
The Security and Efficiency of Micciancio’s
Cryptosystem

Christoph Ludwig

FB 20, Technische Universität Darmstadt
Alexanderstr. 10, D-64283 Darmstadt, Germany
cludwig@cdc.informatik.tu-darmstadt.de

Abstract. We report experiments on the security of the GGH-like cryp-
tosystem proposed by Micciancio. Based on these experiments, we con-
clude that the system can be securely used only in lattice dimensions
≥ 782. Further experiments on the efficiency of the system show that
it requires key sizes of 1 MByte and more and that the key generation
as well as the decryption take inacceptibly long. Therefore, Micciancio’s
cryptosystem seems currently far from beeing practical.
Keywords: Lattices, trapdoor functions, public-key encryption.

1 Introduction

Lattice theory has important applications in cryptography. Perhaps the
most widely known are attacks against many knapsack based cryptosys-
tems, RSA, and DSA. But lattice theory has also been used in security
proofs and in the construction of new cryptosystems. In contrast to cryp-
tosystems based on factoring or discrete logarithms, there are no known
quantum algorithms that allow to attack lattice based cryptosystems sig-
nificantly faster than with classical algorithms. Lattice based cryptogra-
phy may therefore serve as a long term alternative to established cryp-
tosystems.

In 2001, Micciancio [Mic01] proposed a cryptosystem strongly related
to the GGH system [GGH97b] that is based on the closest vector problem,
one of the classical problems in lattice theory. His system seems attractive
not only because its base problem is cryptographically independent from
established systems like RSA or elliptic curve cryptography. It also offers
several advantages over GGH: The key and ciphertext sizes are asymp-
totically one order of magnitude smaller than in the GGH system. Most
important, Micciancio’s choice of public keys offers the highest security
achievable with a cryptosystem of GGH type.

But there is no comprehensive analysis of the lattice dimension reqired
for the system to be secure or of the system’s efficiency in practice yet.

In this paper we determine the minimum lattice dimension that guar-
antees security for Micciancio’s cryptosystem and we discuss the efficiency
of Micciancio’s system in that circumstances. Our result uses the method-
ology of Lenstra and Verheul [LV01] and is based on extensive experiments
that we carried out. In particular, we found that secure instances must be
in dimension n ≥ 782, which is much larger than dimension 500 conjec-
tured by Micciancio. Recently, Schnorr [Sch02] published novel algorithms
for solving the closest vector problem. If we assume the improvements in
the asymptotic running time take full effect in practice, then the required
dimension jumps up to 2094.

Our further experiments on the space and time efficiency of the system
show that one must expect public keys of at least 1 MByte. Without
significant improvements in algorithms for computing the Hermite normal
form, the key generation will take days. The encryption procedure is quite
fast, but the decryption suffers from an instability of Babai’s nearest plane
algorithm when using floating point arithmetic. We show how to overcome
this, but our experiments show a decryption time of over 73 minutes in
dimension 800, not including the required orthogonalization of the private
lattice basis. If the orthogonalization is precomputed, one needs to store
in dimension 800 more than 4.8MByte in addition to the private key.

We therefore have to conclude that currently Micciancio’s system is
far from beeing practical.

In section 2 we give some basic definitions and results from lattice
theory and outline cryptosystems of GGH type in general as well as Mic-
ciancio’s system in particular. In section 3 we describe possible attack
strategies, report on our experiments and discuss the extrapolation of
their results. Finally, in section 4 we determine the time and space effi-
ciency of both the key size and key generation as well as the encryption
and decryption functions. We also describe how to successfully decrypt
ciphertexts with a floating point variant of Babai’s algorithm.

2 Lattices and Micciancio’s Cryptosystem

2.1 Preliminaries on Lattices

A k-dimensional lattice L is the Z-span of some R-linear independent
lattice basis B = {b1, . . . , bk} ⊂ Rn, i. e. L = {

∑k
i=1 aibi : a1, . . . , ak ∈ Z}.

By abuse of notation, we identify the basis B with the n× k matrix B =
[b1, . . . , bk]. In the following, we only consider fully dimensional integral
lattices, so k = n and B ∈ Zn×n. All vector norms and scalar products
are Euclidean.

The skewedness of a basis B is measured by the orthogonalization
defect odef(B) := det(B)−1

∏n
i=1 ‖bi‖. By Hadamard’s inequality, we

have odef(B) ≥ 1 with equality if and only if B is an orthogonal ba-
sis. B∗ = [b∗1, . . . , b

∗
n] denotes the Gram-Schmidt orthogonalization of B,

b∗i = bi −
i−1∑
j=1

〈bi, b
∗
j 〉

‖b∗j‖2
b∗j for i = 1, . . . , n .

