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Abstract. Identity-based (ID-based) public key cryptosystem can be a
good alternative for certificate-based public key setting, especially when
efficient key management and moderate security are required. A proxy
signature scheme permits an entity to delegate its signing rights to an-
other entity. But to date, no ID-based proxy signature schemes with
provable security have been proposed. In this paper, we formalize a no-
tion of security for ID-based proxy signature schemes and propose a
scheme based on the bilinear pairings. We show that the security of our
scheme is tightly related to the computational Diffie-Hellman assumption
in the random oracle model.

keywords: ID-based signatures, proxy signatures, bilinear pairings,
provable security.

1 Introduction

The paradigm of proxy signature is a method for an entity to delegate signing
capabilities to other participants so that they can sign on behalf of the entity
within a given context (the context and limitations on proxy signing capabilities
are captured by a certain warrant issued by the delegator which is associated with
the delegation act). For example, Alice the executive might want to empower
Bob the secretary to sign on her behalf for a given week when Alice is out of
town. Such proxy capability transfer may be defined recursively to allow high
flexibility in assigning limited entitlements.

Proxy signatures have found numerous practical applications, particularly in
distributed computing where delegation of rights is quite common. Examples
discussed in the literature include distributed systems, Grid computing, mobile
agent applications, distributed shared object systems, global distribution net-
works, and mobile communications. The proxy signature primitive and the first
efficient solution were introduced by Mambo, Usuda and Okamoto [1]. Since then
proxy signature schemes have enjoyed a considerable amount of interest from the
cryptographic research community. Furthermore, various extensions of the basic
proxy signature primitive have been considered. These include threshold proxy
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signatures [2], blind proxy signatures [3], proxy signatures with warrant recovery
[4], nominative proxy signatures [5], one-time proxy signatures [6], and proxy-
anonymous proxy signatures [7].

Unfortunately, the extensive cryptographic research on the topic has brought
developers more confusion than guidance because almost every other paper
breaks some previously proposed construction, and proposes a new one. Very
few schemes were left unbroken, and none of them has provable-security guar-
antees. Typically, security of these schemes is argued by presenting attacks that
fail, which provides only very weak guarantees. The first work to formally define
the model of proxy signatures, is the work of Boldyreva, Palacio, and Warinschi
[8]. Recently, Malkin, Obana and Yung develop the first formal model for fully
hierarchical proxy signatures and prove that proxy signatures are equivalent to
key-insulated signatures [9].

In a certificate-based public key system, before using the public key of a
user, the participants must verify the certificate of the user at first. As a con-
sequence, this system requires a large storage and computing time to store and
verify each users public key and the corresponding certificate. In 1984 Shamir
[10] proposed ID-based encryption and signature schemes to simplify key man-
agement procedures in certificate-based public key setting. Since then, many
ID-based encryption and signature schemes have been proposed. The main idea
of ID-based cryptosystems is that the identity information of each user works
as his/her public key, in other words, the user’s public key can be calculated
directly from his/her identity rather than being extracted from a certificate is-
sued by a certificate authority (CA). ID-based public key setting can be a good
alternative for certificate-based public key setting, especially when efficient key
management and moderate security are required.

The bilinear pairings, namely the weil-pairing and the tate-pairing of alge-
braic curves, are important tools for research on algebraic geometry. They have
been found various applications in cryptography recently [11],[12],[13],[14]. More
precisely, they can be used to construct ID-based cryptographic schemes.

In the area of provable security, the last couple of years saw the rise of a
new trend consisting of providing tight security reductions for asymmetric cryp-
tosystems : the security of a cryptographic protocol is said to be tightly related
to a hard computational problem if an attacker against the scheme implies an
efficient algorithm solving the problem with roughly the same advantage. But
up to now, no one propose an ID-based proxy signature scheme providing tight
security reductions.

