
 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 1

Protecting (even) Naïve Web Users,
or: Preventing Spoofing and Establishing Credentials of Web Sites

Amir Herzberg1 and Ahmad Gbara
Computer Science Department

Bar Ilan University
Abstract

In spite of the use of standard web security measures, swindlers often clone sensitive web sites and/or
present false credentials, causing substantial damages to individuals and corporations. We believe that, to large

extent, this is due to the difficulty of noticing when a sensitive web page has incorrect location or is simply
unprotected. In fact, we show that several of the largest web sites, ask users for passwords in unprotected pages,

making them easy targets; apparently, even the designers did not notice the lack of protection.

 Several papers presented web spoofing attacks, but mostly focused on advanced attacks trying to mislead
even a careful expert; some also suggested countermeasures, mostly by improved browser user interface.

However, we argue that these countermeasures are inappropriate to most non-expert web users; indeed, they are
irrelevant to most practical web-spoofing attacks, which focus on naive users. In fact, even expert users could be

victim of these practical, simple spoofing attacks, resulting in identity theft or other fraud.

We present the trusted credentials area, a simple and practical browser UI enhancement, which allows
secure identification of sites and validation of their credentials, thereby preventing web-spoofing, even for naïve

users. The trusted credentials area is a fixed part of the browser window, which displays only authenticated
credentials, and in particular logos, icons and seals. In fact, we recommend that web sites always provide

credentials (e.g. logo) securely, and present them in the trusted credentials area; this will help users to notice the
absence of secure logo in spoofed sites. This follows the established principle of branding. Logos and credentials

may be certified by trusted Certificate Authorities, or by peers using PGP-like `web of trust`.

Existing web security mechanisms (SSL/TLS) may cause substantial overhead if applied to most web
pages, as required for securing credentials (e.g. logo) of each page. We present a simple alternative mechanism

to secure web pages and credentials, with acceptable overhead. Finally, we suggest additional anti-spoofing
measures for site owners and web users, mainly until deployment of the trusted credentials area.

1 Introduction
The web is the medium for an increasing amount of business and other sensitive transactions, for example

for online banking and brokerage. Virtually all browsers and servers deploy the SSL/TLS protocols to address
concerns about security. However, the current usage of SSL/TLS by browsers, still allows web spoofing, i.e.
misleading users by impersonation or misrepresentation of credentials. Swindler can perform web spoofing by
clever attacks, which are likely to mislead even technically savvy and wary users, or by simpler techniques, which
would still mislead most laymen and probably even many expert users, when not on their guard. Indeed, there is
an alarming increase in the amount of real-life web-spoofing attacks, usually using the simpler techniques. Often,
the swindlers lure the user to the spoofed web site by sending her spoofed e-mail messages that link into the
spoofed web-sites; this is a phishing attack. In a typical phishing attack, spoofed spam e-mail messages are lure
the victim into spoofed web sites, e.g. impersonating as financial institutions. The goal of the attackers is often to
obtain personal and financial information and abuse it for identity theft. A study by Gartner Research [L04] found
that about two million users gave such information to spoofed web sites, and that “Direct losses from identity

1 Contact author; addresses: herzbea@cs.biu.ca.il and http://amirherzberg.com.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 2

theft fraud against phishing attack victims — including new-account, checking account and credit card account
fraud — cost U.S. banks and credit card issuers about $1.2 billion last year.”. For examples of phishing e-mail
messages, see [Citi04]. Spoofing attacks, mostly using the phishing technique, are significant threats to secure e-
commerce, see e.g. [APWG04, BBC03] and Figure 1. We investigate spoofing and swindling attacks and present
countermeasures, focusing on solutions that protect naïve as well as expert users.

Figure 1: Phishing attack trends (source: [APWG04])

Felten et al. first identified the web-spoofing threat in [FB*97]. However, in this work and all follow-up
works [LN02, LY03, SF03, YS02, YYS02], the focus was on attacks and countermeasures for knowledgeable and
wary users, who check indications such as the URL (location) of the web site and the security lock (SSL/TLS)
indicator. However, practical web-spoofing attacks deployed so far, do not use such techniques at all, or use just
basic scripts to present fake location bar [APWG04, Citi04]. Indeed, we argue that most users will not be able to
detect well-designed spoofed web sites, even without requiring the attacker to emulate browser functionality at
all. Such attacks will therefore succeed even using the countermeasures proposed in the existing literature [LN02,
LY03, SF03, YS02, YYS02].

To prevent web spoofing, we propose to establish a trusted credentials area of the browser window, in
which the browser displays validated logos, seals and other credentials of the web page / site. We recommend that
commercial and organizational web sites present secure logo and credentials in all of their web pages, both in
order to protect the integrity of these pages, and to increase the likelihood of users detecting a spoofed (sensitive)
web page, by noticing the lack of the appropriate logo and/or credentials in the trusted credentials area.

We use cryptographic mechanisms to validate the logos and credentials in the trusted credentials area.
Specifically, we show how to use the (existing, deployed) SSL/TLS protocols for this purpose. However,
currently many organizations use SSL/TLS only for few sensitive web pages, since these protocols may involve

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 3

substantial overhead if applied for most or all web pages. To allow web-sites to protect the integrity of all of their
pages, as we recommend, we present an alternative mechanism, the connection-less transport layer security
(CLTLS) protocol. CLTLS protocol is a simple variant of TLS, but by being connection-less and by additional
optimizations, it can provide the necessary validation of web pages with acceptable overhead.

Our solutions are simple and practical; we are implementing them as extensions of the Mozilla open-
source browser [Mozilla]. We hope that this publication will allow additional implementations as well as
feedback that will help us improve the design.

1.1 Organization
We begin, in Section 2, with a review of web spoofing attacks and defenses, deriving a set of design

criteria for protecting naïve users against spoofing (and phishing) attacks. Then, in Section 3, we present the
trusted credentials area approach. In Section 4 we present the connection-less transport layer security (CLTLS)
protocol, required to ensure acceptable overhead of validation of credentials and logos. Finally, in Section 5, we
conclude with discussion of future work and recommendations for web-site owners, end users, and browser
developers.

2 Web Spoofing: Threat models, Attacks, Defenses and Design Criteria
The initial design of Internet and Web protocols assumes benign environment, where servers, clients and

routers cooperate and follow the standard protocols, except for unintentional errors. However, as the amount and
sensitivity of usage increased, concerns about security, fraud and attacks became important. In particular, since
currently Internet access is widely (and often freely) available, it is very easy for attackers to obtain many client
and even host connections and addresses, and use them to launch different attacks on the network itself (routers
and network services such as DNS) and on other hosts and clients. In particular, with the proliferation of
commercial domain name registrars allowing automated, low-cost registration in most top level domains, it is
currently very easy for attackers to acquire essentially any unallocated domain name, and place there malicious
hosts and clients. We call this the unallocated domain adversary: an adversary who is able to issue and receive
messages using many addresses in any domain name, excluding a finite list of (already allocated) domain names.
While we are not aware of prior definition of this weak form of adversary, we believe most experts would agree
that this is the most basic and common type of adversary, and that Internet applications and mechanisms should
be resilient at least to attacks by unallocated domain adversaries.

Unfortunately, we believe, as explained below, that currently, most (naïve) web users are vulnerable even
against unallocated domain adversaries. This claim may be surprising, as sensitive web sites are usually protected
using the SSL or TLS protocols, which, as we show in the following subsection, securely authenticate web pages
even in the presence of intercepting adversaries, which are able to send and intercept (receive) messages from all
domains. Indeed, even without SSL/TLS, the HTTP protocol securely authenticates web pages against spoofing
adversaries, which are able to send messages from all domains, but receive only messages sent to unallocated
(adversary-controlled) domains. However, the security by SSL/TLS (against intercepting adversary; or by HTTP
against spoofing adversary) is only to the requesting application (usually browser), and only with respect to the
specific address (URL) and security mechanism (HTTPS, using SSL/TLS, or `plain` HTTP); what guarantees that
this address and security mechanism really correspond to the user’s intentions and expectations? Web spoofing
attacks usually focus on this gap between the intentions and expectations of the (naïve) user, and the address and
security mechanism specified by the browser to the transport layer.

In the next subsection, we give a very brief description of the SSL/TLS protocols, focusing on their
mechanisms for server authentication. We then review Web-spoofing and phishing attacks, showing how they are
able to spoof even sensitive web sites protected by SSL/TLS. We also discuss some of the countermeasures
against web spoofing proposed in previous works, and argue that they are appropriate for security savvy and alert

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 4

users, but may not be sufficient for naïve, off-guard users. We complete this section by identifying design criteria
for defenses against web spoofing.

