalence of Schnorr signature forgery and dis-

crete logs

We first describe Schnorr’s method [50] for signing a message. As in §2, let
q be a large prime, and let p be an even larger prime such that p ≡ 1 (mod
q). In practice, roughly p ≈ 21024 and q ≈ 2160. Let g be a generator of the
cyclic subgroup G of order q in the multiplicative group of integers mod p. (It
is easy to find such a generator by raising a random integer to the ((p−1)/q)-th
power modulo p.) Let H be a hash function that takes values in the interval
{0, 1, . . . , q−1}. To prepare for signing messages, Alice chooses a secret random
integer x, 0 < x < q, which is her private key, and computes gx (mod p),
which is her public key. To sign a message m, Alice first chooses a random k,
0 < k < q, where k must be chosen again for each new message. She computes
r = gk (mod p), where r is regarded as a nonnegative integer less than p, and
evaluates the hash function H at the message m concatenated with r; we set
h = H(m, r). Finally, she sets s equal to the least positive residue of k + hx
modulo q. Her signature is the pair (h, s).
To verify the signature, Bob divides gs by (gx)h. (Note that g and gx are

publicly known, and he knows h and s from the signature.) If Alice formed the
signature correctly, the result agrees with gk = r, and hence

H(m, gs(gx)−h) = h.

If this equality holds, Bob accepts the signature.
Clearly, if a prospective forger can solve the discrete logarithm problem in

G, then it can forge signatures, because it can determine x from the public key
gx. As mentioned in the Introduction, an important question to ask at this
point is whether the converse is true. There’s a strong argument that it is.
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Reductionist security claim. If an adversary can forge Schnorr signatures,
then it can find discrete logarithms (in essentially the same amount of time).

Argument. Suppose that the adversary can forge a signature for m. When it
computes h = H(m, r), suppose that it is suddenly given a second hash function
H ′. Since, by assumption, a hash function has no special properties that the
forger can take advantage of, whatever method it used will work equally well
with H replaced by H ′. (Here we are using the random oracle model for the
hash function.) So the forger computes h′ = H ′(m, r) as well as h = H(m, r)
and produces two valid signatures (h, s) and (h′, s′) for m, with the same r but
with h′ 6= h. Note that the value of k is the same in both cases, since r is the
same. By subtracting the two congruences s ≡ k + xh and s′ ≡ k + xh′ (mod
q) and then dividing by h′ − h, the forger finds the discrete log x.8

Later we will describe the more complicated argument that’s needed to get
an even stronger security result. But before discussing the so-called “forking
lemma,” we’d like to make a historical digression.

5.2 DSA and NSA

In the early 1990’s, the U.S. government’s National Institute of Standards and
Technology (NIST), following the advice of the National Security Agency (NSA),
proposed a Digital Signature Algorithm (DSA) that was a variant of the Schnorr
signature described above. There were two main differences: in DSA the hash
function h = H(m) is evaluated only as a function of the messagem and does not
depend on the randomly generated r. Second, the congruence s ≡ k−1(h+ xr)
(mod q) (rather than s ≡ k + xh) is used.
At the time, the proposed standard — which soon after became the first

digital signature algorithm ever approved by the industrial standards bodies
— encountered stiff opposition, especially from advocates of RSA signatures
and from people who mistrusted the NSA’s motives. Some of the leading cryp-
tographers of the day tried hard to find weaknesses in the NIST proposal. A
summary of the most important objections and the responses to them was pub-
lished in the Crypto ’92 proceedings [17]. The opposition was unable to find
any significant defects in the system.
In retrospect, it is amazing that none of the DSA opponents noticed that

when the Schnorr signature was modified, the equivalence with discrete loga-
rithms was lost. In other words, there is no argument known that shows that the
ability to forge DSA signatures implies the ability to find discrete logs. In par-
ticular, if you try to repeat the argument used above for the Schnorr signature,
you find that the forgery program can still be made to produce two different
signatures for m with different h, but cannot be forced to use the same value of
r, since it doesn’t have to choose r before the hash function is evaluated.9