Our current work is aimed at filling this void. Based on the work of [8] and
[9], we define a formal model for the security of ID-based proxy signature scheme.
Then we propose an efficient ID-based proxy signature scheme whose security
can be proved tightly related to computational Diffie-Hellman (CDH) problem
in the random oracle model. Unlike [8], we do not rely on the forking lemma in
our security reduction, hence the advantage relation can be shown to be linear,
which is almost the best possible.
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The rest of the paper is organized as follows. In Section 2 we give formal defi-
nitions of presumed hard computational problems from which our reductions are
made. In Section 3 a formal security model of ID-based proxy signature scheme
is given. In Sections 4 and 5, we present an ID-based proxy signature scheme
and analyze its security , respectively. And we end with concluding remarks in
Section 6.

2 Definitions

2.1 The Bilinear Pairing

Let G be a cyclic additive group generated by P , whose order is a prime q, and
V be a cyclic multiplicative group of the same order. Let ê : G × G → V be a
pairing which satisfies the following conditions:

1. Bilinearity: For any P,Q,R ∈ G, we have ê(P + Q,R) = ê(P,R)ê(Q, R)
and ê(P,Q + R) = ê(P,Q)ê(P,R). In particular, for any a, b ∈ Zq,

ê(aP, bP ) = ê(P, P )ab = ê(P, abP ) = ê(abP, P ).

2. Non-degeneracy: There exists P,Q ∈ G, such that ê(P,Q) 6= 1.
3. Computability: There is an efficient algorithm to compute ê(P,Q) for all

P,Q ∈ G.
The typical way of obtaining such pairings is by deriving them from the

weil-pairing or the tate-pairing on an elliptic curve over a finite field.

2.2 Gap Diffie-Hellman (GDH) Groups

Let G be a cyclic group of prime order q and P be a generator of G.
1. The decisional Diffie-Hellman (DDH) problem is to decide whether c = ab

in Z/qZ for given P, aP, bP, cP ∈ G. If so, (P, aP, bP, cP ) is called a valid Diffie-
Hellman (DH) tuple.

2. The computational Diffie-Hellman (CDH) problem is to compute abP for
given P, aP, bP ∈ G.

Definition 2.1 The advantage of an algorithm F in solving the computational
Diffie-Hellman problem on group G is

AdvCDHF = Pr[F(P, aP, bP ) = abP : ∀a, b ∈ Zq]

The probability is taken over the choice of a, b and F ′s coin tosses. An algorithm
F is said (t, ε)-breaks the computational Diffie-Hellman problem on G if F runs
in time at most t, and AdvCDHF is at least ε.

Now we present a definition for a gap Diffie-Hellman (GDH) group.

Definition 2.2 A group G is a (t, ε)-gap Diffie-Hellman (GDH) group if the
decisional Diffie-Hellman problem in G can be efficiently computable and there
exists no algorithm (t, ε)-breaks computational Diffie-Hellman on G.

If we have an admissible bilinear pairing ê in G, we can solve the DDH
problem in G efficiently as follows:
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(P, aP, bP, cP ) is a valid DH tuple ⇔ ê(aP, bP ) = ê(P, cP )
Hence an elliptic curve becomes an instance of a GDH group if the Weil (or the
Tate) pairing is efficiently computable and the CDH is sufficiently hard on the
curve.

2.3 ID-Based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such
as name, address and email etc., rather than an arbitrary string to be used as
his public key. The private key of the user is calculated by a trusted party, called
PKG and sent to the user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as
follows:

Let G be a cyclic additive group generated by P , whose order is a prime q,
and V be a cyclic multiplicative group of the same order.A bilinear pairing is
the map ê : G×G→ V . Define cryptographic hash function H : {0, 1}∗ → G.

– G: PKG chooses a random number s ∈ Z∗
q and sets Ppub = sP . He publishes

system parameters params = {G, V, ê, q, P, Ppub,H}; and keeps s secretly as the
master-key.
– K: A user submits his/her identity information ID and authenticates him to
PKG. PKG computes the user′s private key dID = sQID = sH(ID) and sends
it to the user via a secure channel.

3 ID-Based Proxy Signature

Based on the work of [8] and [9], we give formal definition for ID-based proxy
signature scheme.

