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1. Introduction

1.1 Motivation
Boolean functions and maps play a central role in cryptology. They are basic building blocks of bit-

oriented block and stream ciphers. In order to construct secure cryptographic ciphers, i.e., ciphers which
resist all known attacks, it is important to study the structure and behaviour of Boolean functions.

Normality of a Boolean function is the property which determines if the function is constant on a flat of
dimension �������
	 . This concept was introduced by Dobbertin, 1994, in order to construct highly nonlinear
balanced Boolean functions. Later, this property was used to distinguish different classes of bent functions.
As the first bent function which is non-normal occurs for dimension 14 (Canteaut et al., 2003), we need a
highly optimised algorithm for determining the normality of Boolean functions. This is non-trivial as the
total number of flats increases exponentially for increasing dimension � (MacWilliams and Sloane, 1991).
Table 1 lists the number of flats of dimension ��������	 ; this clearly shows that even for moderate dimensions
( ���������������� ) establishing normality by exhaustive search is infeasible.

Table 1. The number of flats of dimension ��� ��� to test for different dimensions �� 8 9 10 11 12 13 14 15 16 17 18 19 20� ��! � (# flats) 22 26 32 37 44 50 58 65 74 82 92 101 112

1.2 Related Work
The first attempt for determining the normality of a Boolean function, better than exhaustive search,

is due to Daum et al., 2003. The main idea of their algorithm is to search exhaustively all flats of small
dimension on which the function is constant and then to combine these to flats of higher dimension.

1.3 Achievement
In our algorithm, we replace the exhaustive search through all flats of small dimension by a random

search. This has several advantages over the algorithm of Daum et al. First, we do not need a unique
representation of flats which means less conditions to test and therefore a lower time complexity. Second,
the number of repetitions needed to determine with high probability that a function is non-normal, is far
smaller than an exhaustive search on all flats of small dimension (cf Sect. 5.2). Our algorithm is of the
asymmetric Monte Carlo type and may output “non-normal" with probability �#"%$ for a normal function
and some confidence level &('*) . The output “normal" is always correct. This asymmetric Monte Carlo
algorithm has a far smaller running time than the deterministic algorithm of Daum et al., 2003 — even
with a reasonable error-probability ( &,+.-0/ in our case). In particular, we are able to use this algorithm to
classify various Boolean power functions of cryptographical interest.

1.4 Outline
This paper is organised as follows. In Sect. 2, we introduce the basic definitions together with a de-

scription of the main ideas in our algorithm. Sect. 3 shows as an application of the algorithm the results
on the computation of normality for highly nonlinear power functions up to dimension 16. Sect. 4 presents
more details and explains several optimisations for our algorithm. In Sect. 5, we give a detailed complexity
analysis of the algorithm and compare the total time complexity of our algorithm with the time complexity
of the previous algorithm from Daum et al., 2003. This paper concludes with Sect. 6.

2. Background
In this section we present some definitions and a simplified algorithm to test the normality of a Boolean

function.

2.1 Definitions
Before we can describe our algorithm, we need to define several objects. We start with vectors and vector

spaces and finish with some definitions concerning Boolean functions.
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Let a vector 12'43#56 be represented by the � -tuple 781 5 ":9
; ����� ; 1=<�> with the coefficients 1:?@'A3 6 from the
field with 2 elements. Let 1 9 ; ����� ; 1%B('23 56 be C linearly independent vectors. Then they form the base of
the subspace DFEHGJI + D 1 9
; ����� ; 1 B GJI +LK�M 9 1 9ON ����� N M B 1 BQP MR?O'S3 6UT �
Here, the dimension of

DVEWG
is C . For a given vector XY'3 56 , we represent the coset of this subspace byE ZAI + X N

D[E\G
. Throughout this paper, we call the coset

E Z
a flat. The vector X of the flat

E Z
is called

the offset of this flat. In addition, two flats are said to be parallel if they are cosets of the same subspaceD]E^G
, i.e., all flats of the form

E Z
; XA'_3 56 are parallel flats by this definition. Finally, we denote the set of

all flats of dimension ` by Flat a , i.e.,

Flat a I +bK E Z P X('43 56 ;
DFEHGdc 3 56 ;�egfih

DFEHG +J` T �
We now move on to Boolean functions. A Boolean function j is a mapping from 3 56 into 3 6 . The

property of normality for a Boolean function j is defined as follows:kmlon%prqsprt@pvusqxw
A Boolean function j I 3 56zy 3 6 is called normal if there exists a flat { Z}| 3 56 of

dimension �����0��	 such that j is constant on { Z
, i.e., ~ �z'�{ Z I j@7 �H>�+.& for some fixed &�'*K�/ ; � T . We

call the flat { Z
a witness for the normality of the function j .

