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Abstract. In threshold ring signature schemes, any group of t entities
spontaneously conscripting arbitrarily n−t entities to generate a publicly
verifiable t-out-of-n signature on behalf of the whole group, yet the actual
signers remain anonymous. The spontaneity of these schemes is desirable
for ad-hoc groups such as mobile ad-hoc networks. In this paper, we
present an identity based (ID-based) threshold ring signature scheme.
The scheme is provably secure in the random oracle model and provides
trusted authority compatibility. To the best of authors’ knowledge, our
scheme is the first ID-based threshold ring signature scheme which is also
the most efficient (in terms of number of pairing operations required) ID-
based ring signature scheme (when t = 1) and threshold ring signature
scheme from pairings.
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1 Introduction

Anonymity is becoming a major concern in many multi-user electronic
commerce applications such as e-lotteries, e-cash and online games. Group-
oriented signature schemes [9] enable an entity of a group to produce
a signature on behalf of the group. There are two major paradigms in
anonymous group-oriented signature schemes: group signature and ring
signature. In a group signature scheme, the group is predefined and there
is a group manager that can revoke this anonymity. Ring signature scheme
provides a similar feature. It does not support anonymity revocation
mechanism, but no setup stage is needed to produce and distribute a
group secret explicitly. Hence it enables any individual spontaneously
conscripting arbitrarily n − 1 entities to generate a publicly verifiable
1-out-of-n signature on behalf of the whole group, yet the actual signer
remains unconditionally anonymous. Threshold ring signature is the t-
out-of-n threshold version where t or more entities can jointly generate a
? corresponding author
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valid signature but t−1 or fewer entities cannot. These schemes are getting
more and more popular due to the increasing prevalence of pervasive
computing applications and mobile ad-hoc networks, where ad-hoc groups
are very common [7].

1.1 Motivation of ID-based Threshold Ring Signature

In traditional public key infrastructure (PKI), a user must pre-enroll the
PKI or he/she cannot enjoy the cryptographic services provided by the
PKI, e.g. no one can send them any encrypted message. Identity-based
(ID-based) cryptography [5, 28] solves this problem: all users already have
their corresponding public key before their enrollment since the public
key can be derived via a public algorithm with input of a string that can
uniquely identify each of them, such as an email address.

All previous threshold ring signature constructions are non ID-based,
hence real spontaneity is not always possible: the public key of each
member of the group is required to be published by the underlying PKI
before it can be used to generate the signature. Removing this pre-
requisite requirement motivates the construction of ID-based threshold
ring signature scheme, which provide a better alternative than non-ID
based solutions1.

1.2 Related Work

Ring signature scheme was first formalized by Rivest et al. in [26]. After
that, several other ring signature schemes (for examples, [1, 18]) were
proposed. Bresson et al. extended [26] into a threshold ring signature
using the concept of partitioning [7]. Later, Wong et al. proposed another
threshold ring signature using tandem construction method [31]. In [16], a
constant-size ring signature was derived from the anonymous identification
scheme proposed.

Recently there are some threshold ring signature schemes with special
properties. For examples, Liu et al. introduced separability to threshold
ring signature scheme [22], which enables the use of various flavours of
public keys in a single threshold ring signature; Tsang et al. introduced
individual-linkability to threshold ring signature scheme, which enables
anyone to determine if two ring signatures are signed with the help of
the same signer; and Chan et al. constructed CDS-type [15] t-out-of-n
1 Under the assumption that the trusted authority (the private key generator) will

not reveal any information about who has requested for his/her private key and who
has not.
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blind threshold ring signature [8], such that the signers do not know
what exactly they are signers and cannot link which invocation of signing
algorithm corresponding to which unblinded signature.

In [22], a generic construction of threshold ring signature from any
trapdoor-one-way type signature scheme and three-move type signature
scheme is given. Yet, the authors have not illustrated the correctness and
security of this construction except the specific instantiations from RSA
[25] and Schnorr signature [27].

Using bilinear pairing to construct ring signature is not a new idea.
Inspired by the aggregate signature, a ring signature scheme was proposed
in [6]. A technique similar to that of [6] was used to derive a new ring
signature scheme in [32]. In [35], a ring signature was derived from the
short signature proposed. A proxy ring signature was proposed in [36].
ID-based ring signature was introduced in [34] and subsequently a more
efficient construction was proposed in [21]. Small inconsistencies in [34]
and [21] were fixed by [2], together with a new proxy ring signature
scheme from the delegation function due to [36]. Another ID-based ring
signature with formally proven security was proposed in [20]. Threshold
ring signature scheme from pairings was proposed in [30], but this scheme
is not ID-based and has not addressed the requirement of TA (trusted
authority) compatibility [33] in which not all the users join the same TA.