3.1 Syntax of ID-Based Proxy Signature Schemes

Definition 3.1 An ID-based proxy signature scheme is a tuple (G,K,S,V, (D,P),
PS,PV, ID), where algorithms G and K are the same as in section 2.3, and the
others are defined as follows.
– S: The signing algorithm, which takes a signing key dID of original designa-
tor and a message mω as input, outputs a signature ω called warrant on mω.
The message mω contains the identity(ID) of the designated proxy signer and,
possibly, restrictions on the message the proxy signer is allowed to sign.
– V: The verification algorithm, which takes ID of original designator, a mes-
sage mω, and a warrant ω as input, outputs “accept” if the signature is valid, or
“reject” otherwise.
– (D,P): (interactive) Proxy-designation algorithms (whereD and P are owned
by the designator IDi and the proxy signer IDj , respectively). The input to each
algorithm includes IDi, IDj . D also takes as input the secret key di of the des-
ignator, a message mω and a warrant ω. P also takes as input the secret key dj



ID-Based Proxy Signature Using Bilinear Pairings 5

of the proxy signer. As result of the interaction, the expected local output of P
is the warrant ω and skp, a proxy signing key that user IDj uses to produce
proxy signatures on behalf of user IDi. D has no local output.
– PS: The proxy signing algorithm, which takes a proxy signing key skp, a
message m and a warrant ω as input, outputs a proxy signature psig.
– PV: The proxy verification algorithm, which takes the identity of the original
designator(ID), a message m, a warrant ω and a proxy signature psig as input,
outputs “accept” if the proxy signature is valid, or “reject” otherwise.
– ID: The proxy identification algorithm, which takes a warrant ω and a proxy
signature psig as input, outputs an identity of the designated proxy signer.

Correctness. We require that for all message m and all users i, j ∈ N, if the
proxy signing key skp and the warrant ω are the output of consecutive execu-
tions of (skp, ω)← [D(IDi, IDj , di,mω, ω),P(IDi, IDj , dj)], then
PV(IDi,m, ω,PS(skp,m, ω)) = 1, ID(ω,PS(skp,m, ω)) = IDj and the mes-
sage m does not violate the warrant ω.

3.2 ID-Based Proxy Signature Security

We first informally describe some of the features of our adversarial model.
We model a seemingly extreme case in which the adversary is working against

a single honest user, say ID1, and can extract the private keys of all other users.
Since any attack can be carried out in the presence of more honest users, our
assumption is without loss of generality. The adversary can play the role of
user IDi(i 6= 1) in executions of the (D,P) protocol with ID1, as designator
or as proxy signer. In both cases, the adversary may behave dishonestly in an
attempt to obtain information from ID1. The adversary also can request ID1 to
run the (D,P) protocol with himself, and see the transcript of the execution.We
emphasize that we do not assume the existence of a secure channel between a
designator and a proxy signer.

We model chosen-message attack capabilities by providing the adversary ac-
cess to two oracles: a standard signing oracle and a proxy signing oracle. The
first oracle takes input a message m, and returns a standard signature for m by
user ID1. The second oracle takes input a tuple (i, l,m), and, if user ID1 was
designated by user IDi at least l times, returns a proxy signature for m created
by user ID1 on behalf of user IDi, using the l-th proxy signing key.

The goal of the adversary is to produce one of the following forgeries: (1)
a standard signature by user ID1 for a message that was not submitted to the
standard signing oracle, (2) a proxy signature for a message m, such that no
query (i, l,m) was made to the proxy signing oracle, or (3) a proxy signature for
a message m by some user IDi on behalf of user ID1, such that user IDi was
never designated by user ID1.

ID-based proxy signature security is formally defined as follows.

Definition 3.2 Let PS= (G,K,S,V, (D,P),PS,PV, ID) be an ID-based proxy
signature scheme. Consider an experiment Expps−uf

PS,A (k) related to scheme PS,
adversary A, and security parameter k. First, system parameters params are
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generated by running G on input 1k. Then the private key d1 of user ID1 is
generated by K. The empty arrays skpi of each user and an empty set D are
created. Adversary A can make the following requests or queries,in any order
and any number of times.

– (Extraction Queries) Given an identity IDi(i 6= 1), the challenger returns
the private key di corresponding to IDi.

– (ID1 Designates IDi Requests) A can request to interact with user ID1

runningD(ID1, IDi, d1), for some i 6= 1, and play the role of userIDi running
P(ID1, IDi, di); after a successful run, D is set to D

⋃
{IDi}.

