
A Note on an Encryption Scheme of Kurosawa and

Desmedt

Rosario Gennaro∗ Victor Shoup†

August 10, 2004

Abstract

Recently Kurosawa and Desmedt presented a new hybrid encryp-
tion scheme which is secure against adaptive chosen-ciphertext at-
tack. Their scheme is a modification of the Cramer-Shoup encryption
scheme. Its major advantage with respect to Cramer-Shoup is that
it saves the computation of one exponentiation and produces shorter
ciphertexts. However, the proof presented by Kurosawa and Desmedt
relies on the use of information-theoretic key derivation and message
authentication functions.

In this note we present a different proof of security which shows that
the Kurosawa-Desmedt scheme can be instantiated with any compu-
tationally secure key derivation and message authentication functions,
thus extending the applicability of their paradigm, and improving its
efficiency.

1 Introduction

The notion of chosen-ciphertext security was introduced by Naor and Yung
[5] and developed by Rackoff and Simon [6], and Dolev, Dwork, and Naor
[3].

In a chosen ciphertext attack, the adversary is given access to a decryp-
tion oracle that allows him to obtain the decryptions of ciphertexts of his
choosing. Intuitively, security in this setting means that an adversary ob-
tains (effectively) no information about encrypted messages, provided the
corresponding ciphertexts are never submitted to the decryption oracle.

∗IBM T.J.Watson Research Center, Yorktown Heights, NY, USA.
rosario@watson.ibm.com

†Computer Science Dept. NYU. shoup@cs.nyu.edu

1

As shown in [3], security against chosen-ciphertext attack is equivalent
to the notion of non-malleability. An encryption scheme is said to be non-
malleable if given a ciphertext c, it is infeasible to compute a ciphertext c′

whose decryption is somewhat related to the decryption of c.
For these reasons, the notion of chosen-ciphertext security has emerged

as the “right” notion of security for encryption schemes. Indeed it can be
shown that in order to model encryption as a “secure envelope”, then the
encryption scheme used must be chosen-ciphertext secure.

A number of chosen ciphertext secure cryptosystems have been proposed
in the literature. The first schemes were presented in [5, 6, 3], but they were
quite impractical. The first truly practical cryptosystem that is provably se-
cure against chosen ciphertext attack was discovered by Cramer and Shoup
[1]. The security of this scheme is based on the hardness of the decisional
Diffie-Hellman problem. In [2] Cramer and Shoup show that their original
scheme is an instance of a more generic paradigm, which can be also instan-
tiated with the Quadratic Residuosity and N -Residuosity assumptions.

In [7] Shoup presents an hybrid variant of the Cramer-Shoup cryptosys-
tem. This scheme uses the original public-key scheme to generate an encryp-
tion of a random group element κ. Then a key derivation function (KDF)
is applied to κ to compute two keys k,K which are used to encrypt the ac-
tual message with a chosen-ciphertext secure symmetric encryption scheme
(recalled below).

Differently than in the public-key case, symmetric encryption schemes
which are secure against a chosen-ciphertext attack can be easily built out
of weaker primitives. It is indeed well known that all you need is a symmet-
ric encryption scheme E which is secure against passive adversaries, and a
secure message authentication code (MAC). To encrypt a message m with
keys k,K it is sufficient to encrypt m with K, i.e. compute e = EK(m),
and then compute a message authentication tag for e using k, i.e. compute
t = MAC k(e). The final ciphertext is (e, t). The receiver, who also holds
k, K, first checks that the tag t is correct and only in that case decrypts e.

Recently Kurosawa and Desmedt [4] modified the hybrid scheme presented
in [7]. The advantage of their modification is that the computation of a
ciphertext in their scheme requires one less exponentiation and produces
shorter ciphertexts.