2.1 Server Authentication with SSL/TLS
Netscape Inc. developed the Secure Socket Layer (SSL) protocol, mainly to protect sensitive traffic, such

as credit card numbers, sent by a consumer to web servers (e.g. merchant sites). Transport Layer Security (TLS) is
the name of an IETF standard designed to provide SSL’s functionality; most browsers enable by default both SSL
and TLS. TLS has several improvements in cryptographic design, but they are beyond the scope of this article
(see [R00, H04]); therefore we use, from here on, the name SSL, but refer also to TLS.

We focus on SSL’s core functionality and basic operations. Simplifying a bit, SSL operation is divided
into two phases: a handshake phase and a data transfer phase. We illustrate this in Figure 2, for connection
between a client and an imaginary bank site (http://www.bank.com). During the handshake phase, the browser
confirms that the server has a domain name certificate, signed by a trusted Certificate Authority (CA), authorizing
it to use the domain name www.bank.com contained in the specified web address (URL). The certificate is signed
by CA; this proves to the browser that CA believes that the owner of the domain name www.bank.com is also the
owner of the public key PKserver. Next, the browser chooses a random key k, and sends to the server
EncrytPKserver(k), i.e. the key k encrypted using the public key PKserver. The brower also sends MACk(messages),
i.e. Message Authentication Code using key k computed over the previous messages. This proves to the server
that an adversary didn’t tamper with the messages to and from the client. The server returns MACk(messages)
(with the last message from the browser added to messages); this proves to the browser that the server was able to
decrypt EncrytPKserver(k), and therefore owns PKserver (i.e. it has the corresponding public key). This concludes
the handshake phase.

The data transfer phase uses the established shared secret key to authenticate and then encrypt requests
and responses. Again simplifying, the browser computes Encryptk(Request, MACk(Request)) for each Request, and
the server computes Encryptk(Response, MACk(Response)) for each Response. This protects the confidentiality
and integrity of requests and responses.

Client’s browser Bank’s server
Hello, options

Certificate=SignCA(www.bank.com,PKserver,...)

EncrytPKserver(k), MACk(messages)

MACk(messages)

Encryptk(Request, MACk(Request))

Encryptk(Response, MACk(Response))

Data Transfer
Phase: Repeat
for each request

Handshake
Phase: once
per connection

Figure 2: Simplified SSL/TLS Operation

To summarize, web security is based on the following basic security services of SSL:

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 5

1. Server (domain name) authentication2: confirming that the server has the private key which can decrypt
messages encrypted by the client using public key PKserver, where the certificate signed by the CA
establishes the linkage between the ownership of PKserver to the domain name of the site (www.bank.com in
this example).

2. Confidentiality and authentication of the traffic between client and server, by using encryption and message
authentication (MAC) using the shared secret `master key` established during handshake phase.

Unfortunately, most web pages are not protected by SSL. This includes most corporate and government web
pages, and other sensitive web pages. The reason is mainly performance; the SSL protocol, while fairly
optimized, still consumes substantial resources at both server and client, including at least four flows at the
beginning of every connection, state in the server, and computationally-intensive public key cryptographic
operations at the beginning of many connections. Later on, we present a more efficient mechanism for
authenticating credentials of web pages and other objects.

2.2 Web-spoofing and Phishing Attacks
SSL is a mature cryptographic protocol; while few weaknesses were found in some early versions and

implementations of it, the versions currently used, from version 3.0 of SSL and 1.0 of TLS, seem secure. (This
refers to the full protocol; the simplified description above is not secure.) However, the security of a solution
based on SSL/TLS depends on how the protocol is used, e.g. by browsers. There are two major vulnerabilities in
the way browsers use SSL/TLS.

The first vulnerability is due to the dependency on public key certificates linking the public key with the
location (URL). In the false certificate attack, the adversary receives a certificate for the domain of the victim web
page from a CA trusted by the browser, but containing a public key generated by the adversary. Therefore, the
adversary has the matching private key and can pass SSL server authentication for the victim web page. Most
browsers are pre-installed with a long list of certification authorities which are trusted for server authentication by
default; few users inspect this list and remove unknown or untrusted CA entries. Furthermore, since CA compete
with each other on offering certificates to servers, and have very limited if any liability in case of fraud, it is
usually fairly easy and inexpensive to obtain false site (and e-mail) certificates; see [ES00, �S*01]. We are not
aware of swindlers actually deploying this attack in practice so far, possibly due to the existence of the larger
vulnerability that we next describe.

The second, larger vulnerability is that due to the dependency on the user to validate the authenticity of
web sites, by noting relevant status areas in the browser user interface. The relevant status areas are the location
bar, containing the URL (Universal Resource Locator), and the SSL/TLS indicator (typically, as open lock for
insecure sites, closed lock for SSL/TLS protected sites). We are mostly interested in the web spoofing attack,
which exploits this vulnerability, by directing the browser to an adversary-controlled clone site that resembles the
original, victim site, which the user wanted to access. Web spoofing attacks are very common, and are the most
severe threat to secure e-commerce currently. As we explain below, most web spoofing attackers simply rely on
the fact that most users would usually not notice a wrong URL or SSL indicator, when approaching their online
banking site (or other sensitive site). Therefore, an attacker can circumvent the SSL site authentication trivially,
by not using SSL or by using a URL for which the attacker can obtain a certificate. More advanced attacks can
mislead even users that validate the SSL indicator and location bar (containing URL).

The first challenge for a web spoofing attack is to cause the browser to receive the clone site, when the
customer is really looking for the victim site. The attacker can exploit different parts of the process of receiving a
(sensitive) web page. We illustrate the typical scenario of receiving a sensitive web page in Figure 3. The process
begins when the user selects the web site, by entering its location (URL) or by invoking a bookmark or link, e.g.
in an e-mail message (step 1a). The browser, or the underlying transport layer, then sends the name of the domain

2 SSL also supports client authentication, but this is rarely used to protect web transactions, possibly due to concerns about user acceptance
and support costs; we therefore do not discuss it.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 6

of the site, e.g. xxx.com, to a Domain Name Server (step 2a). The Domain Name Server returns the IP address of
the site (step 2b). Now, the client sends an HTTP request to the site, using the IP address of the site (step 3a), and
receives the HTTP response containing the web page (step 3b); these two steps are protected by SSL, provided
that the URL indicates the use of SSL (by using the https protocol in the URL). Finally, the browser presents the
page to the user (step 1b).

InternetInternet

Domain Name
Server (DNS)

Web
Server

1a. URL/Link

2a. Domain

2b. IP

3a. Request

3b. Response

1b. Display

SSL/TLS
Protected

Figure 3: HTTP request/response process with SSL protection

If we did not use SSL/TLS, the attacker could attack all three pairs of steps in this process, as follows:

1. Trick the user into requesting the spoofed web site in step 1a, and/or into using http rather than
https, i.e. not protect the request and response using SSL/TLS.

2. Return an incorrect IP address for the web server in step 2b. This can be done by exploiting one
of the known weaknesses of the DNS protocol and/or of (many) DNS servers. A typical example
is DNS cache poisoning (`pushing` false domain�IP mappings to the cache of DNS servers).

3. Intercept (capture) the request in step 3a (sent to the right IP address) and return a response in
step 3b from the spoofed site.

The goal of the server authentication mechanism in SSL/TLS, briefly outlined above, is to prevent the two
last attacks, by checking that the server’s certificate contains the requested domain, as long as the certificates are
valid. Indeed, browsers using SSL and/or TLS will detect, and warn the user, if the site does not have the private
key matching the public key in a valid certificate signed by a certificate authority (CA) whose public key is in the
list kept by the browser. An attacker may use a false certificate from one of the many certificate authorities in the
default list of popular browsers (e.g. 115 in Internet Explorer 6.0). Furthermore, since different browsers maintain
different default lists of certificate authorities, and certificates are expensive, users often receive warnings about
certificates (expired, signed by unknown CA key, etc.). As a result, it is quite likely that users will ignore the
warning regarding the certificate; Grigg [G04] reports a spoofing web site, which simply used a certificate from a
non-existent CA, relying on users tendency to `click through` warning windows.

However, most spoofing attacks against SSL/TLS protected web sites focus on the first attack, i.e.
tricking the user into requesting the spoofed web site and/or into using an insecure connection (without SSL)
rather than an SSL-protected connection. Unfortunately, spoofers often succeed in tricking users into using the
wrong URL, or not using SSL (i.e. http rather than https). The reason is simple: users rarely type manually the

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 7

address of the sensitive web page. Instead, in most cases, users link into the sensitive web page from a referring
web page, which is usually insecure, e.g. a homepage of the service provider or results from search engine. Very
few service providers and search engines use SSL to protect the links. Therefore, an attacker that can intercept the
requests in step 3a, or return incorrect IP addresses in step 2b, is usually able to trick the user into requesting the
URL of the spoofed site.

