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Abstract

We consider the problem of sending messages into the future. Existing schemes for this

task either only solve the relative time problem with a coarse-grained release time or do not

provide anonymity to sender and/or receiver and are not scalable. Using bilinear paring on

any Gap Diffie-Hellman groups, we solve this problem by giving two scalable, server-passive

and user-anonymous timed release public-key encryption schemes (one usual and the other

ID-based) which allow precise absolute release time specifications. In our schemes, the trusted

time server is completely passive — no interaction between it and the sender or receiver is

needed; it is even not aware of the existence of a user, thus assuring the anonymity of both the

sender and receiver of a message and the privacy of the message. Besides, our schemes also has

a number of desirable properties including self-authenticated time-bound key updates, a single

update for all receivers, simple public-key renewal and key insulation, making it out-perform

the existing schemes.

keywords: timed release encryption, bilinear pairing, identity-based encryption

1 Introduction

The idea of “sending information into the future”, that is, encrypting a message so that it

cannot be read (or decrypted) by anyone, including the designated recipients of the message,

until a pre-determined, specified “release time” instant (chosen by the sender) is called timed

release encryption. This problem was first discussed by May [11] in 1993 and further elaborated

by Rivest et. al. [14].

When considering the notion of specified time, we need to distinguish between relative time

(the amount of time between events, say one hour from the last information exchange) and

absolute time (the exact time output of a universal common reference, say 9:00AM, July 27,
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2004 GMT from the Denver Atomic Clock used in GPS). In the context of this paper, we

mainly consider the latter that is more interesting since the relative time specification could

be implemented with the absolute time specification but not the reverse.

Since time is a critical aspect of many applications in distributed computing and networks,

timed release encryption has several interesting real-world applications. In fact, there are

many applications which depend on a common assumption of an absolute time reference in

the future, that is, opening a document or proving the authenticity of a statement before a

specified time is not allowed. An example is a sealed bid in which a bidder wants to seal his

bid for a government tender so that it cannot be opened before the bidding period is closed

so as to avoid anyone (say one of the government agents handling the bids) disclosing the

information of his bid to his competitors which can gain advantage through this information.

Another application example is the Internet programming contest where teams located all over

the world can only be granted access to the challenge problems at a certain time.

As can be seen from these two application examples, the essence of the timed release

encryption problem is: a message has to be sent earlier prior to its desired release time and

we need to ensure that it cannot be read before that moment. In the Internet programming

contest example, we need to ensure that every participating team can access the problems when

the contest starts; to avoid fairness issues arising from uncontrollable1 network congestion or

delivery delay, we want to ensure that every team has received the problem set well before the

contest starts but cannot open it. That is what timed release encryption addresses.

Since its introduction, timed release encryption has been found useful in a number of

scenarios. Rivest, Shamir and Wagner [14] gave a number of its applications including electronic

auctions, key escrow, chess moves, release of documents (like memoirs) over time, payment

schedules, press releases and etc.. Bellare and Goldwasser [1] proposed the use of timed release

encryption in key escrow; they suggested that the delayed release of escrow keys may be a

suitable deterrent in some contexts to the possible abuse of escrow.

Since the problem was posed in 1993, there have been a number of proposals for timed

release encryption schemes, based on two approaches — time-lock puzzles [1, 14, 10, 4, 8, 9]

and trusted servers [11, 14, 2, 13]. However, none of these are fully satisfactory. Although

no trusted server is needed, schemes based on the time-lock puzzle approach could only solve

the relative time problem with a coarse-grained approximate release time, dependent on the

speed of the recipients’ machines and when the decryption is started. That is, they could only

guarantee that a receiver cannot retrieve a certain message from its ciphertext for at least a

certain minimum amount of time since he starts decrypting it; neither could it guarantee that

the message can be retrieved immediately after the sender’s desired release time has passed

(if the recipient does not start decrypting the message immediately after receiving it or he

uses a machine slower than what the sender expected). Besides, the time-lock puzzle approach

could take up a lot of computational resources for decryption. Hence, in general these schemes

(based on the time-lock puzzles) would be impractical. On the other hand, the existing schemes

1Compared to the whole message, a timely delivery of the timing reference/update (within a reasonably small

delay jitter bound) could be more easily achievable.
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using trusted servers require interaction between the server and the sender or the receiver of a

message, or even both. These schemes sacrifice the anonymity of users for solving the absolute

time problem with a precise release time implementation. This interaction leaks out to the

server the identities of the senders and/or the receivers, and sometimes the server would even

know the release time and the content of all messages [11]. In addition, the fact that the server

is actively and considerably involved in the encryption or decryption of every message limits

the scalability of these schemes.