8Note that the forger does not need to know k.
9Aside from the question of whether or not equivalence can be shown between forging

signatures and solving the discrete log problem, it should have been clear to people in 1992
that replacing H(m, r) by H(m) potentially gives more power to a forger, who has control over
the choice of k (which determines r) but no control over the (essentially random) hash value.
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This reductionist security failure is a much more serious matter than any of
the issues that the anti-DSA people raised in 1992 [17]. It is also surprising that
apparently none of the NSA cryptographers noticed this possible objection to
DSA; if they had, they could have easily fixed it (without any significant loss of
efficiency) by having the signer evaluate the hash function at (m, r) rather than
just at m.
The debate over DSA lasted many months and pitted powerful companies

and institutions against one another. Reputations and large sums of money
were at stake. How could everyone have missed an elementary observation that
could have changed the course of the debate?

5.3 The “splitting lemma”

The “splitting lemma” is the name cryptographers have given to a simple but
useful observation that we shall need when we modify the reductionist security
argument in §5.1 to allow for a more limited type of forgery. We shall want to
know that even if a forger succeeds only with a certain non-negligible probability,
it can still find discrete logs.
Suppose that we have two sets A and B, with a elements in A and b elements

in B. Suppose that εab of all pairs (α, β), where α ∈ A, β ∈ B, have a certain
property (here 0 < ε < 1 is the probability that a random pair has the property).
We shall say that a pair with the property is a “good” pair. In our later
application a pair is “good” when the algorithm uses that pair to produce a
useful output. Let A0 ⊂ A be defined as the set of elements α0 such that a pair
(α0, β) (with α0 ∈ A fixed and β ∈ B varying) has a probability ≥ ε/2 of being
good.
The “splitting lemma” says that there are at least εa/2 elements in A0; in

other words, an element α ∈ A has a probability at least ε/2 of being in A0. To
see this, suppose the contrary. We count the number of good pairs (α, β) with
α ∈ A0 and the number with α /∈ A0. By assumption, the first number is at
most #(A0)b < (εa/2)b. By the definition of A0, the second number is at most
#(A \ A0)εb/2 ≤ aεb/2. Then there are fewer than (εa/2)b+ aεb/2 = εab good
pairs in all, and this is a contradiction.

5.4 The “forking lemma”

Following [43, 44], let us return to the forger in §5.1, but now make a weaker and
more realistic assumption, namely, that the signature scheme is attacked by a
probabilistic chosen-message existential forger in the random oracle model; the
reductionist security claim is then that such an attack would imply the ability
to find discrete logarithms. The term “chosen-message existential forger in the
random oracle model” was explained in §3. The word “probabilistic” means that
the forger (which, as before, we should think of as a computer program, not a
person) is supplied with a long sequence of random bits that it uses to make

If H depends on r as well as m, the forger’s choice of k must come before the determination
of the hash value, so the forger doesn’t “get the last word.”
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choices at various points in its work. We consider the set of all random functions
(that is, random values given in response to hash and signature queries) and all
sequences of random bits, and assume that with non-negligible probability at
least ε the forger is successful in producing a forged signature.10

Reductionist security claim. If the Schnorr signature succumbs to attack by
a probabilistic chosen-message existential forger in the random oracle model,
then discrete logs can be found.

