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1 Introduction

The ISO/IEC JTC1/SC27 standardisation committee [19] suggest that hy-
brid cryptography can be defined as the branch of asymmetric cryptography
that makes use of convenient symmetric techniques to remove some of the
problems inherent in normal asymmetric cryptosystems (e.g., the problems
encounter when trying to process long messages quickly). This definition is
somewhat vague. What makes certain mathematical manipulations “asym-
metric” and others “symmetric”? Why are S-boxes considered a symmetric
technique and elliptic curves an asymmetric technique? And what should
finite field arithmetic, which is used in both asymmetric and symmetric
algorithms, be classed as?

It is perhaps better to define hybrid cryptography as the branch of asym-
metric cryptography that makes use of keyed symmetric cryptosystems as
black-box algorithms with certain security properties. The critical point of
this definition is that it is the properties of the symmetric cryptosystem
that are used to construct the asymmetric scheme, rather than the technical
details about the way in which the symmetric algorithm achieves these secu-
rity properties. We specify the use of keyed symmetric algorithms to make
sure that an asymmetric cryptosystems that makes use of hash functions
(as almost all asymmetric cryptosystems seem to do) are not automatically
classed as hybrid schemes.

Traditionally, hybrid cryptography has been concerned with building
asymmetric encryption schemes (see Section 2). In these cryptosystems a
symmetric encryption scheme is used to overcome the problems typically
associated with encrypting long messages using “pure” asymmetric tech-
niques. More recently, symmetric encryption algorithms have been used to
solve the same problem in signcryption schemes [2, 16] (see Section 3).

Another recent advance in hybrid cryptography is the development of the
KEM–DEM model for hybrid encryption algorithms [14, 27]. This model
splits a hybrid encryption scheme into two distinct components: an asym-
metric key encapsulation mechanism (KEM) and a symmetric data encap-
sulation mechanisms (DEM). Whilst the KEM–DEM model does not model
all possible hybrid encryption schemes, and there are several examples of
hybrid encryption schemes that do not fit into the KEM–DEM model, it
does have the advantage of allowing the security requirements of the asym-
metric and symmetric parts of the scheme to be completely separated and
studied independently.

Shoup’s KEM–DEM model demonstrates what should be an overriding
principle of hybrid cryptography: it is not necessary for an asymmetric
scheme to fully involve itself in the details of providing a security service —
the security service can be provided by a symmetric scheme provided the
asymmetric scheme is in full control of that process (say, by generating the
secret key that the symmetric scheme uses). Hence, we can fully separate
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the asymmetric and symmetric parts of the scheme.
This paper examines the ways that this “separation principle” can be

used to construct different types of hybrid asymmetric schemes by making
use of different types of symmetric cryptosystem. We will begin by review-
ing hybrid encryption in Section 2. Next we examine the recent trends in
signcryption, noting that there are two types of signcryption schemes, and
apply the separation principle to signcryption schemes with outsider security
(Section 3). We then show that it is impossible to have an efficient hybrid
signature scheme (Section 4) but that, despite their similarities, it is pos-
sible to build an efficient hybrid signcryption scheme with insider security
(Section 5). Lastly, as we have only considered the security of cryptographic
schemes in the two-user setting, we examine the problems associated with
extending the proposed schemes into a multi-user setting (Section 6).

2 Hybrid Encryption Schemes

An encryption scheme is meant to provide a confidentiality service. Hence
it is natural to try and build a hybrid encryption scheme using a symmet-
ric encryption scheme under the control of some asymmetric process. In
this section we will review the notion of an asymmetric encryption scheme,
the KEM–DEM construction and the security results associated with this
construction.

2.1 Asymmetric encryption schemes

Formally, an asymmetric encryption scheme is a triple of algorithms:

1. A probabilistic key generation algorithm, G, which takes as input a
security parameter1 1k and outputs a public/private key pair (pk, sk).
The public key defines the message space M, which is the set of all
possible messages which can be submitted to the encryption algorithm,
and the ciphertext space C, which is set of possible ciphertexts that
can be submitted to the decryption algorithm.

2. A (possibly) probabilistic encryption algorithm, E , which takes as in-
put a message m ∈ M and a public key pk and outputs a ciphertext
C ∈ C. We will denote this as C = E(pk, m).

1The term ‘security parameter’ is often used to refer to both k and 1k. Generally
speaking, we wish algorithms to run in time at most bounded by a polynomial in k but
rather than specify this directly, we instead specify that our algorithms should run in time
bounded above by a polynomial in their input size and provide 1k as an input. This allows
us to cope with algorithms which can take arbitrarily long messages and yet should still
run in time bounded by a polynomial in k for all reasonable (polynomial-length) messages.
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3. A deterministic decryption algorithm, D, which takes as input a ci-
phertext C ∈ C and a secret key sk and outputs either a message
m ∈M or the error symbol ⊥. We denote this as m = D(sk, C).

It is important that any asymmetric encryption scheme (G, E ,D) has the
correctness property, i.e. that for almost all valid key pairs (pk, sk), the
decryption D(sk, C) = m for almost all encryptions C = E(pk,m).

It is also important that an asymmetric encryption scheme satisfy some
kind of security property. A full discussion of the different types of security
property that an asymmetric encryption scheme may aspire to is given by
Bellare, Desai, Pointcheval and Rogaway [7]. For our purposes it is sufficient
to define the notion of IND security. This notion of security suggests that
a scheme is secure if an attacker’s advantage in breaking the scheme is
negligible as a function of the security parameter k.

Definition 1 (Negligible function) A function f : Z→ R is negligible if
for every polynomial p there exists an integer Np such that |f(n)| ≤ 1/p(n)
for all n ≥ Np.

Almost all of the security models we shall define our phrased in terms of
a game played between a hypothetical challenger and an attacker. The game
runs in two stages: a pre-challenge “find” stage and a post-challenge “guess”
stage. Hence, an attacker is best considered to be a pair of probabilistic
Turing machines A = (A1,A2).

For a given security parameter k, the IND-CCA2 game runs as follows:

1. The challenger generates a valid key-pair (pk, sk) by running the key
generation algorithm G(1k).

2. The attacker runs A1 on the input pk. The algorithm A1 terminates
by outputting a pair of (equal length) messages (m0,m1), as well as
some state information state. During any point in its execution, A1

may query a decryption oracle that will, when given a ciphertext C,
return D(sk, C).

3. The challenger picks a bit b ∈ {0, 1} uniformly at random, and forms
the challenge ciphertext C∗ = E(pk, mb).

4. The attacker runs A2 on the input (C∗, state). This algorithm outputs
a guess b′ for b. Again, at any point during its execution, A2 may
query a decryption oracle that will, given a ciphertext C 6= C∗, return
D(sk, C).

The attacker wins the game if b′ = b. The attacker’s advantage is defined to
be:

|Pr[b = b′]− 1/2| . (1)
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Definition 2 (IND Security) An asymmetric encryption scheme is se-
cure in the IND-CCA2 attack model (or IND-CCA2 secure) if, for all polynomial-
time attackers A, the advantage of an A in winning the IND-CCA2 game
is negligible as a function of the security parameter k.

2.2 Symmetric schemes

In this section we will briefly review symmetric encryption schemes, MAC
schemes, and their associated security notions.

For our purposes, a symmetric encryption scheme is a pair of algorithms
(Enc,Dec). The encryption algorithm, Enc, takes as input a message
m ∈ {0, 1}∗ of any length and a key K of length EncKeyLen; and outputs
a ciphertext C = EncK(m). The decryption algorithm, Dec, takes as input
a ciphertext C ∈ {0, 1}∗ and a key K of length EncKeyLen; and outputs
either a message m = DecK(C) or the error symbol ⊥. We will assume
that the key length EncKeyLen depends upon a security parameter k.

We require that any symmetric encryption scheme satisfies the soundness
property: for any key K of length EncKeyLen and message m ∈ {0, 1}∗ we
have that DecK(EncK(m)) = m.

We also require that a symmetric encryption scheme satisfy some notion
of security. We give two notions of security, both of which are very similar to
the IND-CCA2 notion of security for asymmetric encryption schemes given
in Section 2.1. These are known as IND-PA and IND-CCA2 security2.

For IND-PA security, the attack is again phrased in terms of a game
between a challenger and a two-stage attacker A = (A1,A2). The IND-PA
game runs as follows:

1. The challenger randomly generates a symmetric key K of length EncKeyLen.

2. The attacker runs A1 on the input pk. The algorithm A1 terminates
by outputting a pair of (equal length) messages (m0,m1), as well as
some state information state.

3. The challenger chooses a bit b ∈ {0, 1} uniformly at random, and forms
the challenge ciphertext C∗ = EncK(mb).

4. The attacker runs A2 on the input (C∗, state). This algorithm outputs
a guess b′ for b.

The attacker wins the game if b = b′.
For IND-CCA2 security, the attack is very similar. This time the game

is as follows.
2Here “PA” stands for “passive attack”, signifying that the attacker has no access to

any kind of encryption or decryption oracle, and “CCA” stands for chosen ciphertext
attack, signifying that the attacker has access to a decryption oracle.
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1. The challenger randomly generates a symmetric key K of length EncKeyLen.

2. The attacker runsA1 on the input pk. The algorithmA1 terminates by
outputting a pair of (equal length) messages (m0,m1), as well as some
state information state. During its execution, A1 is allowed access
to a decryption oracle that will, when given a ciphertext C, return
DecK(C).

3. The challenger chooses a bit b ∈ {0, 1} uniformly at random, and forms
the challenge ciphertext C∗ = EncK(mb).

4. The attacker runs A2 on the input (C∗, state). This algorithm out-
puts a guess b′ for b. During its execution, A2 is allowed access to a
decryption oracle that will, when given a ciphertext C 6= C∗, return
DecK(C).

The attacker wins the game if b = b′.
In both cases, the attacker’s advantage of winning the game is defined

to be:
|Pr[b = b′]− 1/2| . (2)

Definition 3 (IND security for a symmetric encryption scheme) A
symmetric encryption scheme is said to be IND-PA secure if, for all polynomial-
time attackers A, the advantage that A has in winning the IND-PA game is
negligible as a function of the security parameter k.

Similarly, a symmetric scheme is said to be IND-CCA2 secure if, for
all polynomial-time attackers A, the advantage that A has in winning the
IND-CCA2 game is negligible as a function of the security parameter k.

Next we move onto MAC schemes. A MAC scheme is simply a determin-
istic algorithm MAC that takes as input a message m ∈ {0, 1}∗ of any length
and a key K of length MACKeyLen; and outputs a MAC tag τ of length
MACTagLen. We assume that both the MAC key length MACKeyLen
and the MAC tag length MACTagLen depend upon some security param-
eter k.

Again we define the security of the MAC algorithm in terms of a game
played between a hypothetical challenger and an attacker. For a MAC al-
gorithm the game runs as follows:

1. The challenger random generates a key K of length MACKeyLen.

2. The attacker submits a message m0 to the challenger.

3. The challenger computes the MAC of m0, τ = MACK(m0), and passes
this back to the attacker.

4. The attacker then outputs any number of pairs (mi, τi) where mi 6= m0.
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The attacker is said to win the game if any output pair (mi, τi) satisfies
τi = MACK(mi).

Definition 4 (MAC security) A MAC scheme is said to be secure if, for
all polynomial-time attackers A, the probability that A can win the above
security game is negligible as a function of the security parameter k.

2.3 KEM–DEM hybrid encryption schemes

If we define a hybrid encryption scheme as an asymmetric encryption scheme
which makes use of some keyed symmetric cryptography as a “black-box”
then it is very difficult to make any statements about the security of hybrid
encryption schemes as there are far too many ways in which the symmetric
scheme could be used within the cryptosystem. However, almost all the
practical examples of hybrid encryption schemes [1, 14, 17, 21, 23] are based
on a simple idea:

1. an asymmetric section generates a suitable symmetric key and en-
crypts that key using an asymmetric encryption scheme, and

2. a symmetric section encrypts the message using the randomly gener-
ated symmetric key.

Shoup [27] has shown that these two parts of a hybrid encryption scheme
can be separated and security criteria defined for both sections individually.
The asymmetric section is known as the key encapsulation mechanism or
KEM. The symmetric section is known as the data encapsulation mechanism
or DEM. We will refer to any hybrid encryption scheme constructed from
these ideas as a KEM–DEM construction. It should be noted that not
every hybrid encryption scheme can necessarily be phrased as a KEM–DEM
construction: whilst ECIES [1] can be viewed as a KEM–DEM construction,
EPOC-2 [23] can not.

A KEM is a triple of algorithms consisting of:

1. The key generation algorithm, Gen, which takes as input a security
parameter 1k and outputs a public/private key pair (pk, sk).

2. A probabilistic encapsulation algorithm, Encap, which takes as input
a public key pk and outputs a key K and an encapsulation of that key
C. We denote this as (K, C) = Encap(pk).

3. A deterministic decapsulation algorithm, Decap, which takes as inputs
the private key pk and an encapsulation C, and outputs a symmetric
key K or the error symbol ⊥. We denote this as K = Decap(sk, C).

Hence, KEMs are very similar to asymmetric encryption schemes; the only
difference is that, unlike an encryption algorithm, the KEM’s encapsulation
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algorithm does not take any form of message as input but rather randomly
generates its own “message” — the symmetric key K. Just as with an asym-
metric encryption scheme, it is important that a KEM satisfies a correctness
property, i.e. that for almost all public/private key pair (pk, sk) we have that
K = Decap(C, sk) for almost all (K, C) = Encap(pk).

A DEM is a pair of algorithms consisting of:

1. A deterministic encryption algorithm, Enc, which takes as input a
message m ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length. It outputs an encryption C = EncK(m).

2. A deterministic decryption algorithm, Dec, which takes as input an
encryption C ∈ {0, 1}∗ and a symmetric key K of some pre-determined
length, and outputs either a message m ∈ {0, 1}∗ or the error symbol
⊥.

Hence, DEMs are very similar to symmetric encryption schemes. Again,
a DEM must satisfy a correctness property: that for every key K of the
correct length, m = DecK(EncK(m)).

It should now be easy to see that a KEM and a DEM can be ‘slotted to-
gether’ to form an asymmetric encryption algorithm. If (Gen,Encap,Decap)
is a KEM and (Enc,Dec) is a DEM, and for any security parameter k the
length of the symmetric keys that are output by the KEM is equal to the
length of the symmetric keys taken as input by the DEM, then we can form
an asymmetric encryption scheme as follows:

• The key generation algorithm is given by Gen.

• The encryption algorithm for a message m under a public key pk is
given by:

1. Set (K, C1) = Encap(pk).

2. Set C2 = EncK(m).

3. Output (C1, C2).

• The decryption algorithm for a ciphertext C = (C1, C2) under a pri-
vate key sk is given by:

1. Set K = Decap(sk, C1). If K =⊥ then output ⊥ and stop.

2. Set m = DecK(C2). If m =⊥ then output ⊥ and stop.

3. Output m.
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2.4 The security criterion for a KEM

The beauty of the KEM–DEM construction is that, as we shall see, it allows
us to consider KEMs and DEMs separately. Each of the two parts of the
construction has its own security criteria, independent of the operation of the
other. The security criteria for a KEM is called “output indistinguishability”
or, sometimes, “real-or-random indistinguishability”.

The security of a KEM is phrased in terms of a game played between a
hypothetical challenger and two-stage attacker A = (A1,A2). The attack
goal for a KEM is to distinguish the real key corresponding to an encap-
sulation from a randomly generated key. This is known as the IND-CCA2
game and, for a given security parameter k, works as follows:

1. The challenger generates a valid public/private key pair (pk, sk) by
running Gen(1k).

2. The attacker runs A1 on the input pk. It terminates by outputting
some state information state. During its execution A1 may query a
decapsulation oracle that will, when given an encapsulation C, return
Decap(sk, C).