The height of B, short h(B), is the height of the cube spanned by the
orthogonalized basis [b∗1, . . . , b

∗
n], i. e. h(B) = min{‖b∗1‖, . . . , ‖b∗n‖}. (Note

that h(B) depends on the order of the basis vectors.)
The Closest Vector Problem (CVP) is a classical lattice problem:

Given a vector x ∈ Rn and some basis B of a lattice L, find a lattice
point v ∈ L with minimal distance ‖x − v‖. More than twenty years
ago, van Emde Boas [EB81] showed CVP is NP -hard. A related prob-
lem is the Shortest Vector Problem (SVP) that asks for a nonzero vector
of minimal length in L. SVP is NP -hard under randomized reductions
[Ajt98, Mic98].

Among the infinitely many bases of a lattice, some are better suited
to solve CVP instances than others. Generally speaking, the smaller the
vectors in B and the less the orthogonalization defect odef(B), the easier
are corresponding instances of CVP and SVP. Given an arbitrary lattice
basis, it is hard to compute a sufficiently “good” basis of the same lattice.
There are algorithms to improve a basis, though. The most famous one
is the polynomial-time LLL-reduction [LLL82, SE94, SH95]. An LLL-
reduced basis contains an approximation to a shortest lattice vector up
to a factor exponential in the lattice dimension.

2.2 Cryptosystems of GGH Type

Cryptosystems of GGH type can be described as follows: One chooses
a basis R ∈ Zn×n of some lattice L that allows to efficiently compute
the closest lattice point for all vectors x ∈ Rn within some reasonable
distance ρ from L. R serves as private key. The public key B is another
basis of L that is a “bad” starting point for solving the CVP. The CVP in
L has to be infeasible for everyone who knows only the basis B. Typically,
odef(R) is very small while odef(B) is very big. The trapdoor function is

fB : Zn × E → Zn : (x, e) 7→ Bx + e

where E ⊂ {e ∈ Zn : ‖e‖ ≤ ρ} is a set of error vectors not longer than
ρ. Given c = fB(x, e), everyone in possession of the trapdoor R (or some

other sufficiently reduced basis) can efficiently compute the lattice vector
v = Bx ∈ L closest to c and therefore determine e = c−v and x = B−1v.
On the other hand, whoever is able to recover x or e is also able to
compute the lattice point v. By our requirement on B, this is infeasible
for everyone who knows only the public key.

For the GGH challenges [GGH97a] in dimension 200 through 400, R
was n1/2I + Q for some uniformly chosen Q ∈ {−4, . . . , 4}n×n. B was
generated from R by repeated elementary column transformations. The
message was encoded in x while e was chosen randomly in E = {±3}n.
This particular choice of E allowed Nguyen [Ngu99] to break the GGH
challenges.

2.3 Micciancio’s Cryptosystem

Micciancio observed in [Mic01] that not only the choice of E rendered
GGH unnecessarily weak. Because of Babai’s nearest-plane method for
computing near lattice vectors [Bab86], every basis R of L with 2ρ < h(R)
qualifies as trapdoor. There is no reason to restrict R to bases near the
coordinate axes as GGH does. Micciancio proposed R to be the LLL-
reduction of a matrix uniformly chosen in {−n, . . . , n}n×n and E = {e ∈
Zn : ‖e‖ < h(R)/2}.

Every lattice has a unique basis H = (hi,j) in Hermite normal form
(HNF), i. e., H is upper triangular, all diagonal elements hi,i are positive,
and 0 ≤ hi,j < hi,i for all 1 ≤ i < j ≤ n. Since the HNF requires
O(n2 log n) bit space rather than the O(n3 log n) bit of the public key in
the original GGH proposal, it is attractive to choose H as public key.
Micciancio pointed out that one does not forgo any potential security
by this choice, because there are well known polynomial-time algorithms
for computing the HNF basis H from any lattice basis. In particular, an
attacker can compute H from any public key B.

If the message is encoded in the error vector e rather than in x, the
size of the ciphertext c = Hx + e can also be reduced. There is a unique
c′ ∈ Zn such that c′ ≡ c mod L and H−1c′ ∈ [0, 1[n. Then e = c′ − v′

where v′ is the lattice point closest to c′. c′ can be easily computed from
c as well as from e with knowledge of the public basis H only. c′ requires
only O(n log n) bits in contrast to O(n2 log n) bits in the GGH proposal,
because 0 ≤ c′i ≤

∑n
j=i hi,j .

