
A comparison of MNT curves and supersingular
curves

D. Page, N.P. Smart and F. Vercauteren

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol,
BS8 1UB, United Kingdom.

{page,nigel,frederik}@cs.bris.ac.uk

Abstract. We compare both the security and performance issues re-
lated to the choice of MNT curves against supersingular curves in char-
acteristic three, for pairing based systems. We pay particular atten-
tion to equating the relevant security levels and comparing not only
computational performance and bandwidth performance. The paper fo-
cuses on the BLS signature scheme and the Boneh–Franklin encryption
scheme, but a similar analysis can be applied to many other pairing based
schemes.

1 Introduction

The initial pairing based cryptographic protocols, see [?], [?] and [?], were
couched in the language of a generic pairing function. However, in latter work
such as the (BLS) short signature scheme of Boneh, Lynn and Shacham [?] or
the identity based encryption scheme of Boneh and Franklin [?] the protocols
are given in terms of a symmetric pairing, as is found on supersingular curves.

For all protocols there are essentially two possible choices for selecting the
underlying groups on which to work:

– To use supersingular curves, of which the most efficient ones appear to be in
characteristic three.

– To use, so-called, MNT curves in large prime characteristic [?]. These are
ordinary, as opposed to supersingular curves.

There are a number of advantages in using supersingular curves. For example
they possess distortion maps which makes various protocols possible [?] or enable
proofs to work [?], in addition supersingular curves have very efficient algorithms
in characteristic three for computing the Tate pairing [?] and the underlying
field arithmetic can be implemented relatively efficiently. On the negative side
however, one could question their long term security due to the fact that they
are supersingular, because there are very few usable curves with the correct

properties or because of more efficient algorithms for the discrete logarithm
problem in fields of small characteristic, see [?] and [?] for a discussion relevant
to characteristic three.

Whilst ordinary elliptic curves do not exhibit the disadvantages mentioned
above they do present other issues. For example, distortion maps no longer exist
and one needs to very carefully select how one implements the various protocols
and not simply the Tate pairing. Protocols such as [?] and [?] which require
distortion maps can be implemented in the setting of MNT curves via the use
of the trace map, however this requires a non-optimal choice of the group G2

below leading to a much more inefficient pairing algorithm. We do not address
this issue further in this paper.

1.1 Prior Work and Notation

Let G1, G2 and GT denote finite abelian groups in which the discrete logarithm
problem is hard. By a pairing we shall mean a non-degenerate bilinear map

t̂ : G1 ×G2 −→ GT .

This is usually defined via the modified Tate pairing t̂(·, ·) on an elliptic curve.
We let G1 = E(Fq) denote an elliptic curve over the finite field Fq with order
divisible by N such that N also divides qα − 1, where α is the order of q in Z∗N
and is called the MOV embedding degree. If P ∈ E(Fq) we let fP denote the
function with divisor (

fP

)
= N(P)−N(O).

If Q ∈ Fqα we define the unmodified Tate pairing via

t(P,Q) = fP (Q).

This can be computed via variants of Miller’s algorithm [?] and results in an
element of F∗qα/(F∗qα)N .

The modified Tate pairing takes values in the subgroup GT of F∗qα of order N
and is defined in one of two ways, depending on whether E is a supersingular or
ordinary (MNT) curve. In the case of supersingular curves we define an integer
n via q = 3n, for the case of MNT curves we define m via q ≈ 2m. One of our
tasks will be to compare the values of n and m, in terms both of security and of
protocol efficiency.

Supersingular Case: In this case one defines G1 = G2 = E(Fq) and one lets

t̂(P,Q) = t(P, φ(Q))(q
α−1)/N ,

where φ is a so-called distortion map

φ : E(Fq) −→ E(Fqα).

Such a definition of the modified Tate pairing is guaranteed to be non-degenerate,
for all P ∈ E(Fq) with P 6= O we have t̂(P, P) 6= 1 and in addition for all
P,Q ∈ E(Fq) we have

t̂(P,Q) = t̂(Q, P).

This last property means that when defining protocols we do not need to worry
about whether a point lies in G1 or G2, since both groups are the same and can
be treated equally.

