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Abstract. In threshold ring signature schemes, any group of t entities spontaneously conscripting
arbitrarily n − t entities to generate a publicly verifiable t-out-of-n signature on behalf of the
whole group, yet the actual signers remain anonymous. The spontaneity of these schemes is
desirable for ad-hoc groups such as mobile ad-hoc networks. In this paper, we present an identity
based (ID-based) threshold ring signature scheme. The scheme is provably secure in the random
oracle model and provides trusted authority compatibility. To the best of authors’ knowledge,
our scheme is the first ID-based threshold ring signature scheme which is also the most efficient
(in terms of number of pairing operations required) ID-based ring signature scheme (when t = 1)
and threshold ring signature scheme from pairings.
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1 Introduction

Anonymity is becoming a major concern in many multi-user electronic commerce applications
such as e-lotteries, e-cash and online games. Group-oriented signature schemes [9] enable an
entity of a group to produce a signature on behalf of the group. There are two major paradigms
in anonymous group-oriented signature schemes: group signature and ring signature. In a
group signature scheme, the group is predefined and there is a group manager that can
revoke this anonymity. Ring signature scheme provides a similar feature. It does not support
anonymity revocation mechanism, but no setup stage is needed to produce and distribute a
group secret explicitly. Hence it enables any individual spontaneously conscripting arbitrarily
n − 1 entities to generate a publicly verifiable 1-out-of-n signature on behalf of the whole
group, yet the actual signer remains unconditionally anonymous. Threshold ring signature is
the t-out-of-n threshold version where t or more entities can jointly generate a valid signature
but t− 1 or fewer entities cannot. These schemes are getting more and more popular due to
the increasing prevalence of pervasive computing applications and mobile ad-hoc networks,
where ad-hoc groups are very common [7].

1.1 Motivation of ID-based Threshold Ring Signature

In traditional public key infrastructure (PKI), a user must pre-enroll the PKI or he/she
cannot enjoy the cryptographic services provided by the PKI, e.g. no one can send them any
encrypted message. Identity-based (ID-based) cryptography [5, 26] solves this problem: all
users already have their corresponding public key before their enrollment since the public key
can be derived via a public algorithm with input of a string that can uniquely identify each
of them, such as an email address.
? corresponding author
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All previous threshold ring signature constructions are non ID-based, hence real spontaneity
is not always possible: the public key of each member of the group is required to be published
by the underlying PKI before it can be used to generate the signature. Removing this pre-
requisite requirement motivates the construction of ID-based threshold ring signature scheme,
which provide a better alternative than non-ID based solutions1.

1.2 Related Work

Ring signature scheme was first formalized by Rivest et al. in [24]. After that, several other
ring signature schemes (for examples, [1, 17]) were proposed. Bresson et al. extended [24] into
a threshold ring signature using the concept of partitioning [7]. Later, Wong et al. proposed
another threshold ring signature using tandem construction method [29]. In [15], a constant-
size ring signature was derived from the anonymous identification scheme proposed.

Recently there are some threshold ring signature schemes with special properties. For
examples, Liu et al. introduced separability to threshold ring signature scheme [20], which
enables the use of various flavours of public keys in a single threshold ring signature; Tsang et
al. introduced individual-linkability to threshold ring signature scheme, which enables anyone
to determine if two ring signatures are signed with the help of the same signer; and Chan
et al. constructed CDS-type [14] t-out-of-n blind threshold ring signature [8], such that the
signers do not know what exactly they are signers and cannot link which invocation of signing
algorithm corresponding to which unblinded signature.

In [20], a generic construction of threshold ring signature from any trapdoor-one-way type
signature scheme and three-move type signature scheme is given. Yet, the authors have not
illustrated the correctness and security of this construction except the specific instantiations
from RSA [23] and Schnorr signature [25].