3 Security of Micciancio’s Cryptosystem

There are two main strategies to solve CVP instances, Babai’s nearest-
plane method [Bab86] and the embedding method [Ngu99]. Recently,
Schnorr published a sampling method [Sch02]. We do not have practi-
cal experience with his approach yet, but we take Schnorr’s results into
account when we extrapolate the running time of our experiments.

Babai’s method has the advantage that it always returns the closest
(rather than just a near) vector provided the error vector is shorter than
half of the basis’ height. Hence, it guarantees that the private basis R
is indeed a trapdoor. But while the height of Micciancio’s private bases
grows linearly, the height of an LLL reduction of the HNF is negligible, see
Fig. 1. An attacker is therefore more likely to succeed with the embedding
method.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

he
ig

ht

dimension

Key Height

private key
LLL of public key, delta = 0.90

Fig. 1. Height of private and reduced public key.

The error vector in Micciancio’s system is always shorter than the
shortest nonzero vector in the lattice generated by H. The idea of the
embedding method is therefore to transform the CVP into a SVP in-
stance. One adds the ciphertext c to the public basis embedded in Rn+1.
If a lattice basis reduction actually yields the shortest vector in the lattice
generated by the new basis, then the attacker recovered the error vector
e up to the sign.

3.1 Attacks in Low Dimensions

An approximate solution to the underlying CVP or – after embedding –
to the SVP is not sufficient to break Micciancio’s cryptosystem. But a
theoretical analysis of the polynomial time lattice reduction algorithms
guarantees only an approximation up to a factor exponential in the lattice
dimension. However, the LLL algorithm and its improved Block Korkine-
Zolotarev (BKZ) variant often perform much better than one can expect
from the theoretical bounds. It is therefore reasonable to attack Miccian-
cio’s system by BKZ reduction.

There is no comprehensive analysis or description of the behavior of
lattice reduction algorithms in practice. Thus, it is somewhat unclear how
an attacker is to choose the reduction parameters and heuristics in order
to maximize the likeliness of success while minimizing the running time.
In our experiments, we settled for three reductions. First we tried an LLL
reduction with δ = 0.99, then a pruningless BKZ reduction with δ = 0.99
and block size k = 20. Finally, we tried a BKZ reduction with δ = 0.99,
k = 60 and pruning factor 20.

Because of the problems with Babai’s nearest plane algorithm re-
ported in section 4.2, one may prefer a different algorithm for decryption,
e. g. the simple round-off method. But then the error vectors must be
significantly shorter than h(R)/2. We therefore ran our experiments with
error vectors of varying length.

We created key pairs for Micciancio’s system up to dimension 280.
For each key pair and r = 10%, 20%, . . . , 100%, we randomly chose up
to 5 error vectors, each of length rρ, and encrypted them as described in
section (2.3). All in all, we generated more than 9800 ciphertexts. The
results of our attacks on these ciphertexts are shown in Tabs. 1 and 2.
All experiments were performed on Sun Blades 100. All machines have an
500 MHz UltraSparc IIE processor and 1 GByte RAM. For simplicity, we
assume the performance of these machines to be 500 MIPS. The lattice
reductions were done with the extended exponent double variant of the
LLL and BKZ implementations with Givens orthogonalization in Shoup’s
NTL library [Sho01].

The results allow several observations: As long as the same algorithms
are successful, the running time is independent from the length of the
error vector. However, there is a relation between the error vector length
and the likeliness that an attack with small block size succeeds. E, g.,
LLL recovered some messages even in dimension 280 if r = 10%. But if
r = 100%, then LLL always failed in dimensions 180 and higher.