Various authors have considered implementation issues for pairing based sys-
tems, see [?] and [?]. For supersingular curves the best parameter choices are in
characteristic three. In this case one can select α = 6, resulting in systems which
are secure against discrete logarithm attacks in G1 and G2 and also (hopefully)
against discrete logarithm attacks in GT . The most efficient algorithm for imple-
menting the modified Tate pairing in characteristic three is by Duursma and Lee
[?]. In addition the point multiplication algorithms in characteristic three can
be implemented using affine coordinates, due to the efficient tripling formulae.

Ordinary Case: In this case one selects G2 to be a subgroup of E(Fqα) and

t̂(P,Q) = t(P,Q)(q
α−1)/N .

Note that it is no longer possible to exchange the role of P and Q like in the
supersingular case. Furthermore, care needs to be taken as to whether a point
lies in G1 or G2 when one defines protocols. For example, one of the groups is
used to hash strings into, whilst another is used for key definitions.

In [?] various techniques are given to improve performance. The most impor-
tant being the use of denominator elimination in the pairing algorithm when N
does not divide q − 1, α is even and x(Q) ∈ Fqα/2 . The paper compares such
curves with supersingular curves in characteristic three, but is unclear as to
which groups one is hashing into and which are being used for curve operations.
The paper [?] gives explicit formulae for the pairing computation using projec-
tive coordinates. It only considers the issue of actually computing the pairing
and only gives estimated operation counts. In addition no comparison is made
to supersingular curves. The paper [?] uses the twist of the curve E(Fqα/2) to
generate the group G2, and again only looks at the pairing computation.

1.2 Our Contribution

In this paper we present a comparison of large prime MNT curves with su-
persingular curves in characteristic three. We pay particular attention to how
the Boneh–Franklin encryption and BLS signature scheme are defined in this
context. We also discuss our parameter and implementation choices. The main
goal is to be able to compare the implementation efficiency of the two cases and
make sensible recommendations as to security versus efficiency tradeoffs. For
example, if supersingular curves are much more efficient than MNT curves yet
one is worried about possibly weaker security in using supersingular curves, one

could simply take larger parameters so as to guard against any possible threat.
We do not explain in any detail our choices in characteristic three since we have
adopted standard practice which is well documented elsewhere [?,?,?].

2 MNT Parameter Choices

In this section we present our choices for implementing MNT curves and how
these choices impact on cryptographic protocols. This is an issue which to some
extent is not covered in prior work.

Like [?] and [?] we select α to be even and choose a polynomial basis for Fqα

over Fq by a irreducible polynomial with no odd terms, i.e.

Fqα = Fq[χ]/(f(χ))

with
f(χ) = χα + cα−2χ

α−2 + · · ·+ c2χ
2 + c0.

A curve is selected of the form

E : y2 = x3 − 3x + B

where B ∈ Fq, with group order divisible by a large prime N and such that
N divides qα − 1, with N not dividing qβ − 1 for β < α. We are particularly
interested in balancing security against bandwidth, hence one wishes to select a
q which is as small as possible, to minimize bandwidth, whilst choosing N and
α large enough to increase security. We feel this is best accomplished by finding
curves with q ≈ N and with α and N large enough to give the required security
level. Due to the current best construction techniques one therefore selects α = 6
or α = 12 [?]. Other authors choose α = 2, this enables them to select curves
with values of N with low Hamming weight to improve efficiency. However, this
comes at the expense of greater bandwidth and slower arithmetic in E(Fq), due
to the larger value of q required. Choosing α = 6 also allows a more direct
comparison with the case of supersingular curves in characteristic three. Hence,
in the following we focus soley on α = 6.

In [?] the group G2 is defined as the group E(Fqα/2), where E is the quadratic
twist of E over Fqα/2 . The modified pairing is then computed via mapping the
element in G2 over to E(Fqα) before applying the standard pairing. Equivalently,
one can simply define G2 as the subgroup of E(Fqα) defined by

G2 =
{
(x, y) ∈ E(Fqα) : x ∈ Fqα/2 , y 6∈ Fqα/2

}
.