However, most web-spoofing attacks exploit easier methods, which do not require either interception of
messages to `honest` web sites, or corruption of the DNS response. One method is URL redirection, due Felten et
al. [FB*97]. This attack begins when the user accesses any `malicious` web site controlled by the attacker, e.g.
containing some content; this is the parallel of a Trojan software, except that users use less cautious about
approaching untrusted web sites, as browsers are supposed to remain secure. The attack works if the user
continues surfing by following different links from this malicious site. The site provides modified versions of the
requested pages, where all links invoke the malicious site, which redirects the queries to their intended target.
This allows the malicious site to continue inspecting and modifying requests and responses without the user
noticing, as long as the user follows links. However, this still requires the spoofer to intercept communication to a
web site used by the user, or to control such a site.

In practice, attackers usually use an even easier method to direct the user to the cloned site: phishing
attacks, usually using spam e-mail messages. In Figure 4 we describe the process of typical phishing attacks. The
adversary first buys some unallocated domain name, often related to the name of the target, victim web site. Then,
the adversary sends spam (unsolicited e-mail) to many users; this spam contains a `phishing bait message`, luring
the user to follow a link embedded in the bait message, e.g. claiming it is a link to an important service from a
trusted entity. The link actually connects the users to the spoofed web site, emulating the site of the victim entity,
where the user provides information useful to the attacker, such as credit card number, name, e-mail addresses,
and other information. The attacker stores the information in some `stolen information` database; among other
usages, he also uses the credit card number to purchase additional domains, and the e-mail addresses and name to
create more convincing spam messages (e.g. to friends of this user).

Stolen
Info

Buy
Domain

Send
Bait

(as spam)

User reads bait,
clicks on link

User submits info
to spoofed site

Spoofed
Site

������
����	

�� ���
��� ��

BaitBait

����

����

Figure 4: Phishing Attack

Currently most phishing attacks lure the users by using spam (unsolicited, undesirable e-mail), as
described above. However, we define phishing attack as (any method of) luring the user into directing his browser
to approach a spoofed web site. For example, an attacker could use banner-ads or other ads to lure users to the
spoofed site. We believe spam is the main phishing tool simply since currently spam is extremely cheap and hard
to trace back to the attacker. Spamming is causing many other damages, in particular waste of human time and
attention, and of computer resources. Currently, the most common protection against spam appears to be content

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 8

based filtering; however, since phishing attacks emulate valid e-mail from (financial) service providers, we expect
it to pass content-based filtering. Some other proposals for controlling and preventing spam may also help to
prevent or at least reduce spam-based phishing, see e.g. [CSRI04, He04].

Most phishing attacks require only a web address and server, but do not require intercepting (HTTP)
requests of the user; therefore, even weak attackers can deploy them. This may explain their popularity, as shown
in Figure 1. This means that the domain name used in the phishing attack is different from the domain name of the
victim organization.

Many phishing attacks use deceptive domain names similar to the victim domain names, possibly
motivating the change by some explanation in the e-mail message, e.g. see [BBC03]; often, they also display the
anchor text with the correct victim URL, while linking to the spoofed web site. Unfortunately, most naïve users
do not notice the attack or the change in the domain name, since:

� Users do not read the location bar at every transaction.

� Users do not always understand the structure of domain names (e.g., why accounts.citibank.com belongs
to CitiBank™, while citibank-verify.4t.com was a spoofed site [Citi04]).

� Organizations often use multiple domain names, often not incorporating their corporate name, e.g.
CitiBank™ uses at least eight domains, e.g. accountonline.com.

Since the spoofed web sites use deceptive domain names, they usually could purchase a certificate from
one of the (many) Certificate Authorities programmed in the default list of popular browsers; for example, why
would a CA refuse to provide a certificate for the 4t domain? However, most spoofed web sites do not even
bother to get a certificate (with the costs and overhead involved). Instead, most spoofed web sites – and in
particular all of the (many) examples in [Citi04] – simply do not invoke SSL/TLS. We observe that many, or
probably even most, users did not notice the lack of use of SSL/TLS in these spoofed sites.

In fact, it turns out that many existing web sites require sensitive information such as user ID and
passwords, in unprotected web pages. This includes some of the most important, well-known and sensitive web
sites, including Chase™, Amazon™, Microsoft’s .Net Passport and eBay, shown in Figure 5, and others3, e.g.
Yahoo!™ and TD Waterhouse™. For readability, the figure contains only the most relevant part of the web
pages, simply by reducing the size of the browser window; the reader can probably find other examples.
Examples (a) (Chase™) and (b) (Amazon™) use the Mozilla browser, with our extension, described in the
following section, which added a clear warning (on top) noting the fact that these pages are not protected by
SSL/TLS. This warning would not appear in standard browsers (without our extension), and in fact we noticed the
lack of protection in these web sites only after using the browsers with the anti-spoofing extension. In examples
(c) (Microsoft .Net Passport) and (d) (eBay™) we used Internet Explorer (without extension); the fact that these
are insecure pages is indicated here only by the lack of the `lock` icon representing secure sites. All of these pages
encourage users to input passwords and account numbers, implying (incorrectly) that these sites are secure; but
an attacker could present a spoofed web-page, which would appear the same and collect this sensitive
information. We believe that this proves that users – and even serious web-site designers – do not notice the lack
of SSL/TLS protection, even in sensitive web pages belonging to established organizations.

3 Interested readers can also check directly if these sites are still insecure, as when we visited them on July 2004, by following the
following links to Chase™, Amazon™, TD Waterhouse™, eBay™, Microsoft’s .Net Passport and Yahoo!™. We hope, of course, that
these sites will fix soon this bug (we informed all of them). Readers are encouraged to find additional unprotected sites and inform the
owners and us.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 9

(a) Chase™ (b) Amazon™ (c) Passport (d) eBay

Figure 5: Unprotected Login to Important Sites

In more advanced Web Spoofing attacks, first presented in [FB*97], the adversary uses browser features
to make it appear as if the browser displays the SSL-protected victim web page, while in fact it is displaying a
cloned page. Some of these attacks are very simple, yet effective. For example, in one deployed attack [Citi04],
the attacker opens two browser windows: a small one, which clones Citibank™ login screen and contains no
status information or bars, inside a larger one, which is simply the regular Citibank™ web site. Such sites can be
extremely convincing; we believe most users will not realize that they enter their password into a separate,
insecure window, whose URL is not even displayed. In another deployed attack [APWG04, SF9182], a bug in
many Internet Explorer™ browsers is exploited, allowing the attacker to cause false information to be displayed
in the location bar.

Several works presented even more elaborate web spoofing attacks, using scripts and/or Java applets, to
make it even harder for users to detect the cloning [LN02, LY03, SF03, YS02, YYS02]. These works also
propose solutions, by disabling (important) browser functionalities, or using enhancements to the browser UI to
make it hard or impossible for the attacker to display spoofed versions of important browser indicators [YS02,
YYS02, LN02]. However, as noted by [YS02], these proposals rely on users’ understanding their `signals`, which
are (even) more elaborate than the existing location bar and SSL indicator. We therefore believe that these
proposals are not appropriate for most users, and definitely inappropriate for naïve users. In fact, as we argued
above, we believe that the current indications of location and protection (SSL) are not sufficiently visible and
significant to most users. Our design strives for much more visible and easy to understand indications, allowing
most users to detect when they reach a spoofed web site.

2.3 Credentials Spoofing Attacks
So far, our discussion, as well as most prior research and reported incidents, focused on web spoofing, i.e.

spoofing of the identity of the entity owning the web site. We now consider a related threat, which we call
credentials spoofing attacks. These attacks involve sites that present misleading, unauthorized credentials, e.g. in
the form of graphical seals, logos and images. The motivations for credentials spoofing attacks range from
obtaining sensitive information, sent only to trusted sites (such as credit card number or personal details which
may be used for identity theft), to simply attracting surfers and customers.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 10

To understand the importance of secure credentials for e-commerce, consider open marketplace sites,
such as eBay™. Such sites facilitate commerce between consumers and many small businesses; each transaction
requires considerable trust by the consumer, who usually pays, in a non-reversible way, before receiving the
goods. To establish this trust, eBay™ and other services, e.g. Square Trade™, maintain secure records of the
feedback each seller received from its past buyers. There is clearly an incentive for sellers to fabricate and
improve their grades, and some are known to do so, e.g. by providing artificial reviews. A similar, well-known
situation exists in review sites, e.g. for hotels or for books. In particular, [H04] reports that the (anonymous)
reviewers of books in the Amazon™ site are often the authors of the books or of competing books, or other
interested parties.