dim
relative length r of error vector in percent
10 20 30 40 50 60 70 80 90 100

50 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

110 100 100 100 100 100 100 100 100 100 100

120 100 100 100 100 100 100 100 100 94 92

130 100 100 100 100 100 100 90 100 92 92

140 100 100 100 100 100 94 88 100 88 62

150 100 100 100 100 100 94 90 62 68 60

160 100 100 100 100 100 90 64 40 48 27

180 100 98 100 98 78 48 40 8 12 16

190 100 100 100 89 71 39 26 38 0 30

200 100 100 100 64 32 20 12 12 20 58

220 100 92 44 40 8 0 32 32 48 92

240 100 65 10 20 10 41 50 90 100 100

260 100 0 0 0 33 73 93 90 100 100

280 50 0 10 30 40 90 100 80 100 100

Table 1. Success Ratio of Embedding Attacks in Percent

dim
relative length r of error vector in percent

10 20 30 40 50 60 70 80 90 100

50 1 1 1 1 1 1 1 1 1 1

100 52 51 52 51 51 51 51 51 51 51

110 80 80 80 80 80 79 79 79 79 80

120 112 112 112 112 112 112 112 112 113 115

130 171 171 171 171 171 171 170 171 176 170

140 233 232 233 233 233 235 226 232 231 239

150 362 362 362 362 362 354 353 352 360 350

160 515 515 516 515 515 510 522 540 529 504

180 762 767 762 768 800 804 761 748 1091 1124

190 1147 1145 1145 1146 1136 1169 1366 1355 1909

200 1380 1381 1381 1446 1554 1615 1615 2445 2506 19984

220 2223 2194 2322 2213 2833 4367 4250 4834 5319

240 3412 3424 3877 5594 5687 6306 8309 8799 10629 26624

260 5104 12847 12426 14092 13796 16813 21763

280 6391 11667 10792 16004 21094 22942 25233 26944 38177

Table 2. Average Running Time of Successful Embedding Attacks in Seconds

The high success ratio in the lower right corner of Tab. 1 is due to
the BKZ reduction with blocksize 20. BKZ with blocksize 60 and pruning
never recovered a message if LLL and BKZ with blocksize 20 failed to do
so.

3.2 Lenstra-Verheul Extrapolation

BKZ reduction with blocksize k = n will always yield a shortest lattice
vector and therefore recover the plaintext. Since BKZ requires O(n3kk+o(k)+
n4) steps, O(exp(n)) is an asymptotic upper bound for the running time
of the attacks.

In practice, the worst case approximation factor (k/3)n/k of the BKZ
algorithm is too pessimistic. The algorithm often finds a shortest vector
even if k is significantly smaller than n. Since the cryptosystem is insecure
if an attacker stands a non-negligible chance to recover a plaintext, we
cannot exclude the possibility that the running time of the attacks may
be subexponential in practice. We therefore also extrapolated our data
with the hypothetical running time bound O(exp(n1/2)). This particular
choice is of course somewhat arbitrary, but it serves to demonstrate that
in practice Micciancio’s system may require higher dimensional lattices
than the lower bound we determined.

Schnorr [Sch02] shows under two assumptions that his new sampling
method approximates the closest vector up to a factor at most (k/6)n/2k

in O(n3(k/6)k/4 + n4) time, improving the exponent by a factor 4. His
asymptotically even faster birthday sampling algorithms seem impractical
in dimension ≥ 800 since their space requirements grow exponential in k.

We extrapolated our data in four scenarios: First, we considered only
attacks with the BKZ algorith as implemented in the NTL library and op-
timisticly assumed the running time O(exp(n1/2)). Second, we determined
the running time with the worst case running time bound O(exp(n)).
Finally, we repeated these extrapolations assuming the asymptotic im-
provements in Schnorr’s sampling will take full effect in practice.

The resulting extrapolation functions are given in Tab. 3. Based upon
the number of MIPS-years that are infeasible today, in 10 years, and in 20
years according to Lenstra and Verheul, the extrapolation functions allow
to compute the minimal lattice dimension in which Micciancio’s system
should be considered secure (Tab. 4). Even if we assume an exponential
running time of the attacks and if we ignore potential improvements by
Schnorr’s sampling algorithms or other less drastic algorithmic improve-
ments, we soon need lattice dimensions ≥ 800, significantly higher than

sampling r in percent O(exp(n)) O(exp(n1/2))

no
10 exp(0.0349 ∗ n− 10.9887) exp(0.8565 ∗ n1/2 − 15.9714)

50 exp(0.0383 ∗ n− 11.3600) exp(0.9307 ∗ n1/2 − 16.7198)

100 exp(0.0469 ∗ n− 12.4045) exp(1.1093 ∗ n1/2 − 18.5544)

yes
10 exp(0.0087 ∗ n− 2.7472) exp(0.2141 ∗ n1/2 − 3.9928)

50 exp(0.0096 ∗ n− 2.8400) exp(0.2327 ∗ n1/2 − 4.1800)

100 exp(0.0117 ∗ n− 3.1011) exp(0.2773 ∗ n1/2 − 4.6386)

Table 3. Extrapolation of Running Time in MIPS-Year

conjectured by Micciancio. If we concede an attacker may employ im-
proved algorithms or may not need to increase the block size linearly,
then the required lattice dimension is even a multiple of Micciancio’s
conjecture.