As we see from Definition 1, the property of normality is related to the question of the highest dimension
of the flats on which the function j is constant. As a consequence, it is natural to generalise the previous
definition by the introduction of C -normality (Dubuc, 2001; Carlet, 2001):kmlon%prqsprt@pvusqz�

For a natural number C I �_�xC*��� , a Boolean function j I 3 56Jy 3 6 , is said to be
“ C -normal" if there exists a flat � Z ' Flat B such that j is constant on � Z

, i.e., ~ ��'m� ZQI j@7 �g>s+J& for some
fixed &H'YK�/ ; � T . We call the flat � Z

a “ C -witness" for the normality of the function j .

Remark: It is clear that a constant function j@7 �=>^+�& ; ~ ��'�3 56 ; &S'�3 6 is � -normal. An affine functionj@7 �=>F+ X[� � N��; ~ � ; X('43 56 ;�� '43 6 is 78�W���> -normal, because it is normal on the flats K � I X�� � N�� +J/ T
and K � I X�� � N�� +�� T of dimension �_��� .

2.2 A Simple Algorithm
The previous section shows that it is important for the definition of normality and C -normality, i.e., for

a given dimension � I +.C ( C -normality) or � I +���������	 (ordinary normality), to find a witness { Z ' Flat � .
To ease the understanding of the algorithm of Sect. 5, we start with a highly non-optimised version of
it (cf Fig. 1). Both algorithms are based on the observation made by Daum et al., 2003, that a Boolean
function which is constant on a flat { Z

is also constant on all flats contained in { Z
, i.e., jg� � �H+�& for some&['K�/ ; � T implies j�� � ��+J& for all � � c { Z

. We call the flat � � a sub-witness of { Z
.

Our algorithm starts with a randomly chosen flat
E Z

of dimension ` , the starting dimension. If this flat is
a sub-witness, the function j must be constant on it. So, if the function j is constant on the flat

E Z
, this is a

possible candidate for a sub-witness and we search for a parallel flat
E � , on which the function is constant,

too. Both flats
E Z

;
E � can now be combined to a flat of higher dimension, namely X N

D�E
; X N �

G
. We

repeat this process recursively until we reach the “end dimension" � . In this case, we have found a witness{ Z
and output 1.

Depending on the “confidence level" & we want to achieve, we need to repeat the above algorithm sev-
eral times. The value for � , i.e., the number of repetitions, depends on & . We discuss the choice of � in
Corollary 10 (cf Sect. 2).

3. Applications: Classification of Highly Nonlinear Power functions
Using our algorithm for normality, we investigated the level of normality and weakly normality of some

non quadratic highly nonlinear Boolean power functions. For even dimension of � , we consider the Kasami
class (Kasami, 1971), the Cusick and Dobbertin classes (Cusick and Dobbertin, 1996) and the Dobbertin
classes (Dobbertin, 1998). For odd dimensions, the Welch class, Canteaut et al., 2000 and Dobbertin et al.,
2001 and also the Niho class, Dobbertin et al., 2001 and Dobbertin, 1999, are considered. The inverse class,
Nyberg, 1993, is investigated for all dimensions �2+J-U� �i�i��¡ .

The results can be found below. Note that all these power functions in odd dimensions �*����� are non¢ 5 6�£ -normal and weakly normal. For even dimension and ���¤��¡ , all these power functions are non-normal
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Figure 1. Simplified Algorithm for Checking Normality

Input: function j , start dimension ` , end dimension � , repetitions �
Output: 1 if the function is � -normal
for ¥@¦§� to � do

pick a flat
E Z 'o¨ Flat a at random

if jg� © �H+J& for some &['�K�/ ; � T then SearchFurther(
E Z

; � )
endfor

procedure SearchFurther(
E Z

; � )&ª+¤jg� © �
if egf h

E Z
= � then

OUTPUT 1
endif
forall � 'S3 56A« E Z

do
if ( jg� © �F+J& ) then SearchFurther( X N

DFE
; X N �

G
; � )

endfor
endproc

except the power function with power 21931 belonging to the Dobbertin class ( ¬® ¯?i°:< � ? B with C4+�± ). As
expected, the level of normality highly decreases with respect to the dimension. It is left as an open problem
how to prove these results analytically. For instance, the inverse function is normal on exactly one flat for
dimensions 8, 10, 12, and 14, but not normal on flats of dimension 16.

The inverse: � 5 ��� , �m+J/ hW²ge �
� Power # � � -flats (nor)
8 254 27

10 1022 1
12 4094 1
14 16382 1
16 65534 0

The inverse: � 5 ��� , �m+b� hW²ge �
� Power # ³�� �0´ -flats (nor) # ³�� ��´ -flats (w-nor)
9 510 0 35.496
11 2046 0 1122
13 8190 0 0
15 32766 0 0