However their proof of security relies on the use of information theoret-
ically secure KDF and MAC functions in the symmetric step of the hybrid
construction. There are several reasons why this is not desirable, among
them:

2

efficiency The proof in [4] requires the key k to be statistically close to a
random key. This means that we cannot use a pseudo-random gener-
ator to derive k from a random group element encrypted during the
public-key phase. This in turns implies that the public key part of the
scheme must be instantiated with larger security parameters which
would result in slower execution times1;

modularity we would like to have a scheme into which we can plug any
secure component and it still remains secure. It would be hard to de-
ploy a scheme in large-scale if it can be used only in conjunction with
certain types of MACs and KDFs (and in particular, with KDFs and
MACs that are not used at all by the designers of standard crypto-
graphic algorithms).

In this note we show a new and different proof of security for the Kurosawa-
Desmedt scheme. We show that it is indeed possible to use any secure
key derivation function and message authentication code. This effectively
improves the efficiency and applicability of their scheme.

2 The scheme

In this section we recall the Kurosawa-Desmedt scheme from [4]. We describe
it using generic building blocks and at the end of the section we point out
where the proof of security in [4] requires information theoretic security. The
scheme makes use of:

• a group G of prime order q, with (random) generators g1 and g2.

Security assumption (DDH): Hard to distinguish (gr
1, g

r
2) from (gr

1, g
r′
2),

where r is a random element of Zq and r′ is a random element of
Zq \ {r}.

• a message authentication code MAC , that for key k and message e ∈
{0, 1}∗, produces a “tag” t := MAC k(e).

Security assumption: For random k, after (optionally) obtaining
MAC k(e∗) for adversarially chosen e∗, hard to compute MAC k(e) for
adversarially chosen e (different from e∗, of course).

1For typical security parameters, this increase in computation times totally offsets the
gain from performing one less exponentiation, thus making the Kurosawa-Desmedt scheme
as efficient as the original Cramer-Shoup

3

• a symmetric key encryption scheme, with encryption algorithm E and
decryption algorithm D, such that for key K and plaintext m ∈ {0, 1}∗,
e := EK(m) is the encryption of m under K, and for key K and
ciphertext e ∈ {0, 1}∗, m := DK(m) is the decryption of e under K.

Security assumption (semantic security): hard to distinguish EK(m0)
from EK(m1) for randomly chosen K and adversarially chosen m0

and m1 (where m0 and m1 are of equal length).

• a key derivation function KDF , such that for v ∈ G, KDF (v) = (k, K),
where k is a message authentication key, and K is a symmetric encryp-
tion key.

Security assumption: hard to distinguish KDF (v) from (k, K), where
v, k and K are random.

• a hash function H : G×G→ Zq.

Security assumption (target collision resistance): given u∗
1 := gr

1 and
u∗

2 := gr
2, for random r ∈ Zq, hard to find (u1, u2) ∈ G×G \ {(u∗

1, u
∗
2)}

such that H(u1, u2) = H(u∗
1, u

∗
2).

Note that the key space for the message authentication code is assumed
to consist of all bit strings of a given length, so that by a random key k, we
mean a random bit string of appropriate length. Similarly for the symmetric
encryption keys.

Note also that KDF and H may have associated keys (which are publicly
known).

Key Generation: The description of the group G is generated, along with
random generators g1 and g2 for G. Any keys for KDF and H are also
generated. Then:

x1, x2, y1, y2
c|← Zq, c← gx1

1 gx2
2 , d← gy1

1 gy2
2 .

The public key consists of the description of G, the generators g1 and g2,
keys for KDF and H (if any), along with the group elements c and d. The
private key consists of the public key, along with x1, x2, y1, y2.

Encryption of m ∈ {0, 1}∗:

r c|← Zq, u1 ← gr
1 ∈ G, u2 ← gr

2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k, K)← KDF (v), e← EK(m), t← MAC k(e)
output C := (u1, u2, e, t)

4

Decryption of C = (u1, u2, e, t):

α← H(u1, u2) ∈ Zq, v ← ux1+y1α
1 ux2+y2α

2 ∈ G, (k, K)← KDF (v)
if t 6= MAC k(e) then

reject
else

m← DK(e)
output m

In addition to the above computational security assumption, the proof of
security in [4] requires the following information theoretic assumptions:

• information-theoretically secure KDF. If v ∈ G is random, then at
least the first component k of the output of KDF (v) should be (sta-
tistically close to) uniform.