3. The challenger generates a valid encapsulation (K0, C
∗) by running

Encap(pk). It also generates a random key K1 of the same length as
K0. Next it chooses a bit b ∈ {0, 1} uniformly at random and sets
K∗ = Kb. The challenge encapsulation is (K∗, C∗).

4. The attacker runs A2 on the input (K∗, C∗) and state. It terminates
by outputting a guess b′ for b. Again, during its execution A2 may
query a decapsulation oracle that will, when given an encapsulation
C 6= C∗, return Decap(sk, C).

The attacker wins the game if b = b′. The attacker’s advantage is defined to
be:

|Pr[b = b′]− 1/2| . (3)

Definition 5 (Security of a KEM) A KEM is secure in the IND-CCA2
security model if, for all polynomial-time attackers A, the advantage that
A has in breaking the IND-CCA2 game is negligible as a function of the
security parameter k.

Several designs for a KEM have been proposed. The more common
generic constructions have been analysed by Dent [15]. It will not be neces-
sary to re-examine them in this paper.
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2.5 The security criterion for a DEM

The security criteria for a DEM are the same as those for a symmetric
encryption scheme. Hence, we can talk about DEMs being IND-PA and
IND-CCA2 secure. This allows us to state an important theorem of Cramer
and Shoup [14].

Theorem 6 An asymmetric encryption scheme constructed from an IND-
CCA2 KEM and an IND-CCA2 DEM is itself IND-CCA2 secure.

There is a problem, however, in creating a symmetric encryption algo-
rithm that takes arbitrarily long messages and is IND-CCA2 secure. Whilst
it may be reasonable to assume that the action of a block cipher is IND-
CCA2 secure, a block cipher cannot handle arbitrarily long messages. Sim-
ilarly, most of the standard modes of operation of a block cipher may be
able to handle arbitrarily long messages, but they are not IND-CCA2 secure
even if they are used with an IND-CCA2 secure block cipher.

Cramer and Shoup [14] give an IND-CCA2 construction for a DEM. It
is constructed using an IND-PA symmetric encryption scheme (Enc,Dec)
and a secure MAC algorithm MAC. In this scheme, the encryption of a
message m under a key K is given by the following algorithm.

1. Split the key K into two appropriately sized keys K = K1||K2, where
K1 is a key for the symmetric encryption scheme and K2 is a key for
the MAC scheme.

2. Set C = EncK1(m).

3. Set τ = MACK2(C).

4. Output the ciphertext (C, τ).

Decryption of a ciphertext (C, τ) under a key K is given by:

1. Split the key K into two appropriately sized keys K = K1||K2, where
K1 is a key for the symmetric encryption scheme and K2 is a key for
the MAC scheme.

2. Check that τ = MACK2(C). If not, output ⊥ and stop.

3. Set m = DecK1(C).

4. Output m.

It is important that the keys K1 and K2 are of a fixed pre-determined length
and are not dependent on the message or its length in any way. Cramer
and Shoup show this symmetric encryption scheme to be IND-CCA2 secure
provided the underlying encryption scheme is IND-PA secure and the MAC
algorithm is secure.
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One of the reasons that this encrypt-then-MAC construction is IND-
CCA2 secure is that it in fact offers more than just a confidentiality ser-
vice, it offers an integrity/authentication service too. This construction
was shown to provide an integrity and confidentiality service by Bellare and
Namprempre [8]. However, the encrypt-then-MAC construction is relatively
inefficient, requiring the long message and the long ciphertext to be pro-
cessed separately. It should be noted that other authenticated encryption
modes, such as the OCB mode of operation [24], can be used as a DEMs
too.

Strictly speaking, a DEM is not required to provide an authentication
service but providing such a service gives the DEM “plaintext awareness”,
i.e. it means that it is impossible for an attacker to construct any new valid
ciphertext without querying an encryption oracle. This means that a de-
cryption oracle is essentially useless to an attacker, as the only way that the
attacker can produce a ciphertext that decrypts is to query the encryption
oracle and, in that case, the attacker must already know what the decryption
of the ciphertext. Hence, the scheme has IND-CCA2 security even though
the underlying encryption scheme is only IND-PA secure. Whether an effi-
cient IND-CCA2 secure DEM can be designed that isn’t an authenticated
encryption scheme is (to the author’s knowledge) an open problem.

3 Hybrid Signcryption Schemes With Outsider Se-
curity

A signcryption scheme is an asymmetric scheme that combines most of the
advantages of an asymmetric encryption and a digital signature scheme,
specifically it provides confidentiality, integrity and authentication services.
It may be advantageous for a signcryption scheme to also provide a non-
repudiation service, just as a digital signature service does; however, we
shall see that there are inherent problems with providing this service in this
setting.

Signcryption was first studied by Zheng [28] in 1997. In his original
conception of a signcryption scheme, the computational cost of the scheme
had to be lower than the computational cost of performing the encryption
and signature operation separately. This definition has since been expanded
to include any asymmetric scheme that provides both a confidentiality and
an intergity/authentication service, including schemes that make use of an
asymmetric encryption scheme and a signature scheme directly. The security
of signcryption schemes that make use of separate encryption and signature
algorithms are discussed in [2, 3].
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3.1 Signcryption schemes

For our purposes a signcryption scheme will consist of five algorithms:

1. A probabilistic common key generation algorithm, Gc. It takes as input
a security parameter 1k and return some global information (parame-
ters) I.

2. A probabilistic sender key generation algorithm, Gs. It takes as in-
put the global information I and outputs a public/private key pair
(pks, sks) for a party who wishes to send a signcrypted message.

3. A probabilistic receiver key generation algorithm, Gr. It takes as in-
put the global information I and outputs a public/private key pair
(pkr, skr) for a party who wishes to be able to receive signcrypted
messages. Hence, a party who wishes to be able to both send and
receive signcrypted messages will require two key-pairs: one for use
when sending messages and one who use when receiving them.

4. A probabilistic generation-encryption algorithm, E . It takes as input a
message m from some message space M, the private key of the sender
sks and the public key of the receiver pkr; and outputs a signcryption
C = E(sks, pkr,m) in some signcryption space C.

5. A deterministic verification-decryption algorithm, D. It takes as input
a signcryption C ∈ C, the public key of the sender pks and the private
key of the receiver skr; and outputs either a message m ∈ M or the
error symbol ⊥. We denote this operation as D(pks, skr, C).

The soundness condition for a signcryption scheme states that for almost
all sender key pairs (pks, sks) and receiver key pairs (pkr, skr) we have that
m = D(pks, skr, C) for almost all ciphertexts C = E(sks, pkr,m).

This definition is essentially adapted from An [2]. Some definitions in-
clude other algorithms known as the verification algorithms. The purpose
of these algorithms is to provide non-repudiation. As the definitions stand,
it is possible that the verification-decryption algorithm gives message origin
authentication in such a way that, whilst the receiver is convinced of the
origin of the message, the origin cannot be reliably demonstrated to a third
party (just as in the case of a MAC algorithm being used to provide message
origin authentication). The purpose of a verification algorithm is to allow
a third-party, in possession of a message and a purported signcryption C of
that message, to verify that C is indeed a signcryption of m without com-
promising the security of the scheme. We will not consider non-repudiation
in this section. For more information, the reader is referred to [22].

Hence, we require our signcryption schemes to provide a confidentiality
and an authentication/integrity service. In an attempt to design a hybrid
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signcryption scheme, we note that these services can be provided by symmet-
ric encryption schemes and MAC algorithms respectively. Collectively, these
services can be provided by an authenticated encryption scheme, including
the ‘Encrypt-then-MAC’ scheme used as a DEM by Cramer and Shoup.
This section will show that it is possible to construct a hybrid signcryption
making use of any symmetric authenticated encryption scheme (acting as
DEM) and some sort of modified key encapsulation mechanism.

3.2 Outsider security for signcryption schemes

There are two potential ways in which a signcryption scheme can be at-
tacked: an unauthorised party (i.e. not the sender or the receiver) can
attempt to break the confidentiality service and learn some information
about a message from its signcryption, or an unauthorised party (i.e. not
the sender) can attempt to break the integrity/authentication service and
forge a valid signcryption.

We sub-divide attacks against the integrity of a signcrypted message
depending on the identity of the attacker. Consider an attack in which
some unauthorised party attempts to forge a signcryption. In this case, the
attacker could either be a third party (i.e. a party that is not involved in any
legitimate transactions) or it could be a receiver who has received several
valid signcrypted messages from the sender. We use the nomenclature of An,
Dodis and Rabin [3] and say that a signcryption scheme is secure against
outsider attacks if it secure against attacks that break the confidentiality
of the message and against forgery attacks made by third parties. If a
signcryption scheme is secure from forgery attacks made by valid receivers,
as well as from attacks that break the confidentiality of the message, then
it is said to be secure against insider attacks. It is unclear how useful a
signcryption scheme with insider security is unless the scheme also offers
a non-repudiation service. Obviously, a signcryption scheme that is secure
against insider attacks is also secure against outsider attacks. In this section
we will only consider hybrid signcryption schemes that are secure against
outsider attacks.

3.2.1 Confidentiality

The notion of confidentiality for a signcryption scheme is similar to that of
an asymmetric encryption scheme (see Section 2.1). The attack model is
defined in terms of a game, termed the IND-CCA2 game, played between a
hypothetical challenger and a two-stage attacker A = (A1,A2). For a given
security parameter k:

1. The challenger generates some valid parameters I by running Gc(1k);
a valid sender key pair (pks, sks) by running the sender key generation
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algorithm Gs(I); and a valid receiver key pair (pkr, skr) by running
the receiver key generation algorithm Gr(I).

2. The attacker runs A1 on the input (pkr, pks). This algorithm outputs
two equal length messages, m0 and m1, and some state information
state. During its execution, A1 can query a generation-encryption
oracle that will, if given a message m ∈ M, return E(sks, pkr,m) and
a verification-decryption oracle that will, if given a signcryption C ∈ C,
return D(pks, skr, C).

3. The challenger picks a bit b ∈ {0, 1} uniformly at random, and com-
putes the challenge signcryption C∗ = E(sks, pkr,mb).

4. The attacker runs A2 on the input (C∗, state). The algorithm outputs
a guess b′ for b. During its execution, A2 can query a generation-
encryption oracle and a verification-decryption oracle as above, but
with the restriction that A2 is not allowed to query the verification-
decryption oracle on the challenge ciphertext C∗.

The attacker wins the game if b′ = b. The attacker’s advantage is defined to
be:

|Pr[b = b′]− 1/2| . (4)

Definition 7 (IND security for a signcryption scheme) A signcryption
scheme is said to be IND-CCA2 secure if, for every polynomial-time attacker
A, the advantage that A has in winning the IND-CCA2 game is negligible
as a function of the security parameter k.

3.2.2 Integrity/Authentication

The notion of integrity for a signcryption scheme is similar to that of a digital
signature scheme (see Section 4). The attack model is defined in terms
of a game, termed the sUF-CCA2 game, played between a hypothetical
challenger and an attacker A. For a given security parameter k:

1. The challenger generates some valid parameters I by running Gc(1k);
a valid sender key pair (pks, sks) by running the sender key generation
algorithm Gs(I); and a valid receiver key pair (pkr, skr) by running
the receiver key generation algorithm Gr(I).

2. The attacker runs A on the input (pks, pkr). This algorithm out-
puts a possible signcryption C∗. During its execution, A can query
a generation-encryption oracle that will, if given a message m ∈ M,
return E(sks, pkr,m) and a verification-decryption oracle that will, if
given a signcryption C ∈ C, return D(pks, skr, C).
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The attacker wins the game if D(pks, skr, C
∗) = m 6=⊥ and A never received

C∗ as a response from generation-encryption oracle.3

Definition 8 (sUF security for a signcryption scheme) A signcryption
scheme is said to be sUF-CCA2 secure if, for every polynomial-time attacker
A, the probability that A wins the sUF-CCA2 game is negligible as a function
of the security parameter k.

Definition 9 (Outsider security for a signcryption scheme) A sign-
cryption scheme is said to be outsider secure if it is both IND-CCA2 and
sUF-CCA2 secure.

It should be noted that this model for outsider security gives a lot of
power to the attacker: they can arbitrarily generate/encrypt signcryptions
of messages and decrypt/verify signcryptions of their choice (with the excep-
tion of the challenge ciphertext). This corresponds to a real-world situation
in which the attacker can trick a valid party into encrypting any message
and decrypt any “unimportant” message.

3.3 A general model for a hybrid signcryption scheme

A signcryption scheme can be formed from a “signcryption KEM” and
a “signcryption DEM” in the same manner as an asymmetric encryption
scheme can be formed from a standard (encryption) KEM and DEM.

Definition 10 (Signcryption KEM) A signcryption KEM is a 5-tuple of
algorithms:

1. A probabilistic common key generation algorithm, Genc. It takes as
input a security parameter 1k and return some global information (pa-
rameters) I.

2. A probabilistic sender key generation algorithm, Gens. It takes as
input the global information I and outputs a public/private key pair
(pks, sks) for a party who wishes to send a signcrypted message.

3. A probabilistic receiver key generation algorithm, Genr. It takes as
input the global information I and outputs a public/private key pair
(pkr, skr) for a party who wishes to be able to receive signcrypted mes-
sages.

3This is sometimes known “strong unforgeability” in order to differentiate it from
“weak unforgeability”, where an attacker is only deemed to have won if D(pks, skr, C

∗) =
m 6=⊥ and A never submitted m to the generation-encryption oracle. So, with strong
unforgeability, an attacker is deemed to have won if it can find a new signcryption of a
message that has previously been signcrypted or if it can generate a signcryption of a new
message.
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4. A probabilistic key encapsulation algorithm, Encap. It takes as input
a sender’s private key sks and a receiver’s public key pkr; and outputs
a symmetric key K and an encapsulation of that key C. We denote
this as (K,C) = Encap(sks, pkr).

5. A deterministic key decapsulation algorithm, Decap. It takes as input
a sender’s public key pks, a receiver’s private key skr and an encapsu-
lation of a key C; and outputs either a symmetric key K or the error
symbol ⊥. We denote this as K = Decap(pks, skr, C).

We require that any signcryption KEM be sound, in the sense that for almost
all valid sender key-pairs (pks, sks) and almost all receiver key-pairs(pkr, skr)
then K = decap(pks, skr, C) for almost all (K, C) = Encap(sks, pkr).

A signcryption DEM is essentially a symmetric authenticated encryption
scheme.

Definition 11 (Signcryption DEM) A signcryption DEM is a pair of
algorithms:

1. A deterministic encryption algorithm, Enc, which takes as input a
message m ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length, and outputs an encryption C = EncK(m) of
that message.

2. A deterministic decryption algorithm, Dec, which takes as input a
ciphertext C ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length, and outputs either a message m = DecK(C)
or the error symbol ⊥.

We require that any signcryption DEM be sound, in the sense that for every
key K of the correct length, m = DecK(EncK(m)).

We combine a signcryption KEM and a signcryption DEM to form a
hybrid signcryption scheme. Again we note that this is only one way in which
a hybrid signcryption scheme may be formed, other hybrid signcryption
schemes can be constructed that do not fit into this KEM–DEM model.