Arithmetic in G2 can then be defined simply in terms of arithmetic in Fqα/2 ,
since y is of the form χ · γ, with γ ∈ Fqα/2 . Indeed, by definition we have that
y2 is a non-square in Fqα/2 and due to the special choice of f(χ), χ2 will be a
non-square in Fqα/2 too. Dividing y2 by χ2 thus gives a square in Fqα/2 , which
shows that y is indeed of the form χ · γ with γ ∈ Fqα/2 . In addition one can use

the efficient algorithm for projective doubling in G2 which uses the nice form of
the curve equation for E.

The basic ingredient of both the BLS signature scheme and the Boneh–
Franklin encryption scheme is that one of our groups Gi is used to hold standard
elliptic curve public/private key pairs

(Q = [a]P, a)

with P,Q ∈ Gi. The other group Gi′ is used to map arbitrary messages or
identities into. If one was only interested in BLS signatures then bandwidth
is determined by the size of the elements in Gi′ , where in the Boneh–Franklin
scheme message size is dominated more by the size of elements in Gi. However,
one should notice that the user based secret keys in the Boneh–Franklin scheme
are nothing but the BLS signature of the trust authority on the identity string.
One can then argue that it is likely to be more important to minimize bandwidth
for the Boneh–Franklin encryption scheme, since the BLS signature scheme is
more likely to be used within the context of the issuing of secret keys for the
Boneh–Franklin scheme.

In addition, point multiplication is required in Gi′ for BLS signature gener-
ation and in Gi for Boneh–Franklin encryption and decryption. Hence, it also
makes sense to choose Gi and Gi′ so that point multiplication is cheaper in Gi.
This is because it is likely that in an identity based system more messages are
encrypted/decrypted than identity based keys issued.

Hence, in our implementation we make use of a hash function

H : {0, 1}∗ −→ G2.

Given our definition for G2 we need only map the string to an element of Fqα/2

plus an associated choice for the y-coordinate. In transmitting elements of G2

we only need to transmit the x-coordinate, requiring (α log2 q)/2 bits, plus a bit
for the y-coordinate.

One problem with this choice is that it makes BLS signature generation more
expensive as one needs to perform a point multiplication in G2, which is more
expensive than a point multiplication in G1. However, the advantage is that
Boneh–Franklin encryption can be performed via point multiplication in G1 and
message sizes for Boneh–Franklin encryption are smaller. We stress that if one
was soley interested in BLS signatures then one would swap the roles of G1 and
G2.

One can even remove the need entirely for passing the y-coordinate in both
G1 and G2: by not transmitting any y-coordinates of any points the receiver
knows the point Q only up to ±Q. A careful examination of most of the major
pairing based protocols reveals that one can allow for this ambiguity as follows:
when one computes t̂(P,Q), if one only knows P or Q or both up to a sign then
the resulting pairing value is equal to

z = t̂(±P,±Q) = t̂(P,Q)±1.

Hence, computing

z′ = z +
1
z

removes all ambiguity and one then uses z′ in place of z in the definition of
the Boneh–Franklin scheme. Note, a simpler solution applies to the BLS scheme
which requires no inversion of the value z. Removing the need for passing y,
or more correctly the compression of y, could enable the avoidance of various
patents on point compression.

To see this in more detail consider the BLS signature scheme defined as fol-
lows:

Key Generation: Let P denote a generator of G1 and let a ∈ Z∗N denote the
secret key. The public key is v = x(V), where V = [a]P and x(V) denotes the
x-coordinate of the point V .

Signature Generation: Compute U = H(M) ∈ G2, the signature is s = x(S)
where S = [a]U .

Signature Verification: Compute U = H(M) ∈ G2, and from v and s recover
±V and ±S. Compute

r1 = t̂(P,±S) and r2 = t̂(±V,U).

Accept the signature if and only if r1 = r2 or r1 · r2 = 1. This verification works
since

r1 = t̂(P, [a]U)±1 = t̂([a]P,U)±1 = r2.

The resulting protocol is still provably secure.
One can also apply the BLS scheme with the roles of G1 and G2 reversed.

