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Abstract. Although identity based cryptography offers a number of functional
advantages over conventional public key methods, the computational costs are
significantly greater. The dominant part of this cost is the Tate pairing which, in
characteristic three, is best computed using the algorithm of Duursma and Lee.
However, in hardware and constrained environments this algorithm is unattrac-
tive since it requires online computation of cube roots or enough storage space
to pre-compute required results. We examine the use of normal basis arithmetic
in characteristic three in an attempt to get the best of both worlds: an efficient
method for computing the Tate pairing that requires no pre-computation and that
may also be implemented in hardware to accelerate devices such as smart-cards.
Since normal basis arithmetic in characteristic three has not received much at-
tention before, we also discuss the construction of suitable bases and associated
curve parameterisations.

1 Introduction

Since it was first suggested in 1984 by Shamir [29], the concept of identity based cryp-
tography has been an attractive target for researchers because of the potential for sim-
plifying conventional approaches to public key based systems. The central idea is that
the public key for a user is simply their identity and is hence implicitly known to all
other users. Identity is a flexible concept but an often used concrete example is that of
an email address. Within this context, an identity for Alice might be the string

alice@gmail.com

If Bob wants to send Alice secure email, he implicitly knows her email address and
hence her identity and public key. Therefore he can encrypt the email to her without the
same level of involvement from, for example, certificate and trust authorities. Recent
advances have produced many workable instances of identity based cryptography which
were driven mainly by the seminal work of Sakai, Ohgishi and Kasahara [27] and then
by Boneh and Franklin [4] who both proposed concrete cryptographic schemes based
on pairings on elliptic curves.



For such schemes to be feasible, one needs an efficiently computable pairing, or bi-
linear map. Generally the Tate pairing is selected for this task and is computed using one
of several algorithms, such as that of Barreto, Kim, Lynn and Scott [2] or Duursma and
Lee [6]. In characteristic three, which is often selected due to the bandwidth advantages
of the parameterisation, the Duursma-Lee algorithm is certainly faster and recent work
shows that it is probably the current best choice [10, 28]. However, unlike the BKLS
algorithm, it requires the computation of cube root operations which are relatively slow
when using a polynomial basis representation. Although these cube roots can be pre-
computed online using cubings, the space requirement is so significant, in constrained
or hardware environments the method is unattractive as a result. As such, this feature
means identity based cryptography is currently too expensive to run on naturally iden-
tity aware devices.

Normal bases [9] offer a convenient solution to this problem since cube and cube
root operations are simply cyclic shifts of the coefficients of an element. Indeed, this
seems to be the method Duursma and Lee envisaged using in their original paper, yet
without investigating how [6]. Therein lies the catch: normal bases have a drawback
in that multiplication is a more complex, and to a certain extent less studied opera-
tion compared to polynomial bases. To construct a high performance implementation
of Duursma-Lee that takes advantage of the properties of normal bases, efficient mul-
tiplication methods are required. In characteristic three, we are not aware of any work
that addresses this problem and we attempt to fill the gap in the literature with this
paper. We present methods for constructing an appropriate basis, as well as software
and hardware algorithms for arithmetic in it. Our performance and cost results indicate
that using normal bases in software is unattractive due to the cost of multiplication, but
that this cost can be avoided by parallel architectures in hardware. The use of hardware
acceleration for normal bases thus makes identity based cryptography on constrained
devices such as smart-cards a far more feasible proposition. Note that it is important
to look at the cost of softwareand hardware methods: in a standard implementation
it is unattractive to convert between representations where, for example, a smart-card
might use hardware acceleration and a desktop computer, which might utilise software
components only.

The paper is organised as follows. Firstly, we use Section 2 to overview the math-
ematics that underpin pairing based cryptography, paying particular attention to the
Duursma-Lee algorithm that motivates the use of normal basis arithmetic. We then dis-
cuss how to construct such normal bases for characteristic three fields in Section 3 and
suitable curve parameterisations in Section 4. Arithmetic with and representation of
fields elements is presented in Section 5 before software and hardware implementa-
tion results are introduced in Sections 6 and 7 respectively. Finally we present some
concluding remarks in Section 8.

2 Pairing Based Cryptography

The existence of efficiently computable, non-degenerate bilinear maps, or pairings,
has allowed cryptographers to explore avenues of research which had previously been
uninstantiable [29]. Originally used as a method of attack on elliptic curve cryptosys-



tems [7,21], the constructive potential of pairings based on elliptic curves is now well-
studied, with many protocols and applications [4,5,13,16].

To support these applications much research activity has focused on developing
efficient and easily implementable algorithms for their deployment [2, 6, 8]. Currently
the most efficient method for pairing computation is the Duursma-Lee algorithm [6,
10], which applies to supersingular elliptic curves in characteristic three with MOV
embedding degree six [21]. As well as pairing evaluation being approximately two and
a half times faster than with the BKLS algorithm [2], the embedding degree of six,
while not optimal in terms of the relative security requirements for discrete logarithm
algorithms in characteristic three finite fields and elliptic curves, still offers a good
security/efficiency trade-off for contemporary key-size recommendations.

In this section we give a brief summary of the mathematics underlying the reduced
Tate pairing, as developed in [2, 8], and give details of its Duursma-Lee variant, which
we refer to as the modified Tate pairing.