Kasami: � 6 B �d� B�µ � , �m+�� hW²geS¶ , gcd( C ; �·>O+J� , C D 5 6
� ¸ Power # � � -Flats (nor)
10 2 13 110
10 4 241 7
14 2 13 1
14 4 241 1
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Kasami: � 6 B �d� B�µ � , �m+b� hW²ge � , gcd( C ; �·>O+.� , C D 5 6 ; CY¹+b�� ¸ Power # ³ � � ´ -flats (nor) # ³ � � ´ -flats (w-nor)
9 2 13 3798 76.416
9 4 241 1773 38.988
11 2 13 2574 98.766
11 3 57 77 3354
11 4 241 88 1892
11 5 993 33 1793
13 2 13 0 13.390
13 3 57 0 0
13 4 241 0 0
13 5 993 0 0
13 6 4033 0 0
15 2 13 0 0
15 4 241 0 0
15 6 4033 0 0
15 7 16257 0 0

Cusick and Dobbertin: �  ¯ µ � �º ¯» µ � , �2+�� hW²¼eS¶� Power # � � -Flats
10 41 432
14 145 0

Cusick and Dobbertin: �  ¯ µ �  ¯ "o9 µ � , �2+�� h\²geS¶� Power # � � -Flats
10 49 592
14 193 2142

Dobbertin: ¬  ¯?i°:< � ? B , �m+J/ hW²geS¶ , gcd( C ; �·>@+b� , C D 5 6� ¸ Power # � � -Flats
8 1 31 65
8 3 91 117

12 1 127 1
12 5 1387 18
16 1 511 1
16 3 37741 0
16 5 51001 0
16 7 21931 257

Dobbertin: �  ¯ µ �  » µ � , �m+ ¶�hW²ge -� Power # � � -Flats
12 73 3800

Welch: � 
½¿¾¯ , �m+�� hW²ge �
� Power # ³ � � ´ -flats (nor) # ³ � � ´ -flats (w-nor)
9 19 3546 76.416
11 35 2453 98.766
13 67 195 13.338
15 131 0 0

Niho (1): � �½¿¾¯ µ � 
½¿¾» ��� , �2+.� hW²¼eS¶� Power # ³ � � ´ -flats (nor) # ³ � � ´ -flats (w-nor)
9 19 3546 76.416
13 71 0 0
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Niho (2): �oÀ 
½¿¾» µ � �½¿¾¯ ��� , �2+J� hW²geS¶� Power # ³�� �0´ -flats (nor) # ³�� ��´ -flats (w-nor)
11 287 55 1694
15 2175 0 0

4. Optimisations
After given a short outline of our algorithm and also showing an application to different, cryptograph-

ically important power functions, we describe how to optimise it. We want to stress that the results of
the previous section would not have been possible with the simplified algorithm as it has a far too high
time-complexity. Hence, the optimisations of the following section are worthwhile.

4.1 Complement Vector Space
There are in total � 5 �Á� a parallel flats

E Z
; X_'Y3 56 « D�EQG

for a given subspace
D�EQG

of dimension ` .
However, some parallel flats are equivalent as they contain the same points.Â^ÃÅÄFÆQÇoÈ#lJÉ

Consider some parallel flats of the following subspace of dimension 2 which is defined byDFEHGdI + D 78/ ; / ; ��> ; 78/ ; � ; /Ê> Gc 3UË6 .

7Ì� ; / ; /¿> N
D 7r/ ; / ; ��> ; 78/ ; � ; /Ê> G + 7Í� ; � ; /Ê> N

D 78/ ; / ; ��> ; 78/ ; � ; /Ê> G
+ 7Í� ; � ; ��> N

D 78/ ; / ; ��> ; 78/ ; � ; /Ê> G
+ 7Í� ; / ; ��> N

D 78/ ; / ; ��> ; 78/ ; � ; /Ê> G
As a consequence, the parallel flats can be divided into equivalence classes. Therefore, we use the comple-
ment of a subspace

DFEHG
, i.e., the subspace

D EHG
which satisfiesD EHG

N
DFEVG +}3 56 and

D EHG�Î�DFEHG +.K�/ T �
This allows us to determine the representatives of the equivalence classes of the parallel flats, namely the
flats

E Z
, for Xm' D EQG

. Because the dimension of
D EQG

is equal to �S�*` , there are in total � 5 " a different
parallel flats. To compute the complement

D E4G
of a given subspace

D�E4G
efficiently, we make use of

the Permuted Gauss Basis (PGB) of a subspace. To define the PGB, we need to introduce the concept of
left-most-one of a vector first.kmlon%prqsprt@pvusq.Ï

For a given vector 14+�781 5 ":9�; ����� ; 1=<�> , we define the left-most-one as the position of the
left-most one in its representation:Ð 7 1:> I + hWfiÑ K�¥s'YK¿�,� ; ����� ; �4��� T P 1UÒ[+J/ for ¥ DÓ ��� T �kmlon%prqsprt@pvusqzÔ

The vectors 1 9 ; ����� ; 1:B form a PGB basis iffÐ 7 1=?v>[¹+ Ð 7 1UÒ�> ; /W��¥ DdÓ(D �W�
Remark: The name Permuted Gauss Basis is motivated as follows. Thinking about the base vectors1 9
; ����� ; 1 B as a matrix, we would perform Gaussian elimination on it, without swapping rows. The re-
sult would not be a triangular structure but a row permutation.