Presentation of false credentials to attract customers is one of the ancient methods of fraud, and common
in the real world as well as on the Web. Currently, the only way for web sites to present credentials is by
including an appropriate picture (often referred to as a seal), e.g. e.g. eBay’s `power seller` seal, Square Trade’s
logo, or many others. It is quite trivia for an unauthorized site to copy the seal from an authorized site and present
it without authorization. In fact, while many sites present some sort of seal (of quality, privacy, security etc.), site
owners, and many users, are aware that these seals are not very secure. We believe that this is the reason that seals
and credentials are less common in cyberspace (than in physical business).

2.4 Spoofing Prevention: Design Criteria
We now present design criteria for prevention of web and credential spoofing, extending the criteria

presented in [YS02].

� Provide branding, prevent spoofing. Obviously, the most basic requirement is that credentials, logos or any
other identification information should be secure against spoofing by adversaries. Namely, the adversary
should not be able to emulate any such information presented by the anti-spoofing mechanism, when the user
is viewing a web site unauthorized to present these credentials, logo, or address. In particular, the mechanism
should allow organizations to use and reinforce brand identity, as a major mechanism to identify the
organization and establish confidence in it and in the web site.

� Effectiveness for naïve users: the credentials should be highly visible, which will ensure that even naïve,
off-guard users, will detect the lack of necessary credentials when accessing a web site. In particular, as
indicated by [YS02], graphical indicators are preferable to textual indicators, and dynamic indicators are
preferable to static indicators. Furthermore, to facilitate recognition by naïve users, the credentials should use
simple, familiar and consistent presentations. Finally, and again as indicated by [YS02], the (secure) browser
should couple between the indicators and the content, rather than present them separately.

� Support all kinds of credentials: it should be possible to protect any credential, including information
currently displayed in browser status areas (location, SSL indicator, etc.) and additional credentials such as
logos, seals, certificates etc.

� Minimize/avoid user work: The solution should not require excessive efforts by the user, either to install or
to use. In particular, we prefer to base credential validation on simple visual clues, without requiring any
conscious user activity during validation. This is both to ensure acceptability of the mechanism, as well as to
increase the likelihood of detection of the lack of proper credentials by naïve users.

� Minimize intrusiveness: the solution should have minimal or no impact on the creation of web sites and
presentation of their content.

� Customization: the visual representation of the different credentials should be customizable by the user.
Such customization may make it easier for users to validate credentials, e.g. by allowing users to use the same
graphical element for categories of sites, for example for `my financial institutions`. Similarly, a customized

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 11

policy could avoid cluttering the trusted credentials area with unnecessary, duplicate or less important logos;
e.g., it may be enough to present one or two of the credit card brands used by the user (and that the site is
authorized to accept), rather than present the logos for all of them. In addition, customization could allow
users to assign easy to recognize graphical elements (`logos`) to sites that do not (yet) provide such graphical
identification elements securely (i.e. that do not yet adopt our proposals). Finally, as argued in [YS02], by
having customized visual clues, spoofing may become harder.

� Migration and interoperability: the solution should provide benefits to early adopting sites and consumers,
and allow interoperability with existing (`legacy`) web clients and servers. In particular, it should be sufficient
for a client to use the solution, to improve the security of identification of existing SSL/TLS protected web
sites.

3 Preventing Spoofing with Trusted Credentials Area
We suggest adding a new component to the user interface of the browser, which we call the trusted

credentials area (TCA). The goal of the trusted credentials area is to present highly visible, graphical interface,
establishing securely the credentials and identity of the web site and of the content presented. We expect that the
browser will present most credentials and identifiers via graphical elements such as logos, icons and seals, defined
or at least approved by the user or somebody highly trusted by the user (see more below). We implemented the
Trusted Credentials Area (TCA) browser extension for the open-source Mozilla™ browser; see screen-shots of
two protected sites, with logos and other credentials presented in the TCA, in Figure 6. We refer to a browser
supporting a TCA, natively or via an appropriate browser extension, as TCA-enabled.

Our main design decision was that the trusted credentials area should be a significant area, located at the
top of the browser window, and large enough to contain highly visible logos and other graphical icons for
credentials. Furthermore, the trusted credentials area must appear in every web page, protected or unprotected. In
fact, by using the very top area of the window, it is relatively easy to prevent scripts and applets from writing over
the trusted credentials area, thereby preventing spoofing. It is also easy to see that this design meets all the other
criteria above.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 12

����������	
�

(a) Eforcity: certified logo + credentials (b) Citibank, certified by Verisign

Figure 6: Screen-shots of secure sites with logo in Trusted Credentials Area

The browser should protect the trusted credentials and logos area from spoofing, by preventing scripts and
helper windows, including applets, from removing it and displaying fraudulent credentials and logos in (the real
or camouflage) trusted area. We achieve this by defining the trusted credentials area in every window opened by
the browser, and giving the browser (and code executed by it) access only to the window below the trusted
credentials area. This implementation is easy in Mozilla, and seems to be secure against change by any content
downloaded from a web server. Additional mechanisms to protect the trusted credentials area include:

1. Helper and applet windows may be marked separately from the browser itself, and in particular from the
trusted area, e.g. by enclosing all helper and applet windows by a special, highly visible `warning` border.

2. To make it harder to spoof the trusted area, even for a program that can write on arbitrary locations in the
screen, it may be desirable that the background of the trusted area will be a graphical element selected
randomly from a large collection, or selected by the user.

3. The browser may restrict opening of new (`pop-up`) windows, including for helper applications and applets.
In particular, the browser may confirm that the content was approved by an appropriate authority. This
solution can also assist in the prevention of spam web advertisements and pop-up windows.

There are several types of credentials, logos and seals for display in the trusted area; we discuss each of
them in the following subsections. Following that, we present the process and architecture for determining the
contents of the Trusted Credentials Area.

3.1 Secure vs. Insecure Site Indication
Existing browsers indicate that a site is SSL-protected, by a small SSL-status icon, usually in the status

area at the bottom of the page. However, this indication is not very visible, and naïve or off-guard users may not
notice its absence, when accessing a sensitive site (e.g. if visiting this site routinely, as for personal bank). Indeed,
all of the real-life spoofing (and phishing) attacks we have seen, directly on the Web or described by others (e.g.
[Citi04]), were on sites without SSL/TLS protection – even in cases where the attackers used domain names
which do not appear related to any known tradename (e.g. 4t.com, used in one of the phishing attacks on

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 13

Citibank™). Furthermore, as we show in Figure 5, many trustworthy, important web-sites actually ask users to
enter sensitive information such as passwords, in insecure web pages, probably by mistake. All of this shows that
the SSL indicator is not sufficiently visible. Furthermore, a web site can request that the browser avoid displaying
the status area (simply by using the `window.open` JavaScript method), making the lack of SSL even harder to
notice; as mentioned above, swindlers already exploited this method to spoof secure web sites.

To prevent these threats, whenever our browser extension detects that a web site is not SSL-protected, it
displays a highly visible warning message in the trusted credentials area. We recommend that corporate and other
serious web sites avoid this warning message, by protecting all of their web pages, preferably presenting the
corporate logo in the trusted credentials area. Having all web pages secure could cause a performance problem
when security is using SSL or TLS; when this overhead is a problem, one could secure the web pages using the
CLTLS protocol presented in next section. By protecting all of their pages, such sites will make it quite likely that
their users will quickly notice the warning message in the trusted browser area, when the user receives a spoofed
version of a web page of such sites. Furthermore, this ensures that all the organization’s web pages will present
the logo and credentials of the site (and organization) in the trusted credentials area, using and re-enforcing the
brand of the organization.

3.2 Identification of Web Sites
The most basic credential of web sites is the identification of the provider of the web pages and objects.

Currently, browsers identify the provider of the web page by indicating the Universal Resource Locator (URL) of
the web page in the location bar of the browser. This usually allows (knowledgeable) web users to identify the
owner of the site, since the URL includes the domain name (which an authorized domain name registrar allocates
to a specific organization). However, the identity of the provider is not necessarily included (fully) in the URL,
and the URL contains mostly irrelevant information such as protocol, file, and computer details. Furthermore, the
URL is presented textually, which implies that the user must make a conscious decision to validate it. Finally,
popular browsers are pre-configured with a list of many certification authorities, and the liabilities of certificate
authorities are not well defined; as a result, it may not be very secure to use the URL or identity from the SSL
certificate. Therefore, we prefer a more direct and secure means of identifying the provider of the web page, and
not simply present the URL from the SSL certificate in the trusted credentials area.

