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Abstract

We construct two efficient Identity Based Encryption (IBE) systems that are selective iden-
tity secure without the random oracle model. Selective identity secure IBE is a slightly weaker
security model than the standard security model for IBE. In this model the adversary must
commit ahead of time to the identity that it intends to attack, whereas in the standard model
the adversary is allowed to choose this identity adaptively. Our first secure IBE system extends
to give a selective identity Hierarchical IBE secure without random oracles. Both selective-ID
IBE’s give practical full IBE’s in the standard model, under some security penalty.

1 Introduction

Boneh and Franklin [BF01, BF03] recently defined a security model for Identity Based Encryp-
tion [Sha84] and gave a construction using bilinear maps. Cocks [Coc01] describes another con-
struction using quadratic residues. Proving security for these systems requires the random oracle
model [BR93]. A natural open question is to construct a secure IBE system without random oracles.

In the Boneh-Franklin security model the adversary can issue both adaptive chosen ciphertext
queries and adaptive chosen identity queries (i.e., the adversary can request the private key for
identities of its choice). Eventually, the adversary adaptively chooses the identity it wishes to
attack and asks for a semantic security challenge for this identity. Canetti et al. [CHK03, CHK04]
recently proposed a slightly weaker security model, called selective identity IBE. In this model the
adversary must commit ahead of time (non-adaptively) to the identity it intends to attack. The
adversary can still issue adaptive chosen ciphertext and adaptive chosen identity queries. Canetti
et al. are able to construct a provably secure IBE in this weaker model without the random oracle
model. However, their construction views identities as bit strings, causing their system to require
a bilinear map computation for every bit in the identity.

We construct two efficient IBE systems that are provably selective identity secure without
the random oracle model. In both systems, encryption requires no bilinear map computation
and decryption requires at most two. Our first construction is based on the Decision Bilinear
Diffie-Hellman (Decision BDH) assumption. This construction extends to give an efficient selective
identity secure Hierarchical IBE (HIBE) without random oracles. Hierarchical IBE was defined
in [HL02] and the first construction in the random oracle model was given by Gentry and Silver-
berg [GS02]. Our efficient HIBE construction is similar to the Gentry-Silverberg system, but we
are able to prove security without using random oracles. Our second IBE construction is even
more efficient, but is based on a non-standard assumption we call Decision Bilinear Diffie-Hellman
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Inversion (Decision BDHI). Roughly speaking, the assumption says that no efficient algorithm can
distinguish e(g, g)1/x from random, given g, gx, g(x2), . . . , g(xq) for some q.

Canetti et al. [CHK04] recently showed that any selective identity, chosen plaintext IBE gives
a chosen ciphertext secure (CCA2) public key system. Consequently, both our IBE systems give
efficient CCA2-secure public key systems without random oracles. Performance of both these
CCA2-secure systems is comparable to the performance of the Cramer-Shoup system [CS98] which
is based on Decision Diffie-Hellman.

2 Preliminaries

Before presenting our results we briefly review the definition of security for an IBE system. We
also review the definition of groups equipped with a bilinear map.

2.1 Selective Identity Secure IBE and HIBE Systems

Recall that an Identity Based Encryption system (IBE) consists of four algorithms [Sha84, BF01]:
Setup, KeyGen, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by
params, and a master key master-key. The KeyGen algorithm uses the master key to generate the
private key corresponding to a given identity. The encryption algorithm encrypts messages for a
given identity (using the system parameters) and the decryption algorithm decrypts ciphertexts
using the private key. In a Hierarchical IBE [HL02, GS02] identities are vectors. A vector of
dimension ` represents an identity at depth `. Algorithm KeyGen takes as input an identity
ID = (I1, . . . , I`) at depth ` and the private key dID|`−1 of the parent identity ID|`−1 = (I1, . . . , I`−1)
at depth ` − 1. It outputs the private key dID for identity ID. We refer to the master-key as the
private key at depth 0 and note that an IBE system is an HIBE where all identities are at depth 1.

Boneh and Franklin [BF01, BF03] define chosen ciphertext security for IBE systems under a
chosen identity attack. In their model the adversary is allowed to adaptively chose the public
key it wishes to attack (the public key on which it will be challenged). Canetti, Halevi, and
Katz [CHK03, CHK04] define a weaker notion of security in which the adversary commits ahead of
time to the public key it will attack. We refer to this notion as selective identity, chosen ciphertext
secure IBE (IND-sID-CCA). More precisely, selective identity IBE and HIBE security is defined
using the following game:

Init: The adversary outputs an identity ID∗ where it wishes to be challenged.

Setup: The challenger runs the Setup algorithm. It gives the adversary the resulting system
parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues queries q1, . . . , qm where query qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗. The challenger
responds by running algorithm KeyGen to generate the private key di corresponding
to the public key 〈IDi〉. It sends di to the adversary.

– Decryption query 〈Ci〉 for identity ID∗ or any prefix of ID∗. The challenger responds
by running algorithm KeyGen to generate the private key d corresponding to ID∗ (or
the relevant prefix thereof as requested). It then runs algorithm Decrypt to decrypt
the ciphertext Ci using the private key d. It sends the resulting plaintext to the
adversary.

These queries may be asked adaptively, that is, each query qi may depend on the replies
to q1, . . . , qi−1.
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Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0,M1 ∈ M on which it wishes to be challenged. The challenger picks a
random bit b ∈ {0, 1} and sets the challenge ciphertext to C = Encrypt(params, ID∗,Mb).
It sends C as the challenge to the adversary.