For a subspace
DFEVG

, we denote the set of the different left-most-ones of its elementsÕ 7 DFEHG > I +ÖK Ð 7 1:> P 1m' DFEHG « K�/ TÊT �
The complement

D EHG
of a subspace

DFEHG
where

DFEHG
is in PGB can be computed as follows:D EHG +ÖK X('43 56 P X¼?·+J/ ; where ¥s' Õ 7 DFEVG > T �

4.2 Random Points instead of Random Bases
Instead of selecting a random flat with a PGB, we choose 7r` µ ��> points at random. This is cheaper than

selecting a vector space at random which satisfies the PGB-criterion. In addition, we only need to transfer a
set of 7×` µ ��> points into a PGB if the function j is constant on the corresponding flat. As this only happens
with probability � " 6ÙØÍÚ 9 , we obtain very low costs on average. For ` points, we can compute the PGB by
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Figure 2. Algorithm for computing the PGB of a set of points

procedure ComputePGB(Û 9 ; ����� ; Û a )
Input: ` points Û 9 ; ����� ; Û a
Output: a PGB of the Û 9 ; ����� ; Û a
for C�¦Ü� to ` do

while Ð 7 Û B >]'�K Ð 7 Û 9 > ; ����� ; Ð 7 Û B "o9 > T do
for ¥O¦Ý� to CQ��� do

if Ð 7 Û ? >Å+ Ð 7 Û B > then Û B N ¦ Û ?
endproc

the iterative algorithm from Fig. 2. The point Û < is the offset of the flat Û < N
D Û 9 ; ����� ; Û a G

and has to be
reduced as outlined in the previous section.

Finally, we have to check whether the 7r` µ ��> points form a flat of dimension ` . The contrary happens
only with very small probability:

7×� 5 >�7×� 5 ����>%������7×� 5 �d� a >Þ��� 5¼ßáà a Ú 9Íâ �
Using the following strategy, we can reduce the running time of the algorithm further: instead of picking7r` µ ��> points at random and evaluate explicitly if they form a flat of dimension ` on which the function j

is constant, we do this implicitly in parallel:

Pick 7r�0` µ ��> points at random

Evaluate j on these points

if exactly 7×` µ ��> points evaluate to 1 (resp. to 0), check if the corresponding flat yields the constant
1 (resp. 0) on the function j .

This implicit evaluation strategy exploits different observations. First, we assume that we can form a total
of #flats := ã 6 a Ú 9a Ú 9 ä

independent flats of dimension ` using a set of 7r�0` µ ��> points. This way, we can decrease
the number of repetitions by this factor. In addition, we observe that a set of 7×�0` µ ��> points will yield at
most one flat of dimension ` on which the function j is constant, if 7×` µ ��> points in the set evaluate to 1
(resp. 0) on the function j . However, the probability for this event is rather high, namely Pr(only one flat)

:=
6 7 ¯ Ø º¼¾Ø º¼¾ >6 ¯ Ø º¿¾ .
But there is a price to pay for this strategy: we always need to perform 7r�Ê` µ ��> evaluations of the

function j and also the same number of random calls.
Remark: It is natural to generalise this idea to other values than 7r�Ê` µ ��> . However, in this case we

do not obtain such a good trade-off between the factor #flats and the workload to check the corresponding
flats. The choice 7×�0` µ ��> is optimal for the given problem.

4.3 Combining
In the original algorithm, we searched for all parallel flats and started a recursion on each of them. This

is obviously superfluous as we will find the same witness several times this way. As we know from the
previous section, we will obtain at least � � " a parallel flats

E �×å on which the function is constant. Here, �
denotes the end-dimension and ` the start-dimension.

To avoid this costly computation, we use a different strategy, based on Daum et al., 2003: instead of
recursively searching for all parallel flats of higher dimension, we combine flats of low dimension to obtain
flats of higher dimension. This is based on the following observation:

7 � ? N
DFEHG >oæ7 � Ò N

DFEHG >Å+ � ? N
DFE

; � ? N � Ò G �
Hence, we only need to consider pairs 7 � ? ; � Ò�>A' D EYGèçéD E2G

which lead to the same sum and then
combine them recursively until we obtain a flat of dimension � . To do this efficiently, we introduce � 5 lists
(depending on a vector �A'43 56 ) which hold an offset for each possible sum, i.e., Append( ê � å8ë �8ì ; � ? ). In the
following section, we develop a branching condition for the combine method, which allows to decrease its
running time even further.
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4.4 Branching
Let the function j take a constant value &W'}K�/ ; � T on the flat

E Z
of dimension í . Denote with î�7 E Z >

the set of all flats parallel to
E Z

on which the function yields the same constant. The following branching
condition defined by the cardinality of the set î�7 E Z > has been observed by Daum et al., 2003. We are able
to improve their result by giving a shorter proof.ïAð l·uFñOloÆóò

If P î�7 E Z > P D � � "%ô , we can terminate the current branch of the combine-method in
DHEWG

without violating its correctness.

