
Password Based Key Exchange With Mutual Authentication

Shaoquan Jiang and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario N2L 3G1, CANADA
Email:{jiangshq,ggong}@calliope.uwaterloo.ca

August 12, 2004

Abstract. A reasonably efficient password based key exchange (KE) protocol with provable security
without random oracle was recently proposed by Katz, et al. [18] and later by Gennaro and Lindell
[13]. However, these protocols do not support mutual authentication (MA). The authors explained that
this could be achieved by adding an additional flow. But then this protocol turns out to be 4-round.
As it is known that a high entropy secret based key exchange protocol with MA1 is optimally 3-
round (otherwise, at least one entity is not authenticated since a replay attack is applicable), it is quite
interesting to ask whether such a protocol in the password setting (without random oracle) is achievable
or not. In this paper2, we provide an affirmative answer with an efficient construction in the common
reference string (CRS) model. Our protocol is even simpler than that of Katz, et al. Furthermore, we
show that our protocol is secure under the DDH assumption (without random oracle).

1 Introduction

In the area of secure communications, key exchange (KE) is one of the most important issues. In
this scenario, two interactive parties are assumed to hold long-term secrets. Through an interactive
procedure, they establish a temporary session key and then use it to encrypt and authenticate the
subsequent communication. There are two types of KE protocols in the literature. In the first case,
each party holds a high entropy secret (e.g., a signing key of a digital signature). Research along this
line has been well studied, see [1, 6, 8, 12]. The other case is a password authenticated key exchange
protocol (see [20] for a detailed description), in which it is assumed that the two parties only share
a human-memorable (low entropy) password. Unlike a high entropy secret, it is believed that an
exhaustive search attack (or a dictionary attack) is feasible. In fact, it is this attack that makes a
construction of a secure password based KE protocol more difficult than the high entropy secret
based one.

1.1 Related Work

Password authenticated key exchange was first studied by Bellovin and Merritt [4]. Since then,
it has been extensively studied in literature [5, 16]. However, none of these solutions had provable
security. The first effort to achieve provable security was due to Lucks [19]. Halevi and Krawczyk [15]
proposed a password KE protocol in an asymmetric setting: a user only holds a password while the
1 we do not consider a protocol with a time stamp or a stateful protocol (e.g., a counter based protocol). In other

words, we only consider protocols in which a session execution within an entity is independent of its history, and
in which the network is asynchronous.

2 An extended abstract appeared in [17]. This is the full version.

server additionally has a private key of a public key cryptosystem. Password KE protocols without
this asymmetric assumption were proposed in [2, 7]. However, these protocols including [19] were
proved in the random oracle model. It is known [9] that a random oracle based cryptographic
construction could be insecure when the oracle is replaced by any real function. In the password
setting, it is even worse since a minor weakness of the real function might open the door to a
dictionary attack. The first solution without random oracle was due to Goldreich and Lindell [14].
Actually, their protocol was based on a general assumption only (i.e., the existence of trapdoor
permutation). But this solution is very inefficient. A reasonably efficient construction in CRS model
without random oracle was proposed by Katz, et al. [18]. We shall refer to this as the KOY protocol.
An abstract framework for this protocol was proposed by Gennaro and Lindell [13]. Nevertheless,
these protocols do not support mutual authentication (MA). Katz, et al. mentioned in their paper
that a mutual authentication can be made by adding an additional flow. This is indeed true.
However, the resulting protocol is then 4-round. It is known that a high entropy secret based KE
protocol with MA is optimally 3-round. Thus, it is quite interesting to ask whether there exists
such a protocol in the password setting without random oracles.

1.2 Contribution

In this paper, we provide an affirmative answer to the above problem with an explicit construction.
Our construction is in the CRS model (as in [13, 18]), where all the parties have access to a set of
public parameters drawn from a predetermined distribution, but nobody knows the corresponding
secret key if any. Our construction is optimally 3-round. Comparing with work in [13, 18], it ad-
ditionally supports mutual authentication and is also simpler than KOY protocol in the sense of
exponentiation cost. Nevertheless, their work has been instructive to us. In fact, one technique in
their construction helps us in authenticating the initiator. As our important contribution, we for-
mally prove the security under the Decisional Diffie-Hellman (DDH) assumption (without random
oracles).

2 Security Model

In this section, we introduce a formal model of security. This model is mainly adopted from Bellare,
et al. [2] and [3]. Our difference is in the mutual authentication where we feel our definition is more
reasonable. Details are provided later. The basic security model without MA was previously adopted
by Katz, et al. [18] and Gennaro and Lindell [13]. We start with the following notations, which will
be used throughout the paper.

− D: a password dictionary with a polynomial size (otherwise, it becomes a KE problem with
high entropy secrets). WOLG, we assume that D = {1, · · · , N} with a uniform distribution for
some N > 0.

− Pi: party i, either a client or a server. If it is a server, then it could individually share a
password with a set of clients.

− Π li
i : protocol instance li within party Pi. We require that li be unique within Pi in order to

distinguish local instances. However, we do not require it is globally unique, which reflects the
practical concern for possible independence of different parties.