In this case a signature lies in G1, whilst a public key lies in G2. This case is
to be preferred if one is not using BLS signatures as credentials in a Boneh–
Franklin scheme, as in [?] and [?], but one is using them on their own to achieve
signatures with a small size. Such a scheme we shall denote by BLS⊥. Note, that
the difference between BLS and BLS⊥ only occurs for MNT curves, since in this
situation G1 6= G2.

3 MNT Curves Used

Curves with q ≡ 3 (mod 4) are to be preferred since for these we have efficient
square root algorithms. If one needs to select a q such that q ≡ 1 (mod 4), then
select one such that qα/2 ≡ 5 (mod 8) for a similar reason.

The curves we selected are given in the Appendix; most of them have cofac-
tor 1, which by the MNT construction [?] implies that q = 4l2 +1 and t = 1±2l
for some integer l ∈ Z. The integer l satisfies x = 6l∓ 1 where x is a solution to
the generalized Pell equation

x2 − 3Dy2 = −8 ,

with D the discriminant of the elliptic curve, i.e. the square-free part of 4p− t2.
To generate suitable curves we solved this equation for every discriminant

D ≤ 3 · 109 and 50 ≤ |x| ≤ 300. Note that two trivial observations speed up this
process considerably: an easy analysis as in [?] shows that D ≡ 3 (mod 8) and
reducing the equation modulo 3D shows that −8 should be a square modulo 3D.
To solve the generalized Pell equation we modified the algorithm described in [?]
to also take into account that only relatively small x, i.e. less than 300 bits, are
useful. The curves with cofactor 2 were found using the generalised construction
described in [?].

Given the discriminant D and the prime q, we used Mike Scott’s implemen-
tation [?] of the Complex Multiplication algorithm to generate the equation of
the curve. For large D and q however, this program failed and the curves were
kindly generated by Andreas Enge.

4 Security Comparison

In comparing MNT curves with supersingular curves in characteristic three,
from a security perspective one only needs to consider the relative difficulty of
the discrete logarithm problem in the respective groups GT . This is because
the best known algorithms to solve the discrete logarithm in G1 and G2 are
the same in both situations. As before we let q denote the size of the base
field for the elliptic curve defining G1, hence one is interested in solving for
discrete logarithms in F∗qα . Due to special purpose discrete logarithm algorithms
in characteristic two, such as Coppersmith’s algorithm [?] or the function field
sieve [?], some researchers have questioned the use of low characteristic fields for
pairing based cryptosystems.

It is certainly easier to implement the respective discrete logarithm algo-
rithm in smaller characteristic. For example the record for discrete logarithms
in characteristic two is in the field F2607 [?], whereas the record for large prime
characteristic is for q ≈ 2398, [?]. It must however be stated that no data points
are available for computing discrete logarithms in Fp6 where p is a large prime.

The complexity of the Number Field Sieve algorithm to solve for discrete
logarithms in large characteristic fields is given by [?]

Lqα

(
1/3, (64/9)1/3

)
= exp

((
(64/9)1/3 + o(1)

)
(log qα)1/3 (log log qα)2/3

)
.

The complexity of the function field sieve in low characteristic fields is given by
[?]

Lqα

(
1/3, (32/9)1/3

)
= exp

((
(32/9)1/3 + o(1)

)
(log qα)1/3 (log log qα)2/3

)
.

If we let q3 denote the size of q for supersingular curves in characteristic three
and qp denote the size of q for MNT curves in large prime characteristic p, then
if we wish to have a greater security margin for supersingular curves then we
require

2(log q6
p)(log log q6

p)2 ≤ (log q6
3)(log log q6

3)2.

Setting q3 ≈ qt
p for some constant t, which we wish to determine, leads to the

inequality
2(log q6

p)(log log q6
p)2 ≤ t(log q6

p)(log t + log log q6
p)2

This simplifies to
2(log log q6

p)2 ≤ t(log t + log log q6
p)2.

