
Improvement of Thériault Algorithm of Index

Calculus for Jacobian of Hyperelliptic Curves of

Small Genus

Koh-ichi Nagao∗,
Dept. of Engineering, Kanto-Gakuin Univ.

May 20, 2004

Abstract

Gaudry present a variation of index calculus attack for solving the
DLP in the Jacobian of hyperelliptic curves. Harley and Thérialut
improve these kind of algorithm. Here, we will present a variation of
these kind of algorithm, which is faster than previous ones.
Keywords Index calculus attack, Jacobian, Hyperelliptic curve, DLP,

1 Introduction

Gaudry [3] first present a variation of index calculus attack for hyper-
elliptic curves that could solve the DLP on the Jacobian of an hyper-
elliptic curve of small genus. Later, Harley(cf. [2]) and Thériault
[1] improve this algorithm. In [1], these algorithms work in time
O(q2− 2

g+1+ε), and O(q2− 4
2g+1+ε) respectively. Thériault’s algorithm

uses the almost-smooth divisor D =
∑

D(Pi) that all but one of the
Pi’s are in the set B called factor base. This technique was often used in
the number field sieve factorization algorithm, which uses the almost-
smooth integer n =

∏
pi, that all but one of the pi’s are in the factor

base B, which is the set of small primes. In factorization algorithm, the
cost of factorizing integer is larger than that of primary testing. So, the
cost of factorizing almost-smooth integer is larger than that of normal
integer of the same size, and the number that pi 6∈ B must be one. How-
ever, for the index calculus for the Jacobian of curves, we first compute
the point of Jacobian and later consult whether it is almost smooth or
not. So that, the new algorithm that use the 2-almost smooth divisors,
that all but 2 of the Pi’s are in the set B, is useful. For example, the al-
most smooth divisor of the form v1 =

∑
terms of B+D(P1), and the 2-

almost smooth divisors of the form v2 =
∑

terms of B+D(P1)+D(P2),
∗nagao@kanto-gakuin.ac.jp

1

v3 =
∑

terms of B+D(P2)+D(P3) are given, v1−v2 =
∑

terms of B−
D(P2), v1− v2 + v3 =

∑
terms of B + D(P3) are other almost smooth

divisors. So, we can get much more almost smooth divisors from gath-
ering 2-almost smooth divisors. From this improvement, we get an
attack of a running time of O(q2− 2

g +ε).

2 Jacobian arithmetic

Let C be a hyperelliptic curve of genus g over Fq of the form y2 +
h(x)y = f(x) with deg f = 2g + 1 and deg h ≤ g.

Notation 1. Use Jq for JacC(Fq).

Further, we will assume that |Jq| is odd prime number, for simplic-
ity.

Definition 1. Given D1,D2 ∈ Jq such that D2 ∈< D1 >, DLP for
(D1, D2) on Jq is computing λ such that D2 = λD1.

For an element P = (x, y) in C(F̄q), put −P := (x,−h(x)− y).

Lemma 1. C(Fq) is written by the union of disjoint sets P∪−P∪{∞},
where P := {−P |P ∈ P}.

Proof. Since |Jq| is odd prime, we have 2 6 ||Jq| and there are no point
P ∈ C(Fq) such that P = −P .

Further, we will fix P.
Point of JacC can be represented uniquely by the reduced divisor

of the form

k∑
i=1

niPi −
k∑

i=1

ni∞, Pi ∈ C(F̄q), Pi 6= −Pj for i 6= j

with ni ≥ 0 and
∑

ni ≤ g.

Definition 2. The reduced divisor of a point of Jacobian Jq is written
by the elements of C(Fq) i.e.

k∑
i=1

niPi −
k∑

i=1

ni∞, Pi ∈ C(Fq).

Then the point is said to be potentially smooth point.

Let D(P) := P −∞. Note that P + (−P) ∼ 2∞. From lemma 1,
potentially smooth point v of Jq can be represented of the form∑

P∈P
n

(v)
P D(P)

with n
(v)
P ∈ Z and

∑
P∈P |n

(v)
P | ≤ g. Further, we will use this repre-

sentation to potentially smooth points.

2

Definition 3. A subset B of P used to define smoothness is called
factor base.

Definition 4. A point P ∈ P\B is called large prime.

Definition 5. A divisor v of the form∑
P∈B

n
(v)
P D(P)

is called smooth divisor.

Definition 6. A divisor v of the form∑
P∈B

n
(v)
P D(P) + n

(v)
P ′ P

′,

where P ′ is a large prime, is called 1-almost smooth divisor or almost
smooth divisor.