1.3 Our Contributions

In this paper, we present an ID-based threshold ring signature scheme.
The scheme is provably secure in the random oracle model [4] and provides
TA compatibility [33]. To the best of authors’ knowledge, our scheme is
the first ID-based threshold ring signature scheme. Our scheme is the
most efficient (in terms of number of pairing operations required) ID-
based ring signature scheme (when the threshold value t = 1) and also
the most efficient threshold ring signature scheme from pairings.

1.4 Organization

The rest of the paper is organized as follows. The next section contains
some preliminaries about the formal definitions of an ID-based threshold
ring signature scheme, bilinear pairing as well as the Gap Diffie-Hellman
group. Formal security definitions describing the adversary’s capabilities
and goals are presented in Section 3. In Section 4, we describe the proposed
ID-based threshold ring signature scheme. The security and efficiency
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Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The
bilinear pairing is given as ê : G1×G1 → G2, which satisfies the following
properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P + Q,R) = ê(P,R)ê(Q,R), and
ê(P,Q+R) = ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q)
∀P,Q ∈ G1.

De�nition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ),
the Decisional Diffie-Hellman problem (DDHP) is to decide whether c =
ab.

De�nition 2. Given a generator P of a group G, (P, aP, bP, cP ) is defined
as a valid Diffie-Hellman tuple if c = ab.

De�nition 3. Given a generator P of a group G and a 2-tuple (aP, bP ),
the Computational Diffie-Hellman problem (CDHP) is to compute abP .

De�nition 4. If G is a group such that DDHP can be solved in polynomial
time but no probabilistic algorithm can solve CDHP with non-negligible
advantage within polynomial time, then we call G a Gap Diffie-Hellman
(GDH) group.

We assume the existence of a bilinear map ê : G1×G1 → G2 that one
can solve Decisional Diffie-Hellman Problem in polynomial time.

3 Formal Security Model

For an ID-based threshold ring signature scheme to be considered as
secure, we need to consider its unforgeability and signer ambiguity.

3.1 Unforgeability of ID-Based Threshold Ring Signature

The following EUF-IDTR-CMIA2 game played between a challenger C
and an adversary A formally defines the existential unforgeability of ID-
based threshold ring signature under adaptive chosen-message-and-identity
attack.

EUF-IDTR-CMIA2 Game:
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Setup: The challenger C takes a security parameter k and runs the Setup
to generate common public parameters params and also the master secret
key s. C sends params to A.

Attack: The adversary A can perform a polynomially bounded number
of queries in an adaptive manner (that is, each query may depend on
the responses to the previous queries). The types of queries allowed are
described below.

{ Hash functions queries: A can ask for the values of the hash functions
(e.g. H(·) and H0(·) in our proposed scheme) for any input.

{ KeyGen: A chooses an identity ID . C computes KeyGen(ID) = SID and
sends the result to A.

{ Sign : A chooses a group of n users’ identities {ID i} where 1 ≤ i ≤ n,
a threshold value t0 where t0 ≤ n, and any message m. C outputs a
(t0, n) ID-based threshold ring signature σ.

Forgery: The adversary A outputs an ID-based threshold ring signature
σ on message m “signed” by at least t0 members (t0≤ n) of a group of n
users {ID i} where 1 ≤ i ≤ n. The only restriction is that (m, {ID i}) does
not appear in the set of previous Sign queries and less than t0 private
keys of {ID i} are returned by previous KeyGenqueries. It wins the game
if Verify (σ, {ID i},m, t0) is equal to >. The advantage of A is defined as
the probability that it wins.

De�nition 5. An ID-based threshold ring signature scheme is said to
have the existential unforgeability against adaptive chosen-message-and-
identity attacks property (EUF-IDTR-CMIA2 secure) if no adversary has
a non-negligible advantage in the EUF-IDTR-CMIA2 game.

3.2 Signer Ambiguity of ID-Based Threshold Ring Signature

De�nition 6. An ID-based threshold ring signature scheme is said to
have the unconditional signer ambiguity if for any group of n users {ID i}
where 1 ≤ i ≤ n, any t0 signers indexed by {ij}, where 1 ≤ ij ≤ n,
1 ≤ j ≤ t0 and t0 ≤ n, any message m and any signature σ, where
σ = Sign(m, {ID i}, {SID ij

}), any verifier A (i.e. not a signer in the
group {ID ij}), even with unbounded computing resources, cannot identify
any of the signer with probability better than a random guess. That is, A
can only output any member of {ij} with probability no better than t0

n .
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4 Our Proposed Scheme

In this section, we show how to adopt the techniques introduced in [22]
with the elegancy of bilinear pairings to spawn an efficient ID-based
threshold ring signature scheme with reasonable signature size.