Now for fields under consideration, i.e. 21000 ≤ q6
p ≤ 22000 we have log log(q6

p) ≈ 7
and so we should take t ≈ 1.7. Hence, setting

q3 ≈ q1.7
p

would be a conservative estimate for the security of supersingular curves in
characteristic three compared to MNT curves, both with MOV parameter α =
6. Note, this is very conservative towards the security of supersingular curves.
For example the current records for discrete logarithms in characteristic two
and large prime characteristic, see [?] and [?], we see that the ratio is t ≈
607/398 ≈ 1.53. However, since the NFS algorithm in extension fields of degree
six of large prime characteristic base fields, see [?], is more complicated than
the NFS algorithm in finite fields of extension degree one, we feel that this
conservative estimate is justified.

So if q3 = 3n and qp ≈ 2m then we have

n ≈ 1.07m

In the appendix we give five MNT curves of varying security levels. In Table
?? we present the various security parameters for the curves chosen, this table
enables one to compare security of the MNT curves and the supersingular curves.
We let SS(k,±) denote the supersingular curve over F3k given by

Y 2 = X3 −X ± 1.

The column sECC refers to the ECC security parameter, namely the bit size
of the largest prime subgroup of G1. The column sRSA refers to the equivalent
RSA-style security parameter. For MNT curves this is equal to 6 · sECC, since by
convention one assumes that the security level for discrete logarithms in a finite
field of large prime characteristic is equivalent to that of RSA, and the size of
the finite field GT is 6 · sECC bits.

For the supersingular curves we estimate the security via the above analysis
as

sRSA ≈ (6 · n)/(1.07) ≈ 5.6n.

Note, that this is a very cautious approximation from the point of view of using
supersingular curves in characteristic three. Not only due to the above analysis,
but also since arithmetic in characteristic three is computationally more involved
than characteristic two or large prime arithmetic for a computer. Hence, the
implied constants in the FFS and NFS big-O notation is likely to be relatively
larger for characteristic three than a simple analysis as above would imply.

We therefore see that we should compare our MNT Curve B with the super-
singular curve SS(193,−), MNT Curve C with the supersingular curve SS(239,−)
etc.

Table 1. Curve Security Comparison

Curve sECC sRSA
SS(97, +) 151 845

Curve A 160 960
SS(163,−) 258 912

Curve B 191 1146
SS(193,−) 305 1080

Curve C 221 1326
SS(239,−) 379 1338

Curve D 256 1536

Curve E 307 1842
SS(353,−) 559 1976

5 Efficiency Comparison

We compared the timings obtained for the above five MNT curves against com-
parable supersingular curves in characteristic three. Not only did we time the
underlying curve arithmetic and the Tate pairing computation time, but we also
timed various suboperations of BLS signatures and Boneh–Franklin encryption.

All timings are given in milli-seconds and are generated on a Windows XP
machine with a Pentium 4 running at 2.40 GHz and 256 MB RAM. In Table ??
we give the timings for point multiplication in the groups G1 and G2, where the
multiplier is an integer of l bits, we also give the time needed to compute a pairing
between an element of G1 and an element of G2. In Table ?? we present timings
for the various cryptographic operations in the schemes we are concentrating on.
In Table ?? we present the bandwidth considerations for the various schemes,
in terms of public key size, private key size and the message itself. In the case
of Boneh–Franklin encryption we assume that the scheme is used to encrypt a
message of l bits in length, using a block cipher with key length m ≈ log2 q bits.
This is a standard modification of the Boneh–Franklin scheme.

With this comparison we see that supersingular curves appear less efficient
than using MNT curves, for a similar security parameter. However, this conclu-
sion depends precisely on which schemes one wishes to implement and whether
one is interested in bandwidth or computational efficiency, or both. Signature
generation with BLS is more efficient with supersingular curves, however verifi-
cation is more expensive. For Boneh–Franklin encryption the times for the MNT
curves are significantly more efficient.

6 Acknowledgements

The authors would like to thank Dan Boneh, Sanjit Chatterjee and Steven Gal-
braith for comments on an earlier draft of this manuscript.