– (IDi Designates ID1 Requests) A can request to interact with user ID1

running P(IDi, ID1, d1), for some i 6= 1, and play the role of userIDi running
D(IDi, ID1, di). The private output skp of P is stored in the last unoccupied
position of skpi. We emphasize that A does not have access to the elements
of skpi.

– (ID1 Designates ID1 Requests) A can request that user ID1 run (D,P)
protocol with itself, and see the transcript of the interaction. The private
output skp of ID1 is stored in the next available position of skp1. A does
not have access to the elements of skp1.

– (Standard Signature Queries) A can query signatures with respect to
identity ID1 on messages of his choice.

– (Proxy Signature Queries) A can query proxy signatures by ID1 on
behalf of IDi using the l-th proxy signing key, i.e. query (i, l,m). If key
skpi[l] has already been defined, we say the query is valid and the challenger
returns PS(skpi[l],m); if skpi[l] has not been defined, the query is said to
be invalid and the challenger returns ⊥.

Eventually, A outputs a forgery (m, sig) or (m, psig, ID). The output of the
experiments is determined as follows:

1. If the forgery is of the form (m, sig), where V(ID1,m, sig) = 1, and m was
not queried to standard signature oracle, then return 1.[forgery of a standard
signature]

2. If the forgery is of the form (m, psig, ID), where ID = IDi for some i 6= 1,
PV(IDi,m, psig) = 1, ID(psig) = ID1, and no valid query (i, l,m) was made
to proxy signature oracle, then return 1. [forgery of a proxy signature by user
ID1 on behalf of user IDi]

3. If the forgery is of the form (m, psig, ID1), where PV(ID1,m, psig) = 1
and ID(psig) /∈ D ∪ {ID1} ∪ {⊥}, then return 1. [forgery of a proxy signature
by user IDi on behalf of user ID1; user IDi was not designated by user ID1]

4.Otherwise, return 0.
We define the advantage of adversary A as

Advps−uf
PS,A (k) = Pr[Expps−uf

PS,A (k) = 1].

Adversary A is said (t, qH , qE , qS , qPS , ε)-breaks a proxy signature scheme if:
A runs in time at most t; A makes at most qH queries to the hash func-
tion H, at most qE queries to the key extraction oracle, at most qS queries
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to the standard signing oracle and at most qPS queries to the proxy signing
oracle; and Advps−uf

PS,A (k) is at least ε. We say a proxy signature scheme is
(t, qH , qE , qS , qPS , ε)-secure if no adversary (t, qH , qE , qS , qPS , ε)-breaks it.

4 Our Proxy Signature Scheme

Our proxy signature scheme is based on SOK-IBS (Sakai-Ogishi-Kasahara Iden-
tity Based Signature)[15].The constituent algorithms of our proxy signature
scheme PS= (G,K,S,V, (D,P),PS,PV, ID) are defined as follows.

– G: Assume k is a security parameter.G is a GDH group of prime order
q > 2k generated by P , and ê : G × G → V is a bilinear map. Pick a
random master key s ∈ Z∗

q and set Ppub = sP . Choose hash functions
H1,H2,H3 : {0, 1}∗ → G, and hash function H4 : {0, 1}∗ → Z∗

q

– K: Given a users identity ID, compute QID = H1(ID) ∈ G and the associ-
ated private key dID = sQID ∈ G.

– S: Given the private key di of original designator IDi, in order to sign a
message mω,

1. Randomly pick rω ∈ Z∗
q and compute Uω = rωP ∈ G and then put

Hω = H2(IDi,mω, Uω) ∈ G.
2.Compute Vω = di + rωHω ∈ G.

The signature on mω is the warrant ω = 〈Uω, Vω〉
– V: To verify a signature ω = 〈Uω, Vω〉 on a message mω for an identity IDi,

the verifier first takes Qi = H1(IDi) ∈ G and Hω = H2(IDi,mω, Uω) ∈ G.
He then accepts the signature if ê(P, Vω) = ê(Ppub, Qi)ê(Uω,Hω) and rejects
it otherwise.

