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Abstract

An algorithm for solving discrete logarithms in jacobians of small genus hyperelliptic curves

is presented and analyzed. This is a double large prime variation of the classical index-calculus

algorithm. In order to analyze it, a simplified algorithm is introduced, whose behavior can be

described by simple differential equations. The resulting complexity improves on the fastest

known algorithms. The theoretical result is validated by computer experiments, showing that

for genus 3 curves this algorithm is faster than Pollard Rho method even for rather small field

sizes.

1 Introduction

The discrete logarithm problem in jacobians of hyperelliptic curves is known to be solvable in
subexponential time if the genus is large compared to the base field size [1, 11, 3, 4]. The corre-
sponding index-calculus algorithm also works for small fixed genus, and although the running time
becomes exponential it can still be better than Pollard’s Rho algorithm [6]. Introducing a large
prime variation [13], it is possible to obtain an index calculus algorithm that is asymptotically
faster than Pollard’s Rho algorithm already for genus 3 curves.

In the present work, we go one step further in this direction and introduce a double large
prime variation for the small genus hyperelliptic index calculus. Our algorithm is indeed a very
simple extension to the single large prime algorithm of [13]. However, making a rigorous analysis
is not that easy: double large prime variations are commonly used in factorization algorithms, and
analyzed empirically. Since our goal is to give an upper bound on the complexity, we introduce a
simplified algorithm for the double large prime variation. This algorithm is expected to be slightly
slower than the full algorithm, but makes it feasible to perform an analysis based on differential
equations. For this, we rely on the fact that modeling the discrete algorithm by continuous time
analysis is legitimate.

In our work we show that there exists a probabilistic algorithm that solves a discrete logarithm

problem in the jacobian of a hyperelliptic curve of genus g ≥ 3 in time bounded by O(q2− 2
g ), up to

logarithmic factors. In this complexity estimate, g is supposed to be fixed and q tends to infinity.

This improves on the previous best bound O(q
2− 2

g+1/2 ).
The improvement is negligible for large genus and therefore the case of genus 3 curves is given

special consideration. For genus 3 curves, Pollard’s Rho method has a running time in O(q1.5),
whereas the single large prime algorithm is in O(q1.43) and our new method is in O(q1.33). We did
practical experiments which validate our analysis, the measured running times being in accordance
with the theoretical predictions. Furthermore, we demonstrate that even for rather small jacobian
sizes, our algorithm is much faster than Pollard’s Rho algorithm.

As an application, when designing a hyperelliptic cryptosystem [8] based on a genus 3 curve,
it is necessary to take into account our attack, and not only Pollard’s Rho attack. The sizes of
the parameters should then be enlarged by about 12.5% to maintain the security level.
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Another important contribution of our paper is the introduction of a new approach for analyzing
double large prime variations in various contexts. The situation in hyperelliptic discrete logarithms
is quite favorable, since the probabilities are uniform in the sense that all the large primes have the
same chance of occurring in a relation. This is no longer the case in the context of factorization
or discrete logarithms in finite fields. Still, our model can probably be used to at least predict the
number of relations that are needed before getting enough cycles.

The paper is organized as follows: in section 2 we recall the single large prime algorithm and
present our variant. In section 3 we describe the graph model for the double large prime variation,
and introduce the simplifications that allow the analysis that is made in section 4. In section 5
we put the results together to get the main theorem for the hyperelliptic discrete logarithm; and
in section 6 we describe our computer experiments that validate our approach and show that it
outperforms Pollard’s Rho method rather early.

2 Large prime variations for small genus index calculus

2.1 Setting

Let C be a hyperelliptic curve of genus g ≥ 3 over a finite field Fq with q elements, given by an
imaginary Weierstrass equation. The elements of the jacobian Jac(C) of C over Fq are handled via
their Mumford’s representation.

A discrete logarithm problem in Jac(C) is to be solved. Namely, a divisor D1 of known order
N and a divisor D2 in the subgroup generated by D1 are given. The goal is to compute the integer
λ in [0, N − 1] such that D2 = λD1.

2.2 Single large prime variation

There is a canonical injection of the curve C into its jacobian, which is used to define a factor base
and a set of large primes.