− Flowi: The ith message exchanged between two particular instances.

2

− sidli
i : the session identifier of a particular instance Π li

i .

− pidli
i : the party with which instance Π li

i believes that he has been interacting.

Partnering. We say two protocol instances Π li
i and Π

lj
j are partnered if (1) pidli

i = Pj and

pidlj
j = Pi; (2) sidli

i = sidlj
j .

Adversarial Model. Roughly speaking, the adversary is allowed to fully control the external
network. He can inject, modify, block and delete messages at will. He can also request any session
keys adaptively. Formally, he can adaptively query the following oracles.

• Execute(i, li, j, lj): When this oracle is called, it checks whether instances Π li
i and Π

lj
j are fresh.

If either of them is old, it outputs ⊥. Otherwise, a protocol execution between Π li
i and Π

lj
j takes

place. At the end of the execution, a complete transcript (messages exchanged between the two
instances) is returned. This oracle call models a threat from an eavesdropping adversary.

• Send(d, i, li,M) : When this oracle is called, message M is sent to instance Π li
i as Flowd.

If instance Π li
i does not exist but d ≥ 2, or if oracle Send(d, i, li, ∗) was called before, or if

instance Π li
i already exists but either Send(d−2, i, li, ∗) was not previously called or its output

was ⊥ if called, then the oracle output is set to ⊥; otherwise, the oracle output is whatever
Π li

i returns. We stress that the oracle response needs to be consistent with Send(d− 2t, i, li, ∗)
for all t > 0. Furthermore, when Send(0, i, li, null) is called, it first checks whether instance
Π li

i is fresh. If it is old, then the output is set to ⊥; otherwise, Π li
i is initiated within Pi, and

the output is whatever Π li
i returns as Flow1. Similarly, when Send(1, i, li,M) is called, it first

checks whether instance Π li
i is fresh. If it is old, then the output is set to ⊥; otherwise, an

instance Π li
i is initiated within party Pi as a responsor with input M. The output is whatever

Π li
i outputs as Flow2. The oracle call reflects a threat from man-in-the-middle attack.

• Reveal(i, li) : When this oracle is called, it outputs the session key of instance Π li
i if it has

accepted and completed with a session key derived; otherwise, it outputs ⊥. This oracle reflects
the threat from a session key loss.

• Test(i, li) : This oracle does not reflect any real concern. However, it provides a security test.
The adversary is allowed to query it once. The queried session must be completed and accepted.
Furthermore, this session as well as its partnered session (if it exists) should not be issued a
Reveal query. When this oracle is called, it flips a fair coin b. If b = 1, then the session key of
Π li

i is provided to adversary; otherwise, a random number of the same length is provided. The
adversary then tries to output a guess bit b′. He is successful if b′ = b.

Having defined adversary behavior, we come to define the protocol security. It contains two con-
ditions: correctness and privacy. The mutual authentication is considered in the privacy condition.

Correctness. If two partnered instances both accept, then they conclude with the same session
key except for a negligible probability.

Privacy. We define two types of adversary success:

¦ If at any moment, an instance Π li
i with pidli

i = Pj has accepted and completed with a session
key derived while there does not exist an instance Π

lj
j such that the exchanged messages seen

by Π li
i and Π

lj
j prior to this moment (especially not including the currently generated message

3

by Π li
i if any) are equal, then we announce the success of adversary. Furthermore, if such an

instance Π
lj
j indeed exists, then we require it is unique except for a negligible probability.

¦ If the above event does not happen but the adversary succeeds in the test session, we also
announce its success.

We use random variable Succ to denote the above success events. We define the advantage of
adversary A as Adv(A):= 2Pr[Succ]− 1.

Now we are ready to provide a formal definition of security.

Definition 1. A password authenticated key exchange protocol with mutual authentication is said
to be secure if it satisfies

• Correctness.
• Privacy.

If adversary A makes Qsend queries to Send oracle, then

Adv(A) <
Qsend

|D| + negl(n), (1)

where D is the password dictionary, n is the security parameter.

Remarks. Here we give two comments on our definition and that in [2].

1. From our first privacy condition, whenever an instance Π li
i with pidli

i = Pj accepts and com-
pletes, there exists an (essentially) unique instance in Pj (say, Π

lj
j) interacting with it and also

the exchanged messages prior to the moment Π li
i accepts are not tampered. This is indeed our

intuition about “Π lj
j is authenticated”.

2. In Bellare, et al. [2], MA is said to be violated if one instance terminates while no partner
instance exists. This definition is not always satisfactory. Indeed, session identifier sidli

i for
instance Π li

i is popularly [13, 18] defined as a complete transcript seen by Π li
i . Under this SID,

their version of MA is always violated since once the adversary holds on the last message the
partnership is never established. However, this problem does not occur for our version of MA
since we only consider the messages exchanged before the considered instance (i.e., Π li

i) accepts
and completes. We stress that a provable MA property of a particular protocol in [2] does not
contradict our remark here since their SID is defined as a partial transcript.