Phase 2: The adversary issues additional queries qm+1, . . . , qn where qi is one of:
– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗. The challenger

responds as in Phase 1.
– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗. The challenger responds

as in Phase 1.
These queries may be asked adaptively as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We refer to such an adversary A as an IND-sID-CCA adversary. We define the advantage of the
adversary A in attacking the scheme E as

AdvE,A =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition 2.1. We say that an IBE or HIBE system E is (t, qID, qC , ε)-selective identity, adaptive
chosen ciphertext secure if for any t-time IND-sID-CCA adversary A that makes at most qID chosen
private key queries and at most qC chosen decryption queries we have that AdvE,A < ε. As
shorthand, we say that E is (t, qID, qC , ε) IND-sID-CCA secure.

Semantic Security. As usual, we define selective identity, chosen plaintext security for an IBE
system as in the preceding game, except that the adversary is not allowed to issue any decryption
queries. The adversary may still issue adaptive private key queries.

Definition 2.2. We say that an IBE or HIBE system E is (t, qID, ε)-selective identity, chosen
plaintext secure if E is (t, qID, 0, ε)-selective identity, chosen ciphertext secure. As shorthand, we say
that E is (t, qID, ε) IND-sID-CPA secure.

2.2 Bilinear Groups

We briefly review the necessary facts about bilinear maps and bilinear map groups. We use the
following notation:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.
Let G and G1 be two groups as above. A bilinear map is a map e : G × G → G1 with the

following properties:
1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
We say that G is a bilinear group if the group action in G can be computed efficiently and there

exists a group G1 and an efficiently computable bilinear map e : G×G→ G1 as above. Note that
e(, ) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Throughout the paper, for a prime order group G we use G∗ to denote the set G \ {1G} where
1G is the identity of G.
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3 Complexity Assumptions

Let G be a bilinear group of prime order p. We review the standard Bilinear Diffie-Hellman (BDH)
assumption and define the Bilinear Diffie-Hellman Inversion (BDHI) assumption.

3.1 Bilinear Diffie-Hellman Assumption

The BDH problem [Jou00, SOK00, BF01] in G is as follows: given a tuple g, ga, gb, gc ∈ G as input,
output e(g, g)abc ∈ G1. An algorithm A has advantage ε in solving BDH in G if

Pr
[
A(g, ga, gb, gc) = e(g, g)abc

]
≥ ε

where the probability is over the random choice of generator g in G∗, the random choice of a, b, c in
Zp, and the random bits used by A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving the decision BDH problem in G if∣∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, T ) = 0

]∣∣∣ ≥ ε

where the probability is over the random choice of generator g in G∗, the random choice of a, b, c in
Zp, the random choice of T ∈ G1, and the random bits consumed by B. We refer to the distribution
on the left as PBDH and the distribution on the right as RBDH .

Definition 3.1. We say that the (Decision) (t, ε)-BDH assumption holds in G if no t-time algorithm
has advantage at least ε in solving the (Decision) BDH problem in G.

Occasionally we drop the t and ε and refer to the BDH and Decision BDH assumptions in G.

3.2 Bilinear Diffie-Hellman Inversion Assumption

The q-BDHI problem is defined as follows: given the (q + 1)-tuple (g, gx, g(x2), . . . , g(xq)) ∈ (G∗)q+1

as input, compute e(g, g)1/x ∈ G∗
1. An algorithm A has advantage ε in solving q-BDHI in G if

Pr
[
A(g, gx, . . . , g(xq)) = e(g, g)1/x

]
≥ ε

where the probability is over the random choice of generator g in G∗, the random choice of x in
Z∗

p, and the random bits of A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving the decision q-BDHI problem in G if∣∣∣Pr

[
B(g, gx, . . . , g(xq), e(g, g)1/x) = 0

]
− Pr

[
B(g, gx, . . . , g(xq), T ) = 0

]∣∣∣ ≥ ε

where the probability is over the random choice of generator g in G∗, the random choice of x in
Z∗

p, the random choice of T ∈ G1, and the random bits of B. We refer to the distribution on the
left as PBDHI and the distribution on the right as RBDHI .

Definition 3.2. We say that the (Decision) (t, q, ε)-BDHI assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (Decision) q-BDHI problem in G.

Occasionally we drop the t and ε and refer to the q-BDHI and Decision q-BDHI assumptions. It
is easy to show that the 1-BDHI assumption is equivalent to the standard Bilinear Diffie-Hellman
assumption (BDH). It is not known if the q-BDHI assumption, for q > 1, is equivalent to BDH. A
closely related assumption was previously used in [MSK02] where it was called weak Diffie-Hellman.
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4 Efficient Selective Identity IBE and HIBE Based on BDH
Without Random Oracles

We construct an efficient HIBE system that is selective identity secure without random oracles
based on the Decision BDH assumption. In particular, this implies an efficient selective identity,
chosen ciphertext secure IBE based on Decision BDH without random oracles.

4.1 Construction

Let G be a bilinear group of prime order p (the security parameter determines the size of G). Let
e : G × G → G1 be the bilinear map. For now, we assume public keys (ID) of depth ` are vectors
of elements in Zp

`. We write ID = (I1, . . . , I`) ∈ Zp
`. The j-th component corresponds to the

identity at level j. We later extend the construction to public keys over {0, 1}∗ by first hashing
each component Ij using a collision resistant hash H : {0, 1}∗ → Zp. We also assume messages to
be encrypted are elements in G1. The HIBE system works as follows:

Setup(`): To generate system parameters for an HIBE of maximum depth `, select a random
generator g in G∗, a random α ∈ Zp, and set g1 = gα. Next, pick random elements h1, . . . , h` ∈
G and a random element g2 ∈ G. The public parameters params and the secret master-key
are given by

params = (g, g1, g2, h1, . . . , h`) , master-key = gα
2

For j = 1, . . . , `, we define Fj : Zp → G to be the function: Fj(x) = gx
1hj .