Table 2. Timings for Curve Operations (ms)

G1 G2 Tate
Curve Affine Proj Affine Proj Pairing

SS(97, +) 5 4 5 4 17

Curve A 9 2 107 65 33
SS(163,−) 19 15 19 15 57

Curve B 15 5 151 94 56
SS(193,−) 23 22 23 22 86

Curve C 21 7 207 142 80
SS(239,−) 42 38 42 38 124

Curve D 30 9 327 201 108

Curve E 50 16 538 353 194
SS(353,−) 108 94 108 94 355

Table 3. Timings for Cryptographic Operations (ms)

BLS Signatures BLS⊥ Signatures IBE Encryption
Curve Key Gen Sign Verify Key Gen Sign Verify Encrypt Decrypt

SS(97, +) 5 12 43 5 12 43 26 20

Curve A 3 74 95 65 6 90 50 37
SS(163,−) 13 14 106 13 14 106 101 76

Curve B 5 110 129 95 10 123 92 59
SS(193,−) 22 53 200 22 53 200 140 113

Curve C 8 167 189 141 15 184 117 82
SS(239,−) 30 48 258 30 48 258 190 156

Curve D 9 232 267 200 15 264 182 124

Curve E 19 435 461 193 20 457 306 203
SS(353,−) 78 93 730 78 93 730 583 463

References

1. S.S. Al-Riyami, J. Malone-Lee and N.P. Smart. Escrow-free encryption supporting
cryptographic workflow. Preprint, 2004.

2. P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – CRYPTO 2002,
Springer LNCS 2442, 354–369, 2002.

3. P.S.L.M. Barreto, B. Lynn and M. Scott. On the Selection of Pairing-Friendly
Groups. In Selected Areas in Cryptography (SAC), Springer-Verlag LNCS 3006,
17–25, 2004.

4. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
Preprint 2005.

5. D. Boneh and X. Boyen. Short signatures without random oracles. In Advances
in Cryptology – EUROCRYPT 2004, Springer LNCS 3027, 56–73, 2001.

Table 4. Message sizes for Cryptographic Operations

Curve BLS Signatures BLS⊥ Signatures IBE Encryption
Key Size Signature Key Size Signature Private

Private Public Size Private Public Size Key Ciphertext

Supersingular m m m m m m m 2m + l
MNT m m 3 · m m 3 · m m 3 · m 2m + l

6. D. Boneh, X. Boyen and H. Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO 2004, Springer LNCS 3152, 41–55, 2004.

7. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Advances in Cryptology – CRYPTO 2001, Springer LNCS 2139, 213–229, 2001.

8. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – ASIACRYPT 2001, Springer LNCS 2248, 514–532, 2001.

9. D. Coppersmith. Evaluating logarithms in GF (2n). In STOC 1984, 201–207, 1983.
10. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves

y2 = xp − x + d. In Advances in Cryptology – ASIACRYPT 2003, Springer LNCS
2894, 111-222, 2003.

11. S. Galbraith, K. Harrison and S. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory Symposium – ANTS V, Springer LNCS 2369, 324–
337, 2002.

12. R. Granger, A. Holt, D. Page, N.P. Smart, F. Vercauteren. Function Field Sieve
in Characteristic Three. In Algorithmic Number Theory Symposium - ANTS VI,
Springer LNCS 3076, 223–234, 2004.

13. K. Harrison, D. Page and N.P. Smart. Software Implementation of Finite Fields
of Characteristic Three, for use in Pairing Based Cryptosystems. In LMS Journal
of Computation and Mathematics, 5 (1), 181–193, London Mathematical Society,
2002.

14. T. Izu and T. Takagi. Efficient computations of the Tate pairing for the large MOV
degrees. In International Conference on Information Security and Cryptology –
ICISC 2002, Springer LNCS 2587, 283–297, 2003.

15. A. Joux. A one round protocol for tripartite Diffie–Hellman. In Algorithmic Num-
ber Theory Symposium – ANTS IV, Springer LNCS 1838, 385–394, 2000.

16. A. Joux and R. Lercier. The function field sieve is quite special. In Algorithmic
Number Theory Symposium – ANTS V, Springer LNCS 2369, 431–445, 2002.