Using bilinear pairing to construct ring signature is not a new idea. Inspired by the
aggregate signature, a ring signature scheme was proposed in [6]. A technique similar to that
of [6] was used to derive a new ring signature scheme in [30]. In [33], a ring signature was
derived from the short signature proposed. A proxy ring signature was proposed in [34]. ID-
based ring signature was introduced in [32] and subsequently a more efficient construction
was proposed in [19]. Small inconsistencies in [32] and [19] were fixed by [2], together with
a new proxy ring signature scheme from the delegation function due to [34]. Threshold ring
signature schemes from pairings was proposed in [28], but this scheme is not ID-based and
has not addressed the TA (trusted authority) compatibility issue [31] in which not all the
users join the same TA.

1.3 Our Contributions

In this paper, we present an ID-based threshold ring signature scheme. The scheme is provably
secure in the random oracle model [4] and provides TA compatibility [31]. To the best of
authors’ knowledge, our scheme is the first ID-based threshold ring signature scheme. Our
scheme is the most efficient (in terms of number of pairing operations required) ID-based ring
signature scheme (when the threshold value t = 1) and also the most efficient threshold ring
signature scheme from pairings.
1 Under the assumption that the trusted authority (the private key generator) will not reveal any information

about who has requested for his/her private key and who has not.
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1.4 Organization

The rest of the paper is organized as follows. The next section contains some preliminaries
about the formal definitions of an ID-based threshold ring signature scheme, bilinear pairing
as well as the Gap Diffie-Hellman group. Formal security definitions describing the adversary’s
capabilities and goals are presented in Section 3. In Section 4, we describe the proposed ID-
based threshold ring signature scheme. The security and efficiency analysis of our scheme are
given in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

Before presenting our results, we give the framework of ID-based threshold ring signature
schemes and review the definitions of bilinear pairing and Gap Diffie-Hellman groups.

2.1 Framework of ID-Based Threshold Ring Signature

An ID-based threshold ring signature scheme consists of four algorithms: Setup, KeyGen,
Sign, and Verify.

– Setup: On an unary string input 1k where k is a security parameter, it produces the master
secret key s and the common public parameters params, which include a description of a
finite signature space and a description of a finite message space.

– KeyGen: On an input of signer’s identity ID ∈ {0, 1}∗ and the master secret s, it outputs
the signer’s secret signing key SID.

– Sign: On input of a message m, a group of n users’ identities {ID i}, where 1 ≤ i ≤ n, and
the secret keys of t members {SIDij

}, where 1 ≤ ij ≤ n, 1 ≤ j ≤ t and t ≤ n; it outputs a
(t, n) ID-based threshold ring signature σ on the message m.

– Verify: On a threshold ring signature σ, a message m, the threshold value t and the group
of signers’ identities {ID i} where 1 ≤ i ≤ n as the input, it outputs > for “true” or ⊥ for
“false”, depending on whether σ is a valid signature signed by at least t members in the
group {ID i} on a message m.

These algorithms must satisfy the standard consistency constraint of ID-based threshold ring
signature scheme, i.e. if σ = Sign(m, {ID i}, {SIDij

}) and |{SIDij
}| = t (where |{SIDij

}|
denotes the number of elements in the set {SIDij

}), we must have Verify(σ, {ID i},m, t) = >.
Security requirements will be described in Section 3.

2.2 Bilinear Pairing and Gap Diffie-Hellman Groups

Bilinear pairing is an important primitive for many cryptographic schemes (for examples, [2,
5, 6, 11–13, 18, 19, 21, 28, 30–34]). Here, we describe some of its key properties.

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing is given
as ê : G1 ×G1 → G2, which satisfies the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P + Q,R) = ê(P,R)ê(Q,R), and ê(P,Q + R) =
ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) ∀P,Q ∈ G1.
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Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the Decisional
Diffie-Hellman problem (DDHP) is to decide whether c = ab.

Definition 2. Given a generator P of a group G, (P, aP, bP, cP ) is defined as a valid Diffie-
Hellman tuple if c = ab.

Definition 3. Given a generator P of a group G and a 2-tuple (aP, bP ), the Computational
Diffie-Hellman problem (CDHP) is to compute abP .

Definition 4. If G is a group such that DDHP can be solved in polynomial time but no
probabilistic algorithm can solve CDHP with non-negligible advantage within polynomial time,
then we call G a Gap Diffie-Hellman (GDH) group.