KeyGen(dID|j−1, ID): To generate the private key dID for an identity ID = (I1, . . . , Ij) ∈ Zp
j of

depth j ≤ `, pick random r1, . . . , rj ∈ Zp and output

dID =

(
gα
2 ·

j∏
k=1

Fk(Ik)rk , gr1 , . . . , grj

)

Note that the private key for ID can be generated just given a private key for ID|j−1 =
(I1, . . . , Ij−1) ∈ Zp

j−1, as required. Indeed, let dID|j−1 = (d0, . . . , dj−1) be the private key for
ID|j−1. To generate dID pick a random rj ∈ Zp and output dID = (d0 ·Fj(Ij)rj , d1, . . . , dj−1, g

rj ).

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ij) ∈
Zp

j , pick a random s ∈ Zp and output

C =
(

e(g1, g2)s ·M, gs, F1(I1)s, . . . , Fj(Ij)s

)
Note that e(g1, g2) can be precomputed once and for all so that encryption does not require
any pairing computations. Alternatively, e(g1, g2) can be included in the system parameters,
in which case g2 can be dropped.

Decrypt(dID, C): Consider an identity ID = (I1, . . . , Ij). To decrypt a given ciphertext C =
(A,B, C1, . . . , Cj) using the private key dID = (d0, d1, . . . , dj), output

A ·
∏j

k=1 e(Cj , dj)
e(B, d0)

= M
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Indeed, for a valid ciphertext, we have∏j
k=1 e(Cj , dj)
e(B, d0)

=
∏j

k=1 e(Fk(Ik), g)srk

e(g, g2)sα
∏j

k=1 e(g, Fk(Ik))srk

=
1

e(g1, g2)s

4.2 Security

The HIBE system above is reminiscent of the Gentry-Silverberg HIBE which is only known to be
secure in the random oracle model. Surprisingly, our choice of functions F1, . . . , F` enables us to
prove security without random oracles. We prove security of our HIBE system under the standard
Decision BDH assumption in G.

Theorem 4.1. Suppose the (t, ε)-Decision BDH assumption holds in G. Then the previously defined
`-HIBE system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-CPA) secure for arbitrary `
and qS, and any t′ < t−Θ(τ ` qS) where τ is the maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the HIBE system. We build an algorithm B
that solves the Decision BDH problem in G. Algorithm B is given as input a random 5-tuple
(g, ga, gb, gc, T ) that is either sampled from PBDH (where T = e(g, g)abc) or from RBDH (where
T is uniform and independent in G1). Algorithm B’s goal is to output 1 if T = e(g, g)abc and 0
otherwise. Set g1 = ga, g2 = gb, g3 = gc. Algorithm B works by interacting with A in a selective
identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
k) ∈ Zp

k of depth k ≤ ` that it intends to attack. If necessary, B appends ran-
dom elements in Zp to ID∗ so that ID∗ is a vector of length `.

Setup. To generate the system parameters, algorithm B picks α1, . . . , α` ∈ Zp at random and

defines hj = g
−I∗j
1 gαj ∈ G for j = 1, . . . , `. It gives A the system parameters params =

(g, g1, g2, h1, . . . , h`). Note that the corresponding master key, which is unknown to B, is
ga
2 = gab ∈ G. As before, for j = 1, . . . , ` we define Fj : Zp → G to be the function

Fj(x) = gx
1hj = g

x−I∗j
1 gαj

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ Zp

u where u ≤ `. The only restriction is that ID is not a prefix of ID∗.
Let j be the smallest index such that Ij 6= I∗j . Necessarily 1 ≤ j ≤ u. To respond to the
query, algorithm B first derives a private key for the identity (I1, . . . , Ij) from which it then
constructs a private key for the requested identity ID = (I1, . . . , Ij , . . . , Iu). Algorithm B picks
random elements r1, . . . , rj ∈ Zp and sets

d0 = g

−αj

Ij−I∗j
2

j∏
v=1

Fv(Iv)rv , d1 = gr1 , . . . , dj−1 = grj−1 , dj = g

−1
Ij−I∗j
2 grj

We claim that (d0, d1, . . . , dj) is a valid random private key for (I1, . . . , Ij). To see this, let
r̃j = rj − b/(Ij − I∗j ). Then we have that

g

−αj

(Ij−I∗j )

2 Fj(Ij)rj = g

−αj

(Ij−I∗j )

2 (g
Ij−I∗j
1 gαj )rj = ga

2(g
Ij−I∗j
1 gαj )

rj− b
Ij−I∗j = ga

2Fj(Ij)r̃j
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It follows that the private key (d0, d1, . . . , dj) defined above satisfies

d0 = ga
2 · (

j−1∏
v=1

Fv(Iv)rv) · Fj(Ij)r̃j , d1 = gr1 , . . . , dj−1 = grj−1 , dj = gr̃j

where r1, . . . , rj−1, r̃j are uniform in Zp. This matches the definition for a private key for
(I1, . . . , Ij). Hence, (d0, d1, . . . , dj) is a valid private key for (I1, . . . , Ij). Algorithm B derives
a private key for the requested ID from the private key (d0, d1, . . . , dj) and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on which
it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
ciphertext C = (Mb · T, g3, gα1

3 , . . . , gαk
3 ). Since Fi(I∗i ) = gαi for all i, we have that

C = (Mb · T, gc, F1(I∗1)
c, . . . , Fk(I∗k)

c)

Hence, if T = e(g, g)abc = e(g1, g2)c then C is a valid encryption of Mb under the public key
ID∗ = (I∗1, . . . , I

∗
k). On the other hand, when T is uniform and independent in G1 (when the

input 5-tuple is sampled from RBDH) then C is independent of b in the adversary’s view.