Definition 1 Let r be a real such that 0 < r < 1. The factor base B is an arbitrary subset of

C ⊂ Jac(C) of cardinality qr + O(1) and which is invariant under the hyperelliptic involution.

The set of large primes L is the set

L = {P ∈ C ⊂ Jac(C)} \ B.

Due to Weil’s theorem, #C ≈ q, and it is therefore possible to construct a suitable factor base
B, and we also have #L ≈ q.

Then the algorithm proceeds like any index-calculus algorithm with a large prime variation.
Random linear combinations of D1 and D2 are computed and tested for smoothness, allowing at
most one large prime. The smoothness test relies on the properties of Mumford’s representation
〈u(t), v(t)〉 for divisors. The polynomial u(t) is factored; if it splits completely and all the roots
but perhaps one correspond to points in B, then we have a relation perhaps involving one large
prime.

The analysis is made for a fixed value of g and letting q grow to infinity. At the heart of the
analysis is the birthday paradox that tells that after having collected k relations involving large

primes, they can be combined to form an expected number of k2

2q relations involving only elements
of the factor base B. Then estimating the probability of getting a relation with one large prime
and balancing everything with the linear algebra step, the optimal value for r is 1− 1

g+1/2
, and the

overall complexity is O
(

q
2− 2

g+1/2

)

.

Hence the following result is obtained in [13].

Theorem 1 (Thériault) A discrete logarithm problem in the jacobian of a hyperelliptic curve of

genus g ≥ 3 over a finite field Fq can be solved in time

O
(

q
2− 2

g+1/2

)

,
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where the constant depends on the genus g, and logarithmic factors in q are omitted.

2.3 A double large prime variation

To go beyond this result, it is natural to consider a double large prime variation. We keep the
same factor base and large prime set as before, but allow the parameter r to be set to a different
value.

As usual, we form random linear combinations of D1 and D2, and test them for smoothness,
but this time, we allow up to 2 large primes in each relation.

Definition 2 A relation is said to be Full if it involves only elements of the factor base B. A

relation is said to be FP if it involves elements of B and exactly one large prime. A relation is

said to be PP if it involves elements of B and exactly two large primes.

Clearly, PP relations can be found much more quickly than FP relations, but the problem is
to combine all these relations in order to obtain more Full relations. For that, an adaptation of
the union-find algorithm is used, making possible to solve this question in time almost linear in
the number of PP relations found.

A double large prime variation is profitable as long as the smoothness test is not substantially
slowed down by the fact that more large primes are allowed. In our case, the cost of the smoothness
test is unchanged by the double large prime variation, which implies that the overall complexity
cannot be worse than with the single large prime variation. In the sequel, our goal will be to
propose a way to analyze this double large prime variation, thus showing the complexity of the
single large prime algorithm can be improved.

The classical model of double large prime variation algorithms that is based on graph theory
will be recalled and then simplified in order to get an upper bound on the expected running time.

3 Graph models for double large prime variation algorithms

In this section, we try to provide a general presentation of what a double large prime variation is,
going beyond the context of integer factorization. When double large primes are used for index
calculus algorithms, relations involve multiplicities and squares can no longer be canceled out. This
implies a more elaborate description than if we were to restrict ourselves to integer factorization.

3.1 Description of the LP-graph and its evolution

The graph of large prime relations (LP-graph, in short) is an undirected acyclic graph with
1 + #L vertices, corresponding to the elements of L and the special vertex 1. All edges of the
LP-graph are labeled with a relation.

At the beginning of the algorithm there are no edges in the LP-graph, and a counter C is set
to zero. The algorithm stops when C reaches some prescribed value Cmax. We typically have
Cmax = #B + O(1), hence Cmax ¿ #L. The counter C must first be regarded as the number of
independent cycles that would appear in the LP-graph in the course of its evolution even though
no cycle is actually created.

We start our relation search. Each time we find a relation R, the LP-graph is modified according
to the following procedure.

• If R is Full, the LP-graph is unchanged and the counter C is incremented.