Argument. Suppose that we have such a forger, which we want to use to find
the discrete logarithm x of the public key gx. The forger is allowed to make a
bounded number of signing inquiries and hash function inquiries. Our response
to any such query is to give a random value h (if it is a hash query) or pair of
random values (h, s) (if it is a signature query), except that the same value of h
must be given if the forger asks for H(m, r) twice. Note that since r = gs(gx)−h

(see §5.1), the random choice of s implies a random choice of r ∈ G. In the
unlikely event that r turns out to be a value such that we already responded to
a query for H(m, r) with the same m and r and gave a different h′ = H(m, r),
then we have to restart the whole procedure. The same applies if we answered
an earlier query for a signature of m by giving (h′, s′) with gs

′

(gx)−h′ equal
to r but h′ 6= h. However, the probability of either unfortunate coincidence
occurring is negligible.
Let qh be a bound on the number of pairs (mj , rj) for which the forger

queries the hash function. We choose a fixed index j ≤ qh and hope that
(mj , rj) happens to be the one for which the forger produces a signature.
We use two copies of the forger (that is, two copies of the same computer

program). We give both forgers the public key gx, the same sequence of random
bits, and the same random answers to their queries for hash function values
and signatures until they both ask for H(mj , rj). At that point we give two
independent random answers to the hash function query, and from then on use
different sequences of random bits and different random function values. (Hence
the name “forking lemma.”) We hope that both forgers produce signatures
corresponding to the pair (mj , rj). If they do not (or if we’re unable to proceed
because no j-th hash function query is made), then we start over again. If they
do output signatures (h1, s1) and (h2, s2), then almost certainly h1 6= h2. As
before, once we have two congruences k ≡ s1 − h1x ≡ s2 − h2x (mod q) with
h1 6= h2, we immediately find x.
We need to know that there’s a non-negligible probability that this will all

work as hoped. This is where the “splitting lemma” comes in. Let A be the
set of possible sequences of random bits and random function values that take
the forgers up to the point where they ask for H(mj , rj); and let B be the set
of possible random bits and random function values after that. Suppose that

10In general, the probability space should be taken to be the ordered triples consisting
of function, sequence of random bits, public key. However, the discrete log problem has
a convenient property, called self-reducibility, that allows us not to vary the key. Roughly
speaking, if we can find the discrete log of y for certain “easy” y-values, then, given an
instance y′ that we want to solve, we can always shift it to one of the easy instances by
exponentiating y′ by known amounts.

25



there are a elements in A and b elements in B. By the definition of our forger,
for some non-negligible probability ε a forger will produce a valid signature for
at least εab of the ab possible random bits and function values; and our guess
j will be the correct index of the message that is signed for at least εab/qh of
the possible random choices. Applying the “splitting lemma,” we can say that
there are at least εa/2qh elements of A that have the following property: the
remaining part of the forgery algorithm (starting with the j-th hash query) has
probability at least ε/2qh of leading to a signature for (mj , rj). For each such
element of A the probability that both copies of the forger lead to signatures
for (mj , rj) is at least (ε/2qh)

2. In summary, the probability that an element of
A× (B×B) will lead to two different signatures for (mj , rj) is at least (ε/2qh)

3.
If we repeat the procedure k times, the probability that we fail to find the

discrete logarithm of x is at most
(
1− (ε/2qh)

3
)k
, which approaches zero. This

concludes the argument.

5.5 Tightness

In order to arrive at a “practice-oriented” interpretation of the above result in
the sense of [3], we have to examine the “tightness” of the reductionist security
argument. The version of this argument given in the previous subsection is not
tight at all. Namely, let t denote the running time (number of steps) of the
forger program, and let T be a lower bound on the amount of time we believe it
takes to solve the discrete logarithm problem in the group G. If we have to run
the forger program k times in order to find (with high probability) the discrete
logarithm, then we set T ≈ kt to get an estimate for the minimum time t that

the forger takes. Since
(
1− (ε/2qh)