Definition 12 (KEM–DEM hybrid signcryption scheme) Suppose that
(Genc,Gens,Genr,Encap,Decap) is a signcryption KEM, (Enc,Dec) is a
signcryption DEM, and that, for all security parameters k, the keys produced
by the signcryption KEM are of the correct length to be used by the signcryp-
tion DEM. We may then construct a signcryption scheme (Gc,Gs,Gr, E ,D)
as follows:

• The key generation algorithms (Gc,Gs,Gr) are given by the key gener-
ation algorithms for the signcryption KEM (Genc,Gens,Genr).
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• The generation-encryption algorithm E for a message m, a sender
private key sks and a receiver public key pkr is given by:

1. Set (K, C1) = Encap(sks, pkr).

2. Set C2 = EncK(m).

3. Output (C1, C2).

• The verification-decryption algorithm D for a signcryption (C1, C2), a
sender public key pks and a receiver private key skr is given by:

1. Set K = Decap(pks, skr, C1). If K =⊥ then output ⊥ and stop.

2. Set m = DecK(C2). If m =⊥ then output ⊥ and stop.

3. Output m.

This construction is a sound signcryption scheme due to the soundness of the
signcryption KEM and DEM. As we shall see, construction was implicitly
used by An [2] in the construction of the DHETM scheme.4

We note that this generic construction can only achieve outsider security
at best. Any party in possession of a valid receiver key pair (pkr, skr) can
forge a signcryption of any message m of his choice by requesting the sign-
cryption (C1, C2) of some other message m′ 6= m, recovering the symmetric
key K = Decap(pks, skr, C1), computing the false ciphertext C ′

2 = EncK(m)
and outputting the false signcryption (C1, C

′
2).

3.4 The security criteria for a signcryption KEM

In this section we will develop independent security criteria for a signcryption
KEM.

3.4.1 Confidentiality

The confidentiality condition for a signcryption KEM is very similar to that
of a normal (encryption) KEM: an attacker should not be able to gain any
information about the symmetric key corresponding to a challenge encapsu-
lation even if they have access to a decapsulation oracle. The only difference
between the signcryption KEM and the encryption KEM cases is that we
must allow the attacker access to an encapsulation oracle in the signcryption
case. In the encryption case, the attacker has access to the public key and
can therefore encapsulate keys themselves.

Formally, we define the confidentiality of a signcryption KEM in terms
of a game played between a hypothetical challenger and a two-stage attacker
A = (A1,A2). We denote this the IND-CCA2 game for a signcryption KEM.
For a given security parameter k, the game is as follows:

4Presumably DHETM stands for ‘Diffie-Hellman Encrypt-then-MAC’.
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1. The challenger generates some global state information I by running
Genc(1k), a valid sender public/private key pair (pks, sks) by running
Gens(I) and a valid receiver public/private key pair (pkr, skr) by run-
ning Genr(I).

2. The attacker runs A1 on the input (pks, pkr). It terminates by out-
putting some state information state. During this phase the attacker
can query both an encapsulation oracle, which responds by returning
(K,C) = Encap(sks, pkr), and a decapsulation oracle on an input C,
which responds by returning K = Decap(pks, skr, C).

3. The challenger generates a valid encapsulation (K0, C
∗) by running

Encap(sks, pkr). It also generates a random key K1 of the same length
as K0. Next it chooses a bit b ∈ {0, 1} uniformly at random and sets
K∗ = Kb. The challenge encapsulation is (K∗, C∗).

4. The attacker runs A2 on the input (K∗, C∗) and state. It terminates
by outputting a guess b′ for b. During this phase the attacker can query
both an encapsulation oracle and a decapsulation oracle as above, with
the exception that the decapsulation oracle cannot be queried on the
challenge encapsulation C∗.

The attacker wins the game if b = b′. If A made qe queries to the encapsu-
lation oracle and qd queries to the decapsulation oracle then A’s advantage
is defined to be:

Adv-KEM-IND(qe, qd) = |Pr[b = b′]− 1/2| . (5)

Definition 13 A signcryption KEM is IND-CCA2 secure if, for all polynomial-
time attackers A making at most qe queries to the encapsulation oracle and
qd queries to the decapsulation oracle, Adv-KEM-IND(qe, qd) is negligible as
a function of the security parameter k.

It may be noted that the KEM that is implicitly used in the DHETM
construction [2] does not satisfy this notion of security as a fixed key is
used to encrypt all messages that pass between a particular sender and
receiver. This key can easily be discovered by an attacker making a query
to the encapsulation oracle. This should not be construed to mean that the
DHETM scheme does not provide confidentiality, just that it does not satisfy
the security criterion required for this particular method of constructing a
signcryption scheme.

3.4.2 Integrity/Authentication

Whilst it is clear that if the overall hybrid signcryption scheme is going to
provide an integrity/authentication service then the KEM must satisfy some
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kind of extra integrity security criterion, it is a little more difficult to see
what that criterion might be.

It turns out that that extra requirement is very similar to the requirement
for confidentiality. For confidentiality, we declared a signcryption KEM to
be secure if it was impossible for an attacker to differentiate between a
valid KEM output and a random KEM output even when the attacker has
access to a encapsulation and decapsulation oracles. For integrity, we will
declare a signcryption KEM to be secure if it is impossible for an attacker
to differentiate between a properly functioning signcryption KEM and a
signcryption KEM that is giving random but consistent outputs. This notion
of security is similar to the notion of Left-or-Right security for a symmetric
encryption scheme [6].

In order to model this security criterion we define an ideally functioning
signcryption KEM. This ideal KEM functions in exactly the same way as the
normal KEM except that all of the keys it produces are randomly generated
and completely unrelated to the encapsulations it produces. Consistency is
maintained via a shared list of encapsulations and their associated symmetric
keys. The ideal KEM is defined as the five-tuple of state-based algorithms
(Sim.Genc,Gens,Genr,Sim.Encap,Sim.Decap), where:

• The simulated common key generation algorithm, Sim.Gen, both runs
Genc on the input 1k to generate some global information I which we
will be used to construct the sender and receiver public-keys, and sets
up a list KeyList which is initially empty.

• The simulated encapsulation algorithm, Sim.Encap, takes as input the
pair (sks, pkr) and runs as follows:

1. Set (K0, C) = Encap(sks, pkr).

2. If there exists a pair (K1, C) on KeyList then return (K1, C).

3. Otherwise, generate a random symmetric key K1 of an appropri-
ate length, add (K1, C) to KeyList and return (K1, C).

• The simulated decapsulation algorithm, Sim.Decap, takes as input the
pair (pks, skr) and a signcryption C, and runs as follows:

1. If there exists a pair (K,C) on KeyList then return (K,C).

2. If Decap(pks, skr, C) =⊥ then return ⊥.

3. Otherwise, generate a random symmetric key K of an appropriate
length, add (K, C) to KeyList and return K.

Informally, a signcryption KEM is Left-or-Right (LoR) secure if no polynomial-
time attacker can distinguish between an execution where it has access to
the proper KEM and the execution where it has access to the ideal version
of the KEM.
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Formally, we define Left-or-Right (LoR) security by means of a game
between a hypothetical challenger and an attacker A. We denote this game
the LoR-CCA2 game for a signcryption KEM. For a given security parameter
k, the game runs as follows:

1. The challenger generates some global state information I by running
Sim.Genc(1k), a valid sender public/private key pair (pks, sks) by run-
ning Gens(I) and a valid receiver public/private key pair (pkr, skr) by
running Genr(I). The challenger also picks a bit b ∈ {0, 1} uniformly
at random.

2. The attacker runs A on the input (pks, pkr). During its execution,
A may query an encapsulation and a decapsulation oracle. If b = 0
then the responses to A’s queries are computed using an encapsulation
and decapsulation algorithms in the normal way. If b = 1 then the
responses to A’s queries are computed using the ideal encapsulation
and decapsulation algorithms. A terminates by outputting a guess b′

for b.

A wins the game if b = b′. If A made qe queries to the encapsulation oracle
and qd queries to the decapsulation oracle then A’s advantage in winning
the LoR-CCA2 game is given:

Adv-KEM-LoR(qe, qd) = |Pr[b = b′]− 1/2| . (6)

Definition 14 A signcryption KEM is LoR-CCA2 secure if, for all polynomial-
time attackers A making at most qe queries to the encapsulation oracle and
qd queries to the decapsulation oracle, Adv-KEM-LoR(qe+1, qd) is negligible
as a function of the security parameter k.

This may seem like an odd choice for the integrity requirement of a
KEM — it would make far more sense if the security criterion involved an
attacker attempting to forge a valid encapsulation pair (K,C) such that
Decap(pks, skr, C) = K 6=⊥, or, more loosely, Decap(pks, skr, C) = K ′ 6=⊥
and K and K ′ are related in some way, i.e. produce a new encapsulation
for which he can deduce some information about the associated symmetric
key. At first glance, this definition of security looks a long way from the
definition of integrity that we have used but they are in fact quite similar!
Consider a signcryption KEM which is LoR secure. If an attacker is able
to find a valid encapsulation C for which he knows some information about
the associated symmetric key then the attacker can query the decapsulation
oracle on C and recover an associated symmetric key K. If K is of the
form that A expected then A could conclude that the decapsulation oracle
is correct: if K is not of the form that A expected then A could conclude
that the decapsulation oracle is the ideal version. Hence, if A can forge a
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valid encapsulation in such a way that he knows some information about the
associated key then A can win the LoR-CCA2 game. Left-or-Right security
is a stronger notion of security than traditional unforgeability.

Definition 15 A signcryption KEM is said to be outsider secure if it is both
IND-CCA2 and LoR-CCA2 secure.

3.5 The security criteria for a signcryption DEM

The security criteria for a signcryption DEM are essentially the same as
those for an authenticated encryption scheme [8], although we adapt these
slightly for the signcryption setting.

3.5.1 Confidentiality

The confidentiality criterion for a signcryption DEM is exactly the same
as for a normal (encryption) DEM: the DEM must IND-CCA2 secure as
an encryption algorithm — see Section 2.2. We let Adv-DEM-IND(qe, qd)
denote the advantage that an attacker has in winning the IND-CCA2 game
with at most qe encryption oracle queries and qd decryption oracle queries.

3.5.2 Integrity/Authentication

Again, the integrity/authentication service is more difficult to determine.
Normal definitions of integrity for an authenticated encryption algorithm
assume that there is only one secret randomly chosen key in use, but it
should be clear that a signcryption DEM needs to be secure when many
different randomly chosen chosen secret keys are in use.

We define the security of a signcryption DEM in terms of a game played
between a hypothetical challenger and an attacker A. We denote this game
as the INT-CCA+ game for a signcryption DEM. For a security parameter
k, the game runs as follows:

1. The challenger generates a sequence (K1,K2,K3, . . .) of random sym-
metric keys of the correct length for use by the DEM.

2. The attacker runs A. During its execution A is allowed to query an
encryption oracle with any input of the form (i, m) and the oracle will
respond with EncKi(m). Similarly it may query a decryption oracle
with any input of the form (i, C) and the oracle will respond with
DecKi(C). A terminates by outputting a pair (i∗, C∗).

The attacker wins the game if DecKi∗ (C
∗) 6=⊥ and C∗ was never a response

of the encryption oracle queried with an input of the form (i∗,m) for some
message m.
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Definition 16 (INT-CCA+ security for a signcryption DEM) A sign-
cryption DEM is said to be INT-CCA+ secure if, for every polynomial-time
attacker A, the probability that A wins the INT-CCA+ game is negligible as
a function of the security parameter k.

We let Prob-DEM-IND(qe, qd) denote the probability that an attacker
wins the INT-CCA+ game with at most qe encryption oracle queries and qd

decryption oracle queries.
As this security criterion requires multiple keys to be considered, it may

be more difficult to prove that a given scheme is secure in the INT-CCA+
sense. Fortunately, it can be shown that a scheme that is secure in the
following one-key game is also secure in the above multi-key game. For a
given security parameter k, the one-key version of the INT-CCA+ game,
denoted the INT-CCA game, runs as follows.

1. The challenger generates a random symmetric key K of the correct
length for use by the DEM.

2. The attacker runs A. During its execution A is allowed to query an en-
cryption oracle with any message m, and the oracle will respond with
EncK(m). Similarly it may query a decryption oracle with any ci-
phertext C, and the oracle will respond with DecK(C). A terminates
by outputting a ciphertext C∗.

The attacker wins the game if DecK(C∗) 6=⊥ and C∗ was never a response
of the encryption oracle.

Definition 17 (INT-CCA security for a signcryption DEM) A sign-
cryption DEM is said to be INT-CCA secure if, for every polynomial-time
attacker A, the probability that A wins the INT-CCA game is negligible as
a function of the security parameter k.

Lemma 18 If a signcryption DEM is INT-CCA secure then it is INT-
CCA+ secure.

Proof We prove, as always, the contra-positive statement: that if there
exists an attacker that breaks the DEM with non-negligible probability in
the INT-CCA+ game then there exists an attacker that breaks the DEM
with non-negligible probability in the INT-CCA game. From this we can
deduce that there cannot exist an attacker that wins the INT-CCA+ game
with non-negligible probability as the DEM is INT-CCA secure.

Let A be a polynomial-time attacker that wins the INT-CCA+ game
with probability at least ε and makes use of at most qK keys. We define the
following attacker A′ for the INT-CCA game:

1. Choose an integer i at random from {1, 2, 3, . . . , qK}.
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2. Choose qK−1 random symmetric keys K1,K2, . . . ,Ki−1,Ki+1, . . . , KqK .

3. Execute A. If A queries the encryption (respectively decryption) ora-
cle with the query (j, m) (resp. (j, C)) and j 6= i then return EncKj (m)
(resp. DecKj (C)). If A queries the encryption (respectively decryp-
tion) oracle with the query (i,m) (resp. (i, C)) then we pass this re-
quest on to the encryption (resp. decryption) oracle provided by the
INT-CCA game and return the results to A.

4. A terminates by outputting a pair (j∗, C∗). If j∗ = i then output C∗.
Otherwise generate a ciphertext C∗ uniformly at random and output
C∗.

We claim that A′ wins the INT-CCA game with probability at least ε/qK .
Let W1 be the event that A′ wins the INT-CCA game, let W2 be the

event that A wins the INT-CCA+ game and let E be the event that j∗ = i.
Clearly,

Pr[W1] ≥ Pr[E ∧W2] (7)
= Pr[W2] · Pr[E] (since E and W2 are independent) (8)

= ε

qK∑

l=1

Pr[j∗ = i|j∗ = l]Pr[j∗ = l] (9)

= ε

qK∑

l=1

Pr[i = l]Pr[j∗ = l] (10)

= ε

qK∑

l=1

Pr[j∗ = l]/qK (11)

= ε/qK

qK∑

l=1

Pr[j∗ = l] (12)

= ε/qK (as j∗ must equal l for some value of l) . (13)

Hence, the result holds. ¤
The notions of INT-CCA is similar to the notion of INT-CTXT sug-

gested by Bellare and Nanprempre [8]. The only differences between the
two security models is that INT-CCA model allows the attacker to have
access to a decryption oracle and the INT-CTXT model allows the attacker
to have multiple attempts to guess a correct ciphertext.

Definition 19 A signcryption DEM is said to be outsider secure if it is
IND-CCA2 secure and INT-CCA+ secure.

3.6 The security of a KEM–DEM signcryption scheme

We now show that a KEM–DEM signcryption scheme built from an out-
sider secure KEM and an outsider secure DEM is itself outside secure. We
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do this by showing that the signcryption scheme satisfies both the confi-
dentiality and integrity/authentication criterion separately. In both cases
we will show that, if there exists an attacker that breaks the signcryption
scheme with non-negligible probability then there must either exist an at-
tacker that breaks the signcryption KEM with non-negligible probability or
the signcryption DEM non-negligible probability. Hence, the security of the
KEM and the DEM will guarantee the security of the signcryption scheme.

We begin by showing that a KEM–DEM signcryption scheme is confi-
dential. This proof is essentially the same as the proof of security for a
generic encryption KEM–DEM scheme given by Cramer and Shoup [14].