We assume the existence of a bilinear map ê : G1×G1 → G2 that one can solve Decisional
Diffie-Hellman Problem in polynomial time.

3 Formal Security Model

For an ID-based threshold ring signature scheme to be considered as secure, we need to
consider its unforgeability and signer ambiguity.

3.1 Unforgeability of ID-Based Threshold Ring Signature

The following EUF-IDTR-CMIA2 game played between a challenger C and an adversary
A formally defines the existential unforgeability of ID-based threshold ring signature under
adaptive chosen-message-and-identity attack.

EUF-IDTR-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to generate common
public parameters params and also the master secret key s. C sends params to A.

Attack: The adversary A can perform a polynomially bounded number of queries in an
adaptive manner (that is, each query may depend on the responses to the previous queries).
The types of queries allowed are described below.

– Hash functions queries: A can ask for the values of the hash functions (e.g. H(·) and H0(·)
in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes KeyGen(ID) = SID and sends the result to
A.

– Sign: A chooses a group of n users’ identities {ID i} where 1 ≤ i ≤ n, a threshold value t′

where t′ ≤ n, and any message m. C outputs a (t′, n) ID-based threshold ring signature σ.

Forgery: The adversary A outputs an ID-based threshold ring signature σ on message m
“signed” by at least t′ members (t′ ≤ n) of a group of n users {ID i} where 1 ≤ i ≤ n. The
only restriction is that (m, {ID i}) does not appear in the set of previous Sign queries and
less than t′ private keys of {ID i} are returned by previos KeyGen queries. It wins the game if
Verify(σ, {ID i},m, t′) is equal to >. The advantage of A is defined as the probability that it
wins.
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Definition 5. An ID-based threshold ring signature scheme is said to have the existential
unforgeability against adaptive chosen-message-and-identity attacks property (EUF-IDTR-
CMIA2 secure) if no adversary has a non-negligible advantage in the EUF-IDTR-CMIA2
game.

3.2 Signer Ambiguity of ID-Based Threshold Ring Signature

Definition 6. An ID-based threshold ring signature scheme is said to have the unconditional
signer ambiguity if for any group of n users {ID i} where 1 ≤ i ≤ n, any t′ signers indexed
by {ij}, where 1 ≤ ij ≤ n, 1 ≤ j ≤ t′ and t′ ≤ n, any message m and any signature σ, where
σ = Sign(m, {ID i}, {SIDij

}), any verifier A (i.e. not a signer in the group {ID ij}), even with
unbounded computing resources, cannot identify any of the signer with probability better than
a random guess. That is, A can only output any member of {ij} with probability no better
than t′

n .

4 Our Proposed Scheme

In this section, we show how to adopt the techniques introduced in [20] with the elegancy
of bilinear pairings to spawn an efficient ID-based threshold ring signature scheme with
reasonable signature size.

4.1 Basic Construction

Define G1,G2, and ê(·, ·) as in the Section 2 where G1 is a GDH group. H(·) and H0(·) are
two cryptographic hash functions where H : {0, 1}∗ → G1 and H0 : {0, 1}∗ → Z

∗
q .

Setup: TA randomly chooses s ∈R Z∗q , keeps it as the master secret key and computes the
corresponding public key Ppub = sP . The system parameters are:

params = {G1,G2, ê(·, ·), q, P, Ppub,H(·),H0(·)}.

KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to TA. TA sets the signer’s public
key QID to be H(ID) ∈ G1, computes the signer’s private signing key SID by SID = sQID .
Then TA sends the private signing key to the signer.

Sign: Let L be the set of all identities of the n users. Without loss of generality, we assume user
indexed by {1, 2, · · · , t} are the participating signers while user indexed by {t+1, t+2, · · · , n}
are the non-participating signers. These t participating signers carry out the following steps
to give an ID-based threshold ring signature.