It is thus fair to say that constructing a scalable, non-interactive and user-anonymous timed

release encryption scheme, in which any encrypted messages could only be opened by the

designated recipients at or after a precisely specified absolute release time (that can possibly

be in the infinite future), as indicated by a common time reference server, and neither the

sender nor the recipient of a message needs to interact with that server (which is completely

passive) while encrypting or decrypting the message, remained an open problem2. Based on

bilinear pairing over a Gap Diffie-Hellman group, in this paper we solve this open problem in

affirmative. Our main contribution is the design of a first ever prototype of scalable, server-

passive and user-anonymous timed release public-key encryption in which a precise absolute

release time specification is possible and the sever (merely providing a certified time reference)

is completely passive without any interaction with either the sender or the receiver. Two

schemes are constructed in this paper, one the same as a usual public-key scheme and the

other an identity-based scheme.

In this paper, we propose a truly server-passive and user-anonymous timed release public-

key encryption scheme which provides a scalable solution to the absolute time problem and

allows a precise release time specification. In our scheme, the time server merely provides a

common absolute time reference, in the form of a sequence of time-bound key updates (when

the referenced time instants come), and does not interact with neither one of the sender and

receiver. Unlike the offline version of the Rivest’s scheme [14], it does not need to pre-establish

or remember any information of key updates for time instants in the future3. Neither does it

need to remember any keys or information about the senders or receivers. In fact, the server

would not even be aware of the existence of a sender or receiver unless he makes a query at the

server (which is not necessary in most scenarios). The anonymity of the sender and receiver

of a message and the privacy of the message and its release time are thus guaranteed. The

security of our scheme is based on the intractability assumption of the bilinear Diffie-Hellman

(BDH) problem over any Gap Diffie-Hellman groups. Our scheme is provably secure under this

assumption. Besides, our first scheme has a number of nice additional properties, rendering

2Although the server in the offline version of the Rivest’s scheme [14] is passive and does not involve in any

encryption or decryption, it needs to (periodically) publish well in advance a long list of public keys for epoches in

the future. This scheme is not scalable as a sender has to wait for the server to publish a public key (corresponding

to his chosen release time) not in the existing list. In contrast, a sender in our scheme could choose any release time

in the (possibly infinite) future at his own will without relying on any information from the server and the server

only needs to publish information (for receivers) whose corresponding time has passed.
3In fact, the server does not need to remember the information of any key updates since it can generate a key

update for any particular instant directly using its private key.
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it an efficient and scalable solution to the timed release encryption problem requiring precise

release time. These include:

• The time-bound key update (from the time server) needed for the decryption at a par-

ticular release time is identical for all receivers; regardless of the number of receivers, the

time server just need to publish/broadcast a single update that is enough for all receivers

to recover their messages, thus making the scheme scalable.

• The key update published by the time server inherently authenticates itself. Thus, no

additional overhead of a server signature is needed.

• Certifying the authenticity of a receiver’s public key needs not be done by the time server

and a separate un-related CA (Certificate Authority) could be used. Although the public

key of a receiver is tied to that of the time server he uses, whenever he or the sender wants

to use a different time server as reference, the receiver needs not get a new certificate

from the CA for the new public key; instead, anyone could use the receiver’s old certified

public key to verify the authenticity and validity of his new public key.

• With slight modifications, our scheme inherently satisfies the key insulation property.

Instead of using his private key directly, a receiver could use a short-term key generated

from his private key and the time-bound key update from the server to decrypt (for that

particular time epoch) on a device vulnerable to compromise. The disclosure of a short-

term key would not leak out the receiver’s private key or the short-term keys for other

epoches.