Definition 7. A divisor v of the form∑
P∈B

n
(v)
P D(P) + n

(v)
P ′ P

′ + n
(v)
P ′′P

′′,

where P ′, P ′′ are large primes, is called 2-almost smooth divisor.

Definition 8. An element J ∈ Jq is called c point, if the reduced
divisor representing J is smooth (resp. almost smooth, resp. 2-almost
smooth) divisor.

Further, we will consider the coefficients nP of a smooth (resp.
almost smooth, resp. 2-almost smooth) divisor modulo |Jq|. For a
smooth (resp. almost smooth, resp. 2-almost smooth) divisor v, put

l(v) := #{P ∈ B|n(v)
P 6= 0}.

Lemma 2. Let v1, v2 be smooth (resp. almost smooth, resp. 2-almost
smooth) divisors and let r1, r2 be integers modulo |Jq|. Then the cost
for computing r1v1 + r2v2 is O(g2(log q)2(l(v1) + l(v2)).

Proof. It requires l(v1) + l(v2)-time products and additions modulo
|Jq|. Note that |Jq|

.= qg. Since the cost of one elementary operation
modulo |Jq| is log |Jq| = (g log q)2, we have this estimation.

3 Outline of algorithm

In this section, we present the outline of the proposed algorithm. Let
k be a real number satisfying 0 < k < 1/2g. Further in this paper, we
will use k as a parameter of this algorithm. Put

r := r(k) =
g − 1 + k

g
.

We will fix a set of factor base B with |B| = qr.

3

Lemma 3.

2r > 1 + k > 1 >
1 + r

2
=

2g + k − 1
2g

>
(g − 1) + (g + 1)k

g
.

Proof. trivial.

The whole algorithm consists of the following 7 parts.
Input C/Fq hyper elliptic curve of small genus g, D1, D2 ∈ Jq such
that D2 ∈< D1 > .
Output Integer λ modulo |Jq| such that D2 = λD1.
1 Computing all points of C(Fq) and making P and fix B ⊂ P with
|B| = qr.
2 Gathering 2-almost smooth divisors and almost smooth divisors
Computing a set V2 of 2-almost smooth points and a set V1 of almost
smooth points of Jq, of the form αD1 + βD2 with |V1| > 2q

(g−1)+(g+1)k
g

and |V2| > q1+k.
3 Computing a set of almost smooth divisor Hm with |Hm| > q(1+r)/2.
4 Computing a set of smooth divisor H with |H| > qr.
5 Solving linear algebra of the size qr × qr

Computing integers {rh}h∈H modulo |Jq|, satisfying
∑

h∈H rhh ≡ 0 mod
|Jq|.
6 Computing integers {sv}v∈V1∪V2 modulo |Jq|, satisfying

∑
v∈V1∪V2

svv ≡
0 mod |Jq|.
7 Computing λ.

4

4 Gathering 2-almost smooth points and
almost smooth points

Algorithm 1 Gathering the 2-almost smooth pts and almost smooth pts
Input: C/Fq curve of genus g, D1, D2 ∈ JacC(Fq)
Output: V1 a set of almost smooth divisors, V2 a set of 2-almost

smooth divisors such that |A2| > q1+k, |V1| > 2q
(g−1)+(g+1)k

g , Inte-
gers {(αv, βv)}v∈V1∪V2 such that v = αvD1 + βvD2

1: V1 ← {}, V2 ← {}
2: repeat
3: Let α, β be random numbers modulo |Jq|
4: Compute v = αJ1 + βJ2

5: if v is almost smooth then
6: V1 ← V1 ∪ {v}
7: (αv, βv)← (α, β)
8: end if
9: if v is 2-almost smooth then

10: V2 ← V2 ∪ {v}
11: (αv, βv)← (α, β)
12: end if
13: until |A2| > q1+k and |V1| > 2q

(g−1)+(g+1)k
g

14: return V1,V2,{(αv, βv)}v∈V1∪V2

Lemma 4. The probability that a point in Jq is almost smooth is

1
(g − 1)!

q(−1+r)(g−1)

and the probability that a point is 2-almost smooth is

1
2(g − 2)!

q(−1+r)(g−2).

Proof. We can get above lemma similarly from proposition 3,4,5 in
[1]. For example, the probability of 2-almost smooth points is roughly
estimated by

(2|B|)g−2 (2|P\B|)2

2!(g − 2)!
÷ |Jq|

.=
(qr)g−2 q2

2!(g − 2)!qg
=

1
2(g − 2)!

q(−1+r)(g−2).