4.1 Basic Construction

Define G1,G2, and ê(·, ·) as in the Section 2 where G1 is a GDH group.
H(·) and H0(·) are two cryptographic hash functions where H : {0, 1}� →
G1 and H0 : {0, 1}� → Z �

q .

Setup: TA randomly chooses s ∈R Z �
q , keeps it as the master secret

key and computes the corresponding public key Ppub = sP . The system
parameters are:

params = {G1,G2, ê(·, ·), q, P, Ppub,H(·),H0(·)}.

KeyGen: The signer with identity ID ∈ {0, 1}� submits ID to TA. TA
sets the signer’s public key QID to be H(ID) ∈ G1, computes the signer’s
private signing key SID by SID = sQID . Then TA sends the private signing
key to the signer.

Sign : Let L be the set of all identities of the n users. Without loss of
generality, we assume user indexed by {1, 2, · · · , t} are the participating
signers while user indexed by {t+1, t+2, · · · , n} are the non-participating
signers. These t participating signers carry out the following steps to give
an ID-based threshold ring signature.

1. An arbitrary entity (which is trusted to keep the identities of the
participating signers in confidential) “prepares the signature on behalf
of” other entities in the group by performing the following computations:
For i ∈ {t + 1, · · · , n}, chooses xi and hi ∈R Z �

q and computes
Ui = xiP − hiPpub and Vi = xiQID i .

2. For j ∈ {1, · · · , t}, each signer IDj chooses rj ∈R Z �
q and computes

Uj = rjP .
3. Anyone in the group of t participating signers who got the knowledge

of ∪nk=1{Uk} computes h0 = H0(L, t,m,∪nk=1{Uk}) and construct a
polynomial f of degree n−t over Zq such that f(0) = h0 and f(i) = hi
for t+ 1 ≤ i ≤ n.

4. For j ∈ {1, · · · , t}, each signer IDj computes hj = f(j) and Vj =
rjQID j + hjSID j .
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5. Anyone in the group of t participating signers who got the knowledge
of ∪nk=1{Vk} computes V =

P n
k=1 Vk.

6. Output the signature for m and L as σ = {∪nk=1{Uk}, V, f}.
(Note that the polynomial f only contain information for the hash
values used and its inclusion will not compromise the unforgeability
and the anonymity of the scheme.)

Verify : A verifier checks whether a signature σ = {∪nk=1{Uk}, V, f} for
the message m is given by at least t signers from the set of users L as
follows.

1. Check if the degree of polynomial f is n−t and H0(L, t,m,∪nk=1{Uk})
is the constant term of f . Proceed if both conditions are true, reject
otherwise.

2. For k ∈ {1, · · · , n}, compute hk = f(k).
3. Check whether

Q n
k=1 ê(QID k

, Uk + hkPpub) = ê(P, V ). If the equality
holds, return >. Otherwise, return ⊥.

4.2 Trusted Authority Compatibility

In the reality, it is quite often that different user joined different trusted
authorities (TAs). In [33], the notion of TA compatibility is introduced
in the ID-based signcryption [14, 33] scenario. We extend their notion
into TA compatibility in ID-based threshold ring signature. In ID-based
threshold ring signature, spontaneity will be affected if the intended group
of signers joined different TAs. However, our scheme can be easily extended
to handle this situation without compromising the spontaneity. We just
need to change the equality to be checked in the verification algorithm toQ n
k=1 ê(QID k

, Uk + hkPpubk) = ê(P, V ), where Ppubk is the public key of
the TA of the k-th user.

4.3 Robustness

Robustness is often desirable in group-oriented signature scheme. For a
threshold ring signature scheme that does not support robustness, the
misbehavior of any participating signer cannot be detected, and the final
signature generated by the group of signers will be invalid even there is
only one misbehaving signer. In our scheme, the partial signature σj =
{hj , Uj , Vj} generated by the signer IDj can be verified easily by checking
whether ê(QID j , Uj + hjPpub) = ê(P, Vj) holds.
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5 Analysis of the Proposed Scheme

We analyze the consistency, efficiency, existential unforgeability and signer
ambiguity of our proposed scheme.