We decided to identify the provider of the web page (or other content) using a graphical symbol, such as
logo or icon. The browser extension could include a list of icons for typical sensitive sites, such as `my bank`, `
my broker`, `my health-care provider`, and allow the user to select another icon by providing graphical file.
However, we believe a logo, selected by the web-site or by the user (e.g. from the graphics in the web page), may
be even more natural, effective and popular. Experience and research proved the effectiveness of logos and other
trademarks for ensuring recognition (`branding`), including subconscious alert for lack of logo or incorrect logo.
In our case, users are likely to notice a missing or incorrect logo when accessing spoofed sites (which do not have
the correct logo). Logos are also focused on the identity of the provider of the content, rather than on other
technical aspects of the URL. Finally, logos are familiar to people, and protected by existing laws and national
and international agencies, e.g. the US Patents and Trademarks Office (www.uspto.gov), who also define
processes to avoid misleadingly-similar logos and resolve disputes regarding logos.

For SSL and TLS protected web pages, the browser can use the site’s public key to identify the logo,
since SSL/TLS ensures that the web site has the corresponding private key. Notice this does not depend on the
identity (domain name or URL) in the certificate; we use alternative mechanisms to link between the public key
and the logos or credentials presented. Specifically, we suggest using a public key certificate that will link
between the public key of the site and the logo. We call this a logo certificate, and we use the term Logo
Certification Authority (LCA) for an issuer that signs logo certificates.

In our prototype browser extension, the browser extension maintains a logo certificates folder where it
maintains logo certificates, linking public keys with logos; initially, this folder is empty. In addition, our

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 14

extension generates, upon installation, a private signature key, which it uses later on to sign logo certificates,
linking public keys and logos, if the user (manually) specifies the use of the logo for the public key. Our browser
extension also maintains a list of public keys of trusted Logo Certificate Authorities (LCA), initially containing
only its own (self-generated) public key. Finally, for each trusted LCA, the browser extension also maintains its
logo and name, to identify it to the user (as responsible for the matching between the site and the site’s logo).

After SSL/TLS completes, our browser extension looks in the logo certificates folder for a logo certificate
containing the public key of the site (validated by SSL/TLS). If the browser extension finds this public key in one
of the logo certificates, properly signed by one of the trusted logo certificate authorities, then it displays the logo
of the site, and (optionally) also of the LCA, in the trusted area. For example, Figure 6 shows two SSL-protected
sites, where our browser extension presents logos in the Trusted Credentials Area (which, in our implementation,
is at the very top of the window). Notice that the same logos are included in the site itself, but this is not secure –
an imposter could display the same logos in their site, with or without SSL. Also, while our browser extension
maintains the original SSL indicator unchanged, notice how the logos are more visible. Recall that when visiting
an insecure site, a TCA-enabled browser fills the entire trusted credentials area (containing the logos in Figure 6)
with a very visible warning message/indicator, as shown in Figure 5 (a) and (b).

When the TCA browser extension does not find a logo certificate for the site’s SSL public key in the logo
certificates folder, the site may still indicate the existence of a logo. One way for the site to identify the logo, by
location and hash, is using an optional extension of the public key certificate passed to the browser during the
SSL handshake phase. Alternatively, and to allow the use of trusted logos using existing SSL certificates, the
location (URL) and the hash of the logo may be defined within the page, e.g. using a <META> tag. Finally, we
found that often the logo file is easily guessable as one of the images embedded in the page, often containing
`logo` as part of the object name. In all cases, the TCA-enabled browser must validate that the site received
authorization to display the logo.

One way for sites to prove that they have the necessary credentials to present a logo, is by including with
the logo also a special logo certificate4 allowing the display of the logo for sites passing SSL handshake with the
given public key. Logo certification authorities issue logo certificates; they should confirm that the owner of the
public key in the logo certificate has the legal rights to the logo, and in particular, that logos are not only unique,
but also sufficiently distinct to prevent misleading users. As we noted above, national and international trademark
registration offices, such as the United States Patent and Trademark Office www.upspto.gov, already provide
such services. Such agencies may issues logo certificates directly. Alternatively, such agencies may provide a
database of approved logos (and other trademarks), which they confirmed are easily, visibly identifiable, together
with identification of the logo / trademark owner. This would allow other (e.g. private) organizations and
companies, such as existing certificate authorities, to issue logo certificates.

Similarly to the predefined list of public keys of certificate authorities in current browsers, TCA-enabled
browsers may contain a predefined list of (the public keys of) LCA entities, preferably allowing the user to edit
this list. We expect such lists to contain a relatively small number of logo certifying authorities, known to many
users, e.g. the USPTO. Servers may obtain multiple logo certificates, and logo certifying authorities could cross-
certify each other, e.g. when the two issuing organizations cooperate to avoid similar, misleading logos and
trademarks.

The user can configure the browser to display logos certified by a LCA automatically, or after prompting
the user at the first time. Furthermore, the TCA-enabled browser should also display the logo of the LCA (or
multiple logo certifying authorities). For example, in Figure 6 (a), eforcity.com is certified by eBay, Square
Trade™ and VISA™, while in (b), Citibank™’s logo is certified by Verisign™. By displaying the logo of the
Logo Certifying Authority (eBay, Square Trade, Visa and Verisign), we make use and re-enforce its brand at the
same time. Furthermore, this creates an important linkage between the brand of the LCA and the validity of the

4 Using X.509 certificates and/or terminology, this could be either a public key certificate or an attribute certificate.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 15

site; namely if a LCA failed and issued a certificate for a spoofing web site, the fact that it failed would be very
visible and it would face loss of credibility as well as potential legal liability.

To `bootstrap` the process of adoption of the Trusted Credentials Area (TCA) and of logo certificates, we
propose that TCA-enabled browsers would also allow user-certified logos. Consider a TCA-enabled browser that
detects a SSL/TLS protected web page, possibly with a proposed or detected logo, but without an appropriate logo
certificate, or with a logo certificate from an unknown LCA (e.g., self-signed – i.e., issued by the site itself). The
browser may present a dialog to the user, displaying the logo (if proposed, or if the browser can guess one from
the page), and relevant fields from the public key certificate (such as the name of the organization and of the
certification authority, and the validity dates), and the following options:

� Certify the proposed or identified logo as corresponding to the site’s public key, and display it whenever
accessing a page protected by this public key. For this purpose, the TCA browser extension will generate a
private signature key, and a matching public validation key, upon installation; it uses the private signature key
to sign the logo and the site’s public key, creating a user logo certificate. The user can also specify whether to
publish the certificate, for use by the same user (on other machines) or by any user.

� Present an alternate logo, name or icon whenever accessing pages with this public key. The user will specify
the alternate logo, name or icon. The user may have a library of icons for different types of sites, used instead
of or in addition to the proposed logo. For example, a user may define a `My Banks` logo or icon, and attach
it to all of her financial institutions (possibly in addition to a more specific logo of each institution).

� Present the organization name and/or URL whenever accessing a page protected by this public key, together
with the logo (if certified) or name of the certification authority (CA). The name of the organization is taken
from the SSL certificate, specifically either from the “0=” part of the subject distinguished name, or from the
`SubjectAltName’ extension. This approach is easy for the users, as it does not require them to choose a logo
at all; but now users do not see the logo of the site itself, but only the name, which may make spoofing
possible.

The option of user logo certificates provides significant security advantage to early users of the TCA
browser extension, even when approaching existing, `legacy` web sites (protected by SSL/TLS). The ability of
users to certify logos manually is also valuable for web-sites that are concerned about their identification by web
users, but are reluctant to purchase an SSL/TLS certificate from one of the major certificate authorities, due to the
cost considerations; we believe there are many (especially non-profit) web sites in this category. Such web-sites
could use a self-signed certificates, signed using the signing key of the organization itself or using some publicly
available signature key. Clearly, a spoofer could sign such certificate. However, if the browser properly warns the
user when it receives the self-signed certificate for the first time, and the user approves a logo or defines an icon
for the certified public key, then the browser can safely use this public key to identify subsequent re-entry to
pages of this organization (and automatically display the right logo). Therefore, every web site should have a
public key certificate, from a CA or self-signed, and use it to protect, using SSL/TLS or a comparable protocol, all
of its web pages that provide or request information, requiring protection from modification or exposure.