From this lemma, the number of the loops that |V2| > q1+k is
estimated by

q(1+k) · 2(g − 2)!q(1−r)(g−2) = 2(g − 2)!q2r,

5

and the number of the loops that |V1| > 2q
(g−1)+(g+1)k

g is estimated by

2q
(g−1)+(g+1)k

g · (g − 1)!q(1−r)(g−1) = 2(g − 1)!q2r.

Since the cost of computing Jacobian v = αD1 + βD2 is O(g2(log q)2)
and the cost of judging whether v is potentially smooth or not is
O(g2(log q)3), the total cost of this part is estimated by

O(g2(g − 1)!(log q)3q2r).

Here, we will estimate the required storage. Note that the bit-length
of one relative smooth point is 2g log q. So, the storage for V1, the set
of almost smooth divisors, is O(g log q q

(g−1)+(g+1)k
g) and the storage

for V2, the set of 2-almost smooth divisors, is O(g log q q(1+k)). From
lemma 3, we have g log q q(1+k) >> g log q q

(g−1)+(g+1)k
g . So the total

required storage can be estimated by

O(g log q q(1+k)).

5 Elimination of large prime (Flame work)

Let E be a set of smooth divisors, and let F be a set of 2-almost
smooth divisors or a set of smooth divisors. Note that element e ∈ E
and f ∈ F are written by

e =
∑
P∈B

n
(e)
P P + n

(e)
P1

P1,

f =
∑
P∈B

n
(f)
P P + n

(f)
P2

P2(+n
(f)
P3

P3).

Put sup(e) := {P1} and sup(f) := {P2, (P3)}. When P ∈ sup(e) ∩
sup(f), put

φ(e, f, P) := n(f)
p e− n(e)

p f.

Trivially, φ(e, f, P) is almost smooth divisor, if F is a set of 2-almost
smooth divisors and φ(e, f, P) is smooth divisor, if F is a set of almost
smooth divisors and e is not of the form constant times f .

Definition 9.

e♥f :=
{

φ(e, f, P) if P ∈ sup(a) ∩ sup(b) and e 6= Const× f

∅ otherwise.

E♥F := ∪e∈E,f∈F e♥f.

Lemma 5. E♥F is a set of almost smooth (resp. smooth) divisors, if
F is a set of 2-almost smooth (resp. almost smooth) divisors.

Proof. Trivial!

6

We will estimate the size of E♥F .

Lemma 6. The size of E♥F is estimated by

|E♥F | =
{
|E||F |/q if F is 2-almost smooth
1
2 |E||F |/q if F is almost smooth

Proof. Let e ∈ E, f ∈ F be randomly chosen elements. Put P :=
sup(e). if F is a set of 2-almost smooth divisors (resp. almost smooth
divisors), the probability that P ∈ sup(f) is 2

|P\B|
.= 1

q (resp. 1
|P\B|

.=
1
2q), and the size is estimated by 1

q × |E||F |(resp. 1
2q × |E||F |).

In order to compute E♥F , we use this algorithm.

Algorithm 2 Heartsuit operator
Input: E, F
Output: E♥F
1: set P\B = {R1, R2, .., R|P\B|}
2: for i = 1, 2, .., |P\B| do
3: st[i]← {}
4: od
5: for all e ∈ E do
6: P = sup(e)
7: Compute i s.t. P = Ri

8: st[i]← st[i] ∪ {e}
9: od

10: V ← {}
11: for all f ∈ F do
12: for all P ∈ sup(f) do
13: Compute i s.t. P = Ri

14: if st[i] 6= ∅ then
15: for all e ∈ st[i] s.t. e 6= Const× f do
16: V ← V ∪ {φ(e, f, P)}
17: od
18: end if
19: od
20: od
21: return H

We will estimate the cost and the storage for computing E♥F .

Lemma 7. Put c1 := max{l(e)|e ∈ E} and c2 := max{l(f)|f ∈ F}.
Assume that |E| << q. Then the cost of computing E♥F is

O(c1(log q)2|E|) + O((log q)2|F |) + O((c1 + c2)(log q)2|E||F |/q)

. and the required storage is

O(c1 log q|E|) + O((c1 + c2) log q|E||F |/q).

7

Proof. The required storage for st[i] is O(c1 log q |E|) and the required
storage for V is O((c1 + c2) log q |E||F |/q), since |V | .= |E||F |/q and
max{l(v)|v ∈ V } = c1 + c2 from lemma 2.