2.1 The reduced Tate pairing

We first introduce some notation. LetE be an elliptic curve over a finite fieldFq , and
letOE denote the identity element of the associated group of rational points onE(Fq ).
For a positive integerl coprime toq, letFqk be the smallest extension field ofFq which
contains thel-th roots of unity inF q . Also, letE(Fq )[l] denote the subgroup ofE(Fq )
of all points of order dividingl, and similarly for the degreek extension ofFq . From an
efficiency perspective,k is usually chosen to be even [2]. For a thorough treatment of
the following, we refer the reader to [2] and also [8], and to [30] for an introduction to
divisors. The reduced Tate pairing of orderl is the map

el : E(Fq )[l]�E(Fqk )[l]! F
�
qk =(F

�
qk )

l;

given byel(P;Q) = fP;l(D). HerefP;l is a function onE whose divisor is equivalent
to l(P ) � l(OE), D is a divisor equivalent to(Q) � (OE), whose support is disjoint
from the support offP;l, andfP;l(D) =

Q
i fP;l(Pi)

ai , whereD =
P

i aiPi. It satisfies
the following properties:

– For eachP 6= OE there existsQ 2 E(Fqk )[l] such thatel(P;Q) 6= 1 2 F�qk =(F�qk )l
(non-degeneracy).

– For any integern, el([n]P;Q) = el(P; [n]Q) = el(P;Q)n for all P 2 E(Fq )[l]
andQ 2 E(Fqk )[l] (bilinearity).

– LetL = hl. Thenel(P;Q)(q
k�1)=l = eL(P;Q)(q

k�1)=L.
– It is efficiently computable.

The non-degeneracy condition requires thatQ is not a multiple ofP , i.e. thatQ is in
some orderl subgroup ofE(Fqk ) disjoint fromE(Fq )[l]. When one computesfP;l(D),
the value obtained belongs to the quotient groupF

�
qk =(F

�
qk )

l, and notF�qk . In this quo-

tient, fora andb in F
�
qk , a � b if and only if there existsc 2 F

�
qk such thata = bcl.

Clearly, this is equivalent to

a � b if and only if a(q
k�1)=l = b(q

k�1)=l;



Field Field Polynomial Curve Order MOV security

F379 t79 + t26 + 2 Y 2 = X3 �X � 1 379 + 340 + 1 750
F397 t97 + t12 + 2 Y 2 = X3 �X + 1 (397 + 349 + 1)=7 906
F3163 t163 + t80 + 2 Y 2 = X3 �X � 1 3163 + 382 + 1 1548
F3193 t193 + t12 + 2 Y 2 = X3 �X � 1 3193 � 397 + 1 1830
F3239 t239 + t24 + 2 Y 2 = X3 �X � 1 3239 � 3120 + 1 2268
F3353 t353 + t142 + 2 Y 2 = X3 �X � 1 3353 + 3177 + 1 3354

Table 1.A table of field definitions and curve equations.

and hence one ordinarily uses this value as the canonical representative of each coset.
The isomorphism betweenF�qk =(F

�
qk )

l and the elements of orderl in F
�
qk given by this

exponentiation makes it possible to computefP;l(Q) rather thanfP;l(D) [2]. It also re-
moves the need to compute the costly denominators in Miller’s algorithm. We note that
there are other more efficient methods to obtain a unique representative of the output
coset [10]. However in this article we are concerned primarily with the computation of
the modified Tate pairing.

2.2 The modified Tate pairing

Duursma and Lee introduced their algorithm in the context of pairings on a family
of hyperelliptic curves. Restricting to the elliptic curve case, it applies to a family of
supersingular curves in characteristic three, including those in Table 1.

The first column gives the field over which each curve is defined, and the second
lists the corresponding irreducible polynomials defining the field extensions. The third
lists the curve equations and the fourth gives the order of the subgroup used. The final
column gives the bit-length of the smallest finite field into which the pairing value
embeds, which is always a degree six extension in these cases. These parameter values
were generated simply by testing which prime extension degrees suitable for efficient
normal bases yielded orders for supersingular curves that are prime, or almost prime,
i.e. those possessing a small cofactor.

The modified Tate pairing improves on the reduced variant in three ways. Firstly,
using the third property listed above, instead of computing the Tate pairing of order
l, one uses the pairing of orderq3 + 1, which eliminates the need for any point addi-
tions in Miller’s algorithm. Secondly, while this apparently increases the trit-length of
the exponent by a factor of three, Duursma and Lee show that the divisor computed
when processing three trits at a time has a very simple form, and hence no losses are
incurred. Lastly, they provide a closed form expression for the pairing, thus simplifying
implementations.

Let q = 3m andE(Fq ) : Y
2 = X3�X+ b, with b = �1, and letP = (x1; y1) and

Q = (x2; y2) be points of orderl. LetFq3 = Fq [�]=(�
3���b), with b = �1 depending

on the curve equation, and letFq6 = Fq3 [�]=(�
2 + 1). Then the modified Tate pairing

on E is the mappingfP (�(Q)) where� : E(Fq ) ! E(Fq6 ) is the distortion map
�(x2; y2) = (� � x2; �y2). The method for computing this is shown in Figure 2. Note



Algorithm 2: The Duursma-Lee algorithms for calculating the Tate pairing in char-
acteristic three.