• Otherwise, we consider a new edge E, labeled by R, for potential inclusion into the LP-graph.
If R is FP, the vertices of E are 1 and p1 (the large prime appearing in R), while if R is
PP, the vertices of E are the two large primes p1 and p2 appearing in R.

We consider the following exclusive cases:
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– If E is already present (presumably with another label), the graph is unchanged and
the counter C is incremented.

– If adding E would not create any cycle, E is added to the LP-graph.

– If adding E would create a cycle Γ, we are led to a technical distinction. Let k = #Γ be
the number of edges that form Γ, V (Γ) their vertices, and R(Γ) their attached relations.
V (Γ) has cardinality k, and depending on whether 1 ∈ V (Γ) or not, the relations in
R(Γ) involve k − 1 or k large primes, respectively. By linear algebra, we can obtain a
linear combination of the relations in R(Γ) which has the contribution of at least k − 1
large primes canceled. Hence:

∗ If 1 ∈ V (Γ), a Full relation can be obtained. C is increased, and the LP-graph
is unchanged (note that a Full relation may also be obtained in lucky cases even
when 1 /∈ V (Γ) ; this “luck” is automatic in the classical case of the factorization of
integers by the quadratic or number field sieve, because the linear algebra involved
takes place over F2).

∗ Otherwise, an FP relation can be obtained. The counter C is unchanged and the
procedure described is now applied to this FP relation.

It is now apparent that the counter C in fact represents the number of independent Full
relations that can be obtained from the input relations. While this is clearly linked to the number
of cycles, the last sub-case states the distinction between the two.

Implementing the LP-graph as described here together with its evolution process is efficiently
done with the so-called union-find algorithm [12]. The processing time obtained is then essentially
constant, and tiny, for each relation. As a result, the complexity of the double large prime variation
algorithm is the average time to build a relation times the number of relations to build before the
counter C reaches Cmax.

3.2 Observed behavior of the algorithm

An analysis of the double large prime variation, predicting precisely the number of relations to
build before C ≥ Cmax, is a challenging task. It is hard, even though our situation here is quite
favorable: the large primes are all equiprobable. Studies such as [5] provide good knowledge of the
cycle appearance in random graphs, but cannot be easily adapted to the present situation because
of the bias introduced by the special vertex 1.

In order to tackle the analysis problem, we focus on the traits of the LP-graphs typically
handled. The special vertex 1 attracts many relations around it. In a typical application, the
expected degree of the vertex 1 is several orders of magnitude greater than the average degree of
the other vertices. Therefore, a huge connected component is quickly built around 1, much sooner
than would occur in a random graph. The probability for other connected components to be
“swallowed”by the huge connected component grows with their size. Eventually, the vast majority
of the cycles yielding full relations (i.e. incrementing C) belong to the connected component of
the vertex 1.

Based on this observation, we are tempted to concentrate the analysis on the giant connected
component and forget about other parts of the graph.

3.3 A simplified algorithm

We propose a simplified algorithm which will be easier to analyze. Each time the simplified
algorithm increments the counter C, the original algorithm would have done so, therefore the
simplified algorithm runs no faster than the full algorithm.

The simplified algorithm is the same as the algorithm described in subsection 2.3, except that
no edge is added that is not connected to 1: if a PP relation arrives for which no large prime
belongs to the connected component of 1 in the LP-graph, then the relation is just ignored (not
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even saved for later use). The technical discussion with cycles yielding or not yielding a Full
recombined relation is useless here, and we can forget the labels on the edges.

We give the precise rules for completeness:

• If the relation is Full, the LP-graph is unchanged and the counter C is incremented.

• Otherwise we consider a new edge E whose vertices are either 1 and p1, or p1 and p2,
depending on whether the incoming relation is FP or PP (the pi’s are the large primes
appearing in the relation).

– If E would not be connected to the 1 vertex, do nothing.

– If E is already present, the LP-graph is unchanged and the counter C is incremented.

– If adding E would not create any cycle, the edge is added to the LP-graph (thus
enlarging the connected component of 1).

– Otherwise, adding E would create a cycle. The LP-graph is unchanged and the counter
C is incremented.

Hence, the LP-graph is always a tree containing 1, modeling some subset of the giant connected
component constructed in the previous algorithm.