1. An arbitrary entity (which is trusted to keep the identites of the participating signers)
“prepares the signature on behalf of” other entities in the group by performing the
following computations: For i ∈ {t + 1, · · · , n}, chooses xi and hi ∈R Z∗q and computes
Ui = xiP − hiPpub and Vi = xiQIDi .

2. For j ∈ {1, · · · , t}, each signer IDj chooses rj ∈R Z∗q and computes Uj = rjP .
3. Anyone in the group of t participating signers who got the knowledge of ∪nk=1{Uk}

computes h0 = H0(L, t,m,∪nk=1{Uk}) and construct a polynomial f of degree n − t over
Zq such that f(0) = h0 and f(i) = hi for t+ 1 ≤ i ≤ n.

4. For j ∈ {1, · · · , t}, each signer IDj computes hj = f(j) and Vj = rjQIDj + hjSIDj .



6 Sherman S.M. Chow et al.

5. Anyone in the group of t participating signers who got the knowledge of ∪nk=1{Vk} computes
V =

∑n
k=1 Vk.

6. Output the signature for m and L as σ = {∪nk=1{Uk}, V, f}.
(Note that the polynomial f only contain information for the hash values used and its
inclusion will not compromise the unforgeability and the anonymity of the scheme.)

Verify: A verifier checks whether a signature σ = {∪nk=1{Uk}, V, f} for the message m is
given by at least t signers from the set of users L as follows.

1. Check if the degree of polynomial f is n − t and H0(L, t,m,∪nk=1{Uk}) is the constant
term of f . Proceed if both conditions are true, reject otherwise.

2. For k ∈ {1, · · · , n}, compute hk = f(k).
3. Check whether

∏n
k=1 ê(QIDk

, Uk + hkPpub) = ê(P, V ). If the equality holds, return >.
Otherwise, return ⊥.

4.2 Trusted Authority Compatibility

In the reality, it is quite often that different user joined different trusted authorities (TAs).
In [31], the notion of TA compatibility is introduced in the ID-based signcryption [13, 31]
scenario. We extend their notion into TA compatibility in ID-based threshold ring signature.
In ID-based threshold ring signature, spontaneity will be affected if the intended group of
signers joined different TAs. However, our scheme can be easily extended to handle this
situation without compromising the spontaneity. We just need to change the equality to be
checked in the verification algorithm to

∏n
k=1 ê(QIDk

, Uk + hkPpubk) = ê(P, V ), where Ppubk
is the public key of the TA of the k-th user.

4.3 Robustness

Robustness is often desirable in group-oriented signature scheme. For a threshold ring signature
scheme that does not support robustness, the misbehavior of any participating signer cannot
be detected, and the final signature generated by the group of signers will be invalid even
there is only one misbehaving signer. In our scheme, the partial signature σj = {hj , Uj , Vj}
generated by the signer IDj can be verified easily by checking whether ê(QIDj , Uj+hjPpub) =
ê(P, Vj) holds.

5 Analysis of the Proposed Scheme

We analyze the consistency, efficiency, existential unforgeability and signer ambiguity of our
proposed scheme.

5.1 Consistency

The consistency of our basic construction can be easily verified by the following equations.



Identity Based Threshold Ring Signature 7

ê(P, V ) = ê(P,
n∑
k=1

Vk)

=
t∏
i=1

ê(P, Vi)
n∏

j=t+1

ê(P, Vj)

=
t∏

j=1

ê(P, rjQIDj + hjSIDj )
n∏

i=t+1

ê(P, xiQIDi)

=
t∏

j=1

ê(P, (rj + hjs)QIDj )
n∏

i=t+1

ê(xiP,QIDi)

=
t∏

j=1

ê(QIDj , (rj + hjs)P )
n∏

i=t+1

ê(QIDi , xiP − hiPpub + hiPpub)

=
t∏

j=1

ê(QIDj , Uj + hjPpub)
n∏

i=t+1

ê(QIDi , Ui + hiPpub)

=
n∏
k=1

ê(QIDk , Uk + hkPpub)

The consistency of the checking for the sake of robustness and that of our extended scheme
with TA compatibility can be verified easily in a similar manner.