Input : pointP = (x1; y1), pointQ = (x2; y2)

Output : fP (�(Q)) 2 F�q6 =F�q3
f  1
for i = 1 to m do

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g  �� ��� �2; f  f � g
x2  x

1=3
2 ; y2  y

1=3
2

return f

that in each loop, one must compute two cubings and two cube roots, in contrast to the
BKLS algorithm where one must compute four cubings.

Alternatively, if memory size is not an issue, one can pre-compute the cube roots in
reverse order as successive cubings [10]. With this strategy, Algorithm 2 is considerably
more efficient than BKLS in characteristic three, and indeed than the BKLS algorithm
for even and large characteristic curves of comparable order. To maintain this efficiency
when the pre-computation of cube roots is not viable, such as in constrained or hardware
environments, it is vital that one can performbothcubings and cube roots efficiently.
This is precisely why normal bases are well suited to pairing based applications, since
both a cubing and a cube root are simply cyclic shifts of the vector ofF3 elements
representing an element in the extension field.

3 Notation and Construction of Bases

The finite fieldF3m is isomorphic toF3 [X ]=(f) andF3 (�) wheref is an irreducible
polynomial of degreem in F3 [X ] and� is a root off . We will identify these three
fields, but our notation will be tailored towardsF3 (�). In a polynomial basisF3 (�) is
regarded as anm-dimensional vector space overF3 with basis(�0; �1; : : : ; �m�1). For
an elementa 2 F3 (�) we will simply write the elements in a polynomial, or standard
basis as

a =
m�1X
i=0

âi � �i :

Arithmetic in a polynomial basis is fairly straightforward when based on conventional
polynomial arithmetic. When discussing implementation of such arithmetic, it is often
useful to denote elements as a vector of coefficients such as

â = (â0; â1; â2; : : : ; âm�1) ;

so that physical operations such as shifting and rotation of coefficients is more naturally
expressed. We use the notationâ(i) to denote the (left) rotation of the coefficients in such



a vector by distancei. That is, we write

â(i) = (âi+0; âi+1; âi+2; : : : ; âi+m�1):

where in all cases, coefficient indices are reduced modulom. Using this notation,̂a(i)j
represents thej-th coefficient of the rotated elementâ(i).

In a normal basis, things are slightly more involved. Given an irreducible polyno-
mial f of degreem and with root�, the full set of roots off in F3 (�) is

B = (�; �3; �3
2

; : : : ; �3
m�1

):

If the elements ofB are linearly independent then the set of roots form a basis ofF3 (�)
overF3 and this basis,f and� are all called normal. For an elementa 2 F3 (�) we
write

a =

m�1X
i=0

�ai � �3
i

but again, for brevity, we often denote a normal basis field elementa using the coeffi-
cient vector�a and rotated coefficient vectors as described above.

The main advantage of a normal basis is that it allows fast application of the Frobe-
nius map and its inverse, i.e. cubing and taking cube roots. Indeed, leta 2 F3m be
represented by�a, then for anyi 2 Z the elementa3

i

is represented by�a(i), i.e., apply-
ing Frobenius only takes a rotation.

Normal basis multiplication is more complicated, but a common technique is based
on a so-called multiplication matrix. Leta; b 2 F3m and letc = a � b. Let �1+3

l

=Pm�1
k=0 dlk�

3k , then

m�1X
k=0

�ck�
3k = (

m�1X
i=0

�ai�
3i)(

m�1X
j=0

�bj�
3j )

=
m�1X
i=0

m�1X
j=0

�ai�bj(�
1+3i�j )3

j

=

m�1X
i=0

m�1X
j=0

�ai�bj(

m�1X
k=0

di�j;k�
3k )3

j

=

m�1X
i=0

m�1X
j=0

m�1X
k=0

�ai�bjdi�j;k�
3k+j

=

m�1X
k=0

(

m�1X
i=0

m�1X
j=0

�ai+k�bj+kdi�j;�j)�
3k

=
m�1X
k=0

(�a(k)M(�b(k))T )�3
k

;



where for the penultimate equality the transformationi = i0 + k0; j = j0 + k0; k = �j0
has been used and the matrixM is defined byMij = dj�i;�i. Note that the transfor-
mation in the penultimate step has been chosen such that the matrix is the same for all
coefficients of�c; all that is required are rotations of�a and�b.

The computation of the matrixM given a normal polynomialf is relatively straight-
forward. Below, we follow the description of IEEE P1353 [14, Annex A]. The matrix
M follows easily once the matrix(dij) is known. The latter matrix gives the linear
transformation that takes�a and outputs the normal representation for�a for an arbi-
trary elementa. In a polynomial basis multiplication by� boils down to multiplication
of â by the companion matrix off . To determine the matrix(dij), the standard solu-
tion is to first linearly transform from a normal basis representation�a to a polynomial
basis representation̂a, multiply with the companion matrix and transform back (again
linearly) to the normal basis.

The number of non-zero entries in the multiplication matrixM associated with the
basis is in some sense a measure of complexity: this number is often denoted asCN
in the literature. For a random normal polynomialf the matrixM will be fairly dense.
Using specially constructed normal bases it is possible to ensure that the matrix will be
sparse.