At the beginning of the computation, all the PP relations are thrown away, until the first FP
relation is encountered. As long as the number of FP relations built is small, most PP relations
are useless, since the probability that they meet the tree is tiny. However, at a certain point, the
giant component is large enough so that a reasonable proportion of the PP relations are useful
and eventually yield an increase of the counter C.

4 Complexity analysis

In order to simplify the analysis, we switch from a discrete time to a continuous time. The
unit of time we choose is the running time of each step in the attempt to produce relations. At
the implementation level, this unit of time corresponds to an operation on the jacobian and a
smoothness test. The continuous point of view gives rise to first-order differential equations for
key parameters, and their resolution leads to asymptotic running times.

We are interested in a discrete time process and we are aware that switching to a continuous
time may give rise to technical difficulties: in particular, in equations (1) and (2) the variances of
the underlying random variables can be assumed negligible (this is corroborated by experimental
data). Cautiously estimating those variances does not seem to be intractable but it would lead us
beyond the scope of the paper.

Assumption 1 The behaviour of the random variables involved in the simplified algorithm for the

double large prime variation can be faithfully modeled by differential equations. The variances of

the underlying random variables are negligible.

4.1 Differential equations describing the simplified algorithm

The two main quantities we will focus on are functions of the time denoted by u(t) and f(t):

• u(t) is the average proportion of large primes met at time t, expressed as a number between
0 and 1. In other words, this is the proportion of vertices connected to the vertex 1, at time
t. Obviously, at t = 0, we have u(0) = 0.

• f(t) denotes the average value of the counter C at time t. The value f(t) comprises genuine
Full relations which occur (rarely) in the course of the relation search stage, as well as the
relations obtained by recombining two or more FP or PP relations.

Since a relation (possibly Full, FP, PP, or not smooth at all) is produced during each unit of
time, an interval of time dt yields:
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• adt Full relations,

• bdt FP relations,

• cdt PP relations,

where a, b, and c are the respective probabilities to produce a relation that is Full, FP or PP.
It is then possible to describe the evolution of u(t) between t and t + dt. Among the bdt FP

relations produced in the interval of time, only b(1 − u) dt are expected to bring a “new” large
prime and to enlarge the connected component related to 1.

The PP relations can be of three forms: the probabilities for such relations to have respectively
0, 1, or 2 of its large primes already in the giant component are respectively written as (1 − u)2,
2u(1− u), and u2. Since the simplified algorithm drops relations with 0 known large primes, only
those involving a single unknown large prime add a new large prime to the system. As many as
2cu(1 − u) dt of these relations appear during the interval of time dt.

This yields the following differential system for u(t):

(#L)u′ = b(1 − u) + 2cu (1 − u) , (1)

u(0) = 0.

As for f(t), an expression of f ′(t) is also easy to obtain. The number of “new” relations
occurring within the interval of time dt is split into three contributions:

• Full relations: We can count on adt of these.

• FP relations: We know that bdt such relations appear, but only those matching a large
prime already met increment the counter C. Therefore the contribution is budt.

• PP relations: Only the PP relations involving two large primes already met increment the
counter C. This gives cu2 dt.

The expression for f ′(t) is then:

f ′ = a + bu + cu2, (2)

f(0) = 0.

4.2 Solution of the system

Solving these equations is not hard. First a closed form for u(t) is obtained, and then integrating
the expression for f ′(t) yields a formula for f(t). In order to obtain a manageable expression of
the result, we use a few abbreviations. Let

T =
#L

2c + b
, w(t) =

b

2c + b

(

exp(t/T ) − 1
)

,

then it is easy to verify that an expression for u(t) is

u(t) = 1 −
1

1 + w(t)
.

We see that u(t) is an increasing function which grows from 0 (when t = 0) to 1 as t grows to
infinity. This is consistent with the observation that at the beginning of the computation no large
prime has been met, whereas, after a long time, almost every large prime is involved in at least
one of the relations found.

From the expression of u(t), we get the following expression for f(t):

f(t) =

(

a −
b2

4c

)

t +
#L

2

((

1 +
b

2c

)

log(1 + w(t)) −
w(t)

1 + w(t)

)

.