The second scheme we construct is an identity-based variant of timed release encryption, in

which the receiver’s public key can be derived directly from his identity and the desired release

time. Same as any ID-based encryption, the server knows all users’ private keys. The security

of the ID-based scheme is based on the same assumption as in the non-ID based scheme. The

ID-based scheme also satisfies the first two properties mentioned above. Although the ID-based

variant does not have all the useful properties as in the non-ID-based scheme, we demonstrate

the feasibility of ID-based timed release encryption which is significantly more scalable and

efficient than the existing ID-based timed release schemes [2, 13].

We discuss the previous works on timed release encryption in the next section. Then we

present our model and the preliminaries for our schemes in Section 3 and 4 respectively. In

Section 5, we give two constructions of timed release encryption. Finally, we conclude with a

discussion of future work on resilience against missing server updates.

2 Previous Works

There are two main approaches adopted in the previous works, one based on the so called

“time-lock puzzles” and the other on a trusted server.
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2.1 Time-Lock Puzzle Approach

Time-locked puzzles were first suggested by Merkle [12] and extended by Bellare et. al. [1] and

Rivest et. al. [14]. The idea is that a secret is transformed in such a way that any machines

(serial or parallel), running continuously, take at least a certain amount of time to solve the

underlying computational problems (puzzles) in order to recover the secret. This minimum

amount of time is the relative release time with respect to the start of solving the puzzle and

could be different for different machines.

In [1], Bellare and Goldwasser presented a time-lock puzzle based on the heuristic assump-

tion that exhaustive search on the key space is the fastest method to recover the key of DES.

However, Rivest et. al [14] pointed out that this only works on average since for a particular

key, exhaustive search may find the key well before the assigned time. Rivest et. al. then

proposed another time-lock puzzle based on the hardness of factoring which does not have this

problem. In their puzzle, if factoring is difficult, repeated squaring mod n (where n = pq) is

the fastest method to recover the secret. Using a function similar to this time-lock puzzle,

a number of extensions for timed applications were introduced [4, 10, 8, 9]. Mao [10] added

zero-knowledge proof to it and constructed a time-released RSA signature. Boneh and Naor [4]

introduced the notion of (verifiable) timed commitments, an extension to the standard notion

of commitments, in which a potential forced opening phase permits the receiver to recover (with

effort) the committed value without the help of the committer. They also showed how to use

timed commitments to improve a variety of applications involving time, including timed sig-

natures, contract signing, honesty-preserving auctions and concurrent zero-knowledge. Based

on timed commitments, Garay et. al. [8, 9] constructed timed release signatures for DSA,

Schnorr and RSA.

Although elegant in the complexity theoretic sense, the time-lock puzzle approach is im-

practical, consumes a large amount of computational resources and lacks of flexibility. Since

time-lock puzzles try to make “CPU time” and “real time” agree as closely as possible, it can

only solve the relative time problem (with reference to the start of solving the puzzle) with an

approximately controllable time (different machines work at different speeds) and the puzzle

does not automatically become solvable at a given time (if solving is not started immediately

upon receipt). If absolute and precise timing of information release is essential, like the sealed

bid scenario mentioned above, the approach based on a trusted time server is inevitable.

2.2 Trusted Server Approach

In order to support precise release time, an absolute or common time reference is necessary

to synchronize the senders and receivers. Hence, the need of a trusted time server to provide

this common reference is inevitable. Although inevitable, the time server should have as little

involvement in the users’ communication as possible, ideally with no interaction with either the

sender or receiver of a message, to ensure scalability and anonymity. The time server should

merely provide a common time reference for users by periodically releasing unforgeable time-

embedded information that is necessary for decrypting timed release ciphertexts. However,

none of the existing schemes could efficiently satisfy this requirement.
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May [11] suggested that a third party can be used as a trusted escrow agent to store

messages from senders and release them to the corresponding receivers at specified release

time. This does not scale well as the agent has to store all escrowed messages until their

release time. Moreover, no anonymity is guaranteed because the server knows the message, its

release time, and the identities of the sender and receiver.