The best known normal basis are based on Gauß periods. References to the devel-
opment of the theory of normal bases based on Gauß periods can be found in the theses
by Gao [9] and N¨ocker [23]. In short, Gauß periods are certain sums of roots of unity.
Intuitively, if �r is anr-th root of unity in�F3 , thenF3 (�r) will have extension degree di-
viding�(r). Under certain conditions specific sums of�r and its conjugates will provide
normal bases forF3�(r) and its subfields. For the general theory we refer to the theses
by Gao and N¨ocker, we limit ourselves to ground fieldF3 with prime extension degree
andr a prime. For ease of reference we use N¨ocker’s notation as much as possible.

Let q = 3, letm be the desired extension degree. Letr be a prime such that�(r) =
r�1 = mk for some integerk, called the type of the normal basis. LetK be a subgroup
of Z�

r of orderk. Note that for a primer this subgroup is unique. A Gauß period of type
(m;K) (or of type-k for short) is then defined as

� =
X
a2K

�ar :

In order for� to be normal, it is required thatq andK together span the multiplicative
groupZ�

r. It is possible to determine the minimal polynomial of� by factoring�r(X)
overF3 , resulting in a minimal polynomial of anr-th root of unity�r and hence in a
polynomial basis forFr (�r). In this extension field the minimal polynomial of� can be
computed by

Qm�1
i=0 (X � �3

ki

). Once the minimal polynomialf has been computed
it is easy to compute the multiplication matrixM . There is an alternative, more direct
approach, constructing the matrixM based on the structure of Gauß periods.

Since in pairing based cryptography one selectsm to be prime, as demonstrated
by Table 1, a type-one normal basis or, equivalently for odd characteristic an optimal
normal basis, is never available. This is unfortunate since type-one normal bases offer
the highest level of performance due to the sparsity of their multiplication matrices.

However, we can construct a type-two normal basis for our prime values ofm if
r = 2m+1 is also prime. In this case(q;K) will always spanZ�

r, sincem must divide



m r m r m r

83 167 281 563 653 1307
89 179 293 587 659 1319
113 227 359 719 683 1367
131 263 419 839 719 1439
173 347 431 863 743 1487
179 359 443 887 761 1523
191 383 491 983 809 1619
233 467 509 1019 911 1823
239 479 593 1187 953 1907
251 503 641 1283

Table 2.A table showing values of80 < m < 1000 wherem andr = (2 �m) + 1 are
both prime, allowing a type-two normal basis to be constructed.

the order ofq modulor by virtue ofm being prime and3k < mk for m > 3. Hence
the Gauß period� will be normal in this case.

As an historical note, such values ofm are termed Sophie Germain primes after
the mathematician who, in 1825, proved that Fermat’s Last Theorem is true for prime
values ofm when(2 �m)+ 1 is also prime. The number of these primes less than some
valueN is conjectured to be

2CTP

Z N

2

dx

logx log (2x+ 1)
� 2CTPN

(logN)2

whereCTP is the twin prime constant. The number of these specific forms ofm is
clearly less than in the unrestricted case, but Table 2 shows that there are sufficiently
many of a cryptographically interesting size that this should not be a problem. However,
of the currently recommended parameterisations for pairing based cryptography only
one field size, that wherem = 239, yields a type-two normal basis.

To conclude, consider a small example wherem = 3 that produces a usable type-
two normal basis sincer = (2 � 3) + 1 = 7 is prime. We find a normal polynomial to
define our basis inF33 to be

x3 + x2 + x+ 2;

and hence calculate the multiplication matrix as

M =

0
@1 0 1

0 2 1
1 1 1

1
A :

Notice that the first and second rows, the second being notable sinceM2;2 = 2, both
have two non-zero entries while the third row has three. This is also a feature of larger
fields constructed in this way although this, and the sparsity of the matrix are not ap-
parent due to the small size of the example.



Field Curve Order MOV security

F389 Y 2 = X3 �X + 1 (389 � 345 + 1)=C1 846
F3131 Y

2 = X3 �X + 1 (3131 + 366 + 1)=C2 1245
F3173 Y

2 = X3 �X + 1 (3173 � 387 + 1)=C3 1645
F3179 Y

2 = X3 �X � 1 (3179 � 390 + 1)=C4 1702
F3251 Y

2 = X3 �X + 1 (3251 + 3126 + 1)=C5 2386

C1 = 15991171
C2 = 5684423650544561353112126431
C3 = 16420688749
C4 = 2592169385514147730111519261
C5 = 92356696508682118747422403460844172574501278477

Table 3.A table of normal basis friendly field and curve parameterisations.

4 Suitable Curve Parameterisations

The list of valid selections ofm in Table 2 is only part of the story as regards building a
working parameterisation. Having specified the fieldFq , we must select a curveE over
this field that is both suitable in terms of structure and security against attack. The list
of potentialm values in Table 2 was sparse compared to the general case since we put
constraints on the acceptable values: suitable curve parameters are even sparser due to
these constraints.

In a rough sense, the parameters in Table 1 were found by searching curves of
the formY 2 = X3 � X � 1 for ones with large prime order, accommodating small
cofactors, and with appropriate MOV security properties. Due to the extra constraints
on m, normal basis friendly parameterisations are difficult to find. However, Table 3
shows the result of a limited search for such parameters.