5.1 Consistency

The consistency of our basic construction can be easily verified by the
following equations.

ê(P, V ) = ê(P,
nX

k=1

Vk)

=
tY

i=1

ê(P, Vi)
nY

j=t+1

ê(P, Vj)

=
tY

j=1

ê(P, rjQIDj + hjSIDj )
nY

i=t+1

ê(P, xiQIDi)

=
tY

j=1

ê(P, (rj + hjs)QIDj )
nY

i=t+1

ê(xiP,QIDi)

=
tY

j=1

ê(QIDj , (rj + hjs)P )
nY

i=t+1

ê(QIDi , xiP − hiPpub + hiPpub)

=
tY

j=1

ê(QIDj , Uj + hjPpub)
nY

i=t+1

ê(QIDi , Ui + hiPpub)

=
nY

k=1

ê(QIDk , Uk + hkPpub)

The consistency of the checking for the sake of robustness and that
of our extended scheme with TA compatibility can be verified easily in a
similar manner.

5.2 E�ciency

Although some research has been done in analyzing the complexity and
speeding up the computation of pairing function (for examples, [3, 10,
17]), pairing operations are still rather expensive. Our scheme is the most
efficient (in terms of number of pairing operations required) ID-based ring
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signature scheme (when the threshold value t = 1). Taken into account
the computational costs for signature generation and verification, [34]
uses 4n − 1 pairing operations while both of [2] and [21] use 2n + 1 of
them. While the most efficient 1-out-of-n ID-based ring signature scheme
before the birth of our scheme is [20], which uses n + 3 pairings in
total (i.e. signing and verification), our scheme only uses n + 1 pairing
operations. Although the difference is not great, our scheme can be further
optimized since the multiplication of a series of pairings in Verify can be
optimized by using the concept of “Miller lite” of Tate pairing presented
in [29]. Moreover, the pairing operations in our scheme can be executed
in parallel, which is not possible in schemes like [2, 21, 34].

The previous non ID-based threshold ring signature scheme from
bilinear pairings in [30], requires n + t pairing operations (or (n + 1)t of
them without optimization) for verification. Our scheme is more efficient
since it only requires n pairing operations in verification and none of them
in signing.

Considering the signature size, our scheme is also up to the state-of-
the-art. Signature sizes in [7] and [31] areO(n lg n) andO(nt), respectively.
We share the same order of space complexities as in [22] and [30]. However,
due to the elegancy of elliptic curve, our scheme should achieve shorter
signature size than [22].

5.3 Existential Unforgeability and Signer Ambiguity

The security of our proposed scheme is summarized in the following two
theorems.

Theorem 1 In the random oracle model (the hash functions are modeled
as random oracles), if there is an algorithm A that can win the EUF-
IDTR-CMIA2 game in polynomial time, then CDHP can be solved with
non-negligible probability in polynomial time.

Proof. Suppose the challenger C receives a random instance (P, aP, bP )
of the CDHP and has to compute the value of abP . C will run A as a
subroutine and act as A’s challenger in the EUF-IDTR-CMIA2 game.
During the game, A will consult C for answers to the random oracles H
and H0. Roughly speaking, these answers are randomly generated, but
to maintain the consistency and to avoid collision, C keeps three lists to
store the answers used. We assume A will ask for H(ID) before ID is
used in any other queries.
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C gives A the system parameters with Ppub = bP . Note that b is
unknown to C. This value simulates the master key value for the TA in
the game.

H requests and KeyGenrequests: When A asks queries on the hash values
of identities, C checks the list L1, If an entry for the query is found, the
same answer will be given to A; otherwise, a value di from Z �

q will be
randomly generated and diP will be used as the answer, the query and
the answer will then be stored in the list. Note that the associated private
key is dibP which C knows how to compute.

The only exception is that C has to randomly choose one of the H
queries from A, say the k-th query, and answers H(ID � ) = aP for this
query. Since aP is a value in a random instance of the CDHP, it does
not affect the randomness of the hash function H. Since both a and b are
unknown to C, a KeyGenrequest on this identity will make C fails.

H0 requests: When A asks queries on these hash values, C checks the
corresponding list L2. If an entry for the query is found, the same answer
will be given to A; otherwise, a randomly generated value will be used as
an answer to A, the query and the answer will then be stored in the list.

Sign requests: A chooses a group of n users’ identities L = {IDj}, and a
threshold value t0where t0≤ n and any message m. On input of (m,L, t0),
C outputs a (t0, n) ID-based threshold ring signature σ as follows.