– (D,P): In order to designate user IDj as a proxy signer, user IDi sends user
IDj a message mω and an appropriate warrant ω. The user IDj verifies this
signature ω,and if it is valid, he computes a proxy signing key as

skp = H4(IDi, IDj ,mω, Uω)dj + Vω.

– PS: Given proxy signing key skp, in order to sign a message m on behalf of
user IDi,

1. Randomly pick rp ∈ Z∗
q and compute Up = rpP ∈ G and then put

Hp = H3(IDj ,m, Up) ∈ G.
2.Compute Vp = skp + rpHp ∈ G.

The proxy signature for message m on behalf of user IDi produced by user
IDj is psig = (mω, IDj , Uω, Up, Vp)

– PV: To verify a proxy signature psig = (mω, IDj , Uω, Up, Vp) for message
m with the original designator’s identity IDi, the verifier first takes Qi =
H1(IDi) ∈ G, Qj = H1(IDj) ∈ G , Hω = H2(IDi,mω, Uω) ∈ G and
Hp = H3(IDj ,m, Up) ∈ G. He then accepts the signature if

ê(P, Vp) = ê(Ppub, Qj)H4(IDi,IDj ,mω,Uω)ê(Ppub, Qi)ê(Up,Hp)ê(Uω,Hω)
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and rejects it otherwise.
– ID: Given a proxy signature psig = (mω, IDj , Uω, Up, Vp) for message m,

the proxy identification algorithm is defined as ID(psig) = IDj .

5 Analysis of Our Scheme

5.1 Correctness

Correctness. The proxy signature scheme is correct because of the following.

ê(P, Vp)
= ê(P, skp + rpHp)
= ê(P,H4(IDi, IDj ,mω, Uω)dj + Vω + rpHp)
= ê(P,H4(IDi, IDj ,mω, Uω)dj + di + rωHω + rpHp)

= ê(Ppub, Qj)H3(IDi,IDj ,mω,Uω)ê(Ppub, Qi)ê(Up,Hp)ê(Uω,Hω).

5.2 Security

The following theorem formally relates the security of our scheme to computa-
tional Diffie-Hellman assumption in the random oracle model.

Theorem 5.1. Given a security parameter k, let G be a (t′, ε′)-GDH group of
prime order q > 2k. P be a generator of G, and ê : G×G→ V be a bilinear map.
Then the ID-based proxy signature scheme on G is (t, qH , qE , qS , qPS , ε)-secure
against forgery for any t and ε satisfying

ε ≥ 4e(qE + 1)
(
1− qS (qH2 + qS )2−k

)−1 (
1− qPS (qH3 + qPS )2−k

)−1
ε′

t ≤ t′ − CG(qH1 + qH2 + qH3 + qH4 + 5qS + 7qPS + 4)

Proof . Suppose adversaryA(t, qH1 , qH2 , qH3 , qH4 , qE , qS , qPS , ε)-breaks the proxy
signature scheme. We show how to construct a t′-time algorithm C that solves
CDH in G with probability at least ε′. This will contradict the fact that G is a
(t′, ε′)-GDH group.

Algorithm C is given X = xP ∈ G and Y = yP ∈ G. Its goal is to out-
put xY = xyP ∈ G. Algorithm C simulates the challenger and interacts with
adversary A as follows.
Setup: Algorithm C initializes A with Ppub = X as a systems overall public key,
provides A with a randomly generated identity ID1 and creates an empty array
wskp1.
Queries on oracle H1: At any time adversary A can query the random oracle
H1. To respond to these queries, C maintains a list L1 of tuples 〈IDi, bi, ci〉 as
explained below. The list is initially empty. When an identity ID is submitted
to the H1 oracle, algorithm C responds as follows:
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1. If the query ID already appears on the list L1 in some tuple 〈ID, b, c〉
then algorithm C with H1(ID) = cbP + (1− c)bY .

2. Otherwise, C generates a random coin c ∈ {0, 1} such that Pr[c = 0] =
1

qE+1 .
3. Algorithm C picks a random b ∈ Z∗

q , adds the tuple 〈ID, b, c〉 to the list
L1. If c = 0 holds, C responds to A with bY , with bP otherwise.
Queries on oracle H2: To respond to queries to H2 oracle, C maintains a list
L2 of tuples 〈IDi,mi, Ui, vi, si〉 as explained below. When a tuple〈ID,m, U〉 is
submitted to the H2 oracle, algorithm C responds as follows:

1. If the query tuple already appears on the list L2 in some tuple 〈ID,m, U, v, s〉,
then algorithm C responds with H2(ID,m, U) = svP + (1− s)vPpub ∈ G.