3
)k
is small for k = O(q3

h/ε
3), it follows that

we should set T ≈ tq3
h/ε

3.
For simplicity let’s suppose that ε is not very small, for example, ε > 0.1 (in

other words, the forger has at least a 10% chance of success). In that case we
can neglect the ε−3 term (that is, set ε = 1) when making a rough estimate of
the magnitude of t.
Now qh could be of the same magnitude as t; there is no justification for

assuming that the number of hash queries the forger makes is bounded by any-
thing other than the forger’s running time. Setting qh = t and ε = 1, we get
T ≈ t4. The practical consequence is that to get a guarantee of 80 bits of
security, we would have to choose q and p in Schnorr’s signature scheme large
enough so that the discrete log problem in G requires time roughly 2320.
In [44] Pointcheval and Stern give a tighter reduction. Let us state their

result when qh = t and ε = 1, so that we can compare with the conclusion in
the previous paragraph. In that case they show that T < 217t2; that is, to get 80
bits of security p and q must be chosen so that T ≈ 2177. According to current
estimates of the amount of time required to solve the discrete log problem in
a generic group of q elements and in the multiplicative group of the field of p
elements using the best available algorithms (these are the Pollard-ρ algorithm
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and the number field sieve, respectively), we have to choose roughly a 354-bit q
and a 7000-bit p. Such sizes would be too inefficient to be used in practice. So
if we don’t want the Schnorr scheme to lose its advantage of short signatures
and rapid computation, we probably have to put aside any thought of getting
a “provable security” guarantee.
Finally, we note that Goh and Jarecki [28] recently proposed a signature

scheme for which they gave a tight reduction (in the random oracle model)
from the computational Diffie–Hellman problem (see §2). Generally speaking,
this is not as good as a scheme whose security is closely tied to the discrete
log problem, which is a more natural and possibly harder problem. However,
Maurer and Wolf [40] have proved that the two problems Diffie–Hellman and dis-
crete log are equivalent in certain groups. If the Goh–Jarecki signature scheme
is implemented in such groups, then its security is more tightly bound to the
hardness of the discrete logarithm problem than is the Schnorr signature scheme
under the Pointcheval–Stern reduction.

6 Is the Random Oracle Assumption Bad for

Practice?

In §§3,4,5 we saw reductionist security arguments for important cryptographic
systems that used the “random oracle model,” that is, treated hash functions as
equivalent to random functions. Intuitively, this seems like a reasonable thing
to do. After all, in practice a well-constructed hash function would never have
any features that distinguish it from random functions that an attacker could
exploit.
However, over the years many researchers have expressed doubts about

the wisdom of relying on the random oracle model. For example, Canetti–
Goldreich–Halevi [18] constructed examples of cryptographic schemes that are
“provably secure” under the random oracle model but are insecure in any real-
world implementation. Even though their examples were contrived and unlike
any system that would ever be designed in practice, many felt that this work
called into question the reliability of security results based on the random ora-
cle assumption and showed a need to develop systems whose security is based
on weaker assumptions about the hash function. Thus, the Cramer–Shoup en-
cryption scheme [23] in §2 aroused great interest at the time because it was
a practical system for which a reductionist security argument could be given
under a weaker hash function assumption.
Recently, Bellare and his students [5, 4] obtained a striking result. They

constructed an example of a type of cryptographic system that purportedly is
practical and realistic and that has a natural and important security property
under the random oracle model but not with any concrete hash function. The
aim of [5, 4] was to “bring concerns raised by previous work closer to practice”
and thereby show that in real-world cryptography it might be wise to replace
cryptosystems whose reductionist security depends on the random oracle as-
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sumption by those whose security argument uses a weaker hash function model.
In this section we look at the construction in [5, 4] and explain why we believe
that the paper supports a conclusion that is exactly the opposite of that of the
authors.
The setting in [5, 4] is a “hybrid” system; this means that an asymmetric