6



t

f(t)

0

Figure 1: General form of f(t)

t

f(t)

0

y = c (t − T ∗)

Figure 2: Large scale view of f(t)
when a ¿ b ¿ c ¿ 1

When t grows to infinity, the expression log(1 + w(t)) becomes equivalent to t/T , whereas
w(t)/(1 + w(t)) tends to 1, so that f(t) becomes equivalent to (a + b + c)t. This is not surprising,
since after a long period of time, the graph becomes a huge tree containing all the vertices, and
each new Full, FP or PP relation yields a new cycle that increments the counter.

The quantity T ∗ def
== T log

(

2c
b

)

can be viewed as a transition point, since this is around this
time that u varies the most and jumps from 0 to 1. Indeed, assuming that b ¿ c, for t = T ∗− 2T ,
we have u ≈ 0.12, whereas for t = T ∗ + 2T , we have u ≈ 0.88.

The shape of the function f(t) is as shown in figure 1, where the slope at 0 is a and, assuming
that a ¿ b ¿ c ¿ 1, the asymptotic behavior at infinity is close to y = c (t − T ∗). In fact, since a
is tiny compared to c, the first slope looks horizontal on a large scale. At the transition point, the
behavior of the function is locally exponential, which explains the “explosive growth” or “phase
transition” terminologies encountered in the literature [9, 10]. The picture is then closer to the
one in figure 2, where the function f(t) looks very angular.

4.3 Asymptotic analysis

The factor base is usually smaller than the set of large primes by an order of magnitude, so we can
expect to have a relationship of the form #B = (#L)r, with 0 < r < 1. The double large prime
variation algorithm finishes when the number of genuine or recombined full relations is larger than
the size of the factor base. Hence we want to evaluate the time tf such that

f(tf ) = #B.

We make an asymptotic analysis for tf , when #L grows to infinity. The probabilities a, b and
c can be viewed as functions of #L. We make the following assumptions, which are verified in the
case of the hyperelliptic curve discrete logarithm index calculus:

• a ¿ b ¿ c ¿ 1;

• a − b2/4c > 0;

• The contribution atf of “genuine” Full relations is negligible in the final count of relations.

With these assumptions, the expressions for T , w(t) and f(t) can be simplified. In the following,
we shall write α ∼ β when α and β are functions of #L and that α/β tends to 1 when #L tends
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to infinity. Hence we have

T ∼
#L

2c

w(tf ) ∼
b

2c
(exp(tf/T ) − 1)

f(tf ) ∼
#L

2

(

log(1 + w(tf )) −
w(tf )

1 + w(tf )

)

=
#L

2
τ(w(tf ))

where τ(w) = log(1 + w)− w
1+w . The linear term of f(t) is negligible at t = tf since it is bounded

by atf . Since we want to evaluate tf such that f(tf ) = #B, we have to solve

τ(w(tf )) ∼ 2
#B

#L
.

The value of #B

#L
is close to zero by assumption. Then, w(tf ) must also be close to zero, because τ

is a strictly increasing function from 0 to infinity. In the neighborhood of zero, τ(w) is equivalent
to w2/2, and we obtain that

w(tf ) ∼ 2

√

#B

#L
.

Replacing w(tf ) by its equivalent b
2c (exp(tf/T ) − 1), we get

tf ∼
#L

2c
log

(

1 +
4c

b

√

#B

#L

)

. (3)

4.4 Cycle length

Once the LP-graph has yielded enough full relations (i.e. once we have #B full relations), these
relations are expressed in the form of a sparse matrix. It is then necessary to find a non-trivial
vector in its kernel. Since the matrix is sparse, Lanczos or Wiedemann algorithm is going to be
used. The complexity of these algorithms depends on the weight of the input matrix. To estimate
this weight, we seek an upper bound on the expected cycle length in the LP-graph.

In order to do this, we introduce a new set of functions denoted si(t), for i ∈ N
∗. At time t,

si(t) is the proportion of large primes (amongst the total of #L large primes) which are at distance
i of the vertex 1 in the LP-graph. These functions sum up as

∑∞

i=1 si(t) = u(t). Since the graph
is empty at time t = 0, we have si(0) = 0.