3. As pointed out in [11], our definition of MA could overkill some secure protocols. Consider
any (secure) protocol Σ. We append 0 to each message in the Σ protocol but the protocol
action remains unchanged (i.e., the redundant bit is ignored). It is easy to see that the revised
protocol is no longer secure according to our definition of MA. Thus, a more concise MA should
be defined to be a match of the minimal sub-transcript that uniquely determines the session
key. However, we keep our definition. The reasons are as follows. First, our definition seems
more natural and it is waived of a problem to determine the min-sub-transcript. Second, the
overkilled protocol seems only due to the redundant bits which thus can be removed. Third, a
protocol secure under our definition is also secure under the concise definition (since the first
privacy condition (i.e, MA) in the latter is violated then it is violated in the former too).

4

3 Our Protocol

In this section, we introduce our 3-round construction under the common reference string (CRS)
model, where all the parties have access to the public parameters that are drawn from a predeter-
mined distribution. In reality, this condition could be realized by a trusted third party or a threshold
scheme. Assume p, q are large primes with q|(p− 1); Gq is the (unique) multiplicative subgroup of
F ∗

p of order q; g, h are uniformly random generators of Gq; H is a collision resistant hash function;
e ← GenPK(1n) is the public key for a chosen ciphertext attack (in the postprocessing model)
(CCA2) secure public key cryptosystem E (we stress that nobody knows the secret key of Ee); F
is a pseudorandom function family and its realization with secret key σ is denoted by Fσ(). Our
protocol is presented as Figure 1. Assume that password πij is ideally shared between party Pi and

� � � � � � � �	�
	� � � � �� � � � � � � � � � � �
�� � � �

��� !� " #

$ % & ' % () $ (& ' % ()

* + , �.- / 0 / 12/ 34/ 5 / 6 / 7

8 9 / 8 : ;=< >
?
 - @ A 0 @ B C
 - D E F G / H
 � @ A �I @ B
J
�� � K � / L
	M N O P!Q J R
PS
 1 ? � �!� C � " T � " # �? � L � " T

 C
 0 U / H
 ? U / J
	� � K �
PS
 1 ? � ��� C � " T � " # �
� � � � � � � L �
�M N O P2Q J R� � � � � � � � � � �
	� � � � / � �
	� � � �

V ;=< >�
 - U
 0 U - E F G

�

Fig. 1. Key Exchange Protocol Execution between Pi and Pj

Pj . In order to establish a session key, Pi and Pj interact as follows. Assume Pi speaks first. He

5

picks x ← Zq uniformly, computes a plain ElGalmal ciphertext A|C and sends it together with id
Pi to Pj as Flow1. When Pj receives Flow1, he chooses λ1, λ2 ← Zq, and computes µ,C ′, σ, r, ω, Σ
properly, where r is used as the random input in encryption of Σ, and if it requires a longer string,
r can be defined as Fσ(3)|Fσ(4)| · · · until it is long enough. We prefer the simple case since the
security proof under this modification is essentially identical. Then he sends µ|ω|Pj back to Pi (as
Flow2). Using µ, Pi is able to compute σ since σ = µx. Then he verifies whether ω is a ciphertext
of H(µ|A|C ′|Pj |Pi) using random bits r. If the verification is successful, then he believes Pj is au-
thentic and therefore returns an authentication tag τ = Fσ(2) as Flow3. Furthermore, he outputs
a session key sk = Fσ(1) and terminates. When Pj receives τ , he checks whether τ is correct. If the
verification succeeds, he believes Pi is authentic. Therefore, he accepts and outputs a session key
sk = Fσ(1). If the verification fails, it rejects. Note in the above interaction, implementation issues
(e.g., a validity check whether appropriate elements belong to Gq) are omitted for simplicity.

3.1 Comparison with KOY Protocol

Now we provide a more detailed comparison with KOY protocol. As mentioned before, KOY pro-
tocol does not support MA, or it is 4-round if an additional flow is added. In contrast, our protocol
is 3-round with MA. Each party in their construction needs 15 exps while ours needs at most 4
exps plus one ciphertext of a CCA2-secure PKE(note it is easy to find such a PKE with a cipher-
text cost less than 11 exps). Their construction employs a one-time signature to “bind” the whole
transcript while we do not use such a technique since it requires the responsor to store the whole
transcript, which might be more vulnerable to denial of service (DoS) attack. However, we stress
their construction is instructive to us. Specifically, in authentication of initiator, we use a technique
that if A|C is not an ElGamal ciphertext of gπij , then σ is uniformly random in Gq. This technique
is essentially from KOY protocol with a relaxation of Cramer-Shoup ciphertext [10] to ElGamal
ciphertext.

4 Security

In this section, we prove the security of our protocol.

Theorem 1. Let Γ be the password authenticated key exchange protocol in Figure 1. Let a, b, c be
polynomially related to the security parameter n. Assume e ← GenPK(1n) is the public key of a
CCA2 secure public key cryptosystem E; H : {0, 1}∗ → {0, 1}a is a collision resistant hash function
uniformly taken from a family H; p, q are large primes with q|(p−1); F is a pseudorandom function
family from {0, 1}b to {0, 1}c; Gq is the (unique) multiplicative subgroup of order q in F ∗

p ; g, h are
random generators of Gq. Then under DDH assumption, protocol Γ is secure.