Since existing web sites do not contain logo certificates, our prototype provides user logo certificates.
This provides us with convenient and secure identification of sensitive sites that we use personally (e.g. bank) or
professionally (e.g. program committee site). However, while opportunistic identification is a good short-term
measure, it is not perfect; in particular, it still relies on some user awareness, i.e. on users actually validating the
details of the organization and certificate authority. While this reduces the burden on the users, since it happens
relatively rarely, there is still the risk of users `clicking thru` these security warnings. Unfortunately, many sites
use multiple different public/private key pairs (and certificates), usually with no special reason, which increases
this risk and inconvenience the users; we became aware of this since the opportunistic identification pops-up
whenever encountering an unknown public key, and this often happens several times in some sites (e.g.
Citibank™), while not at all in others.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 16

As mentioned above, whenever the user approves (certifies) a logo as belonging to a particular site and
public key, the TCA browser extension prompts the user whether to publish the newly created logo certificate.
Publishing a user logo certificate simply means placing it in some repository, e.g. an FTP or HTTP site. The TCA
browser extension also allows users to specify the location of one or more repositories from which it downloads
logo certificates (when needed or periodically).

Finally, the TCA browser extension allows the user to input, or approve, logo certificate validation keys,
e.g. of the same user on another machine. This allows a user to certify logos only in one machine (e.g. office) and
have them appear automatically in other machines (e.g. home or mobile).

However, the user can also input or approve logo certificate validation keys of logo certification
autorities, or of other users he trusts. This allows users to share the task of validating logos with trusted friends,
similar to the PGP web-of-trust [Z95] model, essentially turning these friends into `tiny logo certificate
authorities`. We believe this option will facilitate `grass-root` adoption of logo certificates and TCA, which may
expedite the deployment of trustworthy, established logo certificate authorities.

3.3 Site credentials and seals
Many web sites display different credentials from third parties, typically using special graphical elements

(`seals`) which are trade-marked by the third parties. Examples include reliability rating for online merchants, e.g.
eBay’s `power seller` or Square Trade’s logo, seals for web sites passing different audits, e.g. for security and
privacy, certification from trade organization or regulation authorities, and many more. Currently, these
credentials are displayed by the web site as part of the page; no technical means prevents a web site from
presenting a seal (representing specific credentials) without proper permission from the owner of the seal.

We propose that browser (or a browser extension as in our implementation) will validate the site/page
credentials and seals. This allows the user to specify minimal credentials requirements, e.g. to avoid display of
unsolicited advertisement pages (spam), as well as other undesirable content (e.g. insecure sites, sites without
sufficient privacy protection, or sites containing offensive content). If the content is not rejected, then the
credentials are displayed securely in a trusted credentials area of the browser. For example, Figure 6 (a) shows the
site of eforcity™, a web merchant that is selling on the eBay™ marketplace, and has an `eBay stores power seller`
accreditation, as well as certification from Square Trade™ and from Visa™. We illustrated how the TCA browser
extension could display these credentials, if they were provided by appropriate (public key or attribute)
logo/credential certificates.

To validate a credential/seal, the browser must receive appropriate credentials for the public key of the
site. In particular, the web site may indicate, e.g. in a <META> tag in the web page, the location of a file
containing a certificate from the owner of the seal, where the certificate is given to the site’s public key. The
certificate will identify the credentials of the site, typically using extension fields; the credentials may specify the
graphical image (seal) to display, and/or contain a credential-type attribute, allowing the user to select the
graphical representation (icon, seal, etc.) for each type of credential.

While currently seals are normally `owned` and issued by a single organization, we envision users also
defining (more complex) graphical representations of the attributes in one or more credentials. Some examples of
user-defined seals/icons include:

1. Some of the credentials issued to sites may provide one or more attributes of the site, given as values in
numeric (or other) range, such as the number of transactions and the fraction of complaints for online
merchants, as maintained e.g. by Ebay™. Each user could define few levels and icons for each, e.g. `reliable`
and `avoid`.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 17

2. In some cases, users may require multiple certificates, from different issuers, to consider a site as belonging to
some class. For example, a user may define an online merchant as `reliable` only if it has a BBBonline®
certificate from the Better Business Bureau®, in addition to appropriate ratings from Ebay™.

3. In other cases, the user may want to validate sites in a certain class, against some lists of `bad` sites or
companies. We refer to such information as a negative credential. For example, the user may not define an
online merchant as `reliable`, if it finds this merchant listed with poor rating at BizRate.com™. In this case,
we cannot rely on a certificate from the merchant site; instead, the user must define to the browser that if the
site presented certain (positive) credentials, the browser should also search specific `black-list` sites for
negative credentials.

3.4 `Last visit ̀and other historical indicators
Many operating systems, e.g. Unix, display the time and date of the last login as part of the login process.

This allows users to detect unauthorized usage of their accounts, by noting usage after their last authorized login.
The Trusted Credentials Area (TCA) could provide such credentials, if desired, by maintaining record of previous
access to each site (or using each public key). Each user can indicate in the `TCA preferences` what historical
indicators to present (or maintain).

Notice, however, that the history is limited to access via this particular browser and computer. This may
make the records of entrance to a particular site less valuable than the operating systems indicators; also notice
that detection of spoofing using this mechanism requires users to notice wrong historical information. However,
this mechanism may be useful to create differentiation between SSL and logo certificates by different certificate
authorities. Recall that common browsers contain a pre-defined list of above a hundred certification authorities
and keys; clearly, some of them are major, and widely used, and others may be minor, rarely used, and possibly
less trusted. The browser could present some statistics on the number of certificates previously received from the
CA of the current certificate; this could help make the user more caution with an unusual certificate authority.

3.5 Process and architecture for determining the contents of the Trusted Credentials Area
We present the process for collecting (positive and negative) credentials in Figure 7; the process is based

on the designs of [HM*00, HM04]. The process begins when the browser receives an SSL protected web page.
Using available interfaces in Mozilla, we detect this and invoke the Certificates collector module.

The certificates collector receives from the browser three inputs: the public key used to validate the page
(PK), a URL pointing at additional certificates for this page and public key, provided in the page using the
<META> tag, and the certificate provided by the server during the SSL handshake. In addition, the certificate
collector uses two configuration files defined in advance by the user (or a software agent trusted by the user). The
first file contains a list of certificate collection sites, which the certificate collector must consult for any SSL-
protected web page; this `mandatory collections` list ensures, in particular, that the user will receive indication of
any `negative credentials` for the site – we cannot trust the site to provide negative credentials. The second
configuration file used by the certificate collector lists the trust anchors of the user, i.e. the public keys of root
certification authorities trusted by the user, with indication, for each trust anchor, of what kind of certificates it is
trusted to provide.

The certificates collector outputs a list of certificates of the page, usually all using the public key of the
SSL certificate of the page (but it may include also other relevant certificates, e.g. of the issuer of a certificate to
the public key of the page). It passes this list of certificates to the Attributes extractor module. This module
extracts from the list of the certificates the attributes of each certificates, as a list of triplets, each containing an
issuer public key (IPK), a subject public key (SPK) and one or more attributes (Attrs). Internally, this module
performs the conversion of certificates and extraction of attributes in two stages, following [HM*04].

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 18

Certs
collector

Browser Attribute
extractor

PK,<META>,Cert

TCA

Mandatory
Collections

Trust
Anchors

Policy
engine

Policy /
Rules

Certificates

<IPK, SPK, Attrs> list

TCA
Setup

Viewer

Page attributes

TCA
Preferences

Figure 7: Determining the contents of the Trusted Credentials Area.

The list of <IPK, SPK, Attrs> triplets is input to the Policy Engine module. This module determines the
user-defined properties or roles of the page, based on the set of triplets (which contains the trust information from
the collected certificates), together with the user-defined list of trust anchors, and the policy or rules defined by
the user. For example, the policy may indicate that a page has the `my banks` property/role, provided it has a
certificate from Citibank™ or from Visa™, with some relevant attributes, and unless there is a `negative`
certificate with an `fraud alert` attribute regarding this public key generated by one of the mandatory certificate
collections. For more examples of policies and details of a simple policy language and engine, see e.g. [HM*00].

The policy engine outputs a set of page attributes; essentially, these attributes identify the logos, seals and
other graphical elements for the trusted credentials area (TCA). This is input to the TCA setup module, which
allows the user to customize the TCA; in particular, the user can choose specific images, background, colors, etc.;
furthermore, the user may define priorities and rules to reduce the number of images in the TCA and increase
readability. To actually display the TCA, the TCA setup module uses the viewer mechanisms included in the base
browser (in our case, Mozilla).

4 Efficient Authentication of Response Credentials using CLTLS
As mentioned in Section �2 above, currently only a small fraction of the web pages use SSL (or TLS),

since SSL places considerable overhead on both server and client. Specifically, during the entire SSL connection,
the server must maintain state identifying the keys and sequence numbers used in the connection. Furthermore
and more critical, at the beginning of every connection, SSL performs a handshake process consisting of at least
four messages, and computationally-intensive public key operations; the server may save the results of the public
key operations for multiple connections with the same client, but this requires storage in the server, and therefore
this feature is usually used only for rapid connections. This overhead may be significant, if organizations and
corporations will deploy SSL on each of their web pages, to ensure display of their logo and credentials (seals) in
trusted area.