2. Otherwise, C generates a random coin s ∈ {0, 1} such that Pr[s = 0] = 1/2
3. Algorithm C picks v ∈ Z∗

q at random, stores the tuple 〈ID,m, U, v, s〉 in
the list L2.If s = 0 holds, C responds to A with vPpub, with vP otherwise.
Queries on oracle H3: To respond to queries to H3 oracle, C maintains a
list L3 of tuples 〈IDi,mi, Ui, ηi〉 as explained below. When a tuple〈ID,m, U〉 is
submitted to the H3 oracle, algorithm C responds as follows:

1. If the query tuple already appears on the list L3 in some tuple 〈ID,m, U, η〉,
then algorithm C responds with H3(ID,m, U) = ηP ∈ G.

2. Otherwise,algorithm C picks η ∈ Z∗
q at random, stores the tuple 〈ID,m, U, η〉

in the list L3 and returns ηP as a hash value to A.
Queries on oracle H4: To respond to queries to H4 oracle, C maintains a list L4

of tuples 〈IDi, ID′
i,mi, Ui, µi〉 as explained below. When a tuple〈ID, ID′,m, U〉

is submitted to the H4 oracle, algorithm C responds as follows:
1. If the query tuple already appears on the list L4 in some tuple 〈ID, ID′,m, U, µ〉,

then algorithm C responds with H4(ID, ID′,m, U) = µ ∈ Z∗
q .

2. Otherwise, algorithm C picks µ ∈ Z∗
q at random, stores the tuple 〈ID, ID′,m, U, µ〉

in the list L4 and returns µ as a hash value to A.
Extraction Queries: WhenA requests the private key associated to an identity
IDi(i 6= 1), C recovers the corresponding 〈IDi, bi, ci〉 from L1. If ci = 0, then
output “failure” and halts. Otherwise, it means that H1(IDi) was previously
defined to be biP and biPpub = biX ∈ G is then returned to A as a private key
associated to IDi.
ID1 Designates IDi Requests: If A requests to interact with D(ID1, IDi, d1),
for some i 6= 1, playing the role of P(ID1, IDi, di), C creates an appropriate
message mω and makes query to signing oracle OS(d1,mω). Upon receiving an
answer ω, it forwards mω, ω to A.
IDi Designates ID1 Requests: If A requests to interact with P(IDi, ID1, d1),
for some i 6= 1, playing the role of D(IDi, ID1, di), when A outputs mω, ω =
〈Uω, Vω〉, challenger C verifies that 〈Uω, Vω〉 is a valid signature for message mω.
If so, C stores mω, 〈Uω, Vω〉 in the last unoccupied position of wskpi.
ID1 Designates ID1 Requests: If A requests user ID1 run (D,P) protocol
with itself, C creates an appropriate message mω and makes query to signing
oracle OS(d1,mω). Upon receiving an answer 〈Uω, Vω〉, it stores mω, 〈Uω, Vω〉 in
the last unoccupied position of wskp1.
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Standard Signature Queries: If A queries signing oracle OS(d1,m), Algo-
rithm C responds to this query as follows: algorithm C first recovers the previously
defined value Q1 = H1(ID1) ∈ G from the list L1. It then chooses r1, r2 ∈ Z∗

q

at random, sets V = r1Ppub = r1X ∈ G, U = r2Ppub = r2X ∈ G and defines the
hash value H2(ID1,m, U) as r−1

2 (r1P −Q1) ∈ G (C output “failure” and halts if
H2 turns out to be already defined for the input 〈ID1,m, U〉). The pair (U, V )
is a valid signature on message m under ID1. Algorithm C gives (U, V ) to A.
Proxy Signature Queries: If A queries proxy signatures by ID1 on behalf of
IDi using the l-th proxy signing key, i.e. query (i, l,m), Algorithm C responds
to this query as follows. If wskpi[l] is not defined, it returns ⊥ to A. Otherwise,
it parses wskpi[l] as mω, 〈Uω, Vω〉, and performs the following operations.