Proof. Define sidli
i to be the whole transcript seen by instance Π li

i . Assume Π li
i and Π

lj
j are

partnered and both accept. Then, pidli
i and pidlj

j are consistent and the messages are faithfully
exchanged. Thus, Pi and Pj derive the same σ: σ = µx = Aλ1C ′λ2 . Thus, the correctness follows.

In the rest, we concentrate on the proof of the privacy condition. We look the protocol execution
as a game between a simulator and an adversary A. The simulator picks large prime p, q with
q|(p−1) and takes g ← Gq, u ← Zq, (e, d) ← Gen(1n)(= (GenPK,GenSK)(1n)), F a pseudorandom
function family from {0, 1}b to {0, 1}c and H uniformly from a family of a collision resistant hash

6

function (CRHF). He lets h = gu. Then he sets the public parameters as g, h, H,F , e, p, q and assigns
passwords to parties as in the real protocol. He simulates the protocol execution with adversary A.

We construct a sequence of slightly modified protocols Γ1, Γ2, · · · from Γ and show that the
success probability of A in Γi is no less than that in Γi−1 except for a negligible gap for any i ≥ 1,
where Γ0 := Γ. And then we bound the success probability of A in the last variant. Before our actual
proof, we assume that in response to any oracle query, the basic validity check in its definition has
already been successfully verified thus the output is never ⊥.

For given two parties Pi and Pj with common password πij , we say A|C is inconsistent if
logg A 6= logh Cg−πij . We first introduce the following simple fact, where the proof is mainly due
to the fact that λ1, λ2 are both uniform in Zq (independent of anything else).

Fact 1 If A|C is inconsistent, then σ is uniformly random in Gq, given A|C|µ where σ and µ are
derived according to the responsor’s execution.

Game Γ1. Now we modify Γ0 to Γ1 with the only difference in Execute query, where C in Γ1

is chosen uniformly random. Using a hybrid argument or a better proof similar to Lemma 2 in [18],
both with reduction to DDH assumption, we have

Lemma 1. Under DDH assumption in Gq, the success probabilities of A in Γ and Γ1 are negligibly
close.

Game Γ2. We modify Γ1 to Γ2 with only difference in Execute queries where r, τ and skli
i (=

sk
lj
j) in any Execute(i, li, j, lj) are chosen uniformly random from {0, 1}3c. Note A|C is inconsistent

in Execute queries of Γ1 (and Γ2) except for a negligible probability. By Fact 1, one can conclude
the following lemma using a standard hybrid argument with reduction to the pseudorandomness of
F .

Lemma 2. The success probabilities of A in Γ1 and Γ2 are negligibly close.

Game Γ3. Now we modify Γ2 to Γ3 with the only difference in computing ω in Execute query,
where Simulator picks C∗ ← Gq randomly and defines ω = Ee(H(µ|A|C∗|Pj |Pi); r) instead of a
ciphertext of Σ = H(µ|A|C ′|Pj |Pi). Here r is uniformly random (as in Γ2). By a standard hybrid
argument with reduction to the semantic security3 of cryptosystem E (note the challenge template
should be set according to the above modification), we have the following lemma.

Lemma 3. The success probabilities of A in Γ2 and Γ3 are negligibly close.

Game Γ4. Till now, we have finished modifying Execute oracle. Next, let us consider Send
oracle. Before that, we introduce some notations. We say that a message is adversary-generated if it
is not exactly equal to the output of a Send oracle or a Flow in a response of an Execute oracle;
otherwise, we say it is an oracle-generated message. Consider any query Send(2, i, li, µ|ω|Pj). If
there exists Send(1, j, lj , A|C|Pi) such that it outputs µ|ω|Pj and that A|C|Pi is exactly the output
of Send(0, i, li, null), then we say that Send(2, i, li, µ|ω|Pj) matches with Send(1, j, lj , A|C|Pi);
otherwise, we say that a none-match event happens to Send(2, i, li, µ|ω|Pj). Now we modify Γ3 to
Γ4 with the only difference: upon any query Send(2, i, li, µ|ω|Pj), if a none-match event happens
to it (note Simulator can check this since it controls all the oracles), then deciding accept/reject
only depends on whether ω can be decrypted to Σ = H(µ|A|C ′|Pj |Pi) or not, where A|C| is in the
output of Send(0, i, li, null) and C ′ = Cg−πij . If it accepts in this case, it announces the success of
A and halts. Note in case of a match event it responses as in Γ3.

3 Here semantic security suffices and CCA2 security will be required later to deal with Send oracle.

7

Lemma 4. The success probability of A in Γ4 is no less than that in Γ3.