Theorem 20 (Confidentiality of the KEM–DEM construction) Suppose
that (Gc,Gs,Gr, E ,D) is a hybrid signcryption scheme constructed from a
signcryption KEM (Genc,Gens,Genr,Encap,Decap) and a signcryption DEM
(Enc,Dec).

If there exists an attacker A wins the IND-CCA2 game for the hybrid
signcryption scheme with advantage ε, and makes at most qe generation-
encryption oracle queries and qd verification-decryption oracle queries, then
there exists an attacker B that wins the IND-CCA2 game for the sign-
cryption KEM with advantage Adv-KEM-IND(qe, qd) and an attacker B′
that wins the IND-CCA2 game for the signcryption DEM with advantage
Adv-DEM-IND(qe, qd) such that

ε ≤ 2 ·Adv-KEM-IND(qe, qd) + Adv-DEM-IND(qe, qd) . (14)

Corollary 21 If a hybrid signcryption scheme is constructed from an out-
sider secure signcryption KEM and an outsider secure signcryption DEM
then that hybrid signcryption scheme is IND-CCA2 secure.

We are therefore left with task of proving that a KEM–DEM signcryption
scheme is unforgeable. For this we will also need the following simple and
well-known lemma:

Lemma 22 Suppose that an attacker A that an attacker plays a game with
a challenger in attempt to determine a bit b which is chosen uniformly at
random from {0, 1}. If A outputs a guess b′ for b, then

|Pr[b = b′]− 1/2| = 1/2 · |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| (15)

Proof

2 · |Pr[b = b′]− 1/2| = 2 · |Pr[b = b′|b = 0]Pr[b = 0]
+Pr[b = b′|b = 1]Pr[b = 1]− 1/2|

= |Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]− 1|
= |Pr[b′ = 0|b = 0] + (1− Pr[b′ = 0|b = 1])− 1|
= |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]|
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Theorem 23 (Integrity of the KEM–DEM construction) Suppose that
(Gc,Gs,Gr, E ,D) is a hybrid signcryption scheme constructed from a sign-
cryption KEM (Genc,Gens,Genr,Encap,Decap) and a signcryption DEM
(Enc,Dec).

If there exists an attacker A wins the sUF-CCA2 game for the hybrid
signcryption scheme with probability ε, and makes at most qe generation-
encryption oracle queries and qd verification-decryption oracle queries, then
there exists an attacker B that wins the LoR-CCA2 game for the signcryp-
tion KEM with advantage Adv-KEM-LoR(qe + 1, qd) and an attacker B′
that wins the INT-CCA+ game for the signcryption DEM with advantage
Prob-DEM-INT(qe, qd) such that

ε ≤ 2 ·Adv-KEM-LoR(qe + 1, qd) + Prob-DEM-INT(qe, qd) . (16)

Proof We prove this theorem by altering the game that the challenger and
the attacker play in a series of stages, and showing that an attacker’s advan-
tage is never significantly reduced by the change of game. Finally we will
show that an attacker’s advantage in winning the final game is small.

Let Game 1 be the normal game that an attacker plays against a chal-
lenger, as described in Section 3.2. Let Game 2 be the same game except
that the generation-encryption and verification-decryption oracles offered to
the attacker are changed to use the ideal version of the KEM described in
Section 3.4, rather than the proper KEM, and that the winning condition
is also slightly altered to respect this change. Hence, in Game 2, querying
the generation-encryption oracle with a message m returns:

1. Set (K, C1) = Sim.Encap(sks, pkr).

2. Set C2 = EncK(m).

3. Output (C1, C2).

and querying the verification-decryption oracle with a ciphertext (C1, C2)
returns:

1. Set K = Sim.Decap(pks, skr, C1). If K =⊥ then output ⊥.

2. Set m = DecK(C2). If m =⊥ then output ⊥.

3. Output m.

We alter the winning condition for the integrity game for a signcryption
scheme too, declaring the attacker A to win if it outputs a ciphertext pair
(C1, C2) that was never return by the generation-encryption oracle, and for
which:
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• Sim.Decap(pks, skr, C1) = K 6=⊥, and

• DecK(C2) = m 6=⊥.

(In other words, we change the success condition of the signcryption integrity
game to respect the fact that we have been using the ideal version of the
KEM, rather than the proper KEM.)

Let W1 be the event that a given attacker A wins Game 1, and let W2

be the event that A wins Game 2. We wish to show that |Pr[W1]−Pr[W2]|
is small. We do this by defining an algorithm B that makes use of A to win
the sUF-CCA2 game for the KEM. The algorithm runs as follows.

1. Receive (pks, pkr) from the challenger.

2. Execute A1 on the input (pks, pkr). A1 terminates by outputting
two equal-length messages (m0,m1) and some state information state.
If A1 queries a generation-encryption oracle with a message m then
respond as follows.

(a) Query the encapsulation oracle. It returns a pair (K,C1).

(b) Set C2 = EncK(C1).

(c) Return (C1, C2).

If A1 queries a verification-decryption oracle with a ciphertext (C1, C2)
then respond as follows.

(a) Query the decapsulation oracle on the input C1. It will return
either a key K or the error symbol ⊥. If it responds with ⊥ then
output ⊥.

(b) Set m = DecK(C2). If m =⊥ then output ⊥.

(c) Output m.

3. Pick a bit b ∈ {0, 1} uniformly at random, and compute the challenge
ciphertext (C∗

1 , C∗
2 ) as follows.

(a) Query the encapsulation oracle. It returns a pair (K∗, C∗
1 ).

(b) Set C∗
2 = EncK∗(mb).

4. ExecuteA2 on the input (C∗
1 , C∗

2 ) and state. IfA2 queries a generation-
encryption oracle or a verification-decryption oracle then respond as
above with the exception that the verification-decryption oracle will
not verify-decrypt the challenge ciphertext (C∗

1 , C∗
2 ). A2 terminates

by output a guess b′ for b.

5. If b = b′ then output 0, otherwise output 1.

28



By lemma 22, we know that the advantage of A is equal to

1/2 · |Pr[B outputs 0|B interacted with the KEM]
−Pr[B outputs 0|B interacted with the ideal KEM]| (17)

and so

1/2 · |Pr[B outputs 0|B interacted with the KEM]
−Pr[B outputs 0|B interacted with the ideal KEM]|

≤ Adv-KEM-LoR(qe + 1, qd) (18)

but

1/2 · |Pr[B outputs 0|B interacted with the KEM]
−Pr[B outputs 0|B interacted with the ideal KEM]|

= 1/2 · |Pr[W1]− Pr[W2]| . (19)

Hence,
|Pr[W1]− Pr[W2]| ≤ 2 ·Adv-KEM-LoR(qe + 1, qd) (20)

which is small because the KEM is secure against Left-or-Right attacks.
In Game 2, however, all ciphertexts are produced using random sym-

metric keys that are completely disassociated with the workings of the KEM.
This means that the attacker is essentially attacking the DEM. Formally, we
show that if there exists an attacker A that has a significant advantage in
winning Game 2 then there exists an attacker B′ that wins the INT-CCA+
game for a signcryption DEM with a significant probability. The attacker
B′ runs as follows.

1. Generate some global state information I by running Genc(1k), a valid
sender public/private key pair (pks, sks) by running Gens(I) and a
valid receiver public/private key pair (pkr, skr) by running Genr(I).

2. Set a counter i = 1 and a list of encapsulations/keys KeyList to be
empty.

3. Run A on (pks, pkr). If A requests the generation-encryption of a
message m then

(a) Set (K, C1) = Encap(sks, pkr). (N.B. K will not be used.)

(b) If there exists a pair (j, C1) on KeyList for some value of j then
set C2 = EncKj (m) and return (C1, C2).

(c) Otherwise add (i, C1) to KeyList.

(d) Set C2 = EncKi(m).

(e) Increase i by one and return (C1, C2).
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If A requests the verification-decryption of a ciphertext (C1, C2) then

(a) If there exists a pair (j, C1) on KeyList for some value of j then
return m = DecKj (C2).

(b) If Decap(pks, skr, C1) =⊥ then return ⊥.

(c) Otherwise add (i, C1) to KeyList.

(d) Set m = DecKi(C2).

(e) Increase i by one and return m.

4. A terminates by outputting a pair (C1, C2). If there exists a pair
(j, C1) on KeyList for some value of j then output (j, C2). Otherwise
output (i, C2).

It should be noted that because the sequence of keys (K1,K2, . . .) used in
the DEM INT-CCA+ security game are random generated, the probability
that B′ wins the above game is the same as the probability that A wins
Game 2. Hence,

Pr[W2] ≤ 1/2 + Prob-DEM-INT (qe, qd) . (21)

Therefore, A’s advantage in winning the signcryption integrity game (Game
1) is bounded by

2 ·Adv-KEM-LoR(qe + 1, qd) + Prob-DEM-INT (qe, qd) (22)

¤

Corollary 24 If a hybrid signcryption scheme is constructed from an out-
sider secure signcryption KEM and an outsider secure signcryption DEM
then that hybrid signcryption scheme is sUF-CCA2 secure.

Corollary 25 If a hybrid signcryption scheme is constructed from an out-
sider secure signcryption KEM and an outsider secure signcryption DEM
then that hybrid signcryption scheme is outsider secure.

3.7 ECISS-KEM

We now present a simple, provably secure and very efficient example of a
signcryption KEM. Recall that a signcryption KEM is defined by five al-
gorithms: a common key generation algorithm, a sender key generation
algorithm, a receiver key generation algorithm, a generation-encryption al-
gorithm and a verification-decryption algorithm. We detail each of these in
turn:
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• Common key generation algorithm. This algorithm takes as input
the security parameter 1k and outputs a triple (G,P, q) where G is a
description of a suitably large cyclic group, P is a generator for that
group and q is the order of the group. This group could be either a
subgroup of order q of the group of multiplication modulo a prime p,
i.e. G ≤ Z∗p, or a subgroup of an elliptic curve group. We will write
this group additively.

• Sender key generation algorithm. This algorithm picks an integer 1 ≤
s ≤ q − 1 uniformly at random, sets Ps = sP then outputs the public
key (G,P, q, Ps) and the private key (G, P, q, s).

• Receiver key generation algorithm. This algorithm picks an integer
1 ≤ r ≤ q − 1 uniformly at random, sets Pr = rP then outputs the
public key (G,P, q, Pr) and the private key (G,P, q, r).

• Encapsulation algorithm. This algorithm works as follows:

1. Choose an element 1 ≤ t ≤ q − 1 uniformly at random.

2. Set K = Hash(sPr + tP ).

3. Set C1 = tP .

4. Output (K,C1).

• Decapsulation algorithm. This algorithm works as follows.

1. Set K = Hash(rPs + C1).

2. Output K.

Here we assume that hash is a hash function that maps elements of G to
bit strings of the appropriate key length.

The security of this algorithm is closely related to that of ECIES-KEM
(see, for example, [11]). Due to these similarities we shall term this KEM
the ECISS-KEM (Elliptic Curve Integrated Signcryption Scheme KEM).
We shall present security proofs for ECISS in the random oracle model [9],
despite its flaws [13]. The security of the scheme is based on the Diffie-
Hellman problems:

Definition 26 Let G be a cyclic group with prime order q (and with the
group action written additively), and let P be a generator for G. The com-
putational Diffie–Hellman problem (CDH problem) is the problem of finding
abP when given (aP, bP ). We assume that a and b are chosen uniformly at
random from the set {1, . . . , q − 1}.

The decisional Diffie–Hellman problem (DDH problem) is the problem of
deciding whether cP = abP when given (aP, bP, cP ). We assume that a and
b are chosen uniformly at random from the set {1, . . . , q−1}, and c is either
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equal to ab (with probability 1/2) or chosen uniformly at random from the
set {1, . . . , q − 1} (with probability 1/2). The advantage that an algorithm
A has in solving the DDH problem is equal to

|Pr[A correctly solves the DDH problem]− 1/2| .

The gap Diffie–Hellman problem problem (Gap DH problem) is the prob-
lem of solving the CDH problem when there exists an efficient algorithm that
solves the decisional Diffie–Hellman problem on G. In other words, the gap
Diffie–Hellman problem is the problem of finding abP when given (aP, bP )
and access to an oracle that returns 1 when given a triple (αP, βP, αβP )
and 0 otherwise. We assume that a and b are chosen uniformly at random
from the set {1, . . . , q − 1}.

3.7.1 Proof of confidentiality

The proof that ECISS-KEM is secure against attacker’s attempt to win the
IND-CCA2 game is similar to the conventional proof of security for ECIES-
KEM.

Theorem 27 Suppose that, in the random oracle model, there exists an
attacker A = (A1,A2) that makes at most

• qe queries to the encapsulation oracle,

• qd queries to the decapsulation oracle,

• qh queries to the hash function (random) oracle;

and which can win the IND-CCA2 game against ECISS-KEM with advan-
tage Adv, then there exists an algorithm that can solve the CDH problem
in the groups generated by the common key generation algorithm of ECISS-
KEM with probability at least

1
qh(qe + qd + 1)

{
Adv − qe + qd

q

}
.

Proof We intend to use the attacker A as a subroutine of a larger algorithm
B which solves the CDH problem. This algorithm will receive as input a
pair of group elements (aP, bP ) from which we have to deduce abP . Before
we may run A we need to arrange two things: what are the keys for the
signcryption scheme that A is attacking and how do we provide A with
access to encapsulation, decapsulation and a hash (random) oracle?

It is comparatively simple to decide upon the values of the keys. We
set the sender’s public key Ps to be aP and the receiver’s public key Pr to
be bP . This mean we do not have access to the private keys for either the
sender or the receiver.
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In simulating the decapsulation oracle we would normally have to be sure
that its responses we are consistent with the responses of the hash oracle. So
that if the attacker A queries the decapsulation oracle on the encapsulation
C they get the same results as they would get if they queried the hash
oracle on the input bPs + C. We maintain this consistency by keeping a
record of the encapsulation, decapsulation and hash queries on two lists: a
list of encapsulations and the associated keys, EncapList , and a list of hash
function inputs and the responses, HashList .

It is crucial to note that if we ever know both (C, K) ∈ EncapList and
the corresponding (α, K) ∈ HashList such that α = bPs + C, then can
deduce α − C = abP . We simulate the encapsulation, decapsulation and
hash oracles as follows.

If the attacker, A, queries the hash (random) oracle with the input α
then:

1. Check whether there exists an entry (α, K) ∈ HashList . If so, return
K to A.

2. Otherwise, randomly generate a bit string K of the appropriate length,
add (α, K) to HashList and return K to A.

If A queries the encapsulation oracle then

1. If there exists an entry (C, K) ∈ EncapList then return K to A.

2. Choose an element 1 ≤ t ≤ q − 1 uniformly at random.

3. Set C = tP .

4. Randomly generate a bit string K of the appropriate length, add
(C,K) to EncapList and return (K,C) to A.

If A queries the decapsulation oracle then

1. If there exists an entry (C, K) ∈ EncapList then return K to A.

2. Otherwise, randomly generate a bit string K of the appropriate length,
add (C, K) to EncapList and return (K, C) to A.

Note that we do not bother to to maintain consistency between the encapsu-
lations/decapsulations oracle responses and hash function oracle responses.
This means that, at some point, we may give an inconsistent response to
an oracle query. We not care about this because, if it does happen, we will
already have the correct entry HashList and EncapList to be able to deduce
abP .

Consider the following algorithm B for solving the CDH problem:

1. Receive the challenge (aP, bP ).
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2. Initialise the two lists, HashList and EncapList .

3. Execute A1 on the input (aP, bP ). If A1 queries the encapsulation,
decapsulation or hash oracles then respond using the simulators de-
scribed above. A1 terminates by outputting some state information
state.