Rivest et. al [14] used a combination of symmetric key and asymmetric key encryption to

solve the problem. In their scheme, a server has a sequence of keys used for a symmetric key

encryption like DES and releases them periodically. A sender wishing to release a document

at time t sends his message and its desired release time, encrypted with the server’s public

key, to the server. The server encrypts this with a symmetric key encryption using the key it

will release at instant t and then sends this ciphertext, encrypted with the sender’s public key,

to the sender which in turn decrypts it, encrypts it again with the receiver’s public key and

sends it to the receiver. Upon receiving this message, the receiver can get back the server’s

encrypted message and waits until its key is released at t. As the sequence of keys could be

generated from a one way function, the server does not have to remember anything except

the seed. The major disadvantage of this scheme is the sender has to interact with the server

and give it his message, hence, his identity as well as his message and its release time are

known to the server (anonymity guaranteed for receivers only). This interaction also limits

its scalability. To eliminate this interaction, the authors suggested that the symmetric key

encryption could be replaced by a public key encryption; however, the problem is the server

has to publish in advance a huge amount of public keys (corresponding to time instants in the

future), whose private keys will be released in future time instants, or the senders cannot freely

choose the desired release time of their messages (they can only send messages into limited

future). Hence, it is not scalable. Besides, a relatively large amount of computation is also

needed for encryption and decryption.

In all the schemes discussed so far, the information sent by the server is not inherently

authenticated; the server needs to sign them.

While interaction between the sender and server is needed in [14], Di Crescenzo et. al. [5]

proposed a scheme in which interaction is needed between the receiver and the server only. In

their scheme, the receiver has to run a conditional oblivious transfer with the server, which

consists of several interactive rounds of message exchanges. In the oblivious transfer, the server

and the receiver engage in a private conversation to evaluate the public predicate whether the

release time is less than the server’s current time. If it is true, the receiver gets the message,

otherwise, he gets nothing. In addition, the server does not learn any information about the

identity of the sender, the message and its release time; in particular the server does not learn

whether the release time is less than, equal to, or greater than the current time. This protocol

has a logarithmic complexity in time parameter. However, the necessity of interaction between

the server and the receiver makes the protocol not scalable and subject to denial of service

attacks, and have no guarantee on the receiver’s anonymity.

When proposing the use of bilinear maps to construct identity based encryption (IBE),

Boneh and Franklin [2] named time released encryption as one of its applications. Then
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Mont et. al. [13] implemented their idea. In this scheme, a sender uses a receiver’s identity

augmented with a release time as the latter’s public key (for that specified time instant) to

encrypt messages. The server will give the receiver his private keys when the corresponding

release time instants come. Although no certification of the receiver’s public key is needed, this

scheme is not scalable if the time granularity is small since the server needs to generate and

individually transmit to each receiver his secret key at the start of each time epoch. Besides,

the server could decrypt all the messages and know its release time and the identity of a

receiver.

3 Our Model

As can be seen, the existing techniques using a trusted time server either require interaction

between the server and the sender [14] or receiver [5], or let the server know and deliver

all the secret keys [2] or messages [11]. In some cases, there may just be a unidirectional

channel between the server and a user, thus making these schemes (requiring interaction) out

of function or impractical. As a result, we only consider techniques without requiring any

online interaction. As usual, if the sender of a message is available at the release time, the

solution to the timed release encryption problem is trivial. Therefore we assume that the

sender is not available at the release time and has to send out the message before that.

In our model, we consider a passive server, that is, the server does not interact with neither

one of the sender and receiver. Neither does it need to remember any keys or information

about the senders or receivers. In fact, the server would not even be aware the existence of

a sender or receiver unless he queries the server for time information (which is not necessary

in most scenarios). Our model is analogous to the GPS (Geo-Positioning System) scenario in

which the satellites or the control centre, where the Denver Atomic Clock is placed, are not

aware of how many GPS receivers exist on earth while providing a precise time to them, and

groups of users, based on this timing information from the GPS, can coordinate or synchronize

their tasks (without the involvement of the satellites or the control centre) while dispersed

over the earth. What the server needs to do in our schemes is just merely to periodically

output and publish/broadcast a certified piece of information, the time-bound key update It,