There have been several proposals for reducing the SSL handshake overhead, most notably by [BSR02],
who proposes client-side caching to reduce communication and possibly server processing load. However, the
handshake remains considerable overhead, including additional flows. To allow efficient presentation of
credentials and logos in the trusted area, it may be necessary to use an even more aggressive optimization of
SSL/TLS that will authenticates only the particular response rather than establish a secure connection. In the next

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 19

subsection, we sketch the design of the connection-less transport layer security (CLTLS) protocol. CLTLS is
similar to TLS; its advantage is a more efficient validation of web page credentials. We focus only on the use of
CLTLS for authentication of credentials and ignore other aspects such as confidentiality (including perfect
forward secrecy), identity hiding and denial-of-service protection. In the following subsection we discuss the
efficiency of (our use of) CLTLS.

4.1 Simplified description of the Connection-Less Transport Layer Security (CLTLS) protocol
We present the basic flows of the connection-less transport layer security protocol (CLTLS) in Figure 8;

our presentation of CLTLS focuses on the features needed for secure authentication of web objects. We will
present separately a complete security analysis, as well as design of other important security features (such as
confidentiality, including perfect forward secrecy, client/request authentication, identity hiding and protection
against denial of service attacks). CLTLS, as we use it, is a simple protocol to authenticate responses in
client/server (request/response) setting; for example, a TCA-enabled browser can use it to authenticate web pages
and other objects sent to it as responses from web server (over either TCP or UDP). The (full) CLTLS protocol is
also an alternative to the Datagram TLS proposal of [MR04], which allows the use of TLS over connectionless
channels such as UDP, but without reducing its overhead (in fact, DTLS is slightly more expansive than regular
TLS).

Client

Request, AuthOptions, [,Nonce, ID, EncryptS.e(mask), cookie]

Response, AuthOptions, AuthTag, ValidityPeriod [,ID ,k’, cookie]

Server

Figure 8: Connection-Less Transport Layer Security Protocol (CLTLS)

In CLTLS, the client sends a request together with the requested authentication options (AuthOptions),
indicating supported algorithms and certificate/attribute authorities, and other options. The server returns the
response together with indication of the authentication options used, an authentication tag AuthTag and validity
period. As part of AuthTag,, the server may optionally send a certificate S.cert (containing the server’s public
signature validation key, S.v, and optionally also the server’s public encryption key, S.e). Also, the server may
provide a new shared secret key to the client k by sending k’=k�mask, where mask is a random bit string sent by
the client, encrypted using the server’s public encryption key S.e. In this case, the server will also provide an
identifier ID for the new shared secret key; and when the client sends a request using the shared secret key, she
will include ID in the request. The client may also include a random Nonce field with the request, which the
server should use as part of the input to the authenticator tag AuthTag, to detect replay of previous response.
Finally, to protect against denial of service attacks attempting to waste server’s computational resources by
sending many requests, causing the server to perform computationally-intensive sign and/or decrypt private key
operations, the server may perform these operations only when the request includes a cookie which was sent by
the server with a previous response (possibly an empty response sent due to the lack of cookie with the request);
cookie is computed by the server, e.g. as cookie=MACck(ID).

The authenticator tag AuthTag may be one or more of the following:

1. Response signed by server: here, AuthTag={SignS.s(response, request, ValidityPeriod [, Nonce, k]) [, S.cert]},
namely a signature by the private signing key of the server (S.s) over the response and over a period of time
during which the response is valid. This requires that the client knows the server’s public key S.v, necessary
to validate signatures using the secret signing key S.s; when S.v is not known already (e.g. by prior SSL or

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 20

SRAP handshake), the server may provide it by attaching an appropriate public key certificate S.cert in the
response. When replay of the response is not a threat, there is no need to include the Nonce in the signed
response (or with the request); in this case, the signature does not depend on the request, and therefore could
be cached and pre-computed, for high efficiency when serving static content. The signature includes the
request to make sure that the response is related to the specific request.

2. Response authenticated by the server: here, AuthTag=MACk(response, request, ValidityPeriod [, Nonce]),
namely a message authentication code using a key k shared between the server and the client. The key k
would typically be computed by the server as k=PRFmk(ID), where mk is a `master key` kept secretly by the
server, PRF denotes a pseudo-random function (e.g. implemented using HMAC as in TLS), and ID is an
identifier for the key k, where ID includes the time (and/or some other variable fields to prevent replay); both
k and ID were previously selected by the server and provided to the client (e.g. in a previous SRAP or SSL
protected connection).

3. Response signed by third-party attribute authorities, identifying credentials and seals associated with the
specific contents of the response; here, AuthTag={SignAA.s(response, ValidityPeriod) [, AA.cert]}, namely a
signature by the private signing key of the attribute authority (AA.s) over the response and over a period of
time during which the response is valid. This allows third-party seals of quality to specific responses,
offerings and products. In particular, this establishes attributes (credentials) of the server or of the contents of
a particular page, to prevent spoofing. Furthermore, the attributes may include indicator of advertising content
(to prevent spam) or of other properties that may make the browser block the display of the content, e.g.
violence or nudity ratings.

Implementation notes:
1. It may be preferable not to send the actual certificates, but instead to send only a URL for the certificates,

from which the client can download only needed certificates.
2. Using simple, standard techniques, as in [BSR02], we can ensure interoperability with existing browsers that

support SSL/TLS (but not CLTLS).

4.2 Efficiency of CLTLS
We now briefly discuss the efficiency of CLTLS as described above (restricted to authentication of the

responses from the server). We first notice that CLTLS is added (`piggybacked`) to the HTTP request/response
messages, and therefore does not add any new flows. CLTLS flows that do not contain public key signatures (in
responses) and encryptions (in requests), add under 100 bytes The length of requests and responses containing a
public key signature (responses) or encryption (requests) is dominated by the length of the public key operations,
typically 128 to 256 bytes. For most scenarios, this extra communication is negligible, compared to the length of
typical HTTP requests and responses. This dramatically improves upon SSL and TLS, and upon the existing TLS
variants such as DTLS [MR04], client-side caching and fast-track TLS [BSR02].

The computational overhead of CLTLS also greatly depends on whether it uses public key operations
(encryption for the request, signature for the response). Since the whole purpose of using CLTLS is to
authenticate all of the organization’s web pages (i.e., all pages containing logos or other credentials), we expect
that most CLTLS requests will be `repeat requests` to the same server. We expect such `repeat requests` to usually
use only a shared key for Message Authentication Code (MAC), whose processing time is comparable to the
normal processing time of unprotected messages (e.g. for compressing and encoding for interoperability
requirements). In the relatively rare cases of a CLTLS connection without a pre-established shared key, the
computational overhead is dominated by the public key operations, and is comparable to that of SSL/TLS.

Finally, we note that CLTLS does not require state (cache) in the web server, similarly to the client-side
caching proposal of [BSR02]. Serve caching is a substantial overhead, especially when using multiple server
machines for performance (and reliability).

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 21

5 Conclusions and Recommendations
As already shown in [FB*97] and in the developer community, currently web users, and in particular

naïve users, are vulnerable to different web spoofing attacks; furthermore as shown in [APWG04, L04] and
elsewhere, phishing and spoofing attacks are in fact increasingly common. In this paper, we describe browser and
protocol extensions that we are designing and implementing, that will help prevent web-spoofing (and phishing)
attacks. The main idea is to enhance browsers with a mandatory Trusted Credentials Area (TCA), with a fixed
location at the top of every web page, as shown in Figure 6. The most important credential is probably the Logo of
the organization, used to provide and re-enforce the brand; and, when the logo or other credentials are certified by
some trusted authority, the logo of that certificate authority.

Our hope is that browser developers will incorporate the trusted credentials area as soon as possible, i.e.
make TCA-enabled browsers. We hope to soon make available the source code of our implementation of the TCA
(for the Mozilla browser), and we will be happy to cooperate with others on creating high-quality open source
code available.

However, to conclude this paper, we present conclusions and recommendations for users and owners of
sensitive web sites, such as e-commerce sites, for the period until browser are TCA-enabled. Finally, we conclude
by cautioning users and providers, that even when using TCA-enabled browsers, viruses and other malicious
software may still be able to create unauthorized transactions, due to operating system vulnerabilities. We
recommend that highly sensitive web sites such as e-brokerage consider authorizing transactions using more
secure hardware modules (see below).