Proof: Let { � be a witness and
E Z | { � its subwitness. Now, there exist exactly 7r���(í¼> linearly indepen-

dent vectors � 9�; ����� ; �ª� "%ô ' D { G
with � 9�; ����� ; �ª� ":ô �' DVE(G

and consequently � 9�; ����� ; �ª� "%ô ' D E�G
.

These vectors exist due to dimension reasons as dim { �]+õ� and dim
E Z +Jí . Therefore, for any subwitnessE Z | { � exist � � "%ô parallel subwitnesses. This implies that P î�7 E Z > P �¤� � "%ô . As a consequence, we can

stop at any step in the algorithm if this condition is violated because we will not be able to extend the flat
E Z

to a witness of dimension � . ö
5. The Improved Algorithm

Using the ideas from the previous section, we obtain the algorithm of Fig. 3. The method SearchForPar-
allelFlats can be found in Fig. 4 and the optimised version of the combine-method is presented in Fig. 5. In
the following sections, we analyse this optimised algorithm.

Figure 3. Main loop for the optimised algorithm

Input: function j , start dimension ` , end dimension � , repetitions �
Output: one witness if the function is � -normal
for ¥@¦§� to � do÷ < ¦ÝK T ,

÷ 9 ¦øK T
for ¥R¦L� to �0` µ � doÛm' ¨ 3 56&ª¦Üj@7 Û%>÷ $ æ¦ÝK Û T
endfor
if (( P ÷ < P ¹+¤` µ � ) and ( P ÷ 9 P ¹+J` µ � )) then continue&ª¦ P ÷ 9 P �d`
if j P ù�ú ë@û ù�ú ë ù ¾�üáýáýáý ü ù�ú ë ù ØÞþ (Û=?@' ÷ $�; ¥Å'K�/ ; ����� ; ` T ) not constant then continueX N

DFEHG ¦ ComputePGB(Û#< ; ����� ; Û=a )
if dim

DFEVG ¹+J` then continue
SearchForParallelFlats(

DFEHG
)

endfor

Figure 4. SearchForParallelFlats for the optimised algorithm

procedure SearchForParallelFlats(
DFEHG

)D EHG ¦ ComputeComplement(
DFEHG

)ê*¦Üÿ , &ª¦Üj@7 Xg>
for � ' D EHG « K X T do

if jg� © � +J& then Append( ê , � )
if P ê P �}� � " a then Combine(

DFEHG
, ê )

endproc

5.1 Complexity Analysis
We start the analysis of the algorithm with determining the number � of repetitions. Then we analyse the

complexity of the main loop from Fig. 3, the complexity of the SearchForParallelFlats from Fig. 4 and the
complexity of the Combine-procedure from Fig. 5 in different steps.



Classification of Highly Nonlinear Boolean Power Functions with a Randomised Algorithm ����� 9

Figure 5. Combine-method for the optimised algorithm

Global Initialisation:
forall X('S3 56 doê

Z
¦Üÿ

procedure Combine(
DFEHG

; ê )íQ¦ egf h
DFEHG

if í���� then
Let XA'Sê
OUTPUT

E Z
endif
forall 7 � ? ; � Ò�>�'_ê ç ê I ¥ DdÓ

do
Append( ê � å ë � ì

, � ? )
forall 7 � ? ; � Ò�>�'_ê ç ê I ¥ DdÓ

doX\¦ � ? N � Ò
if P ê

Z
P �õ� � ":ô�":9 thenê��#¦Üÿ

forall � 'mê
Z

do
if � ' D E

; X G
then Append( ê�� , � ) else Append( ê�� , X N � )

Combine(
DFE

; X G
; ê�� )

endifê
Z

¦Üÿ
endfor

endproc

Number of Repetitions.
For determining the number of repetitions, we need the following lemma from MacWilliams and Sloane,
1991, concerning the number of subspaces and flats of a certain dimension in a vector space.
�ªloÆ\Æ�Ä��

The number of subspaces of dimension ` in a vector space of dimension � is given by

� ÷ 78� ; `�> I + a "o9�
?i°:<

� 5 " ? ���� a " ? ��� �
The number of flats of dimension ` in a vector space of dimension � is given by

��� 7�� ; `�> I +�� 5 " a a "o9�
?i°:<

� 5 " ? ���� a " ? �}� +�� 5 " a � ÷ 7�� ; `�>��
Before determining a bound on � , we first introduce the term complaisant flat.kmlon%prqsprt@pvusq
	

A flat
E Z

is called complaisant if the function is constant on the flat, the flat is parallel to
a sub-witness, but the flat is not contained in any witness.ïAð l·uFñOloÆ��

When choosing 7r` µ ��> points Û < ; ����� ; Û a 'S3 56 at random, the probability î � 7�� ; ` ; �
> that
the flat