We can obtain differential equations linking these functions. A path from the vertex 1 of length
i is created (and a new large prime has distance i from 1) when a PP relation contains a previously
unused large prime and a large prime at distance i − 1 from 1. The si(t)’s therefore satisfy

(#L) s′i(t) = 2csi−1(t)(1 − u(t)), ∀ i > 1

with the exception of s1(t) which corresponds to the number of FP relations and satisfies

(#L) s′1(t) = b(1 − u(t)).

We also define V (t), the weighted sum of si’s by

V (t) =
∞
∑

i=1

isi(t).
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The average distance between the vertex 1 and a connected large prime is then given by V (t)/u(t).
An expression for V (t) is obtained from the following differential equation:

V ′(t) = u′(t) +
∞
∑

i=1

(i − 1)s′i(t),

V ′(t) −
2c

#L
(1 − u(t))V (t) = u′(t),

V ′(t) −
m′(t)

m(t)
V (t) = u′(t),

where the last equation has been rewritten using m(t) = 1 + 2c
b u(t). It is easily verified that the

solution to this differential equation is

V (t) =
b

2c
m(t) log m(t).

The average distance between the vertex 1 and a connected large prime, given by V (t)/u(t),
can be shown to be a strictly increasing function. Therefore we obtain the upper bound:

V (t)

u(t)
≤ lim

t→∞

V (t)

u(t)
=

2c + b

2c
log

(

2c + b

b

)

.

At time t, cycles are created when the edge corresponding to a PP relation would join two
vertices already connected to the vertex 1 (or the edge corresponding to a FP relation would join
the vertex 1 to a connected vertex). The expected length of these cycles will therefore be bounded
by 2V (t)/u(t)+1. The upper bound on V (t)/u(t) yields trivially an upper bound on the expected
cycle length, which is valid for all t ≤ tf :

expected cycle length ≤ 2
2c + b

2c
log

(

2c + b

b

)

+ 1,

expected cycle length ∈ O

(

log

(

2c

b

))

since b ≤ c. (4)

5 Back to the hyperelliptic curve discrete logarithm prob-

lem

Let C be a hyperelliptic curve of genus g over a finite field with q elements. Let 0 < r < 1 to
be fixed later, and let B and L be as in definition 1. We apply the double large prime variation
algorithm to that curve. The probabilities a, b, c to get a Full, FP or PP relation are given by the
following proposition which is a direct consequence of Weil bounds.

Proposition 1 The probability for a random divisor to yield a Full relation is

a ∼ qg(r−1)/g! .

The probability for a random divisor to yield an FP relation is

b ∼ q(g−1)(r−1)/(g − 1)! .

The probability for a random divisor to yield a PP relation is

c ∼ q(g−2)(r−1)/2(g − 2)! .
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Before applying the analysis of the previous section, we take into account the classical im-
provement of keeping in the factor base and the set of large primes only one representative for
each class modulo the hyperelliptic involution. The probabilities a, b, c are unchanged, but now
we have #L ∼ q

2 and #B ∼ qr

2 .
Putting these values inside formula 3, we obtain an estimate of

(g − 2)!

2
q1−(g−2)(r−1) log

(

1 + 2(g − 1)q(1−r)/2
)

elements to explore before finding enough relations with the simplified algorithm. Note that this
hides the complexity for arithmetic operations in the jacobian and smoothness tests, since these
operations represent a unit of time.

We want to make an analysis where the genus is fixed and q grows to infinity. The upper bound
becomes equivalent to

(1 − r)(g − 2)!

4
q1−(g−2)(r−1) log q ∈ O(q1−(g−2)(r−1) log q).

The end of the discrete logarithm computation is the linear algebra step: finding a non-trivial
vector in the kernel of a sparse matrix of size #B using Lanczos or Wiedemann algorithm. This
step has a complexity proportional to (#B)

2
times the row weight of the matrix.