5.1 Conclusions for Users of Sensitive Web-sites
The focus of this paper was on ensuring security even for naïve web users; however, even expert, cautious

users can not be absolutely protected, unless browsers are extended with security measures as we propose or as
proposed by [LY03, YS02, YS03]. However, cautious users can increase their security, even before the site
incorporates enhanced security measures, by following the following guidelines:

1. Use an TCA-enhanced browser, using its `opportunistic logo identification` mechanism to establish logos for
each of your sensitive web-pages. The authors developed and use a simple TCA extension to the Mozilla
browser, and plan to make it available for download from their homepages soon (after some final touches).

2. Always contact sensitive web sites by typing their address in the location bar, using a bookmark or following
a link from a secure site, preferably protected by SSL/TLS.

3. Never click on links from e-mail messages or from other non-trustworthy sources (such as shady or possibly
insecure web sites). These could lead you to a `URL-forwarding` man-in-the-middle attack, which may be
hard or impossible to detect, even if you follow guideline 1 above.

4. Be very careful to inspect the location bar and the SSL icon upon entering to sensitive web pages. Preferably,
set up your browser to display the details of the certificate upon entering your most sensitive sites (most
browsers can do this); this will help you notice the use of SSL and avoid most attacks. Do not trust indications
of security and of the use of SSL when they appear as part of the web page, even when this page belongs to
trustworthy organizations; see the examples of insecure login pages in Figure 5, by respectable financial
institutions and e-commerce sites.

5. If possible, restrict the damages due to spoofing by instructing your financial services to limit online
transactions in your account to cover only what you really need. Furthermore, consider using sensitive online
services that use additional protection mechanisms beyond SSL, as described below.

5.2 Conclusions for Owners of Sensitive Web-sites
Owners of sensitive web-sites are often financial institutions, with substantial interest in security and

ability to influence their consumers and often even software developers. We believe that such entities should
seriously consider one of the following solutions:

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 22

1. Provide your customers with a browser with security enhancements as described here. We notice that the
basic `trusted credentials area` enhancement will suffice for most sites and customers; many software
integrators can perform such enhancements to the Mozilla browser easily. We also plan to publish our code
for this purpose.

2. Use means of authenticating transactions that are not vulnerable to web spoofing. In particular, `challenge-
response` and similar one-time user authentication solutions can be effective against offline spoofing attacks
(but may still fail against a determined attacker who is spoofing your web site actively in a `man in the
middle` attack). Using SSL client authentication can be even more effective, and avoid the hardware token
(but may be more complex and less convenient to the user).

3. Protect, using SSL/TLS, as many of your web pages as is feasible. In particular, be sure that every web page
requesting the user to enter sensitive information, is properly protected when it is sent to the user; notice that
many respectable companies (probably using respectable web-site designers) were not careful enough and
have insecure web pages asking users to enter sensitive information, as shown in Figure 5.

We also recommend that site owners are careful to educate consumers on the secure web usage guidelines,
including these mentioned above, as well as educate them on the structure of domain name and how to
identify their corporate domains. This may include restricting corporate domains to only these that end with a
clear corporate identity.

5.3 On the secure client requirement
Finally, we notice that even if our recommendations are all implemented, surfers using personal

computers are still vulnerable to attacks by malicious software (`malware`) running on their computers, or by
attackers who can use the same computer. This is the result of the weak security of existing operating systems,
e.g. Microsoft™ issued 51 security advisories during 2003 alone (about one every week!). We therefore
recommend, following [PPSW97, H03], to restrict the execution of sensitive transactions to trusted hardware,
possibly in the form of a trusted personal device. Such a device can provide a truly high level of confidence in its
Trusted Credentials Area, allowing users to identify using user-name and passwords with relatively safety.
Furthermore, such a device could support more secure forms of identification and authorization, such as using
shared keys and one-time passwords. Finally, a mobile, personal trusted device is also the right mechanism to
provide digital signatures with non-repudiation, i.e. allow the server as well as third party (e.g. judge) to validate a
digital signature by the customer on submitted transactions and orders; see [H03] for details

Acknowledgements
This work benefited from many fruitful discussions on the cryptography@metzdowd.com mailing list

over the last few years, including different ideas and proposals related and similar to ours. We thank the owner
and moderator, Perry Metzger, and the many participants. In particular, many thanks to Ian Grigg for his
excellent, helpful comments and suggestions.

Thanks to Amos Fiat and Amos Israeli for their encouragement and helpful comments.

This work was support in part by National Science Foundation grant NSF CCR 03-14161 and by Israeli
Science Foundation grant ISF 298/03-10.5.

References

[APWG04] Anti-Phishing Working Group, Phishing Attack Trends Report - March 2004, published April 2004,
available online at http://www.antiphishing.org/resources.htm.

[BBC03] Virus tries to con PayPal users, BBC News, online at
http://news.bbc.co.uk/2/hi/technology/3281307.stm, Wednesday, 19 November, 2003.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 23

[BSR02] Client side caching for TLS. by D. Boneh, Hovav Shacham, and Eric Rescrola.
In proceedings of the Internet Society's 2002 Symposium on Network and Distributed System Security (NDSS),
pp. 195—202, 2002.

[CSRI04] The Coordinated Spam Reduction Initiative, Microsoft corporation, February 2004.

[Citi04] Citibank™ corp., Learn About or Report Fraudulent E-mails, at
http://www.citibank.com/domain/spoof/report_abuse.htm, April 2004.

[ES00] Carl Ellison and Bruce Schneier, Ten Risks of PKI: What You're Not Being Told About Public Key
Infrastructure. Computer Security Journal, v 16, n 1, 2000, pp. 1-7; online at http://www.schneier.com/paper-
pki.html.

[FB*97] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web Spoofing: An Internet Con
Game. Proceedings of the Twentieth National Information Systems Security Conference, Baltimore, October
1997. Also Technical Report 540–96, Department of Computer Science, Princeton University.

[FS*01] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster, Do’s and Don'ts of Client Authentication on the
Web, in the Proceedings of the 10th USENIX Security Symposium, Washington, D.C., August 2001.

[G04] Ian Grigg, personal communications, 2004.

[H03] Amir Herzberg, Payments and banking with mobile personal devices. CACM 46(5): 53-58 (2003).

[H04] Amy Harmon, Amazon Glitch Unmasks War Of Reviewers, February 14, 2004.

[He04] Amir Herzberg, Controlling Spam by Secure Internet Content Selection, unpublished manuscript, June
2004.

[HM04] Amir Herzberg, Yosi Mass: Relying Party Credentials Framework. Electronic Commerce Research, Vol.
4, No. 1-2, pp. 23-39, 2004.

[HM*00] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor and Yiftach Ravid: Access Control Meets Public
Key Infrastructure, Or: Assigning Roles to Strangers. IEEE Symposium on Security and Privacy, Oakland,
California, May 2000, pp. 2-14.

[L04] Avivah Litan, Phishing Attack Victims Likely Targets for Identity Theft, Gartner FirstTake, FT-22-8873,
Gartner Research, 4 May 2004.

[LY03] Tieyan Li, Wu Yongdong. "Trust on Web Browser: Attack vs. Defense". International Conference on
Applied Cryptography and Network Security (ACNS'03). Kunming China. Oct. 16-19, 2003. Springer LNCS.

[LN02] Serge Lefranc and David Naccache, “Cut-&-Paste Attacks with Java”. 5th International Conference on
Information Security and Cryptology (ICISC 2002), LNCS 2587, pp.1-15, 2003.

[MR04] N. Modadugu, and E. Rescorla. The Design and Implementation of Datagram TLS.
To appear in Proceedings of NDSS 2004.

[Mozilla] http://www.mozilla.org.

 Amir Herzberg and Ahamad Gbara, Protecting Naïve Web Users – Draft of 7/12/2004 24

[PPSW97] Andreas Pftizmann, Birgit Pfitzmann, Matthias Schunter and Michael Waidner, Trustworthy user
devices. In Gunter Muller and Kai Rannenberg, editor, Multilateral Security in Communications, pages 137--156.
Addison-Wesley, 1999. Earlier version: Trusting Mobile User Devices and Security Modules, IEEE Computer,
30/2, Feb, 1997, p. 61-68.

[SF9182] Multiple Browser URI Display Obfuscation Weakness,
http://www.securityfocus.com/bid/9182/discussion/, Security Focus, December, 2003.

[YS02] Zishuang (Eileen) Ye, Sean Smith: Trusted Paths for Browsers. USENIX Security Symposium 2002, pp.
263-279.

[YYS02] Eileen Zishuang Ye ,Yougu Yuan ,Sean Smith . Web Spoofing Revisited: SSL and Beyond . Technical
Report TR2002-417 February 1, 2002.

[Z95] Phil R. Zimmerman. The Official PGP User's Guide. MIT Press, Boston, 1995.