E Z
formed by these 7×` µ ��> points pass the first step in the algorithm is equal to

î � 78� ; ` ; �
> + îV�¼7 E Z
is a sub-witness > µ îV�g7 E Z

is a complaisant flat > ;
where

îV�¼7 E Z
is a sub-witness > I + � � " 5 � a�

? ° 9
� � ��� ? ":9� 5

îV�g7 E Z
is a complaisant flat > I + � " 6�Ø Ú 9 � � 5 " � � ÷ 7�� ; `�>R� �� 78� ; `�>� ÷ 7�� ; `�> �
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In the above formula, � is the dimension of the witness. The formulas for
� ÷ 7Í� ; �á> and

�� 7Ì� ; � > are given
in Lemma 7.

Proof: We first determine the probability that the flat
E Z

is a sub-witness. This probability is justified with
an inductive argument on the dimension of the sub-witness: for one point (i.e., a flat of dimension 0), the
probability of being a sub-witness is

6��6  . Here, the witness has � � points. This probability is also true for
extending the sub-witness from dimension 78¥g�2��> to dimension ¥ (we have �,��¥Å�õ` ). In addition, we have
to consider the case Û ? ' Û < µ D Û 9 ; ����� ; Û ? ":9

G
, i.e., the new point Û ? lies in the sub-witness of dimension7�¥·����> generated by the points Û < ; ����� ; Û ? "o9 .

The probability that
E Z

is a complaisant flat is equal to the probability that the function is constant onE Z
times the number of flats which are parallel with a witness but not part of a witness. This is exactly

expressed in the formula. ö
From the previous theorem and the implicit evaluation strategy as described in Sect. 4.2, we can deduce

the following corollary.� uFñRuFÈUÈUÄsñ���w��
For a given start dimension ` and an end dimension � , we need at most

� �ÞÛR7�� ; ` ; � ; &�>O+ &î � 7�� ; ` ; ��> � �îV�¼7��������H��j��8X��Ì>��Qj��rX��Ì`
repetitions to achieve a confidence of � "%$ that the function j is not � -normal.

Table 2 shows some numerical values of � in  ²"! 6 . In this and all following tables, we concentrate on even
choices for � and fix �H+�56 as these cases are particularly relevant in cryptography.

Table 2. Number of repetitions (in
� ��! � ) for different values of � and #

#%$�� 8 10 12 14 16 18 20

2 15.49 18.35 21.28 24.25 27.23 30.22 33.22
3 18.68 22.31 26.14 30.06 34.02 38.00 41.99
4 26.11 30.72 35.54 40.45 45.40 50.38

Complexity of the main loop.
Obviously, picking 7r�Ê` µ ��> random points and checking if the function is constant for a given flat, will be
the most expensive operations. Therefore, we start with a lemma on the average complexity for checking
that a function is constant on a given set of points.
�ªloÆ\Æ�Ä w:w

For a given random function j I 3 56y 3 6 and a given set of points î c 3 56 , the algorithm
from Fig. 6 needs on average 3 evaluations of j to check if this function is constant when restricted to
vectors in the set î .

Figure 6. Algorithm to determine if a function is constant on a set of points

Input: function j , a set î with Û I + P î P points
Output: 1 if j is constant on î and 0 otherwise
Let & 9 '_î , &ª¦Üj@7 & 9 >
for &Q'_î « K & 9 T do

if j@7 &�>[¹+�& then OUTPUT 0
OUTPUT 1

Proof: The average number of evaluations depends on the number of points Û I + P î P of this algorithm; it
is given by

' �%7 Û%> I + ù ":9(
?i° 9

�� ? 7�¥ µ ��> µ �� ù "o9 Û4+��V� �� ù " 6 �
To justify this formula, we observe that we need to evaluate j at least once to obtain the constant & . As the
function is a random function by definition, we have a probability of 96 to obtain a different constant for
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every further evaluation, i.e., to terminate this algorithm. After checking a total of Û points, the algorithm
terminates. For this last check, we still have a probability of 96 to output 0. However, the workload of
outputting 0 or 1 is exactly the same, namely Û evaluations. ö

As a consequence, the complexity of the main loop so far depends on the costs of picking the 7×�0` µ ��>
random points, evaluating the function j on the corresponding flat with probability Pr(Only one flat) and
some other negligible operations whose complexity we set to one, i.e., 7r�Ê` µ � µ 3Pr(Only one flat) µ ��> � ,
where � represents the number of repetitions. We obtain the following values (  ²"! 6 ) if we evaluate the above
formula numerically (cf Table 3).

