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Abstract

We consider the problem of defining and achieving plaintext-aware encryption without ran-
dom oracles in the classical public-key model. We provide definitions for a hierarchy of notions
of increasing strength: PA0, PA1 and PA2, chosen so that PA1+IND-CPA → IND-CCA1 and
PA2+IND-CPA → IND-CCA2. Towards achieving the new notions of plaintext awareness, we
show that a scheme due to Damg̊ard [15], denoted DEG, and the “lite” version of the Cramer-
Shoup scheme [14], denoted CS-lite, are both PA0 under the DHK0 assumption of [15], and PA1
under an extension of this assumption called DHK1. As a result, DEG is the most efficient proven
IND-CCA1 scheme known.
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1 Introduction

The theory of encryption is concerned with defining and implementing notions of security for encryp-
tion schemes [25, 26, 20, 28, 30, 18]. One of the themes in its history is the emergence of notions of
security of increasing strength that over time find applications and acceptance.

Our work pursues, from the same perspective, a notion that is stronger than any previous ones,
namely plaintext awareness. Our goal is to strengthen the foundations of this notion by lifting it out
of the random-oracle model where it currently resides. Towards this end, we provide definitions of a
hierarchy of notions of plaintext awareness, relate them to existing notions, and implement some of
them. We consider this a first step in the area, however, since important questions are left unresolved.
We begin below by reviewing existing work and providing some motivation for our work.

1.1 Background

Intuitively, an encryption scheme is plaintext aware (PA) if the “only” way that an adversary can
produce a valid ciphertext is to apply the encryption algorithm to the public key and a message. In
other words, any adversary against a PA scheme that produces a ciphertext “knows” the corresponding
plaintext.

Random-Oracle model work. The notion of PA encryption was first suggested by Bellare and
Rogaway [8], with the motivation that PA+IND-CPA should imply IND-CCA2. That is, security
against chosen-plaintext attack coupled with plaintext awareness should imply security against adap-
tive chosen-ciphertext attack. The intuition, namely, that if an adversary knows the plaintext cor-
responding to a ciphertext it produces, then a decryption oracle must be useless to it, goes back to
[10, 11]. Bellare and Rogaway [8] provided a formalization of PA in the random oracle (RO) model.
They asked that for every adversary A taking the public key and outputting a ciphertext, there exist
an extractor that, given the same public key and a transcript of the interaction of A with its RO, is
able to decrypt the ciphertext output by A. We will refer to this notion as PA-BR.

Subsequently, it was found that PA-BR was too weak for PA-BR+IND-CPA to imply IND-CCA2.
Bellare, Desai, Pointcheval and Rogaway [5] traced the cause of this to the fact that PA-BR did
not capture the ability of the adversary to obtain ciphertexts via eavesdropping on communications
made to the receiver. (Such eavesdropping can put into the adversary’s hands ciphertexts whose
decryptions it does not know, lending it the ability to create other ciphertexts whose decryptions it
does not know.) They provided an appropriately enhanced definition (still in the RO model) that we
denote by PA-BDPR, and showed that PA-BDPR+IND-CPA → IND-CCA2.

Plaintext awareness is exploited, even though typically implicitly rather than explicitly, in the
proofs of the IND-CCA2 security of numerous RO-model encryption schemes, e.g., [19, 31, 9].

PA and the RO model. By restricting the above-mentioned RO-model definitions to schemes and
adversaries that do not query the RO, one obtains natural counterpart standard (i.e., non-RO) model
definitions of PA. These standard-model definitions turn out, however, not to be achievable without
sacrificing privacy, because the extractor can simply be used for decryption. This indicates that the
use of the RO model in the definitions of [8, 5] is central.

Indeed, PA as per [8, 5] is “designed” for the RO model in the sense that the definition aims
to capture certain properties of certain RO-model schemes, namely, the fact that possession of the
transcript of the interaction of an adversary with its RO permits decryption of ciphertexts formed by
this adversary. It is not clear what counterpart this intuition has in the standard model.