5.2 Efficiency

Although some research has been done in analyzing the complexity and speeding up the
computation of pairing function (for examples, [3, 10, 16]), pairing operations are still rather
expensive. Our scheme is the most efficient (in terms of number of pairing operations required)
ID-based ring signature scheme (when the threshold value t = 1) and also the most efficient
threshold ring signature scheme from pairings. Taken into account the computational costs
for signature generation and verification, [32] uses 4n− 1 pairing operations while both of [2]
and [19] use 2n+1 of them. While the most efficient ring signature scheme before the birth of
our scheme is [18], which uses n+3 pairings in total (i.e. signing and verification), our scheme
only uses n + 1 pairing operations. Although the difference is not great, our scheme can be
further optimized since the multiplication of a series of pairings in Verify can be optimized
by using the concept of “Miller lite” of Tate pairing presented in [27]. Moreover, the pairing
operations in our scheme can be executed in parallel, which is not possible in schemes like [2,
19, 32].

The previous non ID-based threshold ring signature scheme from bilinear pairings in [28],
requires n+ t pairing operations (or (n+ 1)t of them without optimization) for verification.
Our scheme is more efficient since it only requires n pairing operations in verification and
none of them in signing.

Considering the signature size, our scheme is also up to the state-of-the-art. Signature
sizes in [7] and [29] are O(n lg n) and O(nt), respectively. We share the same order of space
complexities as in [20] and [28]. However, due to the elegancy of elliptic curve, our scheme
should achieve shorter signature size than [20].
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5.3 Existential Unforgeability and Signer Ambiguity

The security of our proposed scheme is summarized in the following two theorems.

Theorem 1 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A that can win the EUF-IDTR-CMIA2 game in polynomial time, then
CDHP can be solved with non-negligible probability in polynomial time.

Proof. Suppose the challenger C receives a random instance (P, aP, bP ) of the CDHP and
has to compute the value of abP . C will run A as a subroutine and act as A’s challenger in
the EUF-IDTR-CMIA2 game. During the game, A will consult C for answers to the random
oracles H and H0. Roughly speaking, these answers are randomly generated, but to maintain
the consistency and to avoid collision, C keeps three lists to store the answers used. We assume
A will ask for H(ID) before ID is used in any other queries.
C gives A the system parameters with Ppub = bP . Note that b is unknown to C. This value

simulates the master key value for the TA in the game.

H requests and KeyGen requests: When A asks queries on the hash values of identities, C
checks the list L1, If an entry for the query is found, the same answer will be given to A;
otherwise, a value di from Z

∗
q will be randomly generated and diP will be used as the answer,

the query and the answer will then be stored in the list. Note that the associated private key
is dibP which C knows how to compute.

The only exception is that C has to randomly choose one of the H queries from A, say
the k-th query, and answers H(ID∗) = aP for this query. Since aP is a value in a random
instance of the CDHP, it does not affect the randomness of the hash function H. Since both
a and b are unknown to C, a KeyGen request on this identity will make C fails.

H0 requests: When A asks queries on these hash values, C checks the corresponding list L2.
If an entry for the query is found, the same answer will be given to A; otherwise, a randomly
generated value will be used as an answer to A, the query and the answer will then be stored
in the list.

Sign requests: A chooses a group of n users’ identities L = {IDj}, and a threshold value t′

where t′ ≤ n and any message m. On input of (m,L, t′), C outputs a (t′, n) ID-based threshold
ring signature σ as follows.

1. For i ∈ {0, t′, t′ + 1, · · · , n}, randomly choose hi ∈R Z∗q .
2. Construct a polynomial f over Zq such that the degree of f is n − t′ and f(i) = hi for
i = 0, t′, t′ + 1, · · · , n.

3. For j ∈ {1, · · · , t}, compute hj = f(j).
4. For k ∈ {1, · · · , n}, randomly choose hk and compute Uk = xkP − hkPpub.
5. Compute V =

∑n
k=1 xkQIDk

.
6. Assign h0 as the value of H0(L, t,m,∪nk=1{Uk}); if collision occurs, generate another h0

and repeat.
7. Output the signature as σ = {∪nk=1{Uk}, V, f}.