Most notable are the curves form = 173 andm = 179 which appear to offer a
good balance between performance and security for the types of constrained environ-
ments we are interested in. The clear downside to these curves are the unattractively
large cofactors which present some security issues relating to the possibility for small
subgroup attacks, in addition to the performance impact of using large fields that only
yield relatively small elliptic curve groups. Analysis of this sort of issue in the context
of pairings and the search for further normal basis friendly parameters is an ongoing
task, but currently seems a problem with respect to practical application.

In this paper we deal only with fields which allow a type-two normal basis, partly for
brevity and partly because higher types yield lower performance. One way to alleviate
this difficulty of curve parameterisation is to utilise the current recommendations from
Table 1 and deal with higher complexity types. For example, one might wish to use
m = 163 wherer = (4 � 163) + 1 = 653 is prime and hence a type-four normal basis
can be constructed. We defer consideration of this approach for further work.



5 Arithmetic in Characteristic Three

In a physical sense, we follow other work [11] and represent a polynomiala as two
bit-vectorsaH andaL. If we let aHi andaLi denote biti of aH andaL respectively,
the vectorsaH andaL are constructed froma such that for alli aHi = ai div 2 and
aLi = ai mod2. That is,aH andaL are a bit-sliced representation of the coefficients of
a whereaH andaL hold the high and low bits of a given coefficient. Note that aside
from where it matters, we abstract this representation away and simply assume that
operations are applied to suitable pairs of bit vectors.

5.1 Addition, Subtraction and Multiplication of Coefficients

Component-wise operations on field elements in polynomial and normal bases are the
same since they simply operate on pairs of coefficients, reducing the result so it lies
in F3 . Given our bit-sliced representation of polynomials, we can construct component-
wise addition, subtraction and multiplication using simple logical operations. For exam-
ple, component-wise additionri = ai + bi of two polynomialsa andb can be specified
using the following logical operations

rHi = (aLi _ bLi )� t

rLi = (aHi _ bHi )� t

where

t = (aLi _ bHi )� (aHi _ bLi ):
Subtraction, and hence multiplication by two, are equally efficient since the negation
of an elementa simply swaps the vectorsaH andaL over and can therefore be imple-
mented by the same function as addition. For normal basis arithmetic, we also require
a component-wise multiplicationri = ai � bi. This can be performed using similarly
inexpensive logical operations

rHi = (aLi ^ bHi ) _ (aHi ^ bLi )
rLi = (aLi ^ bLi ) _ (aHi ^ bHi ):

On a given computer with word-sizew, we hold the bit-vectorsaH andaL that represent
a as two word-vectors of lengthdm=we and hence apply logical operations in parallel
tow coefficients at a time. This is convenient since not only are logical operations cheap
to process, the use of large SIMD registers to accelerate execution is also very easy.

5.2 Cubing and Cube Roots

In characteristic three, cubing is a linear operation in the same way squaring is linear in
characteristic two. Therefore, when working in characteristic three cubing is an impor-
tant operation since curve and pairing arithmetic is specifically manipulated to utilise
cubing over more costly multiplication. In addition, the cube root operation is important
in the Duursma-Lee pairing arithmetic if pre-computation is avoided.



Our reason for considering normal bases in the first place was the efficiency of cube
and cube root operations in characteristic three: both can be achieved by cyclic shifting
the coefficients in an elements so that for an element�a

�a3 = (�am�1; �a0; : : : ; �am�3; �am�2)
3
p
�a = (�a1; �a2; : : : ; �am�1; �a0):

Clearly these rotations can be easily implemented in software and even more so in a
hardware circuit, where they reduce to wired permutation of bits with no actual compu-
tational overhead.

Since the field representation is both compact and bit-oriented, when using a poly-
nomial basis the cube operation can be implemented using table look-up in an analogous
way to the coefficient thinning method in characteristic two. Although this requires a
subsequent reduction operation, it is an order of magnitude less expensive than multi-
plication. Taking cube roots is a little more awkward but can be accelerated using a trick
involving a small amount of pre-computation. Recall that one can write an elementâ in
a polynomial basis as

â =

m�1X
i=0

âi � �i:

By expanding this summation and extracting cube roots from appropriate summands,
we find that

3
p
â = 3

qPm�1
i=0 âi � �i

=
3

qPdm3 e�1
i=0 (â3i � �3i) + (â3i+1 � �3i+1) + (â3i+2 � �3i+2)

=
Pdm3 e�1

i=0 (â3i � �i) + �1=3 � (â3i+1 � �i) + �2=3 � (â3i+2 � �i):

That is, if we pre-compute the values of�1=3 and�2=3 the cube root operation is re-
duced to two multiplications, which can be further optimised since the operands will
always be a third of the length of a full element, and two additions.

5.3 Multiplication

Efficient multiplication in finite fields of characteristic two is a well studied topic. Meth-
ods in characteristic three are less mature but since our representation of field elements
is bit-oriented, we open the possibility of converting several methods from characteris-
tic two.

Using a polynomial basis in software, one can easily construct a characteristic
three version of the comb method [20]. After extensive experimentation however, a
Karatsuba-Ofman style approach seems the fastest choice. We utilise the two-way split-
ting of conventional Karatsuba-Ofman [18], as well as three-way splitting proposed by



Bailey and Paar [1], to reduce the operands to word sized objects where we then use
standard polynomial multiplication. Hardware polynomial basis multipliers have also
been developed [24], the most efficient being that of Bertoniet al. [3].