Note that the cost of the routine ”Computing index i” is log q log |P\B| =
O((log q)2). Also note that |E♥F | = O(|E||F |/q) and remark that
the probability of st[i] 6= ∅ is very small, since|E| << q. Thus, we
see that the cost of the 1st loop is O(c1(log q)2|E|), the cost of the
part ”Computing index i” of the 2nd loop is O((log q)2|F |), and the
cost of the part ”Computing the elements of V ” of the 2nd loop is
O((c1 + c2)(log q)2|E||F |/q) from lemma 2.

6 Computing Hm

In this section, we will construct Hm a set of almost smooth divisors
|Hm| > 2q(1+r)/2.

Algorithm 3 Computing Hm

Input: V1 a set of almost smooth divisors s.t. |V1| > 2q
(g−1)+(g+1)k

g ,
V2 a set of 2-almost smooth divisors s.t. |V2| > q(1+k)

Output: Integer m > 0 and Hm a set of almost smooth divisors s.t.
|Hm| > 2q(1+r)/2

1: H1 ← V1

2: i← 1
3: repeat
4: i + +
5: Hi ← Hi−1♥V2

6: until |Hi| > 2q(1+r)/2

7: m← i
8: return m,Hm

From lemma 6, the size of Hi is estimated by

|Hi| = |H1| × (qk)i−1 = 2q
(g−1)+(g i+1)k

g .

So, solving the equation (g−1)+(g i+1)k
g = (1 + r(k))/2 for i, we have

the following.

Lemma 8. m is estimated by

1− k

2gk
.

Further, we will assume m = O(1
gk). Note that {l(v)|v ∈ ∪i≤mHi} ≤

mg. From lemma 7, the cost for computing Hm is

m× (O((log q)2q(1+k)) + O(mg(log q)2q(1+r)/2)))

8

and the required storage is

O(mg log q q(1+r)/2).

7 Computing H

In this section, we compute H a set of smooth divisors for |H| > qr.

Algorithm 4 Computing H

Input: Hm a set of almost smooth divisors s.t. |Hm| > 2q(1+r)/2

Output: H a set of smooth divisors s.t. |H| > qr.
1: H ← Hm♥Hm

2: return H

From lemma 6, the size of H is estimated by

|H| = |Hm|2/2q = 2qr.

Note that {l(v)|v ∈ ∪i≤mH} ≤ 2mg. From lemma 7, the cost for
computing H is

O((log q)2q(1+r)/2) + O(mg(log q)2qr)

and the required storage is

O(mg log q q(1+r)/2).

8 Two ways representation of h ∈ H

An element h ∈ H is written by the form

h =
∑
P∈B

a
(h)
P D(P),

since it is a smooth divisor. Moreover, form its construction, we see
easily that

l(h) = #{P ∈ B | a(h)
P 6= 0} ≤ 2mg.

Set B = {R1, R2, ..., R|B|}.
Definition 10.

Put vec(h) := (a(h)
R1

, a
(h)
R2

, ..., a
(h)
R|B|

).

The computation of h(= vec(h)) means the set of pairs {(a(h)
Ri

, Ri)}
for non-zero a

(h)
Ri

. Note that the required storage for one h is O(m g log q).
On the other hands, form its construction, h is written by linear

sum of 2m elements of V1 ∪ V2. i.e.

h =
∑

v∈V1∪V2

b(h)
v v, #{v | b(h)

v 6= 0} = 2m.

9

Definition 11.

Put v(h) := {(b(h)
v , v) | b(h)

v 6= 0}.

Note that the required storage for one v(h) is O(m log q).
Important Remark By little modifying the algorithm 3,4 , we can
obtain both representations of h of the forms vec(h) and v(h). (The
order of the cost and the order of the storage for computing H is
essentially the same.)

Further, we will assume that the computations of vec(h) and v(h)
are done.

9 Linear algebra

In this section, we will solve the linear algebra and finding a linear
relation of H.

Algorithm 5 Linear algebra
Input: H a set of smooth divisors such that |H| > qr

Output: Integers {γh}h∈H modulo |Jq| s.t.
∑

h∈H γhh ≡ 0 mod |Jq|
1: Set H = {h1, h2, ..., h|H|}
2: Set matrix M = (tvec(h1),t vec(h2), ...,t vec(h|H|))
3: Solve linear algebra of M and compute (γ1, γ2, ..., γ|H|) such that∑|H|

i=1 γivec(hi) = ~0
4: return {γi}

Note that the elements of matrix is integers modulo |Jq|
.= qg. So

the cost of elementary operation modulo Jq is O(g2(log q)2).
M is a sparse matrix of the size qr × qr. Note that the number

of non-zero elements in one column is 2mg. So, using [4] [5], we can
compute { γi}. Its cost is

O(g2(log q)2 · 2mg · qrqr) = O(mg3(log q)2q2r)

and the required storage is

O(log(qg) m g · qr) = O(m g2 log q qr).