– Recover the previously defined value Q1 = H1(ID1) ∈ G and Qi = H1(IDi) ∈
G from the list L1.

– Make query (IDi,mω, Uω) to H2 oracle, C recovers the corresponding 〈IDi,mω, Uω, v, s〉
from L2. If s = 1, then output “failure” and halts. Otherwise, it means that
H2(IDi,mω, Uω) was previously defined to be vPpub.

– Make query (IDi, ID1,mω, Uω) to H4 oracle and return H4(IDi, ID1,mω, Uω) =
µ.

– Pick r1, r2 ∈ Z∗
q at random and define Vp = r1Ppub ∈ G, Up = r2Ppub ∈ G.

– Define the hash value H3(ID1,m, Up) as r−1
2 (r1P − Qi − µQ1 − vUω) ∈ G

(C output “failure” and halts if H3 turns out to be already defined for the
input 〈ID1,m, Up〉).

– (mω, ID1, Uω, Up, Vp) is a valid proxy signature by ID1 on behalf of IDi

using the l-th proxy signing key.

Output : Finally, A halts and at least one of the following cases occurs.
1. A concedes failure, in which case so does C .
2. A outputs a standard signature forgery (m, sig) and no query OS(d1,m)

was made.
3. A outputs a forgery of a proxy signature (m, psig, IDi) by user ID1 on

behalf of user IDi and no valid query (i, l,m) was made.
4. A outputs a forgery of a proxy signature (m, psig, ID1) by user IDi on

behalf of user ID1, and user IDi was not designated by user ID1.
Now we only consider case 3, as case 2 and case 4 are similar to case 3. If A

outputs a forgery of a proxy signature (m∗, psig∗, IDi) by user ID1 on behalf
of user IDi where psig∗ = (m∗

ω, ID1, U
∗
ω, U∗

p , V ∗
p ), then algorithm C recovers

〈ID1, b1, c1〉 and 〈IDi, bi, ci〉 on the list L1.
Algorithm C proceeds only if c1 = 0 and ci = 1. Otherwise, C declares

failure and halts. It follows Q1 = b1Y and Qi = biP . The proxy signature
(m∗, psig∗, IDi) must satisfy verification equation

ê(P, V ∗
p ) = ê(Ppub, Q1)H4(IDi,ID1,m∗

ω,U∗
ω)ê(Ppub, Qi)ê(U∗

p ,H∗
p )ê(U∗

ω,H∗
ω).

Next, algorithm C recovers 〈IDi, ID1,m
∗
ω, U∗

ω, µ∗〉 on the list L4 (H4(IDi, ID1,m
∗
ω, U∗

ω) =
µ∗), 〈ID1,m

∗, U∗
p , η∗〉 on the list L3 (H∗

p = H3(ID1,m
∗, U∗

p ) = η∗P ) and
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〈IDi,m
∗
ω, U∗

ω, v∗, s∗〉 on the list L2. C declares failure and halts if s∗ = 0. Oth-
erwise, H∗

ω = H2(IDi,m
∗
ω, U∗

ω) = v∗P . Then we can deduce

ê(P, V ∗
p ) = ê(µ∗Ppub, b1Y )ê(Ppub, biP )ê(U∗

p , η∗P )ê(U∗
ω, v∗P ).

C calculates and outputs the required xY as b−1
1 µ∗−1(V ∗

p −biPpub−η∗U∗
p−v∗U∗

ω).
This completes the description of algorithm C. To complete the proof, we

shall show that C solves the given instance of CDH problem in with probability
at least ε′. First, we analyze the five events needed for C to succeed:

– Σ1: C does not abort as a result of any of A’ key extraction queries.
– Σ2: C does not abort as a result of any of A’ standard signature queries.
– Σ3: C does not abort as a result of any of A’ proxy signature queries.
– Σ4: A generates a valid and nontrivial proxy signature forgery.
– Σ5: Event Σ4 occurs, and, in addition, c1 = 0, ci = 1 and s∗ = 0. Here c1

and ci are the c-component of the tuple on the list L1. s∗ is the s-component
of the tuple on the list L2.