As mentioned previously, multiplication of normal basis field elements is dictated
by a matrix which essential encodes how reduction takes place. Given such a matrixM ,
constructed from the normal polynomialf , we can generate coefficients of the result
�c = �a � �b using

�ck =
m�1X
i=0

�ak+i �
m�1X
j=0

Mi;j � �bk+j

where in all cases, coefficient indices are reduced modulom.
In characteristic two, hardware normal basis multipliers have seen increasingly high

performance starting with the implementation of Wanget al. [31] who present results
for a Massey-Omura based design. Since then, specific optimisations have yielded fast
circuits [12,19,26] for specific classes of field.

Algorithms for efficient software implementation of this operation in characteris-
tic two have been presented by Reyhani-Masoleh and Hasan [25] and also Ning and
Yin [22]. For working in characteristic three, we adopt the later method since the op-
erations map naturally onto our bit-sliced representation of field elements. Specifically,
we adapt the Algorithm 3 of Ning and Yin [22] to suit our purposes and to some ex-
tent adopt their terminology by presenting the algorithm in C style pseudo-code. Note
that in this pseudo-code, both addition and multiplication operations are assumed to be
component-wise modulo three.

The basic method, shown in Algorithm 3, revolves around the pre-computed arrays
A andB where each entry in the2m sized arrays is aw-bit sized word. Although
this method of pre-computation is perhaps more costly than that of Reyhani-Masoleh
and Hasan [25], it offers a major performance benefit when considering the memory
characteristics of accesses toA andB. For example, since the rotated words are held
sequentially, using this method provides good cache locality. Furthermore, since the
method deals only with word sized objects, rather than full rotated field elements, the
pre-computation itself is faster.

The algorithm also relies on the multiplication matrixM , described in the construc-
tion of the normal basis. However, since the matrix is sparse, we only hold the non-zero
values in arrayst0, t1 and t3 whereti[j] holds thei-th non-zero value of rowj for
0 < i � 2 and0 < j < m. Note that sincet3[0] is never a valid non-zero row index,
we treat this as a special case before entry to the main loop. Also note that we neglect
to check for the case whenMi;j = 2 which will occur once in the matrix. Since this
event occurs only once, at a position wheret3[j] is again invalid, we introduce an extra
addition and treat2 � �bk+j as�bk+j + �bk+j so as to remove the test otherwise required
on each iteration of the loop.

5.4 Inversion

Inversion is generally the most expensive operation when dealing with finite field arith-
metic, so much so that in systems like ECC every effort is made to construct higher level



Algorithm 3: A software algorithm for type-two normal basis multiplication in
characteristic three.

Input : Field elements�a and�b

Output : The element�c = �a � �b (mod f)

Pre-computation

A[i] = A[i+m] = (�ai; �ai+1; :::; �ai+w�1)
B[i] = B[i+m] = (�bi;�bi+1; :::;�bi+w�1)

Multiplication

for( k = 0; k < m; k += w )
{

t = A[ 0 ] * ( B[ t1[0] ] +
B[ t2[0] ] );

for( i = 1; i < m; i++ )
{

t += A[ i ] * ( B[ t1[i] ] +
B[ t2[i] ] +
B[ t3[i] ] );

}

C[ k ] = t;

A += w;
B += w;

}

operations so that inversion is not required. With characteristic three fields in polyno-
mial basis, we can use a simple translation of the standard binary Euclidean algorithm to
invert elements. Although still slow in comparison to other operations, this translation is
made somewhat more natural thanks to the bit-oriented form of the field representation.

Inversion of elements held in a normal basis is far more costly. Since one can not
use Itoh-Tsujii type methods [15] to reduce the cost thanks to the form ofm, the best
way to invert an elements seems to be simply powering it

�a�1 = �a3
m�2:

This should be implemented using a ternary expansion of the exponent since cubing
operations are so inexpensive.



Polynomial Normal

Arithmetic inF3239
Add 0:59�s 0:56�s
Multiply 19:72�s 52:16�s
Square 19:24�s 50:04�s
Cube 1:36�s 0:53�s
Cube Root 16:50�s 0:51�s
Invert 136:34�s 12156:00�s
Arithmetic inF3239�6
Add 1:20�s 1:15�s
Multiply 367:70�s 987:45�s
Square 344:90�s 984:14�s
Cube 5:50�s 1:32�s
Invert 819:01�s 14920:10�s
Pairings
BKLS 93:76ms 449:30ms
Duursma-Lee -PC 78:16ms 171:60ms
Duursma-Lee +PC 66:46ms 170:10ms

Table 4.Timings for field arithmetic inF3239 , F3239�6 and Duursma-Lee based pairings
using polynomial and normal bases.

6 Software Implementation

In order to provide some concrete idea of the practical cost of the presented software
based methods, we implemented the proposed field arithmetic and pairing algorithms.
This is clearly of interest since a comparison between polynomial and normal basis im-
plementations will effectively determine the best method for realising high performance
software only pairings on memory constrained devices. We used a GCC3:3 compiler
suite to build our implementation and ran timing experiments on a Linux based PC in-
corporating a2:80 GHz Intel Pentium4 processor. The entire system was constructed
in C++. We accept that further performance improvements could be made through ag-
gressive profiling and optimisation but are confident our results are representative of the
underlying algorithms and allow a comparison between them.