which indicates the current time t (down to whatever granularity is needed), and to keep a

list of old key updates (whose release time has passed) at a publicly accessible place. When

a sender wants to send a message with a certain release time, he just uses the public keys of

the receiver and the server to encrypt the message and the release time in such a way that

both the receiver’s secret key and the corresponding It are necessary for decryption. Upon

receiving a timed release encrypted message, the receiver is usually very curious of its content

and would wait (in alert) the release of the corresponding time-bound key update from the

server. Everyone using the server’s public key can verify the authenticity of It and if needed

plug it into computation to decrypt a message (sent to him) with release time at t. Since

nobody knows the server’s secret key, nobody can create a It for an arbitrary time even after

observing other values of It′ unless t = t′. In case a receiver has missed a particular key update,
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he could still look up from the list of old key updates to get the right update to decrypt a

message whose release time has passed.

The only trust we assume on the server is that it outputs a consistent absolute timing and

does not give out any time-bound key updates It before its release time. The first assump-

tion means that if the server now outputs “10:01:01 AM Jul 27, 2004 GMT”, an hour later

(according to an accurate timing device, say a cesium clock) it should output a time within a

reasonable error bound of “11:01:01 AM Jul 27, 2004 GMT”. The second assumption means

that the server should not give out any It at an instant t′ where t′ < t. From our viewpoint,

these two are reasonable and easily achievable assumptions.

3.1 Timed Release Public Key Encryption

Putting pieces together, we can now state the problem of timed release public key encryption

as follows:

Timed Release Encryption (TRE) Problem: How can a sender, without talking to the

time server, encrypt a message with a release time (defined using the notion of time

marked by the server) in the future using a receiver’s public key (as well as the time

server’s public key) such that the receiver can decrypt this message with his private key

only after the release time has passed as indicated by a signed piece of information on

the current time (i.e. time-bound key update) published by the time server that would

learn nothing about the identities of the two parties, the messages or its release time?

Besides, in a secure and private timed release public key encryption scheme, only the intended

receiver holding the corresponding private key4 and at a time instant after the specified release

time (enforced by a trusted time server) could recover a secret.

4 Preliminaries

Throughout this paper, we will use the following notations, definitions and computational

assumptions.

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and G2 be a

cyclic multiplicative group with the same order q.

Definition 1 Discrete Log (DL) Problem over G1

Given P ∈ G1 and aP for some unknown a ∈ Z
∗

q , find a.

Definition 2 Decisional Diffie-Hellman (DDH) Problem over G1

Given P ∈ G1, aP , bP and cP for some unknowns a, b, c ∈ Z
∗

q , tell whether c ≡ ab (mod q).

Definition 3 Computational Diffie-Hellman (CDH) Problem over G1

Given P ∈ G1, aP and bP for some unknowns a, b ∈ Z
∗

q , find abP .

4Identity based encryption scheme is an exception because the server also possess a user’s private key.
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Definition 4 Bilinear Pairing

A bilinear pairing is a map ê : G1 × G1 → G2 with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z
∗

q .

2. Non-degeneracy: ê(P,Q) 6= 1.

3. Computability: There is an efficient algorithm to compute ê(P,Q).

Definition 5 Bilinear Diffie-Hellman (BDH) Problem

Given P ∈ G1, aP , bP and cP for some unknowns a, b, c ∈ Z
∗

q , find ê(P, P )abc.

The DL problem is usually assumed to be difficult (DL assumption). Both the decisional

and computational Diffie-Hellman problems are usually difficult; however, if a bilinear pairing

exists in the underlying group, the decisional Diffie-Hellman problem over it can be solved in

polynomial time by testing whether ê(aP, bP ) = ê(P, cP ). This lead to the Gap Diffie-Hellman

(GDH) Assumption that for a certain additive group G1, the decisional Diffie-Hellman problem

on it is easy but the computational Diffie-Hellman problem is difficult. G1 is called a Gap Diffie-

Hellman group. The bilinear Diffie-Hellman problem is usually assumed to be difficult and is

the basis of the security of our schemes since solving the DL or GDH problem implies solving

the BDH problem. As long as the BDH assumption holds, our schemes are secure.