The lack of a standard-model definition of PA results in several gaps. One such arises when
we consider that RO-model PA schemes are eventually instantiated to get standard-model schemes.
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In that case, what property are these instantiated schemes even supposed to possess? There is no
definition that we might even discuss as a target.

PA via key registration. PA without ROs was first considered by Herzog, Liskov and Micali
[24], who define and implement it in an extension of the usual public-key setting. In their setting,
the sender (not just the receiver) has a public key, and, in a key-registration phase that precedes
encryption, proves knowledge of the corresponding secret key to a key-registration authority via an
interactive proof of knowledge. Encryption is a function of the public keys of both the sender and the
receiver, and the PA extractor works by extracting the sender secret key using the knowledge extractor
of the interactive proof of knowledge.

Their work also points to an application of plaintext-aware encryption where the use of the latter is
crucial in the sense that IND-CCA2-secure encryption does not suffice, namely to securely instantiate
the ideal encryption functions of the Dolev-Yao model [17].

1.2 Our goals and motivation

The goal of this work is to provide definitions and constructions for plaintext-aware public-key encryp-
tion in the standard and classical setting of public-key encryption, namely the one where the receiver
(but not the sender) has a public key, and anyone (not just a registered sender) can encrypt a message
for the receiver as a function of the receiver’s public key. In this setting there is no key-registration
authority or key-registration protocol akin to [24].

Motivations include the following. As in the RO model, we would like a tool enabling the construc-
tion of public-key encryption schemes secure against chosen-ciphertext attack. We would also like to
have some well-defined notion that can be viewed as a target for instantiated RO-model PA schemes.
(One could then evaluate these schemes with regard to meeting the target.)

Additionally, we would like to enable the possibility of instantiating the ideal encryption functions
of the Dolev-Yao model [17] without recourse to either random oracles or the key-registration model.
Note that the last is an application where, as per [24], PA is required and IND-CCA2 does not suffice,
meaning plaintext-awareness is crucial. (However, see also [1].)

As we will see later, consideration of PA in the standard model brings other benefits, such as some
insight, or at least an alternative perspective, on the design of existing encryption schemes secure
against chosen-ciphertext attack. Let us now discuss our contributions.

1.3 Definitions

The first contribution of this paper is to provide definitions for plaintext-aware encryption in the
standard model and standard public-key setting.

Overview. We provide a hierarchy consisting of three notions of increasing strength that we denote
by PA0, PA1 and PA2. There are several motivations for this. One is that these will be seen (in
conjunction with IND-CPA) to imply security against chosen-ciphertext attacks of different strengths.
Another is that, as will become apparent, PA is difficult to achieve, and progress can be made by first
achieving it in weaker forms. Finally, it is useful, pedagogically, to bring in new definitional elements
incrementally.

A closer look. Our basic definitional framework considers a polynomial-time adversary C, called
a ciphertext creator, that takes input the public key and can query ciphertexts to an oracle. A
polynomial-time algorithm C

∗ is said to be a successful extractor for C if it can provide replies to the
oracle queries of C that are computationally indistinguishable from those provided by a decryption
oracle.
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IND-CPA IND-CCA1 IND-CCA2

PA0+IND-CPA PA1+IND-CPA PA2+IND-CPA

4.1
4.2

4.44.3
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Figure 1: An arrow is an implication, and, in the directed graph given by the arrows, there is a path from A to

B if and only if A implies B. The hatched arrows represent separations. Solid lines represent results from this

paper, while dashed lines represent results from prior work [5, 18]. The number on an arrow or hatched arrow

refers to the theorem in this paper that establishes this relationship. Absence of a number on a solid arrow

means the result is trivial.

An important element of the above framework is that the extractor gets as input the same public

key as the ciphertext creator, as well as the coin tosses of the ciphertext creator. This reflects the
intuition that the extractor is the “subconscious” of the adversary, and begins with exactly the same
information as the adversary itself.

We say that an encryption scheme is PA0 (respectively, PA1) if there exists a successful extractor
for any ciphertext creator that makes only a single oracle query (respectively, a polynomial number
of oracle queries).