1. For i ∈ {0, t0, t0+ 1, · · · , n}, randomly choose hi ∈R Z �
q .

2. Construct a polynomial f over Zq such that the degree of f is n− t0
and f(i) = hi for i = 0, t0, t0+ 1, · · · , n.

3. For j ∈ {1, · · · , t}, compute hj = f(j).
4. For k ∈ {1, · · · , n}, randomly choose hk and compute Uk = xkP −
hkPpub.

5. Compute V =
P n

k=1 xkQID k
.

6. Assign h0 as the value of H0(L, t,m,∪nk=1{Uk}); if collision occurs,
generate another h0 and repeat.

7. Output the signature as σ = {∪nk=1{Uk}, V, f}.

Finally, A outputs a forged signature σ = {U, V, f} that is “signed” by
some t0 members in the group {ID i}, ID � ∈ {IDi} and A only requested
for the private key of some t0− 1 members in the group. If ID � /∈ {IDi},
C fails.

It follows from the forking lemma [24] that ifA is a sufficiently efficient
forger in the above interaction, then we can construct a Las Vegas machine
A0 that outputs two signed messages (U, V, f) and (U, V 0, f0). To do so
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we keep all the random tapes in two invocations of A the same except h0

returned by H0 query of the forged message.
Now we consider the probability that ID � is the chosen target of

forgery. Let π be the index of ID � in L, we need f(π) 6= f0(π) to solve
for CDHP. From the signing algorithm, f(i) = f0(i) if IDi is a non-
participating signer; together with the fact that f(0) 6= f0(0), we know
that f(j) 6= f0(j) if IDj is a participating signer. Since A0 knows t0−
1 private keys among the group {ID i}, the probability that ID � is a
participating signer (and hence (f(π) 6= f0(π)) is 1

n� t0+1 .
Given the machine A0 derived from A, we can solve the CDHP by

computing abP = (hπ − h0
π)� 1(V − V 0).

We calculate the probability of success of C as follows. For C to
succeed, A did not ask a KeyGenquery on ID � . And the corresponding
probability is at least qH � qE

qH
. Further, ID � ∈ {IDi} with a probability

of (n − t0 + 1)( qH � qE � 1
qH � qE

)( qH � qE � 2
qH � qE � 1) · · · ( qH � qE � (n� t0)

qH � qE � (n� t0� 1))( 1
qH � qE � (n� t0)) =

n� t0+1
qH � qE

, Hence the probability for using A to solve the CDHP is 1
qH

.
ut

Theorem 2 Our ID-based threshold ring signature scheme satisfies the
unconditional signer ambiguity property.

Proof. The polynomial f with degree n−t can be considered as a function
chosen randomly from the collection of all polynomials over Zq with degree
n − t since ht+1, · · · , hn are randomly generated and h0 is the output of
the random oracle H0.

For i ∈ {t + 1, · · · , n}, and for j ∈ {1, · · · , t}, {xi} and {rj} are
chosen independently and distributed uniformly over Z �

q . So {Ui} ∪ {Uj}
and hence ∪nk=1{Uk} are also uniformly distributed.

The polynomial f is determined by ht+1, · · · , hn and h0, then the
distributions of h1, · · · , ht are also uniform over the underlying range,
with the fact that {SIDj} is independent of {rj} and {hj}, we say that
{Vi} ∪ {Vj} and hence V are also uniformly distributed.

To conclude, for any fixed message m and fixed set of identities L, the
distribution of {∪nk=1{Uk}, V, f} are independent and uniformly distributed
no matter which t participating signers are. So we conclude that even an
adversary with all the private keys corresponding to the set of identities
L and unbounded computing resources has no advantage in identifying
any one of the participating signers over random guessing. ut
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6 Conclusion

In this paper, we present an ID-based threshold ring signature scheme. We
prove the security of our scheme in the random oracle model [4]. Moreover,
our scheme provides trusted authority compatibility [33]. To the best
of authors’ knowledge, our scheme is the first ID-based threshold ring
signature scheme, which is also the most efficient ID-based ring signature
scheme (when the threshold value t = 1) and threshold ring signature
scheme from pairings in terms of the number of pairing operations. Due
to the elegancy of bilinear pairing, signatures generated by our scheme are
much shorter and simpler than signatures from other previous threshold
ring signature schemes. Future research directions include devising an
ID-based threshold ring signature scheme with constant signature size or
making the threshold ring signature scheme works in a hierarchical setting
[13].
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