Table 3. Numerical results for the time-complexity (in
� ��! � ) of the main loop� #�)+* #,)+- #,)/. #�)+0

8 18.47 21.95
10 21.33 25.58 29.63
12 24.26 29.41 34.24 39.12
14 27.23 33.33 39.06 44.72
16 30.21 37.29 43.97 50.53
18 33.20 41.27 48.93 56.44
20 36.20 45.26 53.90 62.40

Complexity of the SearchForParallelFlats-method.
From a computational point of view, the for-loop is very expensive, as we have to check � 5 " a �}� parallel
flats every time. However, each flat costs only 3 operations on average (cf Lemma 11). In addition, we
only need this for-loop in � " 6ÙØ Ú 9 of all cases as this is the probability that the function is constant on the
corresponding flat. The other steps in the method are negligible in comparison to the for-loop. We therefore
identify their average workload as 1. Consequently, the complexity of the SearchForParallelFlats-method
can be approximated by 7Ì� µ �W�U7×��" 6ÙØÍÚ 9 Pr(only one flat) >Ì� 5 " 6�Ø " a Ú 9�> � , where � denotes the number of
repetitions. Numerical values for the time-complexity (in  ²"! 6 ) of the SearchForParallelFlats-method are
presented in Table 4.

Table 4. Numerical results for the time-complexity (in
� ��! � ) of the SearchForParallelFlats-method� #,)+* #,)1- #,)/. #,)+0

8 19.50 19.18
10 24.28 23.71 26.11
12 29.20 29.06 30.73 35.38
14 34.16 34.83 35.60 40.98
16 39.14 40.75 40.69 46.79
18 44.13 46.72 46.20 52.70
20 49.13 52.71 52.37 58.66

Complexity of the Combine-procedure.
The complexity analysis of the combine-procedure is a little more tricky. In particular, we have to deal
with the problem that its complexity depends quadratically on the number of parallel flats we find, i.e., the
number P î�7 E Z > P for a given flat

E Z
. Therefore, we cannot simply take the average number of flats for this

analysis as the result does not reflect the real time complexity of this algorithm. In addition, we have to deal
with the branching condition (cf Sect. 4.4).

As we did not expect to find a closed formula for the time complexity of the combine-procedure, we
used MAGMA, to compute it numerically. As all computations are done with rational numbers, there are
no rounding errors in MAGMA. In particular, we computed the probability for the different numbers of
parallel flats we obtain in the searchForParallelFlats-method. We only took numbers �Ö� � " a into account
(cf Thm. 6) and neglected levels of recursion which appear with too small probability (

D �#"32 < ), due to the
branching condition. In addition, we truncated the sum at points which did not contribute to the overall
workload anymore (expected workload smaller than 1). We present the corresponding values (  ²"! 6 ) for
different choices of � and ` in Table 5.
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Table 5. Numerical results for the time-complexity (in
� ��! � ) of the Combine-method� #,)4* #,)1- #5)/. #�)+0

8 24.17 15.97
10 31.15 22.87 617
12 38.03 15.76 617 617
14 44.97 23.68 617 617
16 51.93 35.02 617 617
18 43.34 617 617
20 51.33 617 617

These computations were matched by our empirical results. In particular, the branching condition proved
to be very powerful for `,�}� and �Y�Ö��� (note difference between �m+b��/ and �m+���� for `H+J� ). In these
cases, we never needed a recursive call of the combine-method for non-normal functions. In addition, the
probability for a function to be constant on a given flat decreases exponentially with increasing dimension
of the flat. Therefore, we expect to find less than � � " a flats for `S� ¶ and �J�x��/ which means that the
combine-method is never invoked in these cases (fields with 8�/ in the above table).

All in all, it is necessary to chose the starting dimension ` correctly, i.e., high enough such that the
combine-method is still efficient and low enough such that SearchForParallelFlats and the main loop do not
need too much time. For dimension ���Ö��/ , the choice `H+õ� turns out to be optimal (cf Fig. 7 for the case�m+���¡ ).

Figure 7. Time-complexity for the main loop ( 9 ), SearchForParallelFlats ( : ), and the combine-method ( ; ) for
dimension �<)>=@? and varying #
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Asymptotic Analysis.
Here we sketch the asymptotic analysis of the above algorithm: we begin with the observation that for large� and subsequently large ` , the running time will only depend on the number of repetitions necessary. We
justify this reasoning as follows: as we saw for the combine-method, we have a very powerful branching
condition, i.e., asymptotically, this part will not contribute to the overall complexity. The same is true for
the search of parallel flats: we have a complexity of JW7r� à " 6ÙØÍÚ 9Íâ ài5 " a âÞ> here, i.e., negligible for � yLK .
In addition, we cannot use the implicit evaluation strategy anymore in the asymptotic case, as we obtain
a rather small probability for having exactly one flat ` yMK . Therefore, we drop the corresponding term
in our asymptotic analysis. For our analysis, we chose `�+ 92 � and �Á+ 96 � and obtain the following
asymptotically upper bound on the number of repetitions and thus the running time of the algorithm:

� �ÞÛR7�� ; �
¶ � ; �� � ; &�> + JW7r&
�á� ¾N 5 ¯ Ú À» 5 > ;

where & is the target confidence level. To obtain this upper bound, we observe that the probability to
have a complaisant flat is asymptotically very small. In addition, we notice that for large � the fac-
tor � � " 5 Ú a à � "o9Ù" 5 â is a tight lower bound on the probability î � 7�� ; ` ; ��> . Using Theorem 9 and Corollary 10
yields the result.
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5.2 Comparison with the Algorithm from Daum et al.