17. R. Lercier. Discrete logarithms in GF (p). Posting to NMBRTHRY List, 2001.
18. N. Li, W. Du and D. Boneh. Oblivious signature-based envelope. In 22nd ACM

Symposium on Principles of Distributed Computing (PODC), 182–189, 2003.
19. A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve

traces for FR-reduction. In IEICE Transactions on Fundamentals, E84-A (5),
1234–1243, 2001.

20. V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.
21. J. Robertson. Solving the generalized Pell equation. Available at http://

hometown.aol.com/jpr2718/.
22. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairings. In Proc.

SCIS 2000, 2000.
23. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairings over

elliptic curves. In Proc. SCIS 2001, 2001.

24. O. Schirokauer. Using number fields to compute logarithms in finite fields. Math.
Comp., 69, 1267–1283, 2000.

25. M. Scott. Complex multiplication program. Available at ftp.compapp.dcu.ie/

pub/crypto/cm.exe.

26. M. Scott and P.S.L.M. Barreto. Generating more MNT elliptic curves. In Cryp-
tology ePrint Archive, Report 2004/058, 2004.

27. E. Thomé. Computation of discrete logarithms in GF (2607). In Advances in
Cryptology – ASIACRYPT 2001, Springer LNCS 2248, 107–124, 2001.

7 Appendix

Curve A – 160 bits

Field: Fq where q is given by

8C72D321E48AA1419B22F914CB43C112B76D7AE5

Curve: y2 = x3 − 3x + b, where b is given by

299CE219B7B01348FC2B5007B6AB1EE1005676F7

Order: N where N is given by

8C72D321E48AA1419B23B6B2E4A85A073822640F

Cofactor: h = 1 Extension Field: We have α = 6 and Fqα is defined by
χ6 + χ2 + 3 = 0.

Curve B – 192 bits

Field: Fq where q is given by

BF52ED99D5808F126790D7DC18D901B076429F3A2FA78F65

Curve: y2 = x3 − 3x + b, where b is given by

7EEAFAF4178E7349192E71FA4EB40C681A11A9B5B4F2C0C9

Order: N where N is given by

5FA976CCEAC0478933C86BEE93F2F8C16A54AE0A732FF4B5

Cofactor: h = 2 Extension Field: We have α = 6 and Fqα is defined by
χ6 + 2 = 0.

Curve C – 222 bits

Field: Fq where q is given by

20DF589D615A00DE349A7B4179B6BA507C693FF8ECC83614A610AAC3

Curve: y2 = x3 − 3x + b, where b is given by

0F99D400C2C7DED3542EAA3662E551B389489A8D38C69EE1A818753F

Order: N where N is given by

106FAC4EB0AD006F1A4D3DA0BCDB24FB28F7F39C248E644D4FD14077

Cofactor: h = 2 Extension Field: We have α = 6 and Fqα is defined by
χ6 + 4 = 0.

Curve D – 256 bits

Field: Fq where q is given by

F6529C2A424A6332B1D5054E2F7B68AAEE7EF91874DD140C6919AF9B71 \\
9ED905

Curve: y2 = x3 − 3x + b, where b is given by

6E974D68EF44F266AE3DD5D1F97C497C1D5452D1B074A6C06A25D4E581 \\
9CCD1C

Order: N where N is given by

F6529C2A424A6332B1D5054E2F7B68ABE99C585A8419AE9FB45C620E5E \\
F666C3

Cofactor: h = 1 Extension Field: We have α = 6 and Fqα is defined by
χ6 + 6 = 0.

Curve E – 307 bits

Field Fq where q is given by

05F9732C02629855B99FD12895E6BDBE0BB706EFA108E0C07AF66AAD00E \\
B1F0F5989C33BD1C4E5

Curve: y2 = x3 − 3x + b, where b is given by

05607CD7395B5F49C34A289E4072C37A56601B69C8F64F6BA3F827C87D \\
EE8279BC2E640F16C279

Order: N where N is given by

05F9732C02629855B99FD12895E6BDBE0BB706ED2F4DC3D3182475E37D3 \\
C9FA61B41FD46D6868F

Cofactor: h = 1 Extension Field: We have α = 6 and Fqα is defined by
χ6 + 5 = 0.