4. Generate an encapsulation (K0, C
∗) using the encapsulation algorithm

described above and a random symmetric key K1. Pick a bit σ ∈ {0, 1}
uniformly at random and set the challenge encapsulation (K∗, C∗) =
(Kσ, C∗). Note that this algorithm will fail to solve the CDH problem
if the challenge encapsulation C∗ generated is one for which A1 has
already queried the decapsulation oracle, or received as a response
from the encapsulation oracle.

5. Execute A2 on the input (K∗, C∗) and state. If A2 queries the hash,
encapsulation or decapsulation oracles then respond using the simula-
tors described above. A2 terminates by outputting a bit σ′ (which we
ignore).

6. If EncapList 6= ∅ and HashList 6= ∅ then select a entry (C, K) ∈
EncapList and an entry (α, K) ∈ HashList uniformly at random and
output α − C as the solution to the CDH problem. Otherwise, select
a point Q uniformly at random from G and output Q as the solution
to the CDH problem.

We now analyse the probability that the B succeeds in solving a random
instance of the CDH problem.

To start with, we note that the encapsulation, decapsulation and hash
function oracles perfectly simulate the environment that A should be run-
ning in up until the point that an inconsistent response is given, at which
point we have enough information to deduce the solution to the CDH prob-
lem. We also note that, due to the random oracle model, there are only two
ways in which A can have any kind of advantage in winning the IND-CCA2
game: either A queried the hash function oracle on the value bPs + C∗ or
A1 made a query to the encapsulation or decapsulation oracle that involved
C∗ directly.

Let E be the event that A1 made either a query to the encapsulation
oracle and received (K, C∗) back as a response, or queried the decapsulation
oracle on C∗. We have that

Pr[A wins] = Pr[A wins|E]Pr[E] + Pr[A wins|¬E]Pr[¬E] (23)
≤ Pr[E] + Pr[A wins|¬E] . (24)

Now, since C∗ is chosen at random from G, we must have that

Pr[E] ≥ qe + qd

q
(25)
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and so
1
2

+ Adv − qe + qd

q
≤ Pr[A wins|¬E] (26)

Now, let F be the event that Amakes queries that mean (C, K) ∈ EncapList
and (bPs + C, K ′) ∈ HashList . Note that if F does not occur that A can
have no clue whether the challenge encapsulation is correct or not as it has
not queried the hash function oracle on bPs + C∗. Hence we have that

1
2

+ Adv − qe + qd

q
≤ Pr[A wins|¬E] (27)

= Pr[A wins|F ∧ ¬E]Pr[F ]
+Pr[A wins|¬F ∧ ¬E]Pr[¬F ] (28)

≤ Pr[F ] + Pr[A wins|¬E ∧ ¬F ] (29)
= Pr[F ] + 1/2 (30)

and therefore
Pr[F ] ≥ Adv − qe + qd

q
. (31)

If F occurs then B has at least a 1/(qe + qd + 1) chance of picking the
element of EncapList and a 1/qh chance of picking the element of HashList
such the two entries of related. If B does this then B correctly solves the
CDH problem. Hence, B correctly solves the CDH problem with probability
at least

1
qh(qe + qd + 1)

{
Adv − qe + qd

q

}
.

¤

Corollary 28 Suppose that, in the random oracle model, there exists an
attacker A = (A1,A2) that makes at most

• qe queries to the encapsulation oracle,

• qd queries to the decapsulation oracle,

• qh queries to the hash function (random) oracle;

and which can win the IND-CCA2 game against ECISS-KEM with advan-
tage Adv, then there exists an algorithm that can solve the Gap-DH problem
in the groups generated by the common key generation algorithm of ECISS-
KEM with probability at least Adv − (qe + qd)/q.

Proof This result is easy to see once we note that, if we reduce the security
to the Gap-DH problem, we do not need to guess which two entries in
(C, K) ∈ EncapList and (α, K) ∈ HashList are related but we can check
each possible pairing to see if (aP, bP, α − C) is a valid solution to the
decisional Diffie-Hellman problem using the DDH oracle.¤
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3.7.2 Proof of integrity/authentication

The proof of that ECISS-KEM is Left-or-Right secure is almost exactly the
same as the proof that it is IND-CCA2 secure. Again, we use the fact that
an attacker A can only distinguish between the random responses of the
random oracle and the random responses of the ideal KEM if it queries the
random oracle on an input for which it knows the related encapsulation —
i.e. for which it has made a suitable encapsulation or decapsulation query.
If such a pair of queries of queries exist then we can use them to solve an
instance of the CDH problem.

Theorem 29 Suppose that, in the random oracle model, there exists an
attacker A that makes at most

• qe queries to the encapsulation oracle,

• qd queries to the decapsulation oracle,

• qh queries to the hash function (random) oracle;

and which can win the LoR-CCA2 game against ECISS-KEM with advantage
Adv, then there exists an algorithm that can solve the CDH problem in the
groups generated by the common key generation algorithm of ECISS-KEM
with probability at least

Adv

qh(qe + qd)
.

Proof Again, we use the attacker A as a subroutine of a larger algorithm B
which solves the CDH problem. This algorithm will receive as input a pair
of group elements (aP, bP ) from which we have to deduce abP . We set the
public keys of the signcryption algorithm to be the same as before, i.e. set
Ps = aP and Pr = bP , and simulate the encapsulation, decapsulation and
hash function oracles in exactly the same way as in Theorem 27.

Consider the following algorithm B for solving the CDH problem:

1. Receive the challenge (aP, bP ).

2. Initialise the two lists, HashList and EncapList .

3. Execute A on the input (aP, bP ). If A queries the encapsulation,
decapsulation or hash oracles then respond using the simulators de-
scribed above. A terminates by outputting a bit σ′ (which we ignore).

4. If EncapList 6= ∅ and HashList 6= ∅ then select a entry (C, K) ∈
EncapList and an entry (α, K) ∈ HashList uniformly at random and
output α − C as the solution to the CDH problem. Otherwise, select
a point Q uniformly at random from G and output Q as the solution
to the CDH problem.
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Now we analyse the probability that B solves the CDH problem. Let
F be the event that A makes queries that mean (C,K) ∈ EncapList and
(bPs + C,K ′) ∈ HashList . Note that if F does not occur that A can have
no clue whether it is interacting with the proper KEM or the ideal KEM,
due to the random nature of the hash function. Hence,

1/2 + Adv = Pr[A wins] (32)
= Pr[A wins|F ]Pr[F ] + Pr[A wins|¬F ]Pr[¬F ] (33)
≤ Pr[F ] + Pr[A wins|¬F ] (34)
= Pr[F ] + 1/2 . (35)

Therefore, Pr[F ] ≥ Adv. However, if F occurs then B has at least a 1/(qe +
qd) chance of picking the element of EncapList and a 1/qh chance of picking
the element of HashList such the two entries of related. If B does this then
B correctly solves the CDH problem. Hence, B correctly solves the CDH
problem with probability at least

Adv

qh(qe + qd)
.

¤
In a manner similar to before, we can also show the following reduction.

Corollary 30 Suppose that, in the random oracle model, there exists an
attacker A that makes at most

• qe queries to the encapsulation oracle,

• qd queries to the decapsulation oracle,

• qh queries to the hash function (random) oracle;

and which can win the LoR-CCA2 game against ECISS-KEM with advantage
Adv, then there exists an algorithm that can solve the Gap-DH problem in the
groups generated by the common key generation algorithm of ECISS-KEM
with probability at least Adv.

3.7.3 Potential weaknesses of ECISS-KEM

It is clear that ECISS-KEM is secure in the proposed security model; how-
ever, it is always a good idea to examine the security of a scheme outside
of the security model in which it has been proven secure. This indicates
what kind of extra information the attacker has to have access to in order
to break the scheme. One weakness of ECISS-KEM is its reliance on the
security of the value sPr + tP = rPs + C1 = srP + tP .

We can view ECISS-KEM as producing a symmetric key by hashing a
shared secret srP offset by a random value tP chosen by the sender. As
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we can see from the security proofs, if an attacker discovers this value then
they can easily recover srP and break the scheme in perpetuity. Hence, it
is of the utmost importance that an implementaion of the scheme keeps the
value srP + tP confidential.

This potential weakness could be avoided if the offset value was not easily
computable by the attacker. For example, one could have an encapsulation
algorithm that worked as follows.

1. Choose an element 1 ≤ t ≤ q − 1 uniformly at random.

2. Set K = Hash(sPr + tPr).

3. Set C1 = tP .

4. Output (K, C1).

The corresponding decapsulation algorithm would work as follows.

1. Set K = Hash(rPs + rC1).

2. Output K.

This would mean that an attacker that discovered the value sPr + tPr =
srP + trP would only be able to recover the single message for which that
value is used to produce the symmetric key, rather than break the scheme
completely. However, because it is not easy to compute srP from sPr +
tPr, it is a lot more difficult to produce a proof of Left-or-Right security5

for such a scheme: it is necessary to reduce the security of the scheme
to a non-standard assumption6. Whether an implementor wishes to use a
scheme that reduces to a trusted security assumption but has a potential
weakness if the security model is invalid, or use a scheme that appears
more secure but reduces to an untrusted security assumption, is a very
arguable implementation issue. Some arguments about this issue have been
put forward by Koblitz and Menezes [20].

3.8 Using KEMs as key establishment mechanisms

One question that has been repeatedly asked since the inception of key
encapsulation mechanisms has been “Can we use an (encryption) KEM as
a key agreement mechanism?” Certainly KEMs exhibit the main property
that we expect an asymmetric key agreement mechanism to have: they allow
to remote users to pass messages between them in such a way that both users
can derive a symmetric key in a suitably secure way. The simplest form of

5An efficient proof of IND-CCA2 security that reduces the security of the scheme to
the Gap Diffie-Hellman assumption can still be produced.

6I.e. an assumption different from the assumptions that the DDH, CDH or Gap DH
problems are hard to solve.
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this idea is for a sender (A) to use an encryption KEM and the public key of
the receiver (B) to produce a symmetric key and an encapsulation of that
key (K, C), and to send the encapsulation C to the receiver who could then
recover the symmetric key by running the decapsulation algorithm using
their private key. Indeed, if the KEM in question is ECIES-KEM then the
resulting key agreement scheme is a standardised form of the Diffie-Hellman
key agreement protocol [18]. For more information about key agreement
mechanisms, the reader is referred to Boyd and Mathuria [12].

The problem with key agreement mechanisms of this form is that they do
not provide any kind of origin authentication or a guarantee of freshness, i.e.
there is no way that B can know that they are involved in a key agreement
protocol with A rather than some malicious entity claiming to be A, nor
can they be sure that the message they receive is not simply a replay of an
earlier execution of the protocol.

The advent of signcryption KEMs with outsider security removes one of
these problems. If one uses a signcryption KEM in the same naive way that
an encryption KEM is used above, then B can at least be assured that he is
engaged in a protocol exchange with A as no other entity except B can forge
encapsulations purporting to come from A. This only leaves the problem of
freshness.

Generally, the problem of freshness can be solved either through the use
of nonces or time-stamps. A nonce is a randomly generated number that
is only ever used once for the purposes of authentication, whilst a time-
stamp is a digital document that contains the date/time of its creation. A
simple way of adding freshness to the naive method of key agreement we
have been discussing is to send either a nonce or a time-stamp along with
the encapsulation. The nonce/time-stamp must be integrally protected as
it is sent; this could be achieved using a MAC computed using the newly
agreed secret key. Hence, the complete key agreement mechanism using
time-stamps would be:

1. A uses a signcryption KEM, along with B’s public key and his own
private key, to generate a symmetric key and an encapsulation of that
key (K,C).

2. A uses the new key to compute a MAC τ of a time-stamp tA, and
sends C, tA and τ to B.

3. B receives C, tA and τ , and recovers the symmetric key K by running
the decapsulation algorithm on C using A’s public key and B’s own
private key.

4. B then checks that the time-stamp tA is current and that the τ is a
MAC of the time-stamp tA. If either of these checks fail then B rejects
the key K. Otherwise B accepts the key K.
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The key agreement mechanism using nonces is similar:

1. B generates a random nonce rB and sends this to A.

2. A uses a signcryption KEM, along with B’s public key and his own
private key, to generate a symmetric key and an encapsulation of that
key (K,C).

3. A uses the new key to compute a MAC τ of a nonce rB, and sends C
and τ to B.

4. B receives C and τ , and recovers the symmetric key K by running
the decapsulation algorithm on C using A’s public key and B’s own
private key.

5. B then checks that τ is a MAC of the nonce rB. If this check fails
then B rejects the key K. Otherwise B accepts the key K.

Whilst these examples are very simple and suffer from several practical
problems, for example the lack of interaction between A and B means that
the scheme becomes weak if an attacker ever compromises a key K, it does
serve to show that secure key agreement mechanisms can be constructed
from KEMs, but that signcryption KEMs with outsider security should be
used rather than encryption KEMs.

4 Hybrid Signature Schemes

We now examine the idea of hybrid signature schemes (or, if we wish to be
precise, hybrid signature schemes that do not give message recovery). Such
a scheme would be expected to provide integrity, origin authentication and
non-repudiation services. We note that a MAC scheme can provide integrity
and origin authentication service; but, due to the fundamental shared key
nature of symmetric cryptosystems, no symmetric cryptosystem can provide
a non-repudiation service. We therefore aim to build a hybrid signature
scheme where the symmetric ‘DEM’ is a MAC scheme that provides integrity
protection and origin authentication, and the asymmetric ‘KEM’ provides
a symmetric key in a non-repudiable way.

We do not make any claims that a hybrid signature scheme based on
the use of a MAC is likely to be of any practical use. Indeed, it is clear to
see right from the outset that these schemes are of no practical significance
whatsoever. Most standard signature schemes do not sign the message itself,
but a hash of the message; hence, signature schemes do not have the same
problems with long messages that encryption or signcryption schemes en-
counter. Moreover, there exist simple signature schemes, such as RSA-PSS
[10] and Schnorr [25, 26], that are likely to be at least as computationally
efficient as a signature KEM. Therefore, the overall performance of a hybrid
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signature scheme is likely to be poor in comparison. The only reason to
examine hybrid signature schemes (besides notions of completeness) is as a
first step towards producing a simple hybrid signcryption scheme with in-
sider security — such a scheme would share many similarities with a hybrid
signature scheme.

A signature scheme is a triple of algorithms (G,S,V) where:

1. G is a probabilistic key generation algorithm that takes as input a
security parameter 1k and outputs a public/private key pair (pk, sk).
The private key sk is known as the signing key, while the public key
pk is known as the verification key.

2. S is a (possible probabilistic) signing algorithm that takes as input a
message m ∈ {0, 1}∗ and the private key sk, and outputs a signature
σ. We denote this process by σ = S(sk,m).

3. V is a deterministic verification algorithm that takes as input a mes-
sage m, a signature σ and the public key pk, and either outputs
valid or invalid. We denote the use of the verification algorithm
by V(pk, m, σ).

The soundness condition for a signature scheme demands that, for almost all
key pairs (pk, sk), we have that V(pk,m, σ) = valid whenever σ = S(sk, m).

A signature scheme aspires to be existentially unforgeable (or, to be pre-
cise, strongly existentially unforgeable). This security criterion is expressed
in terms of a game played between a hypothetical challenger and an attacker
A. For a given security parameter k, this game is played as follows.

1. The challenger generates a valid key-pair (pk, sk) by running the key
generation algorithm G(1k).

2. The attacker runs A on the input pk. During its execution A can
query a signature oracle that will, when given a message m, output a
signature σ = S(sk, m). A terminates by outputting a pair (m∗, σ∗).

The attacker wins the game if V(pk,m∗, σ∗) = valid and the signature
oracle never responded to a query on m∗ by outputting the signature σ∗.

Definition 31 (Existential unforgery of a signature scheme) A sig-
nature scheme is said to be existentially unforgeable if, for all polynomial
attackers A, the probability that A wins the existential unforgeability game
is negligible as a function of the security parameter k.