• information-theoretically secure MAC. For all e and t, if k is chosen at
random, then Pr[MAC k(e) = t] is negligible.

Our proof of security, described in the next section, does not need these
conditions.

In Appendix A we recall the Cramer-Shoup hybrid scheme from [7] and
compare the two schemes. In particular we point out how for typical security
parameters the gains posted by the Kurosawa-Desmedt scheme may be offset
by the requirement that KDF and MAC be information theoretically secure.

3 Security proof

Game 0

We now define a game, called Game 0, which is an interactive computation
between an adversary and a simulator. This game is simply the usual game
used to define CCA security, in which the simulator provides the adversary’s
environment.

Initially, the simulator runs the key generation algorithm, obtaining the
description of G, generators g1 and g2, keys for KDF and H (if any), along
with the values x1, x2, y1, y2 ∈ Zq and c, d ∈ G. The simulator gives the
public key to the adversary.

During the execution of the game, the adversary makes a number of
“decryption requests.” Assume these requests are C(i), . . . , C(Q), where

C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)).

5

For each such request, the simulator decrypts the given ciphertext, and gives
the adversary the result. We denote by α(i), v(i), k(i), and K(i) the corre-
sponding intermediate quantities computed by the decryption algorithm on
input C(i).

The adversary may also make a single “challenge request.” For such a
request, the adversary submits two messages m0,m1, which are bit strings of
equal length, to the simulator; the simulator chooses b ∈ {0, 1} at random,
and encrypts mb, obtaining the “target ciphertext” C∗ = (u∗

1, u
∗
2, e

∗, t∗).
The simulator gives C∗ to the adversary. We denote by r∗, α∗, v∗, k∗, and
K∗ the corresponding intermediate quantities computed by the encryption
algorithm.

The only restriction on the adversary’s requests is that after it makes a
challenge request, subsequent decryption requests must not be the same as
the target ciphertext.

At the end of the game, the adversary outputs b̂ ∈ {0, 1}.
Let X0 be the event that b̂ = b. Security means that |Pr[X0] − 1/2|

should be negligible.
We prove this by considering other games, Game 1, Game 2, etc. These

games will be quite similar to Game 0 in their overall structure, and will
only differ from Game 0 in terms of how the simulator works. However, in
each game, there will be well defined bits b̂ and b, so that in Game i, we
always define Xi to the event that b̂ = b in that game. All of these games
should be viewed as operating on the same underlying probability space.

Before moving on, we make a couple of additional assumptions about the
internal structure of Game 0 that will be convenient down the road. First,
we assume that g2 is computed as:

w c|← Z∗
q , g2 ← gw

1 .

Note that the value of w is never explicitly used in Game 0, except to
compute g2. Second, we assume that the quantities r∗, u∗

1, u∗
2, α∗, v∗, k∗,

and K∗ are computed at the very start of the game (they do not depend on
the values m0, m1 provided later by the adversary, so this can be done).

Game 1

Game 1 is the same as Game 0, except that if the adversary ever submits
C(i) for decryption with

(u(i)
1 , u

(i)
2) 6= (u∗

1, u
∗
2) and α(i) = α∗,

6

the simulator rejects the given ciphertext.
In Game 1, the simulator may reject ciphertexts that would not have

been rejected in Game 0. Let us call Rejection Rule 0 the rule by which
ciphertexts are rejected as in the ordinary decryption algorithm (i.e., the
message authentication tags do not match). Let us call Rejection Rule 1
this new rejection rule, introduced in Game 1.