The row weight of the matrix is linked to the cycle length for recombined relations: a row in
the matrix is obtained either from a Full relation (whose contribution is g factor base elements),
or from a cycle of length ` ≥ 2, which involves (` − 2) PP relations, and 2 FP relations. Since
every PP relation involved in a cycle contributes g−2 factor base elements (g−1 for FP relations)
to the corresponding recombined relation, the row weight of the matrix is O(g × cycle length).
Hence, using formula 4, the linear algebra step requires

O(g(log q)q2r)

operations modulo the group order.
Ignoring the influence of the logarithmic factors, we can balance the two phases by taking

r = 1 − 1
g . Finally, we get the following result.

Theorem 2 Under assumption 1, a discrete logarithm problem in the jacobian of a hyperelliptic

curve of genus g ≥ 3 over a finite field Fq can be solved in time

O
(

q2− 2
g

)

,

where the constant depends on the genus g, and logarithmic factors in q are omitted.

For small genera, we obtain the following complexities:

g 3 4 5

Pollard’s algo q3/2 q2 q5/2

Basic index calculus q2 q2 q2

Single large prime q10/7 q14/9 q18/11

Double large prime q4/3 q3/2 q8/5

Obviously, the improvement is marginal when the genus gets large, not to say invisible. On the
other hand, for genus 3 curves, the O(q2) complexity of the basic index calculus drops to O(q1.428)
with the single large prime algorithm of [13] and to O(q1.333) with our double large prime variant.
The constants involved are small enough so that even for small sizes our algorithm is expected to
be faster than Pollard’s Rho algorithm. The crossover is examined in section 6.2.
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simplified algorithm full algorithm
q

t t/theory t t/q4/3
# cycles

≈ 215 2000667 1.13 815473 0.78 512

≈ 216 4500744 0.99 1811672 0.69 812

≈ 217 12551636 1.06 4705192 0.71 1290

≈ 218 30904671 1.01 11253002 0.67 2047

≈ 219 79709007 1.01 27776102 0.66 3250

≈ 220 200813292 0.98 66834647 0.63 5160

≈ 221 532137499 1.01 170327927 0.63 8191

≈ 222 1373241051 1.00 417044579 0.62 13003

≈ 223 3543302265 1.00 1036566361 0.61 20642

≈ 224 9143409061 1.00 2576921045 0.60 32767

≈ 225 23727506320 1.01 6430349490 0.59 52015

≈ 226 61018511547 1.00 15899195912 0.58 82570

≈ 227 157537516376 1.00 39993810485 0.58 131071

Table 1: Final value of t for the two LP-graph models

6 Computer experiments, validation of the model

6.1 Validation of the analysis

We implemented the double large prime algorithm described for hyperelliptic curves of genus 3
defined over prime fields. The first series of experiments shown in table 1 aims at validating our
analysis. Table 1 lists the final value of t for several experiment sizes. We provide data for the
simplified algorithm for which we have done the analysis above, as well as for the full algorithm
(as described in section 2.3). We recall that t represents the number of trial relations to test for
smoothness before sufficiently many recombined relations can be obtained. The running time of
the whole algorithm (without linear algebra) is t times a polynomial expression in log q accounting
for jacobian arithmetic and smoothness tests.

The third column of table 1 gives the ratio of the experimental value obtained in the simplified
algorithm versus the theoretical value predicted in section 4.3. We compared t with the expres-

sion q4/3

2 log
(

4q1/6 + 19
3

)

, which is a refinement from equation 3, using the second order Taylor
expansion of f(tf ). As the data shows, the accordance of experimentation and theory is striking,
since the experimental value is in most cases within 1% of its theoretical expectation. It should
be noted that for each experiment size, only one run of the algorithm was done, which most likely
accounts for the variance observed for q ≈ 215 and q ≈ 217.

The full algorithm gives of course shorter running times. We give the comparison of t with
q4/3 in the fifth column. The ratio seems to be constant, which suggests that the asymptotic value
to be expected for this model is Θ(q4/3), with no logarithmic factors (except of course for those
related to the jacobian arithmetic and smoothness tests).

6.2 Running times and comparison with Pollard Rho

The implementation of the algorithm was done in C/C++. We programmed the jacobian arithmetic
using explicit formulae, based on the work of [16]. We give timings for two random curves defined
over prime fields of cardinality roughly 224 and 227. On a Pentium-M processor clocked at 1.7
GHz, our implementation performs 200 000 jacobian additions or doublings per second (i.e. 5
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q Relation search Linear algebra Total Pollard Rho (estim.)