Proof. Note in case of a none-match event, if Send(2, i, li, µ|ω|Pj) in Γ4 rejects, then it rejects in
Γ3 too. Therefore, before a none-match event is accepted in Γ4, adversary view in Γ4 is identically
distributed as that in Γ3. On the other hand, an accepted none-match event in Γ4 already announces
the success of A. Thus, the conclusion follows. ut

Game Γ5. Now we modify Γ4 to Γ5 such that C in any send(0, i, li, null) is taken uniformly
random from Gq. In order of consistency (in view of A), we need to take care of other oracle
definitions. Send(1, j, lj ,M) remains unchanged. Since there does not exist x in A|C such that the
normal action can be executed, Send(2, i, li, A|C|Pj) is modified as follows.

i) If there exists a unique lj such that Send(2, i, li, µ|ω|Pj) matches with Send(1, j, lj ,M), then it
accepts (without verification of ω) and computes τ = Fσ(2) using σ defined in Send(1, j, lj ,M).
Then, he outputs τ and defines the session key skli

i = Fσ(1). If there are two or more lj , l′j , · · ·
such that the above match event holds simultaneously (in the future, we call it a multi-match
event), then it chooses one match randomly and follows the same procedure.

ii) If a none-match event happens to Send(2, i, li, µ|ω|Pj), then it responses as in Γ4 (i.e. it decrypts
ω, and decides to announce the success of A or to reject).

The Send(3, j, lj ,M) answers normally. The rest oracles remain unchanged (note the validity follows
from the fact that their actions do not depend on the above modification).

Lemma 5. The success probabilities of A in Γ4 and Γ5 are negligibly close.

Proof. To relate Γ4 and Γ5, we define a slightly modified Γ4 as Γ ′4. The only difference is that in
case of a match event in Γ ′4, Send(2, i, li, µ|ω|Pi) responses as i) in definition of Γ5. On the one
hand, if lj is always unique (whenever a match event happens), then adversary views in Γ4 and
Γ ′4 are identically distributed since a unique match event is always accepted in Γ4. On the other
hand, the probability that a multi-match event happens throughout the simulation is negligible
since µ is uniform in Gq. Thus, the success probabilities of A in Γ4 and Γ ′4 are negligibly close.
Notice that executions of Games Γ ′4 and Γ5 are different only in that C is real or random. Thus,
if the conclusion were wrong, a standard hybrid argument directly would reduce to break DDH
assumption, a contradiction. Details are omitted. ut

Game Γ6. Now we modify Γ5 to Γ6 with the only difference in oracle Send(1, j, lj , A|C|Pi). If
A|C is consistent: C = Augπij , it announces the success of adversary A and exits (recall Simulator
knows u := logg h; recall normally C 6= Augπij since C is chosen uniformly random in oracle
Send(0, ∗, ∗, null)); otherwise, it answers normally (as in Γ5). The rest oracle definitions remain
unchanged as in Γ5. Note this modification only increases the success probability of A. Indeed,
if A|C is always inconsistent, then the adversary view in Γ6 is identically distributed as in Γ5;
otherwise, A already succeeds in Γ6. Thus, we have

Lemma 6. The success probability of A in Γ6 is no less than that in Γ5.

Game Γ7. Γ7 is modified from Γ6 as follows. In order to answer oracle Send(1, j, lj , A|C|Pj)
in Γ7, Simulator chooses σ uniformly random from Gq instead of Aλ1C ′λ2 . Other oracle definitions
remain unchanged as in Γ6 (here the validity is due to the fact that the state information λ1, λ2 is
not required in these oracle definitions).

8

Lemma 7. The success probabilities of A in Γ6 and Γ7 are equal.

Proof. Whenever σ is defined in Γ6 (and Γ7), this implies that A is not announced to succeed in
Send(1, j, lj , A|C|Pi) and thus A|C is inconsistent. Thus, from Fact 1, the adversary view in Γ6

and Γ7 is identically distributed. The conclusion follows immediately. ut

Game Γ8. Now we modify Γ7 to Γ8 with the only difference: (r, τ, skli
i) in Send oracles are

chosen uniformly random from {0, 1}3c, which is the range of F . Details are as follows. Whenever
any Send(1, j, lj , A|C|Pi) is called, Simulator follows the oracle definition in Γ7 except r is random
in {0, 1}c. When any Send(2, i, li, µ|ω|Pj) oracle is called, Simulator responses as in Γ5 − Γ7 with
the following exception: in case of a match event, τ, skli

i are taken uniformly random in {0, 1}c and
furthermore he saves tuple (µ, τ, skli

i , i, j) in his memory. Whenever any Send(3, j, lj , τ
′) is called,

Simulator searches for (µ, ∗, ∗, ∗, j) in his memory. If a unique tuple is found, then it recovers
(τ, skli

i , i) from this tuple and checks whether τ ′ = τ. If it holds, Send(3, j, lj , τ ′) accepts and
concludes the session key sk

lj
j := skli

i . If more than one such a tuple are found, then it chooses one
randomly and follows the same procedure. Otherwise, if either of the above two checks (i.e., search
and comparison) fails, it rejects. The rest oracle definitions (Reveal, Test, Execute) remain
unchanged (the validity follows since such definitions are independent of the way Send chooses
(r, τ, skli

i)).