Let F1 be the event that the simulator applies Rejection Rule 1 in Game 1
to a ciphertext to which Rejection Rule 0 does not apply. Because Game 0
and Game 1 proceed identically until the this event occurs, we have

|Pr[X0]− Pr[X1]| ≤ Pr[F1]. (1)

Moreover, we have
Pr[F1] ≤ εtcr, (2)

where εtcr is the success probability that one can find a collision in H using
resources similar to those of the given adversary. By assumption, εtcr is
negligible.

Game 2

Game 2 is the same as Game 1, except that the simulator computes v∗ as

v∗ ← (u∗
1)

x1+y1α∗
(u∗

2)
x2+y2α∗

.

This change is purely conceptual, since v∗ has the same value either way. In
particular,

Pr[X1] = Pr[X2]. (3)

Game 3

Now generate u∗
2 by the rule

r′ c|← Zq \ {r∗}, u∗
2 ← gr′

2 .

We have
|Pr[X2]− Pr[X3]| ≤ εddh, (4)

where εddh is the advantage with which one can solve the DDH problem,
using resources similar to those of the given adversary. By assumption, εddh

is negligible.

7

The details. We can easily build a “hybrid” Game 2/3 that takes
τ := (g1, g2, u

∗
1, u

∗
2) as input, so that if τ is a random DH-tuple,

Game 2/3 acts just like Game 2, and if τ is a random non-DH-tuple,
then Game 2/3 acts just like Game 3. The distinguishing algorithm
runs Game 2/3 on input τ , and outputs 1 if b̂ = b, and outputs 0
otherwise. The distinguishing advantage of this algorithm is exactly
equal to |Pr[X2]− Pr[X3]|.

Game 4

In this game, the simulator makes use of the value w ∈ Zq, where g2 = gw
1 .

The simulator did not need to make explicit use of this value in previous
games. Indeed, we could not have used the DDH assumption if the simulator
had to use w. However, we are now finished with the DDH assumption, and
so the simulator is free to make use of w in this and subsequent games.

Game 4 is the same as Game 3, except that we introduce a new Rejection
Rule 2: in responding to decryption requests, the simulator rejects any
ciphertext C(i) such that

(u(i)
1)w 6= u

(i)
2 ,

which is equivalent to saying that

logg1
u

(i)
1 6= logg2

u
(i)
2 .

Define F4 to be the event that a ciphertext is rejected during Game 4
using Rejection Rule 2 to which Rejection Rules 0 and 1 are not applicable.

Clearly, we have

|Pr[X3]− Pr[X4]| ≤ Pr[F4], (5)

and we want to show that Pr[F4] is negligible.
We postpone this until later. However, at this point we augment Game 4

just slightly: the simulator chooses j ∈ {1, . . . , Q}, and we define F ′
4 to be

the event that in Game 4, Rejection Rules 0 and 1 do not apply to C(j), but
Rejection Rule 2 does apply to C(j). Clearly,

Pr[F4] ≤ QPr[F ′
4], (6)

and so it suffices to show that Pr[F ′
4] is negligible.

8

Game 5

To motivate Game 5, we begin with some observations about Game 4. Let
x := x1 + wx2 and y := y1 + wy2. Then we have

c = gx
1 and d = gy

1 .

Also, for i = 1, . . . , Q, if

logg1
u

(i)
1 = logg2

u
(i)
2

then
v(i) = ux+yα(i)

1 .

Moreover, v∗ is uniformly distributed over G, independently of x and y.
Further, if

α(j) 6= α∗ and logg1
u

(j)
1 6= logg2

u
(j)
2 ,

then v(j) is uniformly distributed over G, independently of x, y, and v∗.
These observations follow from simple linear algebra considerations, as in
[1].

Based on these observations, in Game 5, we compute a number of quan-
tities in a different, but equivalent, manner. Let x̄, ȳ be random elements of
Zq, and let v̄1 and v̄2 be random elements of G. Let

(k̄1, K̄1) := KDF (v̄1) and (k̄2, K̄2) := KDF (v̄2).