On the impossibility of building a hybrid signature scheme

Let us consider trying to build a hybrid signature scheme out an asym-
metric signature KEM (Gen,Encap,Decap) and a symmetric signature DEM
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(Enc,Dec). We wish to consider the idea of hybrid signature scheme in a
very general setting. Hence, we will allow Enc to be any deterministic
polynomial-time algorithm that takes as input a symmetric key K and a
message m and outputs a “ciphertext” C2, and Dec to be any determin-
istic polynomial-time algorithm that takes as input a symmetric key K, a
message m and a ciphertext C2, and outputs either valid or invalid. For
consistency, we require that

DecK(m,C2) = valid whenever C2 = EncK(m) . (36)

It may be helpful to think of Enc as a MAC algorithm that outputs the
MAC tag C2 for the message m, and Dec as the algorithm that recomputes
the MAC for a message m and compares it to the submitted tag C2.

Based on earlier constructions it is logical to start with a KEM where
the encapsulation algorithm takes the secret key sk as input, and outputs a
symmetric key K and encapsulation C1 of that key; and the decapsulation
algorithm takes as input an encapsulation C1 and the public key pk, and out-
puts a symmetric key K. Of course, we must require that K = Decap(pk, C1)
whenever (K,C1) = Encap(sk) and (pk, sk) is a valid key pair.

A hybrid signature scheme of the following form could then be con-
structed.

• The key generation algorithm G is given by the KEM key generation
algorithm Gen.

• To sign a message m using a secret key sk, the following steps are
performed.

1. Set (K, C1) = Encap(sk).

2. Set C2 = EncK(m).

3. Output (C1, C2).

• To verify that (C1, C2) is a signature for a message m using a public
key pk, the following step are performed.

1. Set K = Decap(pk, C1).

2. Output DecK(m,C2).

It is easy to see that such a construction will never give a secure signature
scheme. If an attacker knows that (C1, C2) is a valid signature for a (possibly
unknown) message, then the attacker can recompute the symmetric key K
used in that signature by computing Decap(pk, C1), and compute C ′

2 =
EncK(m) for any message m. The pair (C1, C

′
2) is then a valid signature

for the message m.
This attack works because the symmetric key the KEM produces is in-

dependent of the message with which it is being used. Hence, an attacker
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can always use the decapsulation algorithm (which is public) to recover a
symmetric key K that is valid for use with all messages. Therefore, if we
are going to produce a secure hybrid signature scheme, we must produce
the symmetric key in a manner that depends upon the message that it is
going to be used to sign. In other words, we must allow the encapsulation
and decapsulation algorithm to take the message as an extra input. This,
to some extent, violates the separation principle that we are trying to ap-
ply: the principle that the KEM and DEM are completely independent.
We must be careful with this approach, Granboulan [17] has already shown
that problems may arise if the KEM and DEM are not suitably independent.
However, in this case the situation is unavoidable.

Despite this desire to keep the roles of the KEM and DEM as separate
as possible, we will model the encapsulation and decapsulation algorithms
as taking the whole message as an input. Therefore, the encapsulation
algorithm takes a message m and a private key sk as input, and outputs a
symmetric key K and an encapsulation C2 of that key. The decapsulation
algorithm takes an encapsulation C2, a message m and the public key pk
as input, and outputs a symmetric key K. Given a signature KEM of this
form, the following hybrid signature scheme could be constructed.

• The key generation algorithm G is given by the KEM key generation
algorithm Gen.

• To sign a message m using a secret key sk, the following steps are
performed.

1. Set (K, C1) = Encap(sk,m).

2. Set C2 = EncK(m).

3. Output (C1, C2).

• To verify that (C1, C2) is a signature for a message m using a public
key pk, the following step are performed.

1. Set K = Decap(pk, m,C1).

2. Output DecK(m,C2).

In order that the simple attack used above should not apply to this
new hybrid signature scheme construction, we require that it is infeasible
for an attacker to be able to find an encapsulation C1 and a message m
such that Decap(pk, m, C1) 6=⊥ without having received C1 as a response
from the signing oracle queried on the input m. If an attacker could find
such a message m and and encapsulation C1 then they could construct
a valid signature (C1, C2) for m by computing the symmetric key K =
Decap(pk,m, C1) and the “ciphertext” C2 = EncK(m).
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However, if we assume that it is difficult for an attacker to find a message
m and an encapsulation C1 such that Decap(pk, m,C1) 6=⊥ and C1 was never
received as a response from the signing oracle queried on the input m, then
we can construct a secure signature scheme out of the KEM alone:

• The key generation algorithm G is given by the KEM key generation
algorithm Gen.

• To sign a message m using a secret key sk, the following steps are
performed.

1. Set (K, C1) = Encap(sk,m).

2. Output C1

• To verify that C1 is a signature for a message m using a public key
pk, the following step are performed.

1. Set K = Decap(pk, m,C1).

2. If K 6=⊥ then output valid, otherwise output invalid.

We are therefore forced to conclude that, in order to build a KEM–DEM
hybrid signature scheme, we would need to alter a secure signature scheme
in such a way as to make it produce symmetric keys and then use these keys
with an arbitrary DEM. The security of the scheme would rely solely on the
security of the KEM and would always be less efficient than using the KEM
alone.

5 Hybrid Signcryption Schemes with Insider Se-
curity

In this section we return to the problem of designing signcryption schemes,
but we now attempt the more difficult task of designing a hybrid signcryp-
tion scheme with insider security. Just like the signcryption schemes with
outsider security discussed in Section 3, signcryption schemes with insider
security must protect the confidentiality of a message against attacks made
by third parties (i.e. attacks made by entities who are not the sender or
receiver). However, unlike signcryption schemes with outsider security, sign-
cryption schemes with insider security must protect against forgery attacks
made by any entity except the sender. In particular, this means the scheme
must protect against attacks made by the receiver, who has access to the
receiver’s private key. This makes the task significantly more difficult.

Within this section we will use the terms “signcryption KEM”, “sign-
cryption DEM” and “hybrid signcryption scheme” to refer to a signcryption
KEM with insider security, signcryption DEM with insider security and hy-
brid signcryption scheme with insider security (as defined in Section 5.2).
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We trust the reader will be able to differentiate between these components
and the components used in developing hybrid signcryptions with outsider
security in Section 3 by the context in which the terms are used.

5.1 Insider security for signcryption schemes

Signcryption schemes are defined in Section 3.1. A signcryption scheme must
satisfy two security criteria if it is to be considered insider secure. It must
protect a message’s confidentiality, i.e. there must be no polynomial-time
attackers who have a non-negligible advantage in winning the IND-CCA2
confidentiality game defined in Section 3.2.1. It must also protect a mes-
sage’s integrity against all attackers. We define this notion of security in
terms of a game, called the sIUF-CCA2 game7, played between a hypothet-
ical challenger and an attacker A. For a given security parameter k:

1. The challenger generates some valid parameters I by running Gc(1k);
a valid sender key pair (pks, sks) by running the sender key generation
algorithm Gs(I); and a valid receiver key pair (pkr, skr) by running
the receiver key generation algorithm Gr(I).

2. The attacker runs A on the input (pks, skr). This algorithm out-
puts a possible signcryption C∗. During its execution, A can query
a generation-encryption oracle that will, if given a message m ∈ M,
return E(sks, pkr,m). Clearly there is no need for the attacker to be
given access to a verification-decryption oracle as it has access to the
receiver’s private key.

The attacker wins the game if D(pks, skr, C
∗) = m 6=⊥ and A never received

C∗ as a response from generation-encryption oracle8.

Definition 32 (sIUF security for a signcryption scheme) A signcryp-
tion scheme is said to be sIUF-CCA2 secure if, for every polynomial-time
attacker A, the probability that A wins is negligible as a function of the
security parameter k.

Definition 33 (Insider security for a signcryption scheme) A signcryp-
tion scheme is said to be insider secure if it is both IND-CCA2 secure (see
Section 3.2.1) and sIUF-CCA2 secure.

7Strong Insider existential UnForgeability
8Again, we are technically defining the notion of “strong unforgeability” as we give the

attacker credit for producing a new signcryption of a previously signcrypted message. The
corresponding notion of “weak unforgeability” only gives the attacker credit for producing
new signcryptions of messages that have not been previously signcrypted.
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5.2 A general model for a hybrid signcryption scheme

A hybrid signcryption scheme needs to provide confidentiality, integrity, and
authentication services. Hence, it makes sense to try and build a hybrid
signcryption scheme using an authenticated encryption scheme as the DEM;
however, as we shall see, the requirements of the KEM are such that it will
provide both the integrity and authentication services. Therefore, the DEM
will only be needed to provide a confidentiality service.

Whilst a signcryption scheme with insider security does not automati-
cally provide a non-repudiation service, there is a relationship between sign-
cryption schemes with insider security and signature schemes. In both cases,
there is only one entity who can successfully process a message (the signer in
the signature setting and the sender in the signcryption setting). The reason
that a signcryption scheme with insider security does not provide some kind
of non-repudiation service is that it may be impossible for a third party to
confirm that a ciphertext is a signcryption of a given message without hav-
ing access to the receiver’s private key. If a receiver is prepared to release
his private key then a signcryption scheme with insider security will pro-
vide a non-repudiation service, but not, obviously, a confidentiality service.
Hybrid signcryption schemes with non-repudiation are briefly discussed in
Section 5.7.

This relationship between signcryption schemes with insider security and
signcryption schemes with non-repudiation allow us to draw parallels be-
tween the problems of designing a hybrid signcryption scheme with insider
security and a hybrid signature scheme. In particular, it is easy to see that
the KEM of a hybrid signcryption scheme must depend upon the message
on which the signcryption scheme is being used. If not, then the receiver
will always be able to recover a symmetric key from an encapsulation that is
valid for use with all messages, and so forge a signcryption for any message
of his choice.

Within the signature setting, we made the KEM depend upon the mes-
sage by allowing the message to be given as an input to the encapsulation
and decapsulation algorithms. Whilst it is still possible to provide the mes-
sage as an input to the encapsulation algorithm, it is not possible to provide
the message as an input to the decapsulation algorithm because the receiver
will not know what the message is until after it has been decrypted, i.e.
after the decapsulation algorithm has already been executed. Hence the de-
capsulation algorithm must be independent of the message. We remove this
seemingly paradoxical problem by proposing that a KEM contain a new,
sixth algorithm Ver , which can be used after the message has been recov-
ered, to indicate whether a given symmetric key is correctly associated with
a given message and its encryption under the signcryption scheme. We term
this a KEM’s verification algorithm9. Hence, we define a signcryption KEM

9It should be noted that a KEM’s verification algorithm Ver is very different from
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(for a signcryption scheme with insider security) as follows.

Definition 34 (Signcryption KEM) A signcryption KEM is a 6-tuple of
algorithms:

1. A probabilistic common key generation algorithm, Genc. It takes as
input a security parameter 1k and return some global information (pa-
rameters) I.

2. A probabilistic sender key generation algorithm, Gens. It takes as
input the global information I and outputs a public/private key pair
(pks, sks) for a party who wishes to send a signcrypted message.

3. A probabilistic receiver key generation algorithm, Genr. It takes as
input the global information I and outputs a public/private key pair
(pkr, skr) for a party who wishes to be able to receive signcrypted mes-
sages.

4. A probabilistic key encapsulation algorithm, Encap. It takes as input
a sender’s private key sks, a receiver’s public key pkr and a message
m; and outputs a symmetric key K and an encapsulation of that key
C. We denote this as (K, C) = Encap(sks, pkr).

5. A deterministic key decapsulation algorithm, Decap. It takes as input
a sender’s public key pks, a receiver’s private key skr and an encapsu-
lation of a key C; and outputs either a symmetric key K or the error
symbol ⊥. We denote this as K = Decap(pks, skr, C).

6. A deterministic verification algorithm, Ver. It takes as input a sender’s
public key pks, a receiver’s private key skr, a message m, and an en-
capsulation C; and outputs either valid or invalid. Note that the
verification algorithm does not need to take the symmetric key K as
input as it can be easily computed from the encapsulation C using the
deterministic decapsulation algorithm.

We require that the decapsulation algorithm is sound, i.e. for almost all valid
sender key-pairs (pks, sks) and almost all receiver key-pairs(pkr, skr) then
K = Decap(pks, skr, C) for almost all (K, C) = Encap(sks, pkr). We also
require that the verification algorithm is sound, i.e. for almost all key-pairs
(pks, sks), almost all receiver key-pairs (pkr, skr) and almost all (C,K) =
Encap(sks, pkr,m) then Ver(pks, skr,m, C) = valid.

the verification algorithms of a signcryption scheme with non-repudiation. The KEM’s
verification algorithm provides confirmation that a symmetric key, an encapsulation of
that key and a message are associated with each other. The verification algorithm of a
signcryption scheme is a method of providing non-repudiation evidence to third parties.
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We define a signcryption DEM (for a signcryption scheme with insider
security) in exactly the same way as we defined a signcryption DEM for a
signcryption scheme with outsider security in Section 3.3.

We can combine a signcryption KEM and signcryption DEM to make a
signcryption scheme in the following manner.

Definition 35 (KEM-DEM hybrid signcryption scheme) Suppose that
(Genc,Gens,Genr,Encap,Decap,Ver) is a signcryption KEM, (Enc,Dec)
is a signcryption DEM, and that, for all security parameters k, the keys
produced by the signcryption KEM are of the correct length to be used by the
signcryption DEM. We may then construct a signcryption scheme (Gc,Gs,Gr, E ,D)
as follows.

• The key generation algorithms (Gc,Gs,Gr) are given by the key gener-
ation algorithms for the signcryption KEM (Genc,Gens,Genr).

• The action of a generation-encryption algorithm E on a message m, a
sender’s private key sks and a receiver’s public key pkr is given by:

1. Set (K, C1) = Encap(sks, pkr,m).

2. Set C2 = EncK(m).

3. Output (C1, C2).

• The action of a verification-decryption algorithm D on a signcryption
(C1, C2), a sender’s public key pks and a receiver’s private key skr is
given by:

1. Set K = Decap(pks, skr, C1). If K =⊥ then output ⊥ and stop.

2. Set m = DecK(C2). If m =⊥ then output ⊥ and stop.

3. If Ver(pks, skr,m, C1) = valid then output m. Otherwise output
⊥.

This construction is sound due to the soundness of the signcryption KEM
and DEM.

5.3 The security criteria for a signcryption KEM

In this section we will develop independent security criteria for a signcryption
KEM with insider security.

5.3.1 Confidentiality

A signcryption KEM with insider security must satisfy a similar condition
to that satisfied by a signcryption KEM with outsider security, as defined
in Section 3.4.1. However, we have to make two small changes. The first
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is to give the attacker oracle access to the verification algorithm, Ver . The
second is a consequence of the fact that the signcryption KEM now needs
to take a message as input, as well as the sender and receiver’s keys.

Formally, we define the IND-CCA2 game as a game played between a
hypothetical challenger and a two stage attacker A = (A1,A2). For a given
security parameter k, the game is played as follows.

1. The challenger generates some public parameters I = Genc(1k), a
sender key-pair (pks, sks) = Gs(I) and a receiver key-pair (pkr, skr) =
Gr(I).

2. The attacker runs A1 on the input (pks, pkr). During its execution A1

can query an encapsulation oracle, that will, when given a message
m, return Encap(sks, pkr,m); a decapsulation oracle, that will, when
given an encapsulation C, return Decap(pks, skr, C); and a verification
oracle, that will, when given an encapsulation C and a message m,
return Ver(pks, skr,m, C). A1 terminates by outputting a message
m∗ and some state information state.