Phase 2. A continues to issue queries not issued in Phase 1. Algorithm B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, g)abc. Otherwise, it outputs
0 meaning T 6= e(g, g)abc.

When the input 5-tuple is sampled from PBDH (where T = e(g, g)abc) then A’s view is identical
to its view in a real attack game and therefore A must satisfy |Pr[b = b′] − 1/2| > ε. On the
other hand, when the input 5-tuple is sampled from RBDH (where T is uniform in G1) then
Pr[b = b′] = 1/2. Therefore, with g uniform in G∗, a, b, c uniform in Zp, and T uniform in G1 we
have that∣∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, T ) = 0

]∣∣∣ ≥ ∣∣∣∣(1
2
± ε

)
− 1

2

∣∣∣∣ = ε

as required. This completes the proof of Theorem 4.1.

4.3 Chosen Ciphertext Security

A recent result of Canetti et al. [CHK04] gives an efficient way to build a selective identity, chosen
ciphertext `-HIBE from a selective identity, chosen plaintext (` + 1)-HIBE. In combination with
the above construction, we obtain a selective identity, chosen ciphertext `-HIBE for any `. In
particular, from our 2-HIBE we obtain an efficient selective identity, chosen ciphertext secure IBE
without random oracles.

4.4 Arbitrary Identities

We can extend our HIBE above to handle identities ID = (I1, . . . , I`) with Ij ∈ {0, 1}∗ (as opposed
to Ij ∈ Zp) by first hashing each Ij using a collision resistant hash function H : {0, 1}∗ → Zp prior
to key generation and encryption. A standard argument shows that if the scheme above is selective
identity, chosen ciphertext secure then so is the scheme with the additional hash function. We note
that there is no need for a full domain hash into Zp; for example, a collision resistant hash function
H : {0, 1}∗ → {1, . . . , 2b} where 2b < p is sufficient for the security proof.
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5 More Efficient Selective Identity IBE Based on BDHI
Without Random Oracles

We construct an efficient IBE system that is selective identity, chosen plaintext secure without
random oracles based on the Decision q-BDHI assumption (see Section 3.2). Decryption in the
resulting IBE system is more efficient that the IBE construction in the previous section. Encryption
efficiency and ciphertext size are the same.

5.1 Basic Construction

Let G be a bilinear group of prime order p. For now, we assume that the public keys (ID) are
elements in Z∗

p. We show later that arbitrary identities in {0, 1}∗ can be used by first hashing ID
using a collision resistant hash H : {0, 1}∗ → Z∗

p. We also assume that the messages to be encrypted
are elements in G1. The IBE system works as follows:

Setup: To generate IBE parameters, select a random generator g ∈ G∗, select random elements
x, y ∈ Z∗

p, and define X = gx and Y = gy. The public parameters params and the secret
master-key are given by

params = (g,X, Y ) , master-key = (x, y)

KeyGen(master-key,ID): To create a private key for the public key ID ∈ Z∗
p:

1. pick a random r ∈ Zp and compute K = g1/(ID+x+ry) ∈ G,

2. output the private key dID = (r, K).

In the unlikely event that x + ry + ID = 0 (mod p), try again with a new random value for r.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under public key ID ∈ Z∗
p, pick a

random s ∈ Z∗
p and output the ciphertext

C =
(
gs·IDXs, Y s, e(g, g)s ·M

)
Note that e(g, g) can be precomputed once and for all so that encryption does not require
any pairing computations.

Decrypt(dID, C): To decrypt a ciphertext C = (A,B, C) using the private key dID = (r, K), output
C/e(ABr,K). Indeed, for a valid ciphertext we have

C

e(ABr,K)
=

C

e(gs(ID+x+ry), g1/(ID+x+ry))
=

C

e(g, g)s
= M

Performance. In terms of efficiency, we note that the ciphertext size and encryption time are
similar to the IBE system of the previous section. However, decryption requires only one pairing
computation, as opposed to two in the previous section.

The IBE system above is related to a recent construction of Sakai and Kasahara [SK03, Sect. 3.1].
In the system of [SK03] the algorithm for generating user private keys is deterministic. In our
system, key generation is randomized and this randomization is essential for the proof of security.
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5.2 Proving Security

We prove security of the scheme under the Decision q-BDHI assumption from Section 3.2.

Theorem 5.1. Suppose the (t, q, ε)-Decision BDHI assumption holds in G of size |G| = p. Then
the previously defined IBE system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-CPA)
secure for any qS < q, and any t′ < t−Θ(τ q2) where τ is the maximum time for an exponentiation
in G.

Proof. Suppose A has advantage ε in attacking the IBE system. We build an algorithm B that uses
A to solve the Decision q-BDHI problem in G. Algorithm B is given as input a random (q+2)-tuple
(g, gα, g(α2), . . . , g(αq), T ) ∈ (G∗)q+1×G1 that is either sampled from PBDHI (where T = e(g, g)1/α)
or from RBDHI (where T is uniform and independent in G1). Algorithm B’s goal is to output 1
if T = e(g, g)1/α and 0 otherwise. Algorithm B works by interacting with A in a selective identity
game as follows:

Preparation. Algorithm B builds a generator h ∈ G∗ for which it knows q − 1 pairs of the form
(wi, h

1/(α+wi)) for random w1, . . . , wq−1 ∈ Z∗
p. This is done as follows:

1. Pick random w1, . . . , wq−1 ∈ Z∗
p and let f(z) be the polynomial f(z) =

∏q−1
i=1 (z + wi).