The key generation algorithm is modified as follows:

c← gx̄
1 , d← gȳ

1 .

The values k∗ and K∗ are computed as:

(k∗,K∗)← (k̄1, K̄1).

In processing decryption requests, for a given C(i) that is not subject to
Rejections Rules 1 or 2, the value v(i) is computed as

v(i) ← (u(i)
1)x̄+ȳα(i)

.

Finally, we define the event F ′
5 to be the event in Game 5 that C(j) is

subject to Rejection Rule 2, C(j) is not subject to Rejection Rule 1, and

t(j) =

{
MAC k̄1

(e(j)) if (u(j)
1 , u

(j)
2) = (u∗

1, u
∗
2);

MAC k̄2
(e(j)) otherwise.

9

Note that the values x1, x2, y1, y2, v
∗, v(j) are not used in Game 5.

We claim that
Pr[X4] = Pr[X5] (7)

and
Pr[F ′

4] = Pr[F ′
5]. (8)

This follows from the observations above — we have simply replaced one set
of random variables by another set with same joint distribution.

It is perhaps helpful at this point to state how Game 5 works, starting
from scratch:

• The simulator generates the description of G, along with a random
generator g1, and any keys for KDF and H. It computes

w c|← Z∗
q , g2 ← gw

1

x̄, ȳ c|← Zq, c← gx̄
1 , d← gȳ

1

r∗ c|← Zq, r′ c|← Zq \ {r∗}, u∗
1 ← gr∗

1 , u∗
2 ← gwr′

1 , α∗ ← H(u∗
1, u

∗
2)

v̄1
c|← G, (k̄1, K̄1)← KDF (v̄1)

v̄2
c|← G, (k̄2, K̄2)← KDF (v̄2)

j c|← {1, . . . , Q}

The simulator gives the description of G, the generators g1 and g2,
keys for KDF and H (if any), along with c and d to the adversary.

• In processing a decryption request C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)), the sim-

ulator first checks if (u(i)
1)w 6= u

(i)
2 ; if so, the ciphertext is rejected.

Otherwise, the simulator computes

α(i) ← H(u(i)
1 , u

(i)
2)

and checks if (u(i)
1 , u

(i)
2) 6= (u∗

1, u
∗
2) and α(i) = α∗; if so, the ciphertext

is rejected. Otherwise, the simulator computes

v(i) ← ux̄+ȳα(i)

1 , (k(i),K(i))← KDF (v(i)).

It then tests if t(i) = MAC k(i)(e(i)); if not, the ciphertext is rejected.
Otherwise, the simulator returns DK(i)(e(i)) to the adversary.

• In processing the challenge request, the adversary gives m0,m1 to the
simulator. The simulator computes

b c|← {0, 1}, e∗ ← EK̄1
(mb), t∗ ← MAC k̄1

(e∗),

and gives C∗ := (u∗
1, u

∗
2e

∗, t∗) to the adversary.

10

Note that the values j and v̄2 (and the derived values k̄2 and K̄2) are not
used in this game, other than to define the event F ′

5.

Game 6

Game 6 is the same as Game 5, except that instead of applying KDF to
derive the keys k̄1, K̄1, k̄2, K̄2, these keys are simply generated at random.
Define the event F ′

6 in Game 6 in the same way as it was defined in Game 5.
It is easy to see that

|Pr[X5]− Pr[X6]| ≤ 2εkdf (9)

and
|Pr[F ′

5]− Pr[F ′
6]| ≤ 2εkdf, (10)

where εkdf is the advantage of distinguishing the output of the KDF from
a random key pair, using resources similar to those of the given adversary.
The factor of 2 comes from applying a standard “hybrid” argument to the
two KDF outputs to be distinguished in moving from Game 5 to Game 6.
By assumption, εkdf is negligible.