Lemma 8. The success probabilities of A in Γ7 and Γ8 are negligibly close.

Proof. Consider a slightly modified Γ7, denoted as Γ ′7. Oracle definitions in Game Γ ′7 are iden-
tical to those in Γ8 except that (r, τ, skli

i (= sk
lj
j)) is computed as Fσ(3), Fσ(2), Fσ(1). We show

that the success probabilities of A in Γ7 and Γ ′7 are negligibly close. Indeed, for Send(1, ∗, ∗, ∗)
and Send(2, ∗, ∗, ∗), adversary views in Γ ′7 and Γ7 are identical since their outgoing messages are
computed from the same definitions. When Send(3, j, lj , τ

′) in Γ ′7 is called, there are two cases.
Case 1: A tuple (µ, ∗, ∗, ∗, j) is found: Suppose such a tuple is recorded by Send(2, i, li, µ|ω|Pj),
based on the match with Send(1, j, l′j ,M). Then since µ is uniform in Gq, it follows lj = l′j except
for a negligible probability. Thus, the decision based on τ ′ = τ(= Fσ(2)) is well consistent with
that in Γ7 except for a negligible probability.
Case 2: The tuple (µ, ∗, ∗, ∗, j) is not found: We show that the probability of wrong decision
(i.e., τ ′ = Fσ(2)) is negligible. If this is incorrect, we build a distinguisher D7 for F . Let η7 be
the upper bound of the number of Send(1, ∗, ∗, ∗) queries. D7 simulates Γ ′7 as done by Simulator
except for lth query Send(1, j, , lj ,M), where r is provided by his function oracle O with input 3. If
at some moment, A makes a query Send(2, ∗, ∗, µ|ω|Pj) that matches with Send(1, j, lj , M), then
D7 terminates the simulation and outputs 0, 1 randomly. When Send(3, j, lj , τ

′) is called, D7 first
looks up (µ, ∗, ∗, ∗, j) in his memory. If it is found, then it terminates the simulation and outputs 0,
1 equally likely; otherwise, it feeds 2 to O and gets back τ. In this case, if τ ′ = τ , then he outputs 1;
otherwise, he outputs 0. If O = F , adversary view in the simulation by D7 is identically distributed
as that in Γ ′7 since σ in Γ ′7 (and Γ7) is uniformly random from Gq (thus the function oracle outputs
are perfectly consistent with Γ ′7). An easy calculation shows that the probability A outputs 1 is
p0

2η7
+ 1

2 , where p0 is the probability of the wrong rejection event. If O is purely random function
family, then τ is uniform in {0, 1}c (independent of anything else). Thus, Send(3, j, lj , τ

′) wrongly
accepts with probability at most 2−c (sufficient to consider τ ′ = τ). Thus, D7 has a non-negligible
advantage, contradiction.

9

Other oracle definitions in Γ ′7 and Γ7 are identical. Thus, the success probabilities of A in Γ7

and Γ ′7 are negligibly close. Furthermore, the success probabilities of A in Γ ′7 and Γ8 are negligibly
close, because their executions are identical only except that (r, τ, skli

i) in Γ8 are taken uniformly
random and thus a standard hybrid argument with reduction to the pseudorandomness of F can
be applied. ut

Game Γ9. Γ8 is modified to Γ9 so that ω in Send(1, j, lj , A|C|Pi) is defined as Ee[Σ′; r], where
r is uniform in {0, 1}c and Σ′ = H(µ|A|C∗|Pj |Pi) for C∗ ← Gq. The rest oracles are unchanged.
We have the following result.

Lemma 9. The success probabilities of A in Γ8 and Γ9 are negligibly close.

Proof. We define Γ
(l)
8 to be the variant of Γ8 such that the first l Send(1, ∗, ∗, ∗) queries are

answered according to Γ9 and the rest queries are answered according to Γ8. It follows Γ
(0)
8 = Γ8

and Γ
(η9)
8 = Γ9, where η9 is the upperbound of number of queries Send(1, ∗, ∗, ∗). If the success gap

in Γ8 and Γ9 were non-negligible, then there would exist z ∈ {1, · · · , η9} such that the success gap
between Γ

(z−1)
8 and Γ

(z)
8 would be non-negligible. We build a CCA2 breaker D9 for Ee as follows.