If we chose a faster decryption procedure that requires shorter error
vectors than the required lattice dimension was also significantly higher.

sampling r in percent year O(exp(n)) O(exp(n1/2))

no

10
2003 1010 2209
2013 1162 2831
2023 1314 3530

50
2003 930 1941
2013 1069 2477
2023 1208 3078

100
2003 782 1492
2013 895 1885
2023 1008 2323

yes

10
2003 3094 17436
2013 3703 24608
2023 4311 33009

50
2003 2831 14965
2013 3385 21076
2023 3940 28229

100
2003 2334 10875
2013 2787 15240
2023 3239 20338

Table 4. Required Lattice Dimensions

4 Efficiency of Micciancio’s System

4.1 Key Size and Key Generation

We generated 260 key pairs in lattice dimensions up to 475. The private
key generation was dominated by the LLL reduction of the randomly
chosen bases, that took up to 58 minutes. For the computation of the
public keys, we tested several HNF implementations in dimension 200 and
decided to use the implementation of Kannan’s algorithm in the LiDIA
library [LG01] that ran for about 4 hours in dimension 475.

We also generated a single key pair in dimension 800. The private
key was completed after 4.5 hours, the public key generation took about
46 hours.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450 500

si
ze

 in
 K

B
yt

es

dimension

Key Size

private key
public key

Fig. 2. Key Sizes

One of the advantages of Micciancio’s proposals over the original GGH
scheme is that it reduces the asymptotic public key size from O(n3 log n)
to O(n2 log n). Nevertheless, he found that the HNF basis of the GGH
challenge in dimension 400 still requires 140 KByte. In our experiments,
the public keys turned out to be even bigger due to the different choice
of private bases. Ignoring any bookkeeping overhead and accumulating
the bitlength of all nonzero entries, we found the public keys require
1.0MByte in dimension 800, for lower dimensions see Fig. 2. The private
keys are consistently smaller by a factor 0.69.

4.2 Encryption and Decryption

Algorithm 1 Babai’s nearest-plane algorithm
Require: R = [r1, . . . , rn] ∈ Zn×n is basis of lattice L.

R∗ = [r∗1 , . . . , r∗n] ∈ Qn×n is Gram-Schmidt orthogonalization of R.
c ∈ Rn

Ensure: v ∈ L is lattice point close to c.
1: for i = n downto 1 do
2: xi ← d〈c, r∗i 〉/‖r∗i ‖2c /* round to closest integer */
3: c← c− xiri

4: end for
5: return v ← R(x1, . . . , xn)t

Micciancio’s encryption procedure simply reduces the message en-
coded in the error vector e modulo the public basis H as described in
section 2.3. This involves solving one linear system and computing one
matrix vector product. Since H is upper triangular and typically sparse,
both operations are relatively cheap. The encryption of a message in di-
mension 800 takes on the Sun Blades about 0.29 seconds.

The situation is drastically different with the decryption procedure.
Assuming exact arithmetic and 2ρ < h(R), Babai’s nearest-plane algo-
rithm correctly decrypts all ciphertexts. But even small errors in the or-
thogonalized basis R∗ cause the algorithm to fail in line 2 of Alg. 1. In our
experiments, we had to compute the orthogonalization with a precision
of several thousand bits in order to be reliably able to decrypt messages
with an unmodified implementation of Babai’s algorithm. The running
time and space requirements render this approach inacceptable.

Two observations nevertheless allow to decrypt ciphertexts c in prac-
tice: The quality of the approximation to the closest vector computed by
Babai’s algorithm depends on the length ‖c‖. And even if it can’t deter-
mine the closest vector due to rounding errors, the algorithm is likely to
find a more or less close lattice vector v′. I. e., c′ := c−v′ is shorter than c.
(Otherwise, we can’t avoid to restart the algorithm with higher precision.
But in our experiments, we never encountered this case.) If 2‖c′‖ < h(R),
then we know c′ = e and we terminate. Otherwise we replace c by c′

and apply Babai’s algorithm again. Since c′ is shorter than c, the algo-
rithm returns a better approximation than in the previous iteration. c′

will eventually be short enough to compute the closest vector.
It turned out to be most efficient to compute R∗ with hardware float-

ing point arithmetic, i. e. with 53 bit precision. For the actual orthogo-

Dimension Precision Orthogonalization Decryption
iterations

(double / xdouble)