Expand the terms of f to get f(z) =
∑q−1

i=0 cix
i. The constant term c0 is non-zero.

2. Compute h =
∏q−1

i=0 (g(αi))ci = gf(α) and u =
∏q

i=1(g
(αi))ci−1 = gαf(α). Note that u = hα.

3. Check that h ∈ G∗. Indeed if we had h = 1 in G this would mean that wj = −α for some
easily identifiable wj , at which point B would be able to solve the challenge directly. We
thus assume that all wj 6= −α.

4. Observe that for any i = 1, . . . , q−1, it is easy for B to construct the pair
(
wi, h

1/(α+wi)
)
.

To see this, write fi(z) = f(z)/(z + wi) =
∑q−2

i=0 diz
i.

Then h1/(α+wi) = gfi(α) =
∏q−2

i=0 (g(αi))di .

5. Next, B computes

Th = T (c20) · T0 where T0 =
q−1∏
i=0

q−2∏
j=0

e
(
g(αi), g(αj)

)cicj+1

Observe that if T = e(g, g)1/α then Th = e
(
gf(α)/α, gf(α)

)
= e(h, h)1/α. On the contrary,

if T is uniform in G1, then so is Th.

We will be using the values h, u, Th and the pairs (wi, h
1/(α+wi)) for i = 1, . . . , q−1 throughout

the simulation.

Initialization. The selective identity game begins with A first outputting an identity ID∗ ∈ Z∗
p

that it intends to attack.

Setup. To generate the system parameters, algorithm B does the following:

1. Pick random a, b ∈ Z∗
p under the constraint that ab = ID∗.

2. Compute X = u−ah−ab = h−a(α+b) and Y = u = hα.

3. Publish params = (h, X, Y ) as the public parameters. Note that X, Y are independent
of ID∗ in the adversary’s view.
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4. We implicitly define x = −a(α + b) and y = α so that X = hx and Y = hy. Algorithm
B does not know the value of x or y, but does know the value of x + ay = −ab = −ID∗.

Phase 1. A issues up to qS < q private key queries. Consider the i-th query for the private key
corresponding to public key IDi 6= ID∗. We need to respond with a private key (r, h1/(IDi+x+ry))
for a uniformly distributed r ∈ Zp. Algorithm B responds to the query as follows:

1. Let
(
wi, h

1/(α+wi)
)

be the i-th pair constructed during the preparation step. Define
hi = h1/(α+wi).

2. B first constructs an r ∈ Zp satisfying (r − a)(α + wi) = IDi + x + ry. Plugging in the
values of x and y the equation becomes

(r − a)(α + wi) = IDi − a(α + b) + rα

We see that the unknown α cancels from the equation and we get r = a + IDi−ab
wi

∈ Zp,
which B can evaluate.

3. Now, (r, h
1/(r−a)
i ) is a valid private key for IDi for two reasons. First,

h
1/(r−a)
i = (h1/(α+wi))1/(r−a) = h1/(r−a)(α+wi) = h1/(IDi+x+ry)

as required. Second, r is uniformly distributed among all elements in Zp for which
IDi + x + ry 6= 0 and r 6= a. This is true since wi is uniform in Zp \ {0,−α} and is
currently independent of A’s view. Algorithm B gives A the private key (r, h

1/(r−a)
i ).

For completeness, we note that B can construct the private key for IDi with r = a as
(r, h1/(IDi−ID∗)). Hence, the r in the private key given to A can be made uniform among
all r ∈ Zp for which IDi + x + ry 6= 0 as required.

We point out that this procedure will fail to produce the private key for IDi = ID∗ since in
that case we get r = a and IDi +x+ ry = 0. Hence, B can generate private keys for all public
keys except for ID∗.

Challenge. A outputs two messages M0,M1 ∈ G1. Algorithm B picks a random bit b ∈ {0, 1}
and a random ` ∈ Z∗

p. It responds with the ciphertext CT = (h−a`, h`, T `
h ·Mb). Define

s = `/α. On the one hand, if Th = e(h, h)1/α we have

h−a` = h−aα(`/α) = h(x+ab)(`/α) = h(x+ID∗)(`/α) = hsID∗ ·Xs

h` = Y `/α = Y s

T `
h = e(h, h)`/α = e(h, h)s

It follows that CT is a valid encryption of Mb under ID∗, with the uniformly distributed
randomization value s = `/α ∈ Z∗

p. On the other hand, when Th is uniform in G1, then, in
the adversary’s view, CT is independent of the bit b.

Phase 2. A issues more private key queries, for a total of at most qS < q. Algorithm B responds
as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning T = e(g, g)1/α.
Otherwise, it outputs 0 meaning T 6= e(g, g)1/α.
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We showed that when the input tuple is sampled from PBDHI (where T = e(g, g)1/α) then Th =
e(h, h)1/α in which case A must satisfy |Pr[b = b′]− 1/2| > ε. On the other hand, when the input
tuple is sampled from RBDHI (where T is uniform in G1) then Th is uniform and independent in
G1 in which case Pr[b = b′] = 1/2. Therefore, with g uniform in G∗, x uniform in Z∗

p, and T
uniform in G1, we have that∣∣∣Pr

[
B(g, gx, . . . , g(xq), e(g, g)1/x) = 0

]
− Pr

[
B(g, gx, . . . , g(xq), T ) = 0

]∣∣∣ ≥ ∣∣∣∣(1
2
± ε

)
− 1

2

∣∣∣∣ ≥ ε

as required. This completes the proof of Theorem 5.1.