(public-key) encryption scheme is used to establish a common key for a certain
symmetric (private-key) encryption scheme, after which messages can be sent
back and forth efficiently using the symmetric system.
Hybrid systems are important in real-world cryptography. In fact, most elec-

tronic commerce and other secure Internet communications use such a system.
For example, an RSA-based protocol might establish a “session key” — perhaps
a 128-bit random integer — for a buyer and merchant, after which a credit card
number and other sensitive information are transmitted quickly and securely
using a symmetric encryption method (such as RC4) with the session key.
It is important to note that in practice the symmetric and asymmetric sys-

tems must be constructed independently of one another. In [4] it is emphasized
(see Remark 2.1) that both the keys and the hash function that are used in
the symmetric system must have no connection with any keys or hash functions
used in the public-key system; otherwise, a symmetric and an asymmetric sys-
tem might be insecure together even if they are each secure in isolation. This
observation generalizes to a fundamental principle of sound cryptographic prac-
tice for a hybrid system: None of the parameters and none of the ingredients in
the construction of one of the two systems should incorporate elements of the
other system.
However, it turns out that the proof of the main results in [5, 4] depends in

an essential way on a violation of this principle. Namely, inside the private-key
encryption algorithm is a step involving verification of a valid key and valid
ciphertext for the public-key system (see Figure 3 of [4]). That is, the argument
in [4] fails completely if the above principle of sound cryptographic practice
is observed. This is clear from Remark 4.4 in [4], where the authors explain
the central role played by the public-key verification steps in their private-key
encryption.
Thus, one way to interpret their result is that it serves merely as a reminder

of the importance of strictly observing the above principle of independence of
the two parts of a hybrid system. However, we believe that there is a much
more interesting and valuable conclusion to be drawn. The inability of the
authors of [4] to obtain their results without using a construction that violates
standard cryptographic practice could be interpreted as evidence in support of
the random oracle model. Our reasoning here is analogous to what one does
in evaluating the real-world intractability of a mathematical problem such as
integer factorization or the elliptic curve discrete logarithm problem (ECDLP).
If the top experts in algorithmic number theory at present can factor at most a
576-bit RSA modulus [49], then perhaps we can trust a 1024-bit modulus. If the
best implementers of elliptic curve discrete logarithm algorithms have been able
to attack at most a 109-bit ECDLP [19], then perhaps we can have confidence in
a 163-bit group size. By the same token, if one of the world’s leading specialists
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in provable security (and coauthor of the first systematic study of the random
oracle model [6]) puts forth his best effort to undermine the validity for practical
cryptography of the random oracle assumption, and if the flawed construction
in [4] is the best he can do, then perhaps there is more reason than ever to have
confidence in the random oracle model.

7 Conclusion

Here is a summary of the main conclusions of the previous sections:
• There is no need for the PSS version of RSA; one might as well use just

the basic “hash and exponentiate” signature scheme (with a full-domain hash
function).
• Currently the optimal RSA type encryption scheme is the Boneh–Rabin

“simplified OAEP.”
• Some recent work that claims to give evidence against the random oracle

model actually is inadvertently providing evidence in support of that model.
Finally, we would like to end with some informal comments.

8 An Art or a Science?

In his useful and wonderfully written survey [3], Bellare draws a sharp distinction
between two phases in the development of a cryptographic system: the design
and study of the underlying mathematical one-way function (what he calls the
“atomic primitive”) and the design and study of secure methods (called “pro-
tocols”) of using such a primitive to achieve specific objectives. He argues that
the former is an “art” because intuition and experience play a large role, and
the choice between two primitives is ultimately a judgment call. In contrast,
according to Bellare, the selection and analysis of protocols can be a “science”
— it can almost be mechanized — if provable security techniques are used. He
writes:

...the design (or discovery) of good atomic primitives is more an art
than a science. On the other hand, I’d like to claim that the design
of protocols can be made a science.