Algorithm C succeeds if all of these events happen. The probability Pr[Σ1∧Σ2∧
Σ3 ∧Σ4 ∧Σ5] can be decomposed as

Pr[Σ1∧Σ2∧Σ3∧Σ4∧Σ5] = Pr[Σ1]Pr[Σ2|Σ1]Pr[Σ3|Σ1∧Σ2]Pr[Σ4|Σ1∧Σ2∧Σ3]Pr[Σ5|Σ1∧Σ2∧Σ3∧Σ4]
(1)

Claim 1. The probability that algorithm C does not abort as a result of A’s
key extraction queries is at least (1 − 1/(qE + 1))qE . Hence we have Pr[Σ1] ≥
(1− 1/(qE + 1))qE .

Proof. As Pr[c = 0] = 1/(qE + 1), for a key extraction query, the probability
that C does not abort is 1 − 1/(qE + 1). Since A makes at most qE queries to
the key extraction oracle, the probability that algorithm C does not abort as a
result of’s key extraction queries is at least (1− 1/(qE + 1))qE . �

Claim 2. The probability that algorithm C does not abort as a result of A’s
standard signature queries is at least 1 − qS (qH2 + qS )2−k. Thus there hold
Pr[Σ2|Σ1] ≥ 1− qS (qH2 + qS )2−k.

Proof. As the list L2 never contains more than qH2 + qS entries, the probability
of C to fail in handling a signing query because of a conflict on is at most
qS(qH2 + qS )2−k. And events Σ1 and Σ2 are independent, so Pr[Σ2|Σ1] ≥ 1 −
qS (qH2 + qS )2−k. �

Claim 3. The probability that algorithm C does not abort as a result of A’s
proxy signature queries is at least 1/2

(
1− qPS (qH3 + qPS )2−k

)
. Thus there hold

Pr[Σ3|Σ1 ∧Σ2] ≥ 1/2
(
1− qPS (qH3 + qPS )2−k

)
.

Proof is similar to Claim 2.
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Claim 4. If algorithm C does not abort as a result of’s signature queries and
key extraction queries then algorithm’s view is identical to its view in the real
attack. Hence,

Pr[Σ4|Σ1 ∧Σ2 ∧Σ3] ≥ ε.

Claim 5. The probability that algorithm C does not abort after A outputting
a valid and nontrivial forgery is at least 1

2 (1− 1
qE+1 ) 1

qE+1 . Hence

Pr[Σ5|Σ1 ∧Σ2 ∧Σ3 ∧Σ4] ≥
1
2
(1− 1

qE + 1
)

1
qE + 1

.

Proof. After A outputs a valid and nontrivial forgery, algorithm C does not abort
if only if c1 = 0, ci = 1 and s∗ = 0. So the conclusion is correct. �

According to the equation (1), algorithm C produces the correct answer with
probability at least

1
4

(
1− qS (qH2 + qS )2−k

) (
1− qPS (qH3 + qPS )2−k

)
(1− 1

qE + 1
)q

E
+1 ε

qE + 1

≥ 1
4

(
1− qS (qH2 + qS )2−k

) (
1− qPS (qH3 + qPS )2−k

) ε

e(qE + 1)
≥ ε′

as required.
Algorithm C’s running time is the same as A’s running time plus the time

to respond to qH1 + qH2 + qH3 + qH4 + qS + qPS hash queries, qE key extraction
queries and qS + qPS signature queries, and the time to transform’s final forgery
into the CDH solution. Hence, the total running time is at most t + CG(qH1 +
qH2 + qH3 + qH4 + 5qS + 7qPS + 4) ≤ t′ as required. This completes the proof of
Theorem. �

6 Conclusion

ID-based public key cryptosystem can be an alternative for certificate-based
public key infrastructures. In this paper we formalized a notion of security for
ID-based proxy signature scheme and proposed an scheme from bilinear pairings.
The security of our scheme is tightly related to Computational Diffie-Hellman
(CDH) problem in the Random Oracle model. Furthermore, we showed that
optimal security reductions are also achievable for ID-based proxy signatures.
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