224 0.6 days 0.2 days 0.8 days 3.5 days

227 9 days 5.8 days 14.8 days 79 days

Table 2: Total time for our algorithm and Pollard Rho

microseconds each). A step of the algorithm, corresponding to the unit of time t chosen in the
analysis above, is performed in 20 microseconds. This includes the time for the smoothness test.

The Pollard Rho algorithm is known to have O(
√

#G ) complexity. More precisely, in the
case of a prime order jacobian of a hyperelliptic curve of genus three, the number of jacobian
operations required is equivalent to

√

π#J/2 (we take advantage of the hyperelliptic involution).
Instantiated with the parameters for a genus three curve over Fq, where q ≈ 227, this yields
1.37 ∗ 1012 operations in the jacobian, or, at the pace quoted above, 79 days of computation on a
Pentium-M processor.

In comparison, the index calculus algorithm described here, with the double large prime varia-
tion, requires only 4 ∗ 1010 jacobian operations and smoothness tests on the same curve as above.
This corresponds to 9 days of computation. We performed the corresponding linear algebra compu-
tation, using as a linear system solver the block Wiedemann implementation described in [2, 14, 15].
This linear algebra computation required 5.8 days of computation on the same processor. There-
fore, the algorithm presented here induces a speed-up of 5.3 compared to Pollard Rho for this
problem size. For a curve defined over a field of size 224, the corresponding speed-up is already
of 4.4. Using our implementation, a definition field of size 227 would correspond roughly to the
crossover point between Pollard Rho and the single large prime algorithm.

Note that because of the linear algebra step, the index calculus approach cannot enjoy the
same amount of parallelization as Pollard’s algorithm and its variants. Partial distribution of the
linear algebra is possible through the use of multi-processor machines, and taking advantage of
the distribution capabilities of the block Wiedemann algorithm. We have been able to reduce the
linear algebra time to 1.9 days this way, with room for further improvement since we have not
ported yet the asymptotically fast algorithm presented in [14].

7 Conclusion

We have described an algorithm for solving discrete logarithms in hyperelliptic curves of small
genus at least 3, which is faster than previously known methods. The difficult part was to provide
an analysis of a double large prime variation of the algorithm of [13]. This analysis relies on an
assumption that has been validated by computer experiments. Experiments also demonstrated
that even for rather small sizes, our method is better than Pollard Rho algorithm.

The direct application to cryptography is that the security of a genus 3 hyperelliptic cryp-
tosystem is overestimated if only Pollard Rho algorithm is taken into account. Indeed our work
demonstrates that the running time for solving a discrete logarithm problem in a genus 3 Jacobian
group is roughly the same as for a discrete logarithm computation in an elliptic curve for which
the logarithm of the group order is 1/9th smaller. However, the complexity of our attack, as for
any index-calculus method, depends only on the size of the whole Jacobian. Hence we are in
a situation somewhat similar to multiplicative groups of finite fields: it is possible to work in a
subgroup and with a private key whose sizes are large enough to counter Pollard Rho and similar
attacks, as long as the size of the whole group is large enough to prevent an index-calculus attack.
As a conclusion, in order to build a genus 3 hyperelliptic cryptosystem, one has a penalty of 12.5%
for the full group size, but the private key size can be the same as for elliptic curve cryptosystems,
by working in a subgroup of appropriate size. We note that our method also applies to the Weil
descent algorithm of [7] that attacks elliptic curves defined over small extension fields. Hence, this
12.5% penalty also applies to elliptic curve cryptosystems defined over extension finite fields whose

12



degree is a multiple of 3.
Finally, we believe that the simplified model we used for the analysis could be used in other

contexts such as factorization or classical discrete logarithm algorithms in order to have a better
understanding of the double large prime variations that are often used. Even though we have
resorted to the simplified model in order to achieve the analysis, the experimental evidence gathered
in table 1 supports the idea that a fairly reliable prediction of the number of relations needed is
possible even for the full algorithm, and not limited to the context studied in this paper.
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