He takes l randomly from {1, · · · , η9} and initializes public parameters as done by Simulator except
e provided by his challenger. Then, D9 simulates Γ

(l)
8 except for the lth Send(1, ∗, ∗, ∗) query,

say Send(1, j, lj , A|C|Pi). In this case, he computes Σ and gives (Σ, µ|A|Pj |Gq) to his encryption
oracle, requesting that a random message has a pattern Σ′ = H(µ|A|C∗|Pj |Pi) for C∗ ← Gq. Then,
he will receive ω∗, that is an encryption of either Σ or a random message Σ′ of that pattern.
Send(1, j, lj , A|C|Pi) outputs µ|ω∗|Pj . Different from Simulator, D9 does not have a private key d
for E. Thus, we need to guarantee his action is consistent. Upon any Send(2, s, ls, µ′|ω′|Pt),

1. If a match event happens to this oracle, it responses as in Γ8, Γ9.
2. If ω∗ 6= ω′ and a none-match event happens to Send(2, s, ls, µ′|ω′|Pt), then D9 asks his oracle

to decrypt ω′ in order to make acceptance/reject decision.
3. If ω∗ = ω′ and a none-match event happens to Send(2, s, ls, µ

′|ω′|Pt), then D9 simply rejects.
We show that the wrong decision probability is negligible only; otherwise, H is not collision
resistant. Suppose that Ã|C̃|Ps is the output by Send(0, s, ls, null) and that ω∗ decrypts to
H(µ|A|C†|Pj |Pi) where C† is chosen by its challenger and thus is Cg−πij or a random C∗ in Gq.
If the decision is wrong, we have H(µ|A|C†|Pj |Pi) = H(µ′|Ã|C̃g−πst |Pt|Ps). By the collision
resistant property of H, µ|A|C†|Pj |Pi 6= µ′|Ã|C̃g−πst |Pt|Pi only with negligible probability
(Otherwise, we can build a breaker of H that simulate the game by playing the roles of both D9

and the challenger of D9 and waiting for the collision to happen). Thus, µ = µ′, A = Ã, C† =
C̃g−πst , t = j, s = i, except for a negligible probability. If C† = Cgπij , then C = C̃ thus
Send(2, s, ls, µ

′|ω′|Pt) in fact matches with Send(1, j, lj , A|C|Pi), contradiction to the none-
match assumption for the former. If C† = C∗ a random in Gq, then C̃g−πst = C† holds only
with negligible probability. Thus, as a summary, the decision is wrong only with a negligible
probability.

The rest oracles are answered normally as in Γ8 (or Γ9) since no decryption is required any more.
Thus, in case ω∗ is a ciphertext of Σ, then adversary view in the simulation is negligibly close to
that in Γ

(l−1)
8 ; otherwise it is negligibly close to Γ

(l)
8 . Thus, a correct guess for z, which is non-

negligible, immediately implies non-negligible advantage of D9, a contradiction. ut

10

Bounding Success Probability in Γ9. Now let us consider protocol Γ9. The adversary succeeds
only possibly (1) at Send(1, j, lj , A|C|Pi) where he inputs a consistent ElGamal ciphertext A|C,
or (2) at oracle Send(2, i, li, µ|ω|Pj) where a none-match event occurs, but the oracle decrypts
ω to Σ = H(µ|A|C ′|Pj |Pi), or (3) at Send(3, j, lj , τ), where the oracle accepts but τ is not the
output by a Send(2, i, li, ∗) that is matched to Send(1, j, lj , ∗), or (4) at Test query. Here we
stress that mutual authentication in Definition 1 is fully covered by (2) and (3). For case (3),
since τ will be compared with the value in the memory, success here happens only when there are
two Send(2, ∗, ∗, ∗) that match with Send(1, j, lj , ∗). This implies that ∃ two Send(0, ∗, ∗, null)
generate the same output. This happens with only negligible probability since A is uniform in Gq.
We thus only consider cases (1), (2), and (4). We say the adversary attempt to succeed in cases
(1) (2) is an impersonation trial, denoted by ITri. In case (1), no input can be successful in two
protocol executions with different password candidates (recall that D = {1, · · · , N} with N < q).
In case (2), no input can be accepted with non-negligible probability in two password candidates
(otherwise, we can break H in two steps: Step 1. Simulate the protocol execution and record all
the events in case (2); Step 2. Check whether the collision in case (2) happens by trying to find
two passwords that accept some recorded event simultaneously)4. Thus, we assume each input at
case (1) or (2) can be accepted by at most one password candidate. Notice that just before ITri
happens, the adversary view in Γ9 is completely independent of password. Thus, immediately after
the first ITri is rejected, the adversary view is distributed identically among a password dictionary
of size at least |D| − 1. The reason is: it has the same reject event for at least |D| − 1 password
candidates. Furthermore, using a simple induction, we have the probability that the first l ITri
events are rejected but it succeeds in l + 1th ITri event is 1

|D|−l

∏l
i=1(1 − 1

|D|−(i−1)) = 1
|D| . Thus,

suppose the number of Send queries is upperbounded by Qsend. Then the success in ITri happens
with probability at most Qsend

|D| except for a negligible gap. Now we consider case (4), this success
event happens only if the success event in ITri does not happen. In this case, since the session key
is chosen uniformly random independent of anything else. Thus, the success probability is exactly
1
2 except that the session key was seen at a previous moment, which is only possible by Reveal
query. Note the test session is not allowed to issue Reveal query. We show the revealed session
must be its partnered session, which is not allowed by definition. To this end, let Π li

i be the test
session with pidli

i = Pj . Since Send(2, i, li, ∗) accepts with skli
i derived, there must exist a matched

Send(1, j, lj , ∗) and a tuple (µ, τ, skli
i , i, j) is stored in the memory. And later only Send(3, j, l′j , τ

′)

with µ in the output of Send(1, j, l′j ,M) will access this tuple and define sk
l′j
j = skli

i . Note in this
case, lj = l′j except for a negligible probability since µ is uniform in Gq. The exchanged messages

seen by Π li
i and Π

lj
j (unique except for negligible probability) are identical by definition of match,

and they see the same τ (as in the tuple). Thus, pidli
i = Pj , pidlj

j = Pi and sidli
i = sidlj

j . That is,
they are partnered sessions.