Chosen-Ciphertext Security. Canetti et al. [CHK03, Section 2.2] describe a general method
for converting a selective identity, chosen plaintext secure IBE into a selective identity, chosen
ciphertext secure IBE. The method is based on [NY90, Sah99, Lin03]. Since it is generic, it applies
to our system as well. In particular, the method can be used to render the IBE system above secure
against chosen ciphertext attacks. The result is an IND-sID-CCA secure IBE without random oracles.
However, the resulting system is inefficient since it relies on generic non-interactive zero-knowledge
(NIZK) constructions.

Arbitrary Identities. As in the previous section, a standard argument shows that we can extend
the IBE above to handle arbitrary identities ID ∈ {0, 1}∗ by first hashing ID using a collision
resistant hash function H : {0, 1}∗ → Z∗

p prior to key generation and encryption. If the underlying
scheme is selective identity, chosen plaintext (resp. ciphertext) secure, then so is the scheme with
the additional hash function.

6 Efficient CCA2-Secure Public Key Systems

A recent result of Canetti et al. [CHK04] gives a general method for constructing a CCA2 public
key system from any selective identity, chosen plaintext IBE. Essentially the same result was used
in Section 4 to transform our first HIBE construction into a chosen ciphertext secure HIBE of
one lesser depth. The construction of [CHK04] works by appending a one-time signature and a
one-time signature public key to every ciphertext. Boneh and Katz [BK04] describe a more efficient
transformation that requires only the addition of a MAC and a commitment to each ciphertext.

The [CHK04, BK04] transformations can be applied to the two IBE systems described in the
previous two sections. In doing so, we obtain two new public key encryption schemes that are
provably CCA2-secure without random oracles. We summarize here the performance characteristics
of the two public key systems obtained from applying the [BK04] transformation.

• Encryption time: For both the Decision BDH system (Section 4) and the Decision BDHI
system (Section 5) encryption time is dominated by three exponentiations in G.
• Decryption time: For the Decision BDH system (Section 4) decryption time is dominated

by the time to compute a product of two bilinear maps. For the Decision BDHI system
(Section 5) decryption time is dominated by a single bilinear map computation. In both
cases, the elements on the right side of all pairings do not depend on the ciphertext which
enables further speed-up.
• Ciphertext size: For both systems the ciphertext is made up of three elements in G plus a

MAC and a commitment. The MAC and commitment together are about as long as one
element in G and hence total ciphertext size is about four elements in G.
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We note that encryption time is better than the original Cramer-Shoup [CS98] CCA2-secure public
key which requires four exponentiations for encryption. Encryption time is the same as an improved
version of Cramer-Shoup due to Kurosawa and Desmedt [KD04]. See [BK04] for a more detailed
comparison.

A Non-Interactive CCA2-Secure Threshold Public Key System. We briefly note that in
the IBE system of Section 4 it is easy to distribute the master key among n parties so that any
t parties can be used to derive the private key for a given identity. When applying the technique
of [CHK04] to the resulting threshold IBE system, we obtain a CCA2-secure threshold public key
system in the standard model: Given a ciphertext C, the combiner sends C to t of the n decryption
parties. Each party checks the signature in C and, if it verifies, computes its share of the private
key K needed to decrypt C (where K is an identity based private key in the underlying threshold
IBE for a unique ID tied to the ciphertext). It sends the resulting share of the private key to the
combiner who can then decrypt and recover the plaintext.

The resulting system is a CCA2-secure threshold public key system, without random oracles,
in which there is no interaction needed between the decryption parties. Existing systems of this
type, due to Canneti and Goldwasser [CG99], are based on the Cramer-Shoup system and require
interaction between the decryption parties. The reason we are able to avoid interaction is that
using the method of [CHK04] anyone can check that a ciphertext is valid. In the Cramer-Shoup
system only parties possessing the private key can check ciphertext validity, which makes threshold
decryption non-trivial.

7 Fully Secure Identity Based Encryption

Until now we only discussed selective-ID security for IBE systems where the adversary commits
ahead of time to the identity ID∗ it wants to attack. In the full IBE security model [BF01] (denoted
IND-ID-CPA) the attacker is allowed to adaptively choose which identity to attack by specifying ID∗

in the challenge phase rather than in the setup phase. Giving the adversary more power this way
makes it harder to construct fully secure IBE systems.

We briefly show that any selective-ID secure IBE is also a fully secure IBE, but the reduction is
somewhat inefficient. First, we note that the selective-ID security of an IBE system is not weakened
if additional restrictions on the identities are imposed (indeed, this only tightens the constraints
on the adversary and relaxes those on the simulator). Identities in the systems of Sections 4 and 5
range natively over Zp and Z∗

p, but by the preceding remark it is safe to restrict them to the set of
integers {1, . . . , 2n} for 2n < p, represented as binary strings of length n. We can then expand our
IBE schemes to arbitrary identities in {0, 1}∗ by first hashing identities using a collision resistant
function with n-bit output, such as SHA-1 whose output is 160 bits. Hence, for an appropriately
large p, taking n = 160 as the length of identities in the underlying IBE is a natural choice.