Table 4 shows timings from our implementation. Note that both normal and poly-
nomial bases timings are included and that+PC and�PC represent results with and
without pre-computation as described in Section 2. Working in a polynomial basis is
clearly the faster of the two methods, even though cube and cube root operations are far
quicker in the normal basis arithmetic: using pre-computation has the effect of acceler-
ating the pairing using the polynomial basis as a result. Over all, the polynomial basis
pairing is between two and three times as fast as the normal basis alternative, even when
no pre-computation is used. This is basically a product of the differences in multipli-
cation speed since this, rather than the cube and cube root operations, is the dominant
cost in computation.
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Fig. 1. Circuit diagrams for component-wise addition and multiplication inF3 . Note
that at a higher level, we abstract the internal bit-sliced operations to make things
clearer.

A secondary performance problem is the exceptionally high cost of inversion in nor-
mal bases. Even considering the conversion [17] before and after inversion in a poly-
nomial basis, this seems a very expensive operation. However, in practice it is possible
to avoid inversions in many protocols since one ordinarily needs only verify equality
of pairing outputs belonging to the groupF�q6 =F

�
q3 . Using the methods of [10] one can

perform an equality check with just twoFq3 multiplications.
With regard to other aspects of protocols, particularly post-pairing exponentiation

in Fq6 , it is desirable to be able to perform inversions [10]. In this case it makes sense
to map an element in a normal basis representation to a polynomial representation,
perform the inversion and then map back again. In general this isomorphism will cost
approximatelym2=3 multiplications inF3 , and is thus quite expensive, but based on
the performance comparison as detailed in Table 4, this is clearly a reasonable option.

7 Hardware Implementation

Consider the same example from Section 3 wherem = 3. Using the matrixM , and the
multiplication equation from Section 5.3, we take the basicADD andMUL circuits in
Figure 1 and construct a fully parallel multiplier as shown in Figure 2. Note that we are
able to reduce the number of required addition circuits by reuse of previously computed
results.

Multiplication circuits for larger fields can be constructed by considering the spe-
cific example in Figure 2 as parallel instances of a circuit that generates a single result
coefficient. This circuit can be split into three phases as demonstrated by Figure 3: a
generation phase that producesm sums of coefficients inb; a multiplication phase that
multiplies these sums with coefficients ofa; and a accumulation phase that adds all the
multiplication results together to get the final result coefficient. Although very basic,
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Fig. 2.A normal basis multiplier for the fieldF33 .

this design is very regular and fairly flexible in the sense that one can build a fully or
partially parallel device from the same basic building blocks.

7.1 Cost Analysis

In calculating the cost of multipliers of this type, we useAA, AO andAX to denote
area required for logical and, or and exclusive-or gates andTA, TO andTX to denote
the time delay introduced by those gates. Using this notation, we find that ourADD
andSUB circuits both require an area of4AO + 3AX gates to build and have a delay
of TO + 2TX . TheMUL gate on the other hand requires an area of4AA + 2AO gates
to build and has a delay ofTA + TO. From the abstract multiplier in Figure 3, we use
the costs associated with these basis circuits to derive a loose upper bound for both the
total number of gates required and the overall delay.

The generate phase is required to producem sums of the input coefficients. As a
result of the way the matrixM is constructed for our basis, each of these sums contains
a maximum of three summands. Exceptions to this rule are the first sum and the sum
containing the termMi;j = 2, both of which contain two summands and that in the
latter case is calculated using aSUB circuit rather than anADD. Therefore, an upper
bound for the area of gates in the generate phase is(3m � 2) � (4AO + 3AX). The
gate delay is fixed by the longest path, i.e. that with three summands, and is hence
3 � (TO + 2TX). Note that in reality, less gates are required for this phase since partial
sums can often be read from previous ones. This is demonstrated in Figure 2 where, for
example, the resultb(k)0 + b

(k)
1 + b

(k)
2 is constructed by addingb(k)1 to the previously

computed valueb(k)0 + b
(k)
2 .

The multiply phase requiresm parallelMUL circuits and hence an area ofm �
(4AA + 2AO) gates with a delay ofTA + TO. The accumulate phase sums them
outputs from the multiply phase. Using a binary tree for this task, the accumulate phase
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results in a structure of heighth = dlog2(m)e. Such a structure can be built using
(m � 1) interior nodes, each composed of anADD circuit, meaning a total area of
(m� 1) � (4AO + 3AX) gates that impose a delay ofh � (TO + 2TX).

To construct a fully parallel multiplier, we need to placem of these phases in order
to generatem coefficients of the result. Using the previous cost analysis as a platform,
we find that an upper bound for the number of gates required for each result coefficient
generator can be stated as

(4m� 3) � (4AO + 3AX) +m � (4AA + 2AO);

while the maximum delay imposed by those gates is

(3 + dlog2(m)e) � (TO + 2TX) + (TA + TO):

Since we intend to place many of these units in parallel, we will see anm-fold increase
in gates but note that as long as the multiplier is fully parallel, the delay to produce the
result remains the same. Of course, one can make a trade-off between size and speed
by placing onlyn < m parallel result coefficient generators and using them iteratively
to produce the final resultn coefficients at a time.