5 Timed Release Public Key Encryption Constructions

In this section, we will describe two simple constructions of timed release encryption based on

bilinear mapping, one the same as a usual public key encryption and the other identity-based.

The security of these scheme is based on hardness of the Bilinear Diffie-Hellman Problem over

a Gap Diffie-Hellman group.

For the sake of clarity and simplicity, the Fujisaki-Okamoto Transform [7] has not been

applied in the following discussion. Similar to the way in [2], this transform can be applied

directly to both of our schemes.

5.1 Non-ID-based Timed Release Encryption (TRE)

Suppose G1 and G2 are additive and multiplicative cyclic groups of order q (prime) respectively

and ê : G1 × G1 → G2 is a computable, non-degenerate bilinear map. Given the following

cryptographic hash functions:

H1 : {0, 1}∗ → G
∗

1

H2 : G
∗

2 → {0, 1}n

The TRE scheme runs as follows.

Server Key Generation: The time server randomly picks a generator of G1, say G and a

private key s ∈ Z
∗

q , and computes the public key sG. G and sG are made public.
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User Key Generation: Each user picks a secret key a ∈ Z
∗

q and computes the public key

(aG, asG). The secret key a could be generated by applying a good hash function to a

human-memorable password chosen by the user.

Note that the public key here is not directly derived from the user’s identity; a CA type

of certification is still needed.

Time Server Broadcast: At a time instant T ∈ {0, 1}∗, the time server publishes a time-

bound key update of the form sH1(T ). Every user can verify its authenticity5 by checking

ê(sG,H1(T )) = ê(G, sH1(T )), where (G, sG) is the server’s public key.

Encryption: Given a message M , a receiver public key (aG, asG), server public keys G and

sG, a release time T ∈ {0, 1}∗,

1. Verify that ê(aG, sG) = ê(G, asG); proceed the encryption only if this is true. The

verification is to ensure that the receiver’s public key is of the form a × sG so that

he really needs the server’s timed release information (the time-bound key update)

to decrypt the message.

2. Randomly pick r ∈ Z
∗

q and compute rG and rasG.

3. Compute K = ê(rasG,H1(T )) = ê(G,H1(T ))ras.

4. Then the ciphertext is: C =< rG,M ⊕ H2(K) >.

Decryption: Given a ciphertext C =< rG, σ = M ⊕ H2(K) >, a receiver’s private key a,

and a time-bound key update sH1(T ) from the server,

1. Compute the pairing K ′ = ê(rG, sH1(T ))a = ê(G,H1(T ))ras = K.

2. Recover M by computing σ ⊕ H2(K).

5.1.1 A Sketch of Security Proof

1. Given G, sG, it is difficult to find s (DL problem). Hence, the server private key is safe.

2. Given G, sG, aG and asG, it is difficult to find a. The argument is as follows: Suppose

we have a polynomial time algorithm A(G, sG, aG, asG) = a which solves the above

problem, we can use it to solve the DL problem in the following way: Given G and aG,

we randomly pick a b and can easily compute bG and baG (= abG); using A, we can find

a = A(G, bG, aG, abG). So this problem is at least as difficult as the DL problem. The

user private key is thus safe.

3. Rewriting any sH1(Ti) as wisG (for some unknown wi) and using the same argument as

item 2, the problem of finding s from {G, sG, sH1(T1), sH1(T2), . . .} is at least as difficult

as the DL problem. The server private key is thus safe.

4. In order to decrypt a ciphertext, a receiver needs to compute ê(G,H1(T ))ras. In case the

receiver does not have sH1(T ), he needs to compute ê(G,H1(T ))ras from rG, sG and a

which are the only sources he has for r, s and a. Suppose we rewrite H1(T ) as wG (for

5Note that the authenticity of a time update is implicitly provided by the content itself, the time server does not

need to generate an additional signature for this purpose.
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some unknown w), then the problem becomes to find ê(G,G)wras from sG, wG, rG and

a, which is equivalent to the Bilinear Diffie-Hellman Problem.