Let thus N be the number of allowed identities in the underlying IBE, where for example
N = 2160. The reduction from selective-ID IBE to fully secure IBE introduces a factor of N in
the security parameters of the system, as described in Theorem 7.1 below. Consequently, if the
IBE system has sufficiently high selective-ID security (which requires using a bilinear group of
sufficiently large size p) then the system is also a fully secure IBE with adequate security. This
means that the selective-ID secure IBE system of [CHK03] as well as the two systems described
in the previous sections are fully secure IBE systems in their own right, assuming we use a large
enough group so that the Decision BDH and Decision BDHI problems are sufficiently difficult. Note
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that the extension to arbitrary identities as mentioned above requires collision resistant hashing,
in which case N must be at least 2160.

Concretely, an immediate corollary of Theorem 7.1 below is that, using 160-bits identities and
using a group where no t-time adversary can break Decision BDH with advantage 2−240, the IBE
system of Section 4 is a (t, qS, 2−80)-fully secure IBE for any qS. The system can be expanded to
arbitrary identities in {0, 1}∗ by first hashing identities using a collision resistant hash function
with a 160-bit output.

Theorem 7.1. Let E be a (t, qS, ε)-selective identity secure IBE system (IND-sID-CPA). Suppose E
admits N distinct identities. Then E is also a (t, qS, Nε)-fully secure IBE (IND-ID-CPA).

Proof. Suppose algorithm A has advantage Nε in breaking the full security of the IBE system.
We build an algorithm B that has advantage ε in breaking selective-ID security of the system.
Algorithm B works as follows:

Init. B picks a random ID∗ ∈ {0, 1}n and outputs it as the identity that it wishes to attack.

Setup. The challenger gives B the public parameters for an IBE system. B forwards these param-
eters to A.

Phase 1. A issues private key queries. Consider the i’th query for identity IDi. If IDi 6= ID∗

algorithm B forwards the query to its challenger. Since the query is valid (IDi 6= ID∗), the
challenger responds with the private key for IDi which B then forwards to A. However, in
the unlikely event that IDi = ID∗, algorithm B cannot respond to this query. In this case, B
terminates the simulation, picks a random bit b′, and outputs b′ as its guess for the challenger’s
bit b.

Challenge. Once phase 1 is overA outputs an identity ID∗
0 ∈ {0, 1}n and two equal length messages

M0,M1. Algorithm B forwards M0,M1 to its challenger and receives back the challenge
ciphertext C∗. We consider two cases:

1. If ID∗ 6= ID∗
0 then algorithm B picks a random bit b′ ∈ {0, 1}, outputs b′ as its guess for

b, and terminates.

2. Otherwise, ID∗ = ID∗
0 in which case C∗ is a proper encryption of one of M0 or M1 under

ID∗
0 as expected by A. Algorithm B gives C∗ to A and continues to Phase 2.

Phase 2. A continues to issue private key queries. B responds as before. Since now the queries
cannot equal ID∗ these queries cannot cause B to abort.

Output. Finally, A outputs its guess b′ ∈ {0, 1} for b. B outputs the same b′ as its guess for b.

Next, we analyze B’s advantage in guessing b. Let q1 ≤ qS < N be the number of distinct queries
that A issued during phase 1. Let success1 denote the event that during phase 1 A did not issue a
query for ID∗. Let success denote the event that both success1 occurred and ID∗ = ID∗

0. Then

Pr[success] = Pr[success1] · Pr[ID∗ = ID∗
0 | success1] =

(
1− q1

N

) 1
N − q1

=
1
N

When event success happens, A’s view is identical to its view in a real attack game and therefore
|Pr[b = b′|success]− 1

2 | ≥ Nε. Furthermore, by definition of B we have that Pr[b = b′|success] = 1
2 .
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It follows that∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ = ∣∣∣∣(Pr[b = b′|success] · Pr[success]
)

+
(

Pr[b = b′|success] · Pr[success]
)
− 1

2

∣∣∣∣
=
∣∣∣∣Pr[b = b′|success] · 1

N
+

1
2
· N − 1

N
− 1

2

∣∣∣∣ =
∣∣∣∣Pr[b = b′|success]− 1

2

∣∣∣∣ · 1
N
≥ ε

as required. This completes the proof of Theorem 7.1.

A natural question is whether one can build a fully secure IBE with a more efficient security
reduction than in Theorem 7.1. Building on the system of Section 4 we were recently able to
construct a fully secure IBE where the security reduction only introduces an error factor of Õ(q2

s ),
as oppsed to N , as described in [BB04]. However the construction is not very practical and mostly
serves as a proof of concept.

Fully Secure IBE Using Random Oracles. It is also worth noting that a random oracle H
immediately converts a selective-ID IBE E to a fully secure IBE by the process of hashing the
identity ID with H before using ID. We denote the resulting system by EH . We state this in the
following theorem.

Theorem 7.2. Let E be a (t, qS, ε) selective-ID secure IBE. Suppose identities in E are n-bits long.
Let H be a hash function H : {0, 1}∗ → {0, 1}n modeled as a random oracle. Then EH is a (t, qS, ε′)
fully secure IBE (in the random oracle model) for ε′ = ε · qH/(1− qS/2n) ≈ qH · ε, where qH is the
maximum number of oracle calls to H that the adversary can make.

The proof of the theorem is similar to the proof of Theorem 7.1 and is omitted. We merely
mention that the additional correction factor (1−qS/2n)−1 accounts for the possible random oracle
collisions. It is worth noting that in the proof, the random oracle is “programmed” at only one
point. Unlike the original Boneh-Franklin IBE scheme and its many variants, where the random
oracle programmability is crucial to answer all private key queries, here the random oracle is only
needed to ensure that the hash of the challenge identity provided by the adversary (ID∗

0) is mapped
to the identity chosen by the simulator at the initialization step (ID∗).