200

53 0.6 0.3 22 / 22
200 1.3 0.7 41
500 4.2 4.5 4

2000 36.4 15.1 1

400
53 4.7 4.3 23 / 79

250 11.7 6.2 19
500 31.1 13.4 10

800 53 40.1 73.7 23 / 215

Table 5. Performance of Decryption (in Minutes).

nalization, we preferred the much more stable QR decomposition with
Fast Givens Rotations [GvL96] over the modified Gram-Schmidt proce-
dure. Due to an exponent overflow, only about the last 23 iterations can
use a hardware arithmetic implementation of Babai’s algorithm, though.
Decryption of a random ciphertext in dimension 800 requires about 240
iterations. Each iteration decreases the length of c by about 13 decimal
places.

Tab. 5 shows the running time for computing the QR decomposition
as well for the actual decryption procedure with varying floating point
precisions. If the precision was 53 bit, then we used the hardware datatype
double or – if necessary within the nearest-plane algorithm – the extended
exponent datatype xdouble from NTL. If the precision was more than
53 bit, than all computations were done with NTL’s floating point type
RR. The decryption of a message, excluding the orthogonalization, takes
more than 73 minutes in dimension 800.

Since the orthogonalization of the private basis takes additional 40 min-
utes in dimension 800, it is attractive to precompute the orthogonalized
basis. However, even with only 53 bit precision, the orthogonalized basis
requires more than 4.8 MByte memory.

5 Conclusion

Much higher lattice dimensions are necessary for Micciancio’s cryptosys-
tem to yield a secure cryptosystem than previously conjectured. Consid-
ering recent algorithmic progress, the required dimension may very well
be > 1000. In consequence, the keys require 1MByte space and more, the

key generation as suggested by Micciancio takes days and the decryption
with an iterated nearest-plane algorithm takes at least minutes.

For all practical purposes, Micciancio’s cryptosystem seems therefore
currently not viable.

References

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP -hard for ran-
domized reductions (extended abstract). In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, pages 10–19. ACM
Press, 1998.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986.

[EB81] P. van Emde Boas. Another NP -complete partition problem and the
complexity of computing short vectors in a lattice. Technical Report 81-
04, University of Amsterdam, Department of Mathematics, Netherlands,
1981.

[GGH97a] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. The Goldreich-
Goldwasser-Halevi cryptosystem, challenge page. URL http://theory.

lcs.mit.edu/cis/lattice/challenge.html, 1997.

[GGH97b] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In Burton S. Kaliski, Jr., editor,
Advances in Cryptology – Crypto’97, volume 1294 of Lecture Notes in
Computer Science, pages 112 – 131. Springer-Verlag, 1997.

[GvL96] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns
Hopkins University Press, 3rd edition, 1996.

[LG01] LiDIA-Group. LiDIA – A library for computational number theory.
TU Darmstadt, 2001. Release 2.1pre5.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255–293, 2001.

[Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approxi-
mate to within some constant. In IEEE Symposium on Foundations of
Computer Science, pages 92–98, 1998.

[Mic01] Daniele Micciancio. Improving lattice based cryptosystems using the Her-
mite normal form. In Silverman [Sil01], pages 126–145.

[Ngu99] Phong Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryp-
tosystem from Crypto’97. In M. Wiener, editor, Advances in Cryptology
– Crypto’99, volume 1666 of Lecture Notes in Computer Science, pages
288–304. Springer-Verlag, 1999.

[Sch02] Claus Peter Schnorr. Lattice reduction by random sampling and birthday
methods. available at http://www.mi.informatik.uni-frankfurt.de/

research/papers.html, 2002. Preprint.

[SE94] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. Math. Programming,
66:181–199, 1994.

[SH95] C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem
by improved lattice reduction. In Advances in Cryptology – Eurocrypt’95,
volume 921 of Lecture Notes in Computer Science, pages 1–12. Springer,
1995.

[Sho01] Victor Shoup. NTL – a library for doing number theory. URL http:

//www.shoup.net/ntl/index.html, 2001. Release 5.2.
[Sil01] Joseph H. Silverman, editor. Cryptography and Lattices, volume 2146 of

Lecture Notes in Computer Science. Springer-Verlag, 2001.