In Fig. 8 and Table 6 we compare the time complexities of our algorithm with that of Daum et al., 2003,
for computing the normality of a function in dimension � . We are not aware of an asymptotic analysis of
the algorithm from Daum et al., 2003.

Figure 8. Time-complexity (in
� ��! � ) of this paper (: ) and from Daum et al., 2003 ( 9 )
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The time complexity of algorithm of Daum et al., 2003, is computed using the formulas given there. Ac-
cording to these results, we expect that it is outperformed by our algorithm for increasing dimension � .

Table 6. Comparison of the time-complexity (in
� ��! � )

� # Daum et al. Our alg.
14 2 42.58 44.97

3 6/.Q? 35.27
4 6+0R* 39.18

16 2 51.58 51.93
3 6+0%. 40.88
4 61?Q* 44.11

� # Daum et al. Our alg.
18 2 61.17 S 50

3 61.01 46.72
4 S 61 49.13

20 2 71.09 S 55
3 71.04 S 55
4 S 71 54.33

5.3 Empirical Results
We have implemented our algorithm in a programme with 14,000 lines of C++ code. Checking random

functions on an AMD Athlon XP 2000+, we obtained the following results for �Á+ 5 6 (normality) and`[+�� : � 10 12 14 16
time [min] 0.248 1.21 42.6 2880

As we see in this table, the running time gets quickly out of hand. According to Daum et al., 2003, their
programme needs approximately 50 h on a Pentium IV 1.5 GHz for the case �2+z� ¶ . Our algorithm needs
approximately 43 min for ��+ � ¶ and approximately 2 d for ��+ ��¡ . Using the complexity analysis of
Daum et al., 2003, we expect a running time of more than a year for their algorithm to handle functions of
dimension �Á+é��¡ . We also estimated (empirically) the running time for the cases �Á+®��- ; �0/ and obtain
2.5 years and 130 years, respectively.

For our C++ implementation, we have included several improvements:

Combinatorial Gray codes. In order to compute vectors more efficiently for a given basis, we used
combinatorial Gray codes (Savage, 1997) and computed all intermediate values in a Gray code like fashion.
This way, we only needed one computation on average rather than 5 6 when computing elements of the
vector space

D EVG
.

Optimised Pseudo-Random Number Generator. As the programme spends approx. 60% of
its time computing random numbers, we concluded that it could benefit from a fast way of generating
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pseudo-random numbers. However, due to the high number of repetitions, we still need a long period for
the pseudo-random number generator. To meet both aims, we used a pseudo-random number generator
from Rhoads, which combines a multiply with carry generator and a simple multiplicative generator. It
achieves a period of more than �OT < , has good statistical properties, and is also very fast according to our
measurements. For the future, tests with the cryptographically secure pseudo-random number generator
using Shamir’s T-functions class (Klimov and Shamir, 2004) are planned.

Function storage. For the Boolean function to be checked, we can use several ways of storing it: bit-
wise, byte-wise or in processor-words (32 bit). To make the best use of the internal cache of the processor,
a bit-wise storage turned out to have the best performance for dimensions ������ . For dimensions ��¤��/ ,
an word-wise storage was clearly better as we do not have the overhead of retrieving single bits from a
word.

6. Conclusions
In this paper, we present a fast asymmetric Monte Carlo algorithm to determine the normality of Boolean

functions. It uses the fact that a function which is constant on a flat of a certain dimension is also constant
on all sub-flats of lower dimension. In addition, we evaluate “parallel" flats using the implicit evaluation
strategy (cf Sect. 4.2). Starting with flats of dimension ` and combining them until a flat of dimension � is
obtained, we achieve a far lower time-complexity than with exhaustive search on flats of dimension � .

In particular, this algorithm is far faster than the previously known algorithm (43 min in comparison to
50 h) for dimension 14 (cf 5.2). Moreover, it is the first time that the important case �m+b��¡ can be computed
on non-specialised hardware in 2 days (previously: more than a year). Using the fact that our algorithm
can be parallelised easily, this figure can even be improved and we can even handle the case �õ+ ��- (16
computers in 8 weeks). For scientific purposes and at present, �2+Ö�0/ seems to be out of reach as it would
take 128 computers about 1 year.

As an application of the algorithm developed in this paper, we investigated several classes of highly
nonlinear Boolean power functions up to dimension � = 16. Our experiments suggest that the property of
normality is not satisfied anymore for increasing � (cf Sect. 3). We have to leave it as an open problem
for the cryptographic community to prove these experimental results on the normality of (highly nonlinear)
power functions in an analytic way.
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