(The required storage for sparse linear algebra is essentially the storage
for non-zero data. Note that the bit length of integer modulo |Jq| is
log(qg), the number of nonzero elements of one row is mg.)

10 Computing sv

Remember that each element h ∈ H is of the form h =
∑

v∈V1∪V2
b
(h)
v v.

In the previous section, we found {γh} such that
∑

h∈H γhh ≡ 0 mod

10

|Jq|. So, put

sv :=
∑
h∈H

γhb(h)
v mod |Jq| for all v ∈ V1 ∪ V2

and we have ∑
v∈V1∪V2

svv ≡ 0 mod |Jq|.

Algorithm 6 Computing sv

Input: V1,V2,H,{γh}h∈H s.t.
∑

h∈H γhh ≡ 0
Output: {sv}v∈V1∪V2

1: for all v ∈ V1 ∪ V2 do
2: sv ← 0
3: od
4: for all h ∈ H do
5: for all v ∈ V1 ∪ V2 s.t b

(h)
v 6= 0 do

6: sv ← sv + γhb
(h)
v

7: od
8: od
9: return {sv}

The cost of this part is

O(g log q q1+k) + O(m g2 (log q)2q(1+r)/2)

and the storage is
O(g log q q1+k).

11 Finding discreet log

In the previous section, we found {sv} such that
∑

svv ≡ 0 mod |Jq|.
In the part 2 of the algorithm, we have computed (αv, βv) such that

v = αvD1 + βvD2.

So, we have∑
v∈V1∪V2

sv(αvD1+βvD2) = (
∑

v∈V1∪V2

svαv)D1+(
∑

v∈V1∪V2

svβv)D2 ≡ 0. mod |Jq|

So, −(
∑

v∈V1∪V2
svαv)/(

∑
v∈V1∪V2

svβv) mod |Jq| is required discreet
log.

Algorithm 7 Computing λ

Input: V1,V2,{αv, βv}, {sv}
Output: Integer λ mod |Jq| s.t. D1 = λD2

1: return −(
∑

v∈V1∪V2
svαv)/(

∑
v∈V1∪V2

svβv) mod |Jq|

11

Note that the cost of this part is O(g2 (log q)2 q1+k).

12 Cost estimation

In this section, we will estimate the cost and the required storage of
whole algorithm under the assumption of

k =
1

log q
.

First, remember that m = O(1
gk) = O(log q

g). By a direct computation,
we have

r = r(k) =
g − 1 + k

g
= 1− 1

g
+

1
g log q

,

and
q2r = q2− 2

g × exp(
2
g
) = O(q2− 2

g).

From our cost estimation, the cost of the routine except part 2 and
part 5 is written by the form

O(ga (log q)b qc) a, b ≤ 4, c ≤ 1 + k.

On the other hands, the cost of the routine part 2 and part 5 is written
by

O(g2(g − 1)!(log q)3q2r) and O(mg3 (log q)2q2r).

From lemma 3, we see 1 + k < 2r and the cost of the whole parts can
be estimated by

O(g2(g − 1)!(log q)3 q2r) = O(g2(g − 1)!(log q)3q2− 2
g).

Similarly, we see that the required storage (dominant part is part 2
and part 7, since 1 + k > 1 > (1 + r)/2 from lemma 3) is

O(g log q q1+k) = O(g log q q1+k) = O(g log q q exp(1)) = O(g log q q).

13 Conclusion

In ASIACRYPT2003, Thériault presented a variant of index calculus
for the Jacobian of hyperelliptic curve of small genus, using almost
smooth divisors. Here, we improve Thériault’s result, using 2-almost
divisors and propose an attack for DLP of the Jacobian of hyperelliptic
curves of small genus, which works O(q2− 2

g +ε) running time.

12

References

[1] N. Thériault, Index calculus attack for hyperelliptic curves of small
genus, ASIACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75–
92.

[2] A. Enge, P. Gaudry, A general framework for subexponential discrete
logarithm algorithms, Acta Arith., 102, no. 1, pp. 83–103,2002.

[3] P.Gaudry, An algorithm for solving the discrete log problem on hyper-
elliptic curves, Eurocrypt 2000, LNCS 1807, Springer-Verlag, 2000, pp.
19–34.

[4] B. A. LaMacchia, A. M. Odlyzko, Solving large sparse linear systems over
finite fields, Crypto ’90, LNCS 537, Springer-Verlag, 1990, pp. 109–133.

[5] D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE
Trans. Inform. Theory, IT-32, no.1, pp.54–62, 1986.

13