3. The challenger computes the challenge signcryption as follows.

(a) Set (K0, C
∗) = Encap(sks, pkr,m

∗).

(b) Randomly generate a symmetric K1 of the same length as K0.

(c) Randomly generate a bit b ∈ {0, 1}.
(d) Return (Kb, C

∗) to the attacker.

4. The attacker executes A2 on the input (K∗, C∗) and state. During
its execution A2 can query an encapsulation, decapsulation and veri-
fication oracle as above, with the exception that A2 cannot query the
decapsulation oracle on the input C∗. A2 terminates by outputting a
guess b′ for b.

The attacker wins the game if b = b′. If an attacker makes at most qe queries
to the encapsulation oracle, qd queries to the decapsulation oracle and qv

queries to the verification oracle then that attacker’s advantage is defined
to be:

Adv-KEM-IND(qe, qd, qv) = |Pr[b = b′]− 1/2| . (37)

Definition 36 A signcryption KEM with insider security is IND-CCA2 se-
cure if, for all polynomial-time attackers A, that attacker’s advantage in
winning the IND-CCA2 game is negligible as a function of the security pa-
rameter k.

However, along with making sure that the keys that the signcryption
KEM produces are suitably random, we must now protect against the threat
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that a signcryption KEM leaks information about the message directly.
Hence, along with a output indistinguishability criterion, a signcryption
KEM must also satisfy a message indistinguishability criterion in same way
as an encryption algorithm.

Formally, we define the INP-CCA2 game10 as a game played between a
hypothetical challenger and a two-stage attacker A = (A1,A2). For a given
security parameter k, the game is played as follows.

1. The challenger generates some public parameters I = Genc(1k), a
sender key-pair (pks, sks) = Gs(I) and a receiver key-pair (pkr, skr) =
Gr(I).

2. The attacker runs A1 on the input (pks, pkr). During its execution A1

can query an encapsulation oracle, that will, when given a message
m, return Encap(sks, pkr,m); a decapsulation oracle, that will, when
given an encapsulation C, return Decap(pks, skr, C); and a verification
oracle, that will, when given an encapsulation C and a message m,
return Ver(pks, skr,m, C). A1 terminates by outputting two messages
m0 and m1, and some state information state.

3. The challenger computes the challenge signcryption as follows.

(a) Randomly generate a bit b ∈ {0, 1}.
(b) Set (Kb, Cb) = Encap(sks, pkr,mb).

(c) Return Cb to the attacker.

4. The attacker executes A2 on the input C∗ and state. During its exe-
cution A2 can query an encapsulation, decapsulation and verification
oracle as above, with the exception that A2 cannot query the verifica-
tion oracle on the inputs (m0, C

∗) or (m1, C
∗).

The attacker wins the game if b = b′. If an attacker makes at most qe queries
to the encapsulation oracle, qd queries to the decapsulation oracle and qv

queries to the verification oracle then that attacker’s advantage is defined
to be:

Adv-KEM-INP(qe, qd, qv) = |Pr[b = b′]− 1/2| . (38)

Definition 37 A signcryption KEM with insider security is INP-CCA2 se-
cure if, for all polynomial-time attackers A, that attacker’s advantage in
winning the INP-CCA2 game is negligible as a function of the security pa-
rameter k.

10Here, INP stands for “input”.
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5.3.2 Integrity/Authentication

It is clear that if an attacker, equipped with knowledge of pkr and sks, can
determine a KEM encapsulation C1 and a message m such that

• Decap(pks, skr, C1) = K 6=⊥,

• Ver(pks, skr,m, C1) = valid, and

• C1 was never the response from the KEM encapsulation oracle queried
on the message m,

then that attacker can use the encapsulation C1 to forge a new signcryp-
tion (C1, C2) of the message m by computing C2 = EncK(m). However,
if we insist that a scheme is only secure if an attacker cannot find such a
message/encapsulation pair, then we can deduce that the KEM encapsula-
tion algorithm must be acting as a signature scheme, where the component
algorithms if the signature scheme are as follows.

• Key generation is performed as follows.

1. Set I = Genc(1k).
2. Set (pks, sks) = Gens(I).
3. Set (pkr, skr) = Genr(I).
4. Output the private signing key sk = (sks, pkr) and the public

verification key (pks, skr).

• The signature σ of a message m computed using a private signing key
(sks, pkr) is given by setting σ = C where (K, C) = Encap(sks, pkr,m).

• A signature σ of a message m is verified using a public verification key
(pks, skr) as follows.

1. Set K = Decap(pks, skr, C). If K =⊥ then output invalid and
halt.

2. Output Ver(pks, skr,m, C).

Hence, any hybrid signcryption scheme with insider security must be using
some kind of combination of a signature scheme and a symmetric encryption
scheme directly. As a by-product we note that if the KEM is acting as a
signature scheme then it is implicitly providing an integrity/authentication
service for the message m; therefore, the DEM is only required to provide a
confidentiality service for the message.

We define the integrity security criterion for a KEM in terms of a game
played between an attacker A and a hypothetical challenger. This game is
identical to the game that would define the security of the KEM acting as
a signature scheme; however, we choose to define this game explicitly for
completeness. For a given security parameter k, the game runs as follows.
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1. The challenger generates some valid parameters I by running Genc(1k);
a valid sender key pair (pks, sks) by running the sender key generation
algorithm Gens(I); and a valid receiver key pair (pkr, skr) by running
the receiver key generation algorithm Genr(I).

2. The attacker executes A on the input (pks, skr). During its execution
A can query an encapsulation oracle that will, when given a message
m, output an encapsulation (K, C) = Encap(sks, pkr,m). A termi-
nates by outputting a pair (m∗, C∗).

The attacker wins the game if Decap(pks, skr, C
∗) = K 6=⊥, Ver(pks, skr,m

∗, C∗) =
valid, and C∗ was never the response from the encapsulation oracle queried
on the message m.

Definition 38 A signcryption KEM is INT-CCA2 secure if, for all polynomial-
time attackers A making at most qe queries to the encapsulation oracle, the
probability that A wins the above integrity game, Prob-KEM-INT(qe), is
negligible as a function of the security parameter k.

The INT-CCA2 security criterion for a signcryption KEM with insider
security is a much more “normal” integrity criterion than the notion of
Left-or-Right security defined for a signcryption KEM with outsider secu-
rity. Left-or-Right security was introduced to make sure that the attacker
couldn’t produce an encapsulation where some of the bits in the symmet-
ric key were predictable in some way, therefore making it easier to forge
a DEM encryption. The idea of Left-or-Right security cannot be applied
in a situation where the attacker has access to the receiver’s private key
and can easily check whether an encapsulation pair (K,C) given by the
encapsulation oracle is correct or not.

However, it may be thought that the notion Left-or-Right security is
still applicable when we consider attackers who attempt to break hybrid
signcryption schemes with insider security but do not have access to the re-
ceiver’s private key. This is not the case. Suppose an attacker can find an en-
capsulation C∗ that decapsulates to give a key value K = Decap(pks, skr, C

∗)
about which the attacker knows some information. The attacker still has to
find a message m∗ for which Ver(pks, skr,m

∗, C∗) = valid or the knowledge
of K cannot help them break the scheme. Hence, the attacker will have had
to find a valid forgery (m∗, C∗) and have broken the INT-CCA2 security of
the signcryption KEM.

Definition 39 A signcryption KEM is said to be insider secure if it is IND-
CCA2, INP-CCA2 and INT-CCA2 secure.
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5.4 The security criterion for a signcryption DEM

As we have shown in Section 5.3, in a hybrid signcryption scheme with
insider security the KEM provides a signature on the message. Hence, the
signcryption DEM is only required to maintain the confidentiality of the
message. It is therefore sufficient for the DEM to provide IND-PA security
as an encryption algorithm (see Section 2.2).

We also require an oft overlooked property of a symmetric encryption
scheme: we will require that the decryption algorithm is one-to-one. It is
clear that the encryption algorithm of a symmetric encryption scheme is
one-to-one as if EncK(m1) = EncK(m2) then m1 = DecK(EncK(m1)) =
DecK(EncK(m2)) = m2. However, if the range of the encryption algorithm
is not equal to the entire ciphertext space, i.e. there exists valid ciphertext
C that will decrypt to give a message but C is not the a possible output
of the encryption algorithm, then it is possible that the decryption algo-
rithm is not one-to-one. In such a case, and if, given a hybrid signcryption
(C1, C2) of a message m, an attacker can find another encryption C ′

2 such
that DecK(C ′

2) = m, where K = Decap(pks, skr, C1), then the attacker can
forge another signcryption (C1, C

′
2) for the message m.

We will term a symmetric encryption scheme with a one-to-one decryp-
tion algorithm a “one-to-one symmetric encryption scheme”. Similarly, we
will term a signcryption DEM consisting of a one-to-one symmetric encryp-
tion scheme, a “one-to-one signcryption DEM”. All of the common symmet-
ric encryption schemes in use are one-to-one.

Since this forgery attack produces new signcryptions for previously sign-
crypted messages, it is only a problem in situations that require strong
unforgeability of signcryptions (see Section 5.1). However, this attack does
apply to several well known signcryption schemes [4, 5, 22, 28].

5.5 The security of a KEM-DEM signcryption scheme

We will now show that a hybrid signcryption scheme made up of a secure
KEM and DEM is itself secure against insider attacks. Surprisingly, we will
examine the integrity/authentication properties of a hybrid signcryptions
scheme first.

5.5.1 Integrity/Authentication

That a hybrid signcryption scheme is secure against insider attacks that
threaten the integrity of the signcryptions is a direct result of the security
of the KEM against sIUF-CCA2 attacks. The proof is very simple.

Theorem 40 (Integrity of a KEM–DEM construction) Suppose that
(Gc,Gs,Gr, E ,D) is a hybrid signcryption scheme constructed from a sign-
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cryption KEM (Genc,Gens,Genr,Encap,Decap,Ver) and a one-to-one sign-
cryption DEM (Enc,Dec).

If there exists an attacker A that wins the sIUF-CCA2 game for the
hybrid signcryption scheme with advantage ε, and makes at most qe queries
to the generation-encryption oracle, then there exists an attacker B that wins
the INT-CCA2 game for the signcryption KEM with advantage

Prob-KEM-INT(qe) ≥ ε . (39)

Proof Suppose that A is an attacker that breaks the signcryption scheme
with probability ε. We use this to construct an algorithm B that breaks the
sIUF-CCA2 game for the KEM with probability at least ε too. B runs as
follows.

1. Receive the sender’s public key pks and the receiver’s private key skr

from the challenger.

2. ExecuteA on the input (pks, skr). IfA queries the generation-encryption
oracle for a message m then the following steps are performed.

(a) Query the encapsulation oracle on the input m. It will return a
encapsulation-key pair (K,C1).

(b) Set C2 = EncK(m).

(c) Return (C1, C2) to A.

A terminates by outputting a signcryption (C∗
1 , C∗

2 ).

3. Set K∗ = Decap(pks, skr, C
∗
1 ).

4. Set m∗ = DecK∗(C∗
2 ).

5. Output (m∗, C∗
1 ).

Clearly, this algorithm perfectly simulates the environment in which A
should be running.

Let W be the event that B wins the INT-CCA2 game for a signcryption
KEM. Let E be the event that A outputs a signcryption that would win
the integrity game for a signcryption scheme with insider security. Suppose
that E occurs. Then D(pks, skr, C

∗
1 , C∗

2 ) = m∗ 6=⊥ and we are only required
to show that C∗

1 was not given by the encapsulation oracle as a response to
a query on the message m∗.

If C∗
1 was given as a response by the encapsulation oracle on the in-

put query m∗ then the generation-encryption oracle would have returned
(C∗

1 , C∗
2 ) to A, as the symmetric decryption algorithm is one-to-one, and so

E would not have occurred. Therefore, B cannot have queried the encapsu-
lation oracle on the input m∗ and received C∗ as a response. Thus, (m∗, C∗

1 )
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is a winning output for the INT-CCA2 game. Hence, the event W occurs
whenever event E occurs and so

ε = Pr[E] ≤ Pr[W ] = Prob-KEM-INT . (40)

¤

5.5.2 Confidentiality

The proof that a hybrid signcryption scheme provides confidentiality is only
slightly more complicated than in the encryption setting [14]. We will need
to make use of the following simple lemma.

Lemma 41 (Game Hopping Lemma) If A, B and E are events in a
probability space such that

Pr[A|¬E] = Pr[B|¬E] (41)

then
|Pr[A]− Pr[B]| ≤ Pr[E] . (42)

Proof

|Pr[A]− Pr[B]| = |Pr[A|E]Pr[E] + Pr[A|¬E]Pr[¬E]
−Pr[B|E]Pr[E]− Pr[B|¬E]Pr[¬E]|

= |Pr[A|E]Pr[E]− Pr[B|E]Pr[E]|
= |Pr[A|E]− Pr[B|E]| · Pr[E]
≤ Pr[E]

¤

Theorem 42 (Confidentiality of a KEM–DEM construction) Suppose
that (Gc,Gs,Gr, E ,D) is a hybrid signcryption scheme constructed from a
signcryption KEM (Genc,Gens,Genr,Encap,Decap,Ver) and a one-to-one
signcryption DEM (Enc,Dec).

If there exists an attacker A that wins the IND-CCA2 game for the hy-
brid signcryption scheme with advantage ε, and makes at most qe queries to
the generation-encryption oracle and qd to the verification-decryption oracle,
then there exists

• an attacker B that wins the IND-CCA2 game for a signcryption KEM
with advantage Adv-KEM-IND(qe, qd, qd),

• an attacker B′ that wins the sIUF-CCA2 game for a signcryption KEM
with advantage Adv-KEM-IND(qe + 1),
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• an attacker B′′ that wins the INP-CCA2 game for a signcryption KEM
with advantage Adv-KEM-INP(qe, qd, qd),

• an attacker B′′′ that wins the IND-PA game for a signcryption DEM
with advantage Adv-DEM-IND,

such that

ε ≤ 2 ·Adv-KEM-IND(qe, qd, qd) + Adv-KEM-IND(qe + 1)
+2 ·Adv-KEM-IND(qe, qd, qd) + Adv-DEM-IND . (43)

Proof We use a standard game hopping technique, which is very similar to
the proof of confidentiality of a hybrid encryption scheme given by Cramer
and Shoup [14]. Let A = (A1,A2) be an attacker playing the IND-CCA2
game with the hybrid signcryption scheme. Recall that in the IND-CCA2
scheme, the attacker proposes two messages of equal length, m0 and m1;
the challenger signcrypts one of these at random to create a challenge sign-
cryption (C∗

1 , C∗
2 ) = E(sks, pkr,mb), where b is chosen uniformly at random

from {0, 1}; and the attacker has to output a guess b′ for b.
We make the assumption that if A queries the generation-encryption

oracle with a message m and receives a signcryption (C1, C2), then A never
queries the verification-decryption oracle with (C1, C2). We justify this by
noting that if A is an attacker than does this then there exists an equivalent
attacker A′ which does not do this and just assumes that it would receive m
from the verification-decryption oracle. This fact may seem trivial but will
play an important part later on.

Let Game 1 be the game in which the attacker interacts with sign-
cryption scheme in the manner described the IND-CCA2 game. Let Game
2 be a similar game but instead of computing the challenge signcryption
using the key produced by the KEM, the challenger uses a randomly gen-
erated ciphertext. In other words, the challenger computes the challenge
encapsulation (C∗

1 , C∗
2 ) of a message mb as follows.

1. Set (K, C∗
1 ) = Encap(sks, pkr,mb).

2. Randomly generate an appropriately sized symmetric key K∗.

3. Set C∗
2 = EncK∗(mb).

4. Output (C∗
1 , C∗

2 ).