4 Here in order for our attack to be polynomial time, we use the fact that |D| is polynomially bounded. If |D| is
super polynomial, although it is not the setting for password KE protocol, the conclusion should be revised as: no
input from A can be accepted by non-negligible fraction of password candidates; otherwise, an adversary O for
H can be built as follows. He simulates Γ9 and runs A against it. And he records the events in case (2). And for
each event, he randomly picks a password π ∈ D and tests whether this event can also be accepted by π. If yes,
he obtains a collision of H. An easy calculation shows that if the conclusion is wrong, the success probability of
O is non-negligible. Details are omitted. Due to the above modification, the subsequent proof content should be
adjusted accordingly by allowing a negligible gap.

11

As a summary, the success probability of adversary in Test session is exactly 1
2 . Let α be the

probability of ITri event. Then the total success probability of adversary is α+(1−α)1
2 ≤ 1

2 + Qsend
2|D| .

Proof of Theorem 1 Summarizing the results in Lemmas 1- 9 and success probability of A in
Γ9, we have Adv(A) < Qsend

|D| + negl(n). ♠

Acknowledgement The authors would like to thank anonymous referees for valuable com-
ments. S. Jiang would like to thank Mihir Bellare for kind response upon query on mutual authen-
tication, and he especially feels grateful to David Pointcheval for an instructive discussion on the
definition of mutual authentication.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk, A Modular Approach to the Design and Analysis of Authenti-
cation and Key Exchange Protocols, STOC 98: 419-428.

2. Mihir Bellare, David Pointcheval, Phillip Rogaway: Authenticated Key Exchange Secure against Dictionary
Attacks. EUROCRYPT 2000: 139-155.

3. Mihir Bellare, Phillip Rogaway: Entity Authentication and Key Distribution. CRYPTO 1993: 232-249.
4. Bellovin, S.M.; Merritt, M., Encrypted key exchange: password-based protocols secure against dictionary attacks,

In Proceedings of the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, 72-84.
5. Steven M. Bellovin, Michael Merritt: Augmented Encrypted Key Exchange: A Password-Based Protocol Secure

against Dictionary Attacks and Password File Compromise. ACM Conference on Computer and Communications
Security 1993: 244-250.

6. Simon Blake-Wilson, Don Johnson, Alfred Menezes: Key Agreement Protocols and Their Security Analysis. IMA
Int. Conf. 1997: 30-45.

7. Victor Boyko, Philip D. MacKenzie, Sarvar Patel: Provably Secure Password-Authenticated Key Exchange Using
Diffie-Hellman. EUROCRYPT 2000: 156-171.

8. Ran Canetti and Hugo Krawczyk, Analysis of Key-Exchange Protocols and Their Use for Building Secure Chan-
nels, Eurocrypt 2001: 453-474.

9. Ran Canetti, Oded Goldreich, Shai Halevi: The Random Oracle Methodology, Revisited (Preliminary Version).
STOC 1998: 209-218.

10. Ronald Cramer, Victor Shoup: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen
Ciphertext Attack. CRYPTO 1998: 13-25.

11. David Pointcheval, private communication, April 2004.
12. W. Diffie, P.C. van Oorschot, and M.J. Wiener, Authentication and Authenticated Key Exchanges, Designs,

Codes and Cryptography, vol. 2, no. 2, 1992, pp. 107-125.
13. Rosario Gennaro, Yehuda Lindell: A Framework for Password-Based Authenticated Key Exchange. EURO-

CRYPT 2003: 524-543.
14. Oded Goldreich, Yehuda Lindell: Session-Key Generation Using Human Passwords Only. CRYPTO 2001: 408-432.
15. Shai Halevi, Hugo Krawczyk: Public-Key Cryptography and Password Protocols. ACM Conference on Computer

and Communications Security 1998: 122-131.
16. David P. Jablon, Extended Password Key Exchange Protocols Immune to Dictionary Attacks. WETICE 1997:

248-255.
17. Shaoquan Jiang and Guang Gong, Password based Key Exchange with Mutual Authentication, SAC 2004. The

current paper is the full version.
18. Jonathan Katz, Rafail Ostrovsky, Moti Yung: Efficient Password-Authenticated Key Exchange Using Human-

Memorable Passwords. EUROCRYPT 2001: 475-494.
19. Stefan Lucks, Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public Keys. Security

Protocols Workshop 1997: 79-90. Available at http://th.informatik.uni-mannheim.de/People/Lucks/papers.html
20. Alfred Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied Cryptography. CRC Press 1996.

12