Eavesdropping capability in PA2 is captured by providing the ciphertext creator C with an ad-
ditional oracle that returns ciphertexts, but care has to be taken in defining this oracle. It does not

suffice to let it be an encryption oracle because we want to model the ability of the adversary to obtain
ciphertexts whose decryptions it may not know. Our formalization of PA2 allows the additional oracle
to compute a plaintext, as a function of the query made to it and coins unknown to C, and return
the encryption of this plaintext to C.

Formal definitions of PA0, PA1 and PA2, based on the above ideas,are in Section 3, which includes
a discussion of how these definitions compare to the earlier RO-model ones.

1.4 Relations

PA by itself is not a notion of privacy, and so we are typically interested in PA coupled with the min-
imal notion of privacy, namely IND-CPA [25, 26]. We consider six notions, namely, PA0+IND-CPA,
PA1+IND-CPA and PA2+IND-CPA, on the one hand, and the standard notions of privacy IND-CPA,
IND-CCA1 [28] and IND-CCA2 [30], on the other. We provide implications and separations among
these six notions in the style of [5, 18]. The results are depicted in Figure 1. For notions A, B, an
implication, represented by A→ B, means that every encryption scheme satisfying notion A also satis-
fies notion B, and a separation, represented by A 6→ B, means that there exists an encryption scheme
satisfying notion A but not satisfying notion B. (The latter assumes there exists some encryption
scheme satisfying notion A, since otherwise the question is vacuous.)

Figure 1 shows a minimal set of arrows and hatched arrows, but the relation between any two
notions is resolved by the given relations. For example, IND-CCA1 6→ PA1+IND-CPA, because,
otherwise, there would be a path from IND-CCA2 to PA0+IND-CPA, contradicting the hatched
arrow labeled 4.3. Similarly, we get PA0 6→ PA1 6→ PA2, meaning the three notions of plaintext
awareness are of increasing strength.

The main implications are that PA1+IND-CPA implies IND-CCA1 and PA2+IND-CPA implies
IND-CCA2. The PA1+IND-CPA → IND-CCA1 result shows that even a notion of PA not taking
eavesdropping adversaries into account is strong enough to imply security against a significant class of
chosen-ciphertext attacks. Since the PA+IND-CPA → IND-CCA2 implication has been a motivating
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target for definitions of PA, the PA2+IND-CPA→ IND-CCA2 result provides some validation for the
definition of PA2.

Among the separations, we note that IND-CCA2 does not imply PA0, meaning even the strongest
form of security against chosen-ciphertext attack is not enough to guarantee the weakest form of
plaintext awareness.

1.5 Constructions

The next problem we address is to find provably-secure plaintext-aware encryption schemes.

Approaches. A natural approach to consider is to include a non-interactive zero-knowledge proof
of knowledge [16] of the message in the ciphertext. However, as we explain in Section 5, this fails to
achieve PA.

As such approaches are considered and discarded, it becomes apparent that achieving even the
weaker forms of PA in the standard (as opposed to RO) model may be difficult. We have been able
to make progress, however, under some strong assumptions that we now describe.

DHK assumptions. Let G be the order q subgroup of Z
∗
2q+1, where q, 2q + 1 are primes, and let

g be a generator of G. Damg̊ard [15] introduced and used an assumption that states, roughly, that
an adversary given ga and outputting a pair of the form (gb, gab) must “know” b. The latter is
captured by requiring an extractor that given the adversary coins and inputs can output b. We call
our formalization of this assumption (cf. Assumption 5.2) DHK0.1 We also introduce an extension of
this assumption called DHK1 (cf. Assumption 5.1), in which the adversary does not just output one
pair (gb, gab), but instead interacts with the extractor, feeding it such pairs adaptively and each time
expecting back the discrete logarithm of the first component of the pair.

The DEG scheme. Damg̊ard presented a simple ElGamal variant that we call DEG. It is efficient,
requiring only three exponentiations to encrypt and two to decrypt.