Remarkably, a consequence of Theorems 7.1 and 7.2 is that, using a collision resistant function
H : {0, 1}∗ → {0, 1}n for properly chosen 2160 ≤ 2n � p, the same hash IBE scheme EH features
(t, qS, 2nε) full IBE security which is boosted to (t, qS, qHε) when H is viewed as a random oracle.

8 DHI and Generalized Diffie-Hellman

In Section 3.2 we defined the q-BDHI problem in a bilinear group. A closely related problem is the
q-Diffie-Hellman Inversion (q-DHI) problem: given a tuple (g, gx, g(x2), . . . , g(xq)) ∈ Gq+1 as input,
output g1/x ∈ G. Here, G need not be a bilinear group. Loosely speaking, the q-DHI assumption
states that the q-DHI problem is intractable in G. This assumption was previously used in [MSK02]
where it was called weak Diffie-Hellman.

Many cryptographic constructions rely on the Generalized Diffie-Hellman assumption (GenDH)
for security [MSW96, NR97, BBR99, Lys02, BS03]. In this section we show that the q-DHI as-
sumption implies the (q +1)-Generalized Diffie-Hellman assumption. Thus, constructions that rely
on Generalized Diffie-Hellman could instead rely on q-DHI which appears to be a more natural
complexity assumption, and is easier to state since the problem description does not require an
oracle.
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We first review the GenDH assumption. The assumption says that, for a random generator
g of G, given ga1 , . . . , gaq in G and given all the subset products g

Q
i∈S ai ∈ G for any strict

subset S ⊂ {1, . . . , q}, it is hard to compute ga1···aq ∈ G. Since the number of subset products is
exponential in q, access to all these subset products is provided through an oracle. For a vector
~a = (a1, . . . , aq) ∈ Zp

q, define Og,~a to be an oracle that for any strict subset S ⊂ {1, . . . , q} responds
with

Og,~a(S) = g
Q

i∈S ai ∈ G.

Define the advantage of algorithm A in solving the generalized Diffie-Hellman problem to be the
probability that A is able to compute ga1···aq given access to the oracle Og,~a(S). In other words,

AdvA,q = Pr[AOg,~a = ga1···aq : g ← G∗, ~a = (a1, . . . , aq)← Zp
q]

Note that the oracle only answers queries for strict subsets of {1, . . . , q}.

Definition 8.1. We say that G satisfies the (t, q, ε)-Generalized Diffie-Hellman assumption if for
all t-time algorithms A we have AdvA,q < ε.

Theorem 8.2. Suppose the (t, q − 1, ε)-DHI assumption holds in G. Then the (t, q, ε)-GenDH
assumption also holds in G.

Proof. Suppose A is an algorithm that has advantage ε in solving the q-GenDH problem. We
construct an algorithm B that solves (q− 1)-DHI with the same advantage ε. Algorithm B is given
g, gx, g(x2), . . . , g(xq−1) ∈ G and its goal is to compute g1/x ∈ G. Let h = g(xq−1) and y = x−1 ∈ Zp.
Then the input to B can be re-written as h, hy, h(y2), . . . , h(yq−1) ∈ G and B’s goal is to output
h(yq) = g1/x.

Algorithm B first picks q random values c1, . . . , cq ∈ Zp. It then runs algorithm A and simulates
the oracle Oh,~a for A. The vector ~a that B will use is ~a = (y + c1, . . . , y + cq). Note that B does
not know ~a explicitly since B does not have y. When A issues a query for Oh,~a(S) for some strict
subset S ⊂ {1, . . . , q} algorithm B responds as follows:

1. Define the polynomial f(z) =
∏

i∈S(z + ci) and expand the terms to obtain f(z) =
∑|S|

i=0 biz
i.

2. Compute t =
∏|S|

i=0(h
(yi))bi = hf(y). Since |S| < q all the values h(yi) in the product are

known to B.
3. By construction we know that t = h

Q
i∈S(y+ci). Algorithm B responds by setting Oh,~a(S) = t.

The responses to all of the adversary’s oracle queries are consistent with the hidden vector ~a =
(y + c1, . . . , y + cq). Therefore, eventually, A will output T = h

Qq
i=1(y+ci). Define the polynomial

f(z) =
∏q

i=1(z + ci) and expand the terms to get f(z) = zq +
∑q−1

i=0 biz
i. To conclude, B outputs

T
/ q−1∏

i=0

(h(yi))bi = h(yq)

which is the required value.

The same property as in Theorem 8.2 also holds for the decision versions of the DHI and GenDH
problems. The q-DHI assumption is easier to state than the q-GenDH assumption since there is
no need for an oracle. When appropriate, constructions that depend on GenDH for security could
instead use the DHI assumption.
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9 Conclusions

We constructed two IBE systems that are secure against selective identity attacks in the standard
model, i.e., without using random oracles. The first construction is based on the now classic
BDH assumption. It extends readily to give a selective identity HIBE without random oracles,
that can efficiently be made chosen ciphertext secure using a technique of [CHK04]. The second
construction is based on the Bilinear Diffie-Hellman Inversion assumption. The same technique
of [CHK04, BK04] converts both our constructions into efficient CCA2-secure public key systems
without random oracles that are almost as efficient as the Cramer-Shoup public key system.

We observed that a selective-ID secure IBE system implies a fully secure IBE system, but the
resulting security reduction is not efficient. Using the first construction in this paper as a building
block we were recently able to construct a fully secure IBE system without the random oracle model
with an efficient security reduction [BB04].
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