In our opinion, this is a spurious distinction: the protocol stage is as much an
art as the atomic-primitive stage. The history of the search for “provable” secu-
rity is full of zigzags, misunderstandings, disagreements, reinterpretations, and
subjective judgments. For example, all of our three assertions in the previous
section are highly controversial, and can neither be proved nor disproved.
Later in the same article, Bellare makes a comment about terminology that

we found helpful:

...what is probably the central step is providing a model and defi-
nition, which does not involve proving anything. And one does not
“prove a scheme secure”: one provides a reduction of the security of
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the scheme to the security of some underlying atomic primitive [i.e.,
to the hardness of an underlying mathematical problem]. For that
reason, I sometimes use the term “reductionist security” to refer to
this genre of work.

We have taken his suggestion and used the term “reductionist security” instead
of “provable security.”
There are two unfortunate connotations of “proof” that come from mathe-

matics and make the word inappropriate in discussions of the security of cryp-
tographic systems. The first is the notion of 100% certainty. Most people not
working in a given specialty regard a “theorem” that is “proved” as something
that they should accept without question. The second connotation is of an intri-
cate, highly technical sequence of steps. From a psychological and sociological
point of view, a “proof of a theorem” is an intimidating notion: it is something
that no one outside an elite of narrow specialists is likely to understand in detail
or raise doubts about. That is, a “proof” is something that a non-specialist does
not expect to really have to read and think about.
The word “argument,” which we prefer here, has very different connotations.

An “argument” is something that should be broadly accessible. And even a rea-
sonably convincing argument is not assumed to be 100% definitive. In contrast
to a “proof of a theorem,” an “argument supporting a claim” suggests something
that any well-educated person can try to understand and perhaps question.
Regrettably, many “provable security” papers seem to have been written to

meet the goal of semantic security against comprehension by anyone outside the
field. A syntactically scrambled informal argument (see, for example, [52]) is
followed by a formalistic proof that is so turgid that other specialists don’t even
read it. As a result, proof-checking has been a largely unmet security objective,
leaving the papers vulnerable to attack. Indeed, Jacques Stern [53] has proposed
adding a validation step to any security “proof”:

Also, the fact that proofs themselves need time to be validated
through public discussion was somehow overlooked.

Unfortunately, this validation step will be hard to implement if the public finds
the purported proof to be completely opaque.
Theoreticians who study the security of cryptographic systems should not

try to emulate the practices of the most arcane branches of math and science.
Mathematicians who study p-adic differential equations, physicists who work
on quantum chromodynamics, and chemists who investigate paramagnetic spin-
orbit interactions do not seem bothered that their work is inaccessible to every-
one outside a tiny circle of fellow specialists. This is to be expected, since their
results and methods are intrinsically highly technical and out of reach to anyone
who is not totally immersed in the narrow subfield. Moreover, only a negligible
proportion of the world’s people — somewhere between 2−25 and 2−30 — have
any interest in what they’re doing; the rest of us do not care one iota about any
of it.
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Cryptography is different. A lot of people in industry, government, and
academia would like to truly understand to what extent they can have confidence
in the systems used to protect, encrypt, and authenticate data.
The major theoretical advances — such as probabilistic encryption, the first

good definition of secure digital signatures, the random oracle model, and the
idea of public-key cryptography itself — are simple, natural, and easy to under-
stand, or at least become so with the passage of time. In retrospect they look
inevitable and perhaps even “obvious.” At the time, of course, they were not at
all obvious. The fact that these fundamental concepts seem natural to us now
does not diminish our appreciation of their importance or our high esteem for
the researchers who first developed these ideas.
This brings us to another way in which theoretical cryptography is more an

art than a science. Its fruits, and even its inner workings, should be accessible to
a broad public. One can say that something “looks easy” without meaning any
disrespect. Top-notch ballet dancers make it look easy, as if anyone could do it;
but the audience knows that their achievement is possible only through great
talent and hard work. By the same token, researchers in “provable security”
should strip away unnecessary formalism, jargon, and mathematical terminology
from their arguments and strive to make their work “look easy.” If they do
so, their influence on real-world cryptography will undoubtedly become much
greater than it is today.
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