Finally, A outputs a forged signature σ = {U, V, f} that is “signed” by some t′ members
in the group {ID i}, ID∗ ∈ {IDi} and A only requested for the private key of some t′ − 1
members in the group. If ID∗ /∈ {IDi}, C fails.

It follows from the forking lemma [22] that if A is a sufficiently efficient forger in the above
interaction, then we can construct a Las Vegas machine A′ that outputs two signed messages
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(U, V, f) and (U, V ′, f ′). To do so we keep all the random tapes in two invocations of A the
same except h0 returned by H0 query of the forged message.

Now we consider the probability that ID∗ is the chosen target of forgery. Let π be the
index of ID∗ in L, we need f(π) 6= f ′(π) to solve for CDHP. From the signing algorithm,
f(i) = f ′(i) if IDi is a non-participating signer; togehter with the fact that f(0) 6= f ′(0),
we know that f(j) 6= f ′(j) if IDj is a participating signer. Since A′ knows t′ − 1 private
keys among the group {ID i}, the probability that ID∗ is a participating signer (and hence
(f(π) 6= f ′(π)) is 1

n−t′+1 .
Given the machine A′ derived from A, we can solve the CDHP by computing abP =

(hπ − h′π)−1(V − V ′).
We calculate the probability of success of C as follows. For C to succeed, A did not ask a

KeyGen query on ID∗. And the corresponding probability is at least qH−qE
qH

. Further, ID∗ ∈
{IDi} with a probability of (n−t′+1)( qH−qE−1

qH−qE )( qH−qE−2
qH−qE−1) · · · ( qH−qE−(n−t′)

qH−qE−(n−t′−1))( 1
qH−qE−(n−t′)) =

n−t′+1
qH−qE , Hence the probability for using A to solve the CDHP is 1

qH
.

ut

Theorem 2 Our ID-based threshold ring signature scheme satisfies the unconditional signer
ambiguity property.

Proof. The polynomial f with degree n− t can be considered as a function chosen randomly
from the collection of all polynomials over Zq with degree n−t since ht+1, · · · , hn are randomly
generated and h0 is the output of the random oracle H0.

For i ∈ {t + 1, · · · , n}, and for j ∈ {1, · · · , t}, {xi} and {rj} are chosen independently
and distributed uniformly over Z∗q . So {Ui} ∪ {Uj} and hence ∪nk=1{Uk} are also uniformly
distributed.

The polynomial f is determined by ht+1, · · · , hn and h0, then the distributions of h1, · · · , ht
are also uniform over the underlying range, with the fact that {SIDj} is independent of {rj}
and {hj}, we say that {Vi} ∪ {Vj} and hence V are also uniformly distributed.

To conclude, for any fixed message m and fixed set of identities L, the distribution of
{∪nk=1{Uk}, V, f} are independent and uniformly distributed no matter which t participating
signers are. So we conclude that even an adversary with all the private keys corresponding to
the set of identities L and unbounded computing resources has no advantage in identifying
any one of the participating signers over random guessing. ut

6 Conclusion

In this paper, we present an ID-based threshold ring signature scheme. We prove the security
of our scheme in the random oracle model [4]. Moreover, our scheme provides trusted authority
compatibility [31]. To the best of authors’ knowledge, our scheme is the first ID-based threshold
ring signature scheme, which is also the most efficient ID-based ring signature scheme (when
the threshold value t = 1) and threshold ring signature scheme from pairings in terms of the
number of pairing operations. Due to the elegancy of bilinear pairing, signatures generated
by our scheme are much shorter and simpler than signatures from other previous threshold
ring signature schemes. Future research directions include devising an ID-based threshold ring
signature scheme with constant signature size or making the threshold ring signature scheme
works in a hierarchical setting [12].
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Appendix

In an independent and more or less concurrent work [18], an ID-based ring signature scheme
for general access structure was proposed. However, this scheme is inefficient for t-out-of-n
threshold access structure; the space complexity of the signature and the time complexities
of signing and verificaiton are all in O(nt).