Now, suppose the receiver attempts to find sH1(T ) from sH1(Ti) for Ti 6= T . If we rewrite

H1(T ) as wiH1(Ti), the problem becomes to find swiH1(Ti) from H1(Ti), wiH1(Ti),

sH1(Ti), which is equivalent to the Computational Diffie-Hellman Problem over a Gap

Diffie-Hellman group.

That is to say, if a receiver wants to recover a message before its release time, the easiest

way is to solve the Bilinear Diffie-Hellman Problem. Hence, as long as the bilinear Diffie-

Hellman is difficult, the receiver, even with his private key, cannot decrypt an encrypted

message before its specified release time unless he colludes with the time server.

As can be seen, only a single time-bound key update for release time T , in the form sH1(T ),

is needed for all receivers, making this TRE scheme considerably scalable — no matter how

many users there are, only one time-bound key update for each release time T is needed.

Besides, the time-bound key update is self-authenticated and the time server does not need to

create an additional signature to convince the users its authenticity. In fact, its form sH1(T )

is equivalent to the short signature in [3], a release time T signed by the server with a private

key s.

5.1.2 Key Insulation Property and Applications to Key Evolution

Although simple, this TRE scheme has very good key insulation property to provide resilience

against key exposure. In most cryptosystems, the private key is directly used in decryption;

so when the decryption is done on insecure device, key exposure could be the biggest threat.

There have been a number of works proposing techniques which update the private key while

keeping the hardcore public key unchanged but augmented with a time index. In these schemes,

given a number of private keys for different epoches, an adversary could not determine others

so that compromised keys in some time epoches would not leak out those in other epoches or

lead to a total break. In fact, the TRE scheme proposed here achieves the key insulation goal

in [6] for free.

In TRE, we could avoid using the secret key a directly in decrypting any ciphertexts; instead

we could use Ki = aH1(Ti) as the key for an epoch between time instants Ti and Ti+1 to do all

the decryption on the relatively insecure device. The original secret key a could be stored in

a safe device (say a smart card) or derived from a certain human-memorable password (using

a good cryptographic hash function). When a new time-bound key update for instant Ti is

received from the time server, the user computes aH1(Ti) in a safe device and then stores it

in the relatively insecure device; this computation could be done in a micro-controller-based

smart card. Due to the security guarantee in TRE, any compromised Ki would not leak out

Kj if j 6= i.
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5.1.3 Overhead of Changing Time Servers

In TRE, it is the receiver who chooses the time server. In some cases, the sender may not trust

the time server S chosen by the receiver and request the receiver to give him a public key using

another time server S ′. From a first glance, the receiver might have to go through the same

certification process with the CA (Certificate Authority) in order to convince other this is his

new public key with Server S ′. But in fact, the receiver does not need to get a new certificate

in order to convince others because using the original public key, other users can verify the

authenticity of the new public key as follows: Suppose (aG, asG) is the original, CA-certified

public key and (aG, as′G) is the new public key. By verifying that ê(G, as′G) = ê(s′G, aG)

(where s′G is the public key of the new time server S ′ and aG is part of the old public key of

the sender which is certified), any users can tell whether the new key is really from the sender

it claims to be since aG has been certified in the original public key and only people knowing

a (the private key) can create as′G satisfying the above condition.

5.1.4 Using Multiple Time Servers

To lower the risk that a receiver colludes with the time server so that he could receive from the

time server a time-bound key update before its dedicated release time, the sender could use

multiple time servers so that the receiver now needs to collude more servers to cheat. Suppose

there are N time servers (specified by the sender) each using a secret key si and a generator

Gi ∈ G1, where 1 ≤ i ≤ N , their corresponding public keys and time-bound key updates for T

are then siGi and siH1(T ) respectively. To encrypt a message M , the sender asks the receiver

to give him a new public key of the form knew = a
∑N

i=1
siGi. Using the same trick as above,

the sender could verify the validity of the new receiver public key and send a ciphertext of

the form 〈rG1, rG2, . . . , rGN ,M ⊕ K〉 where K = ê(rknew,H1(T )). Arranging terms, K is

equal to
∏N

i=1
ê(Gi,H1(T ))rasi . The receiver now needs to get all siH1(T ), each from one of

the N servers, together with his private key a to compute K which is needed for decryption

(Note that if we denote Ki = ê(Gi,H1(T ))rasi , where 1 ≤ i ≤ N , we could compute Ki in the

following way: K ′

i = ê(rGi, siH1(T ))a = ê(Gi,H1(T ))rasi = Ki.).