We claim that
|Pr[X6]− 1/2| ≤ εenc, (11)

where εenc is the probability of breaking the semantic security of the under-
lying symmetric key encryption scheme, using resources similar to those of
the given adversary. This follows by construction — note that the key K̄1

in Game 6 is random, and is used for no other purpose than to encrypt the
challenge plaintext. By assumption, εenc is negligible.

We also claim that
Pr[F ′

6] ≤ 2εmac, (12)

where εmac is the probability of breaking the message authentication code,
using resources similar to those of the given adversary. This also follows by
construction — one has to make a simple “hybrid” argument to account for
the fact that we are breaking one out of two message authentication schemes
(one keyed with k̄1 and the other keyed with k̄2, whence the factor of 2). By
assumption, εmac is negligible.

11

We are now in a position to complete the proof of security. We have

Pr[F4] ≤ QPr[F ′
4] [by (6)]

= QPr[F ′
5] [by (8)]

≤ Q(Pr[F ′
6] + 2εkdf) [by (10)]

≤ Q(2εmac + 2εkdf) [by (12)]

Thus, we have
Pr[F4] ≤ Q(2εmac + 2εkdf). (13)

Finally, combining (1), (2), (3), (4), (5), (7), (9), (11), and (13), we have:

|Pr[X0]− 1/2| ≤ εtcr + εddh + 2εkdf + εenc + Q(2εmac + 2εkdf). (14)

By assumption, the right-hand side of (14) is negligible, which finishes the
proof.

4 Hash Proof Systems

In [2] Cramer and Shoup showed that their original scheme in [1] was a
special instance of a generic paradigm based on hash proof systems. We
briefly recall here the basic ideas and how they can be applied to the scheme
described in the previous section.

Smooth projective hashing [2]: Let X be a set and L ⊂ X a language.
Loosely speaking, a hash function Ha that maps X to some set is projective
if there exists a projection key that defines the action of Ha over the subset
L of the domain X. That is, there exists a projection function α(·) that
maps keys k into their projections s = α(a). The projection key s is such
that for every x ∈ L it holds that the value of Ha(x) is uniquely determined
by s and x. In contrast, nothing is guaranteed for x 6∈ L, and it may not be
possible to compute Ha(x) from s and x. A smooth projective hash function
has the additional property that for x /∈ L, the projection key s actually says
nothing about the value of Ha(x). More specifically, given x and s = α(a),
the value Ha(x) is uniformly distributed (or statistically close) to a random
element in the range of Ha.

An interesting feature of smooth projective hashing is that if L is an NP-
language, then for every x ∈ L it is possible to efficiently compute Ha(x)
using the projection key s = α(a) and a witness of the fact that x ∈ L.
Alternatively, given a itself, it is possible to efficiently compute Ha(x) even
without knowing a witness.

12

Using the techniques from [2], Kurosawa and Desmedt in [4] generalize the
above scheme can be generalized using smooth projective hashing as follows.
The sets X, L and a projection key s = α(a) will be the public key. The key
a will be the secret key.

To encrypt m, the sender chooses an element x ∈ L together with a
witness. He then computes v = Ha(x) using the projection s and the witness.
Then the keys (k, K) = KDF (v) are derived as above. The rest of the
encryption procedure remains the same, i.e., e = EK(m) and t = MACk(e).
The ciphertext is x, e, t.

The receiver on input (x, e, t) computes v′ = Ha(x) and (k, K) =
KDF (v′). If t = MACk(e) then it decrypts m = DK(e).

Security Analysis. As in the proof in [2] the basic computational assump-
tion underlying the security of this scheme is that it is hard to distinguish
between random elements in L and random elements outside of L.

The proof of security in [4] requires the projective hash function to be
strongly 2-universal, which is a stronger condition than smoothness. Basi-
cally it is required that for x /∈ L, even given s = α(a) and the value Ha(x′)
for x′ /∈ L and x′ 6= x, the distribution of the value Ha(x) is statistically
close to the uniform distribution over the range of Ha. Their generalized
scheme, however, still requires information-theoretically secure KDF and
MAC functions.