After the challenge has been issued (i.e., when the attacker is running A2)
the challenger uses K∗ to decapsulate all signcryptions of the form (C∗

1 , C2),
where C2 6= C∗

2 . So, if A2 submits a ciphertext (C∗
1 , C2) to the verification-

decryption oracle then the challenger does the following.

1. Set m = DecK∗(C2).
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2. If Ver(pks, skr,m,C∗
1 ) = valid then output m. Otherwise output ⊥.

Let W1 be the probability that the attacker wins in Game 1. Let W2 be
the event that the attacker wins in Game 2. We claim that any significant
difference between Pr[W1] and Pr[W2] allows us to produce an algorithm
B that can break the security of the signcryption KEM in the IND-CCA2
game.

Consider the following algorithm B for breaking the KEM in the IND-
CCA2 game.

1. Receive (pks, pkr) from the challenger.

2. Execute A1 on (pks, pkr). If the attacker queries the generation-
encryption oracle to find the signcryption of a message m then the
following steps are performed.

(a) Query the encapsulation oracle on the input m. Receive an
key/encapsulation pair (K, C1) from the oracle.

(b) Set C2 = EncK(m).

(c) Return (C1, C2) to A1.

If the attacker queries the verification-decryption oracle with the input
(C1, C2) then the following steps are performed.

(a) Query the decapsulation oracle on the input C1. Receive a sym-
metric key K from the oracle. If K =⊥ then return ⊥ to A1 and
halt.

(b) Compute m = DecK(C2). If m =⊥ then return ⊥ to A1 and
halt.

(c) Query the verification oracle on the input (m,C1). If the oracle
responds valid then return m; otherwise return ⊥.

A1 terminates by outputting two equal length messages, m0 and m1,
as well as some state information state.

3. We now construct the challenge signcryption for the attacker A as
follows.

(a) Choose a bit b ∈ {0, 1} uniformly at random.

(b) Request the challenge key/encapsulation pair from the challenger
with the input mb. The challenger returns (K∗, C∗

1 ).

(c) Set C∗
2 = EncK∗(mb).

4. Execute A1 on the input (C∗
1 , C∗

2 ) and state. If the attacker queries
the generation-encryption oracle then we respond as above. If the the
attacker queries the verification-decryption oracle then we respond as
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above, except for when A2 queries the oracle with an input of the
form (C∗

1 , C2), with C2 6= C∗
2 , in which case the following steps are

performed.

(a) Set m = DecK∗(C2). If m =⊥ the return ⊥ to A2 and halt.

(b) Query the verification oracle on the input (m,C1). If the oracle
responds valid then return m; otherwise return ⊥.

A2 terminates by outputting a guess b′ for b.

5. If b = b′ then output 0; otherwise output 1.

To analyse the success of the algorithm we use Lemma 22. Let E1 be
the event that the challenger was forced to supply the correct key K∗ in the
challenge. Let E2 be the event that the challenger supplied a random key
K∗ in the challenge. B’s advantage in winning the IND-CCA2 game for a
signcryption KEM is given by:

Adv-KEM-IND = 1/2 · |Pr[B outputs 0|E1]
−Pr[B outputs 0|E2]| (44)

= 1/2 · |Pr[W1]− Pr[W2]| . (45)

Hence, if we assume that B’s advantage is negligible than the difference
between A’s advantage in Game 1 and Game 2 is negligible.

Let Game 3 be an altered version of Game 2 in which the challenger re-
fuses to execute the verification-decryption algorithm on signcryptions that
contain the same encapsulation as the challenge encapsulation, i.e. the chal-
lenger returns ⊥ whenever the attacker A2 submits a ciphertext of the form
(C∗

1 , C2) to the verification-decryption oracle. Let E be the event that the at-
tacker submits a signcryption to the verification-decryption oracle to which
the oracle would respond with a message in Game 2 and with ⊥ in Game
3, and let W3 be the event that the attacker A wins in Game 3. Clearly, if
E does not occur then an execution of A is the same in both Game 2 and
Game 3. Hence,

Pr = [W2|¬E] = Pr[W3|¬E] (46)

and so, by the game hopping lemma, we have that

|Pr[W2]− Pr[W3]| ≤ Pr[E] (47)

We claim that if Pr[E] is significant then we can construct an algorithm
B′ that can break the sIUF-CCA2 game for the signcryption KEM. Consider
the following algorithm B′ for breaking the KEM in the sIUF-CCA2 game.

1. Receive (pks, skr) from the challenger.
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2. ExecuteA1 on the input (pks, pkr). If the attacker queries the generation-
encryption oracle to find the signcryption of a message m then the
following steps are performed.

(a) Query the encapsulation oracle on the input m. Receive an
key/encapsulation pair (K, C1) from the oracle.

(b) Set C2 = EncK(m).

(c) Return (C1, C2) to A1.

If the attacker queries the verification-decryption oracle then we exe-
cute the algorithm directly using pks and skr. A1 terminates by out-
putting two equal length message m0 and m1, as well as some state
information state.

3. We now construct the challenge signcryption (C∗
1 , C∗

2 ) as follows.

(a) Pick a bit b ∈ {0, 1} uniformly at random.

(b) Query the encapsulation oracle on the input mb. The oracle re-
sponds with a pair (K∗, C∗

1 ).

(c) Set C∗
2 = EncK∗(mb).

4. ExecuteA2 on the input (C∗
1 , C∗

2 ) and state. IfA2 queries the generation-
encryption then respond as above. If A2 queries the verification-
decryption oracle on the input (C1, C2) then the following steps are
performed.

(a) If C1 6= C∗
1 then return D(pks, skr, (C1, C2)) to A2 and halt.

(b) Check whether D(pks, skr, (C∗
1 , C2)) =⊥. If so, return ⊥ to A2

and halt.

(c) Set m = DecK∗(C2).

(d) Output (m,C∗
1 ) to the challenger as a forgery and stop the entire

program.

A2 terminates by outputting a guess b′ for b.

5. Randomly generate a message m and output (m,C∗
1 ) as a forgery.

Certainly, if the event E occurs then this algorithm will output a pair
(m,C∗

1 ) and this will be a valid forgery unless A has queried the generation-
encryption oracle with the message m and received the response (C∗

1 , C ′
2),

for some value of C ′
2. However, since the signcryption DEM is one-to-one,

the only way that both (C∗
1 , C2) and (C∗

1 , C ′
2) can both be a signcryption of

the message m is if C1 = C ′
2. Hence, A must have queried the generation-

encryption oracle with the message m and received (C∗
1 , C2) as a response.
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This contradicts our earlier assumption thatA never queries the verification-
decryption oracle on any signcryption it obtains as a response from the
generation-encryption oracle. Therefore,

|Pr[W2]− Pr[W3]| ≤ Pr[E] ≤ Prob-KEM-INT (qe + 1) . (48)

Next, we form Game 4 by slightly altering Game 3. In Game 4 we
produce the encapsulation in the challenge signcryption using m0 regardless
of which message is being signcrypted. Hence, we produce the challenge
signcryption as follows.

1. Generate a bit b ∈ {0, 1} uniformly at random.

2. Set (K, C∗
1 ) = Encap(sks, pkr,m0).

3. Randomly generate an appropriately sized key K∗.

4. Set C∗
2 = EncK∗(mb).

5. Return (C∗
1 , C∗

2 ).

Let W4 be the event that A wins in Game 4. We claim that any significant
difference between Pr[W3] and Pr[W4] can be used to construct an algorithm
B′′ to win the INP-CCA2 game. We can use a similar technique to the
algorithm B that breaks the IND-CCA2 game to produce B′′. Hence, we
can see that

|Pr[W3]− Pr[W4]| ≤ 2 ·Adv-KEM-INP (49)

However, if the attacker A succeeds in winning Game 4 then it must be
attacking the DEM directly and in a passive fashion. This is because the key
used to encrypt the challenge is now randomly generated and independent
of the KEM, and any verification-decryption queries that A makes using the
randomly generated key will be rejected as invalid. Hence, we can use A to
build an algorithm B′′′ that breaks the signcryption DEM in the IND-PA
game.

Consider the following algorithm B′′′ for breaking the DEM in the IND-
PA game.

1. Generate some common parameters I = Gc(1k), a sender’s key-pair
(pks, sks) = Gs(I) and a receiver’s key-pair (pkr, skr) = Gr(I).

2. Execute A1 on the input (pks, pkr). If A1 queries the generation-
encryption oracle or the verification-decryption oracle then we respond
correctly by using the keys pks, sks, pkr and skr. A1 terminates by
outputting two equal length messages m0 and m1, as well as some
state information state.
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3. Return (m0,m1) to the challenger. The challenger responds by return-
ing a signcryption C∗

2 of one of these message formed using a randomly
generated symmetric key K∗. We now construct the challenge cipher-
text for the attacker in the following way.

(a) Set (K, C∗
1 ) = Encap(sks, pkr,m0).

(b) Return (C∗
1 , C∗

2 ).

4. ExecuteA2 on the input C∗
1 , C∗

2 ) and state. IfA2 queries the generation-
encryption oracle or the verification-decryption oracle then we respond
correctly by using the keys pks, sks, pkr and skr. The only exception
occurs if A2 queries the decapsulation oracle on a ciphertext of the
form (C∗

1 , C2) when we respond with ⊥. A2 terminates by outputting
a bit b′.

5. Output b′.

It is clear that B′′′ exactly simulates the environment that A encounters
in Game 4. Hence, B′′′ wins the IND-PA game if and only if A wins Game
4 and so

Pr[W4] = Adv-DEM-IND . (50)

Thus the result holds. ¤

5.6 An example of a signcryption KEM

In order to provide an example of a signcryption KEM with insider secu-
rity, we come full circle back to the original signcryption scheme proposed
by Zheng [28]. We present the provably secure variant of Zheng’s scheme
proposed by Baek, Steinfeld and Zheng [4] as a KEM-DEM signcryption
scheme.

• Common key generation algorithm. This algorithm takes as input the
security parameter 1k and outputs a triple (p, q, g) where p is a large
prime, q is a large prime that divides q − 1 and g is an element of Z∗p
of order q. We will write this group multiplicatively.

• Sender key generation algorithm. This algorithm chooses an integer
1 ≤ s ≤ q uniformly at random, sets Ps = gs mod p then outputs the
public key (p, q, g, Ps) and the private key (p, q, g, s).

• Receiver key generation algorithm. This algorithm chooses an integer
1 ≤ r ≤ q uniformly at random, sets Pr = gr mod p then outputs the
public key (p, q, g, Pr) and the private key (p, q, g, r).

• Encapsulation algorithm. This algorithm works as follows.

1. Choose an element 1 ≤ t ≤ q uniformly at random.
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2. Set X = P t
r mod p.

3. Set R = Hash1(m||X).

4. Set S = t/(R + s) mod p.

5. Set K = Hash2(X).

6. Set C = (R,S).

7. Output (K,C).

• Decapsulation algorithm. This algorithm works as follows.

1. Parse C as (R,S).

2. Set X = (Ps · gR)Sr mod p.

3. Output K = Hash2(X).

• Verification algorithm. This algorithm works as follows.

1. Parse C as (R,S).

2. Set X = (Ps · gR)Sr mod p.

3. Check that Hash1(m||X) = R. If not, output invalid and halt.

4. Otherwise output valid.

Of course, in a real implementation of this algorithm, there is no advantage
in computing X in both the decapsulation and verification algorithm. A real
implementation would merely store the value of X computed by the decap-
sulation algorithm and use it again in the verification algorithm. Such an
implementation would be functionally identical to the above algorithm and
would therefore be just as secure. We choose to separate the decapsulation
and verification algorithms so that they can be studied independently.

The proofs of security for this algorithm can be adapted from those
contained [4].

5.7 Non-repudiation

It has been suggested that signcryption schemes with insider security are
not much use unless they also offer a non-repudiation service. The problems
associated with designing a signcryption scheme with non-repudiation have
been extensively studied by Malone-Lee [22].

If we aim to design a useful signcryption scheme with non-repudiation
then it is best if the non-repudiation algorithms are non-interactive. In such
a case, the receiver of the message is able to release some extra information
about a signcryption that allows third-parties to be able to verify the validity
of that signcryption (i.e., that is is a signcryption of a particular message
sent from the sender to the receiver). However, it is important that the
release of this information does not allow the attacker to compromise future
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signcryptions. So, for example, whilst a receiver can prove the authenticity
of a signcryption by releasing his secret key, this solution is not practical as
it means that all the verifying third parties will be able to read all past and
future signcryptions.

Zheng [28] proposes a solution whereby the receiver proves the authen-
ticity of a signcryption C by releasing the associated message m and a
non-interactive zero-knowledge proof that m is the message associated with
C. We note that, with a hybrid signcryption scheme, all that is required to
provide a non-repudiation service on the signcryption (C1, C2) is for the re-
ceiver to release the symmetric key K and a non-interactive zero-knowledge
proof that K is the symmetric key associated with the encapsulation C1 for
the message DecK(C2). Of course, care must still be taken to ensure that
the release of a key K does not enable further attacks on the signcryption
scheme.

6 Hybrid Signcryption Schemes in a Multi-User
Setting

Throughout this paper we have only considered the so-called “two user”
setting. That is, we have only considered a signcryption scheme set up to
allow two users to communicate with each other. In reality this is unlikely
to occur. Signcryption schemes are likely to be used with a large number of
different users, where each user in the system has there own set of sender
and receiver public/private key pairs. In such a system an attacker may
have a great deal more power than in the two-user setting. For example,
the attacker may be able to register new public/private key pairs (either
randomly generated or selected by the attacker), or the attacker may be
able to corrupt legitimate users and learn their private keys.

Baek, Steinfeld and Zheng [4] proposed a formal model for signcryption
which, whilst similar to the model for insider security discussed in Section 5.1
and proposed by An, Dodis and Rabin [3], allows the attacker to query
a “flexible decryption-verification oracle” which executes the decryption-
verification algorithm on a given signcryption with a given private signcryp-
tion key. Malone-Lee [22] goes further and proposes a model whereby the
attacker can run the both generation-encryption and verification-decryption
oracle for any user, but this model still may not go far enough. Neither
model allows the user to corrupt entities and learn the values of their pri-
vate keys.

Whilst it is not the intension of this paper to propose such a model, we
will note that one proposed solution to the problem of adapting two-user
secure signcryption schemes to the multi-user setting can easily be adapted
to most hybrid signcryption schemes. It has been noted [3] that one can
adapt an existing two-user signcryption scheme to the multi-user setting by
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adapting the generation-encryption algorithm to always encrypt pks||pkr||m
instead of just m. The corresponding adapted verification-decryption al-
gorithm only releases a message m′ from a signcryption if the two-user
verification-decryption algorithm returns a string of the form pks||pkr||m′,
where pks is the public key of the entity claiming to be the sender and pkr

is the public key of the receiver.
This idea of including the sender and receiver’s public keys into the

algorithm as text can be nicely adapted to most hybrid signcryption schemes.
We note that almost all hybrid schemes in the two-user setting produce a
symmetric secret key K by taking the hash of some secret value α. To
adapt such a series of schemes to the multi-user setting all that would be
required is to change this key derivation process so that the symmetric key
K is instead formed by taking the hash of both the secret value α and the
sender and receiver’s public keys pks and pkr.

7 Conclusions

We have shown that the KEM–DEM approach to hybrid cryptography can
be used for more than just encryption. In particular, it is very useful
paradigm for constructing signcryption schemes (although it is not very use-
ful for constructing signature schemes). Perhaps the most intriguing aspect
of this work is the potential for a streamlined piece of software that allows a
user to choose between encryption, signcryption with outsider security and
signcryption with insider security by just changing the nature of the KEM
and DEM that are being used. Of course, in such a case, care would have to
be taken to ensure that suitably independent public/private key pairs were
used for each possible KEM/DEM pair.
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