5.2 ID-based Timed Release Encryption (ID-TRE)

Here we will consider an ID-based Timed Release Encryption. The time server is the same

entity as the trusted server assigning private key to users in an ID-based encryption scheme

[2].

Suppose G1 and G2 are additive and multiplicative cyclic groups of order q (prime) respec-

tively and ê : G1 ×G1 → G2 is a bilinear map. Assume IDi is the identity of a particular user

i and T is an arbitrary release time. Given the following cryptographic hash functions:

H1 : {0, 1}∗ → G
∗

1

H2 : G
∗

2 → {0, 1}n

The ID-TRE protocol runs as follows.
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Key Generation: The server randomly picks a generator of G1, say G, and then picks s ∈ Z
∗

q

as his private key and computes sG. G and sG are made public.

For a user i with IDi, the server computes and gives him sH1(IDi), to be used as user

i’s private key, and the corresponding public key is his identity IDi.

Time Server Broadcast: The time server periodically publishes a signed piece of infor-

mation sH1(T ) (the time-bound key update), which indicates the current time. Any-

one using the server’s public key can verify its authenticity because ê(sG,H1(T )) =

ê(G, sH1(T )).

Encryption: Given a message M , a receiver identity IDi and a release time T ∈ {0, 1}∗,

1. Compute KE = H1(IDi) + H1(T )

2. Pick a random r ∈ Z
∗

q .

3. Compute K = ê(sG,KE)r = ê(G,KE)rs.

4. Compute the ciphertext C = 〈rG, M ⊕ H2(K)〉.

Decryption Given a ciphertext C = 〈rG, σ = M ⊕ H2(K)〉, a user’s private key sH1(IDi),

and a time-bound key update for release time T , which is sH1(T ),

1. Combine the static private key sH1(IDi) with the time-bound key update sH1(T )

to get the decryption key: KD = sH1(IDi) + sH1(T ) = sKE .

2. Compute the pairing K ′ = ê(rG,KD) = ê(rG, sKE) = ê(G,KE)rs = K.

3. Recover M by computing σ ⊕ H2(K).

5.2.1 A Sketch of Security Proof

1. Regarding the security of the server’s and the receiver’s private keys, points 1 and 3 for

the first TRE scheme apply here.

2. When a receiver does not have sH1(T ), whether he can decrypt a ciphertext before the

release time would depend on whether he can compute ê(G,H1(T )rs from sG and rG.

Applying the same argument for the first TRE scheme here, this problem is at least as

difficult as the Bilinear Diffie-Hellman (BDH) Problem. As long as the BDH problem

is difficult, a receiver could not decrypt an encrypted message (sent to him) before its

release time unless he colludes with the time server.

5.2.2 Key Privacy and other Discussions

Just like any ID-based encryption, ID-TRE has the same problem regarding key escrow as the

server knows all the private key. Besides, ID-TRE is not inherently key-insulated but it can

achieve this property at the expense of increasing the ciphertext size based on the heuristic

assumption that it is difficult to find s from G, sG and s−1G.

Although the properties of ID-TRE is not as appealing as TRE, the time-bound key update

for a particular time instant T in ID-TRE is still identical for all receivers; the time server just

needs to broadcast a single key update for each T . Compared to the only existing ID-based

13



timed release encryption scheme [2, 13] which requires the time server to deliver a distinct

time-bound key update separately to each receiver for each T , our scheme has a significantly

better scalability.

6 Conclusions

In this paper, we provided a solution to the problem of server-passive and user-anonymous

timed release encryption. We proposed two constructions, one the same as usual public-

key scheme and the other identity-based, which can achieve timed release encryption with a

precisely specified absolute release time without needing any interaction between the server

and the sender or the receiver. Both schemes are highly scalable since only a single, identical

time-bound key update for all users is needed for a certain time instant. The first scheme

also has a number of useful additional properties like key insulation and simple public key

certificate renewal.
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