Our proof, which lifts such requirements on the KDF and MAC func-
tions, also generalizes assuming strong 2-universal projective hashing, that
one can efficiently sample elements outside of L, and there is a trapdoor
that allows for efficiently testing language membership.

References

[1] R. Cramer and V. Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In CRYPTO’98.

[2] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for
chosen ciphertext secure public key encryption. In EuroCrypt’02.

[3] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In
STOC’91, pages 542–552, 1991.

[4] K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption
Scheme. To appear in CRYPTO’04. Available on-line at http://kuro.
cis.ibaraki.ac.jp/~kurosawa/04.html.

13

[5] M. Naor and M. Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC’90, pages 427–437, 1990.

[6] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology–
Crypto ’91, pages 433–444, 1991.

[7] V. Shoup Using hash functions as a hedge against chosen ciphertext
attack. In EuroCrypt’00.

A The original scheme

The Cramer-Shoup hybrid encryption scheme proposed in [1], and refined in
[7], uses the same tools as the one described above. However key generation,
encryption and decryption algorithms are different.

Key Generation: The description of the group G is generated, along with
a random generator g1 for G. Any keys for KDF and H are also generated.
Then:

w, x, y, z c|← Zq, g2 ← gw
1 , c← gx

1 , d← gy
1 , h← gz

1 .

The public key consists of the description of G, the generators g1 and g2,
keys for KDF and H (if any), along with the group elements c, d, h. The
private key consists of the public key, along with w, x, y, z.

Encryption of m ∈ {0, 1}∗:

r c|← Zq, κ← hr, u1 ← gr
1 ∈ G, u2 ← gr

2 ∈ G, α← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k, K)← KDF (κ), e← EK(m), t← MAC k(e)
output C := (u1, u2, v, e, t)

Decryption of C = (u1, u2, v, e, t):

α← H(u1, u2) ∈ Zq, v′ ← ux+yα
1 ∈ G, κ′ ← uz

1, (k, K)← KDF (κ′)
if t 6= MAC k(e) or v′ 6= v or u2 6= uw

1 then
reject

else
m← DK(e)
output m

Notice that compared to the Kurosawa-Desmedt scheme, the encryption
algorithm in this scheme computes an extra exponentiation (the computa-
tion of κ) and a longer ciphertext (it includes the group element v). However,
that does not translate into a direct gain in efficiency.

14

In the Cramer-Shoup scheme we can choose the prime q to be 160-bit
long. This results in a random value κ which is computationally indistin-
guishable from a random group element. Then, under a suitable computa-
tional assumption on KDF , we can derive keys k, K of any required length
using a pseudo-random number generator.

On the other hand, the key k in the Kurosawa-Desmedt scheme must be
derived from v in an information-theoretic way. We can’t apply a pseudo-
random number generator, otherwise we lose the information-theoretic se-
curity. For common security parameters k is required to be at least 170-bits
long. The only way we know how to do this is to map v into an 160-bit
string using universal hashing and the Entropy Smoothing Theorem. But
this requires v to come from a distribution with min-entropy at least, say,
320. Considering that from κ we also need to derive the key K (say, another
128 bits), then it seems that the group G must have order q of at least
about 450 bits. This increase in the security parameter clearly offsets the
gain obtained by dropping one exponentiation.

Using our proof, however, we can claim that the Kurosawa-Desmedt
scheme can be used with a group G of order q where q is a 160-bit prime.

We also note that the scheme in [7] is optimized so that all exponentia-
tions in the decryption algorithm are with respect to the same base — this
allows for speedups using techniques for exponentiation with preprocess-
ing. We believe that similar optimizations can be applied to the Kurosawa-
Desmedt scheme. Also, the scheme in [7] can be proven secure in the random
oracle model under the computational Diffie-Hellman assumption — we be-
lieve that the same can be proven for the Kurosawa-Desmedt scheme.

15