Putting all of this into context, a fully parallel multiplier for the case wherem = 239
would require

228484AA + 1025310AO + 683301AX

gates, i.e. almost two million gates, and the delay between results being produced would
be

TA + 12TO + 22TX :

Clearly this is far too large a device to deploy on a smart-card so one might consider
only placing a single result coefficient generator, reducing the gate count to a manage-
able

956AA + 4290AO + 2859AX ;



that is around eight thousand gates, although delaying the result by a factor ofm. Given
the cost of, for example, Montgomery multipliers currently housed on smart-cards eight
thousand gates seems like a fairly modest total. However this estimate is clearly very
rough, focusing on the multiplier only and ignoring issues such as control logic.

7.2 Performance Analysis

In order to minimise the amount of logic required, we assume a worst case in terms of
environmental constraints: there is only room on the device for a single result coefficient
generation circuit. Given this architecture and a modest clock speed, it seems possible
to generate a single coefficient of the result every clock cycle for reasonable sizes ofm,
meaning we expect to complete a multiplication everym cycles. Although this neglects
the cost of, for example, loading and storing values to and from memory before and
after completion of the multiplication, it seems pessimistic enough to allow reasonable
ball-park analysis.

If we assume that efficient methods for field arithmetic and removal of the final
exponentiation are used [10], the Duursma-Lee method described in Section 2 can be
computed using14m multiplications inF3m and a handful of auxiliary operations such
as addition. Since the auxiliary operations, including the cube and cube root stages,
are inexpensive in comparison the multiplication the total time required to process the
algorithm is dominated by the said14m multiplications. Given a modest smart-card
clock speed of8MHz and our multiplier form = 239, we expect to process a single
multiplication in 239 cycles. Ignoring the cost of any auxiliary operations, the whole
pairing algorithm could complete in well under a second. Even including these auxiliary
operations, it seems reasonable that the operation should complete close to this mark.

Clearly this whole argument depends on the operation of the multiplier in context: it
is meaningless to quote clock speeds and cycle times for the multiplier without a over-
arching design. However, the fact that a low cost multiplier circuit can accommodate
the dominant computational load of the pairing in a useful time period is a strong step
towards this goal. This is especially true since in constrained environments,m = 239
is probably overkill in terms of security and time constraints are more elastic than in in-
teractive applications: a one or two second wait at a smart-card enabled ATM machine
is unlikely to be apparent to the user.

8 Conclusions

In this paper we presented methods for constructing and using normal basis arithmetic
in characteristic three and then applied it to the context of pairing based cryptogra-
phy. We showed that although fast methods for normal basis multiplication in software
can be constructed, they are still too slow when compared to a polynomial basis in the
context of computing the pairing. However, this drawback is eliminated when consid-
ering hardware implementation where acceleration devices can be high performance
while maintaining a low cost in terms of area and time. In this context, normal bases
offer a fast way to perform pairing computation while removing the need for any pre-
computation that would hinder implementation using a polynomial basis. The applica-
tions for such as design are clear: constrained devices such a smart-cards which were



previously thought to possess too little computational power can feasible implement
identity based cryptography.

However, in both hardware and software, we noted that depending on the protocol
that uses the pairing value, the use of normal bases could be made unattractive due to the
high cost of inversion in the base field and hence the difficulty of efficiently performing
further arithmetic on said value. We presented a method to reduce this cost but stress
that this problem, and the more important issues that surround construction of curves
that allow type-two normal bases, could preclude their use as envisaged by Duursma
and Lee all together. Hence, even though we improve significantly on previous work,
there are still several areas that require further investigation.

Use a polynomial basisIn this paper we focused on the use of normal basis arithmetic
with the goal of constructing a hardware accelerator for the Duursma-Lee algorithm.
With this as the emphasis, we ignored the possibility of using a polynomial basis and
computing cube roots on the fly with the method from Section 5.2. Given the cost of
this method is less than a general multiply, it seems feasible that an adequate acceler-
ator could be constructed by ignoring normal basis arithmetic altogether. We hope to
investigate this possibility in further work.

Nöcker style multiplication In his thesis [23], N¨ocker introduces a method for per-
forming normal basis multiplication by doing a fast translation to a polynomial basis,
doing the multiplication and then translating back again. If this can be achieved quicker
than our current methods, it could be attractive. In hardware, it could be an especially
good idea since it could allow accelerated support for both polynomialandnormal basis
arithmetic using only a single, conventional polynomial multiplier.

Normal bases witht > 2 As outlined in Section 4, we deal only with type-two normal
bases even though higher complexity types can be useful when considering the problem
of curve parameterisation. This trade-off remains an open problem that is in some sense
application specific, i.e. the system designer must match the cost of an architecture
against the security constraints. However, it seems an interesting problem to investigate
if there are better methods than using Gaußian normal bases for more complex types,
both in terms of construction and arithmetic.

Architectural optimisations In the same way that architectures for normal and optimal
normal basis multipliers in characteristic two have matured, architectural optimisation
of our rather basic design seems inevitable. For example, some form of pipelining could
clearly be useful and area minimisations are presumably possible. Although we proto-
typed our design in Verilog, we hope to address this area by constructing a complete
accelerator design and implementing it on an FPGA. This work is sure to encompass
a dual goal to the one considered here: as well as constrained devices, it is attractive
to design very high performance accelerator devices for server side applications. By
taking advantage of lifting constraints of area and clock speed, the performance of such
applications can be improved in the same way that SSL servers are accelerated using
dedicated RSA hardware.
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