We prove that DEG is PA0 under the DHK0 assumption and PA1 under the DHK1 assump-
tion. Since DEG is easily seen to be IND-CPA under the DDH assumption, and we saw above that
PA1+IND-CPA → IND-CCA1, a consequence is that DEG is IND-CCA1 assuming DHK1 and DDH.
DEG is in fact the most efficient IND-CCA1 scheme known to date to be provably secure in the
standard model.

Damg̊ard [15] claims that DEG meets a notion of security under ciphertext attack that we call RPR-
CCA1, assuming DHK0 and assuming the ElGamal scheme meets a notion called RPR-CPA. (Both
notions are recalled in Appendix A, and are weaker than IND-CCA1 and IND-CPA, respectively). As
we explain in Appendix A, his proof has a flaw, but his overall approach and intuition are valid, and
the proof can be fixed by simply assuming DHK1 in place of DHK0. In summary, our contribution
is (1) to show that DEG meets a stronger and more standard notion of security than RPR-CCA1,
namely IND-CCA1, and (2) to show it is PA0 and PA1, indicating that it has even stronger properties,
and providing some formal support for the intuition given in [15] about the security underlying the
scheme.

CS-lite. CS-lite is a simpler and more efficient version of the Cramer-Shoup encryption scheme [14] that
is IND-CCA1 under the DDH assumption. We show that CS-lite is PA0 under the DHK0 assumption

1Another formalization, called DA-1, is used by Hada and Tanaka [22]. (We refer to the full version of their paper
[22], which points out that the formalization of the preliminary version [23] is wrong.) This differs from DHK0 in being
for a non-uniform setting. DA-1 is called KEA1 by [6], based on Naor’s terminology [27]: KEA stands for “knowledge
of exponent.” Hada and Tanaka [22] also introduced and used another assumption, that they call DA-2 and is called
KEA2 in [6], but the latter show that this assumption is false. The DHK0/DA-1/KEA1 assumptions, to the best of our
knowledge, are not known to be false.
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and PA1 under the DHK1 assumption. (IND-CPA under DDH being easy to see, this again implies
CS-lite is IND-CCA1 under DHK1 and DDH, but in this case the conclusion is not novel.) What
we believe is interesting about our results is that they show that some form of plaintext awareness
underlies the CS-lite scheme, and this provides perhaps an alternative viewpoint on the source of its
security. We remark, however, that DEG is more efficient than CS-lite.

Warning and discussion. DHK0 and DHK1 are strong and non-standard assumptions. As pointed
out by Naor [27], they are not efficiently falsifiable. (However, such assumptions can be shown to
be false as exemplified in [6]). However standard-model schemes, even under strong assumptions,
might provide better guarantees than RO model schemes, for we know that the latter may not provide
real-world security guarantees at all [12, 29, 21, 4]. Also, PA without random oracles is challenging
to achieve, and we consider it important to “break ground” by showing it is possible, even if under
strong assumptions.

Open questions. The eavesdropping capability provided to an adversary in the PA2 setting seems
to render the task of finding constructions significantly harder. We have not been able to find any,
and leave as an open problem to find an IND-CPA+PA2 scheme provably secure under some plausible
assumption. We suggest, in particular, that an interesting question is whether the Cramer-Shoup
scheme, already known to be IND-CCA2, is PA2 under some appropriate assumption. (Intuitively,
it seems to be PA2.) It would also be nice to achieve PA0 or PA1 under weaker and more standard
assumptions than those used here.

2 Notation and standard definitions

We let N = {1, 2, 3, . . .}. We denote by ε the empty string, by |x| the length of a string x, by x̄ the
bitwise complement of x, by “‖” the string-concatenation operator, and by 1k the string of k ∈ N ones.
We denote by [ ] the empty list. Given a list L and an element x, L @ x denotes the list consisting
of the elements in L followed by x. If S is a randomized algorithm, then S(x, y, . . . ; R) denotes its

output on inputs x, y, . . . and coins R; s
$

← S(x, y, . . .) denotes the result of picking R at random and
setting s = S(x, y, . . . ; R); and [S(x, y, . . .)] denotes the set of all points having positive probability of
being output by S on inputs x, y, . . .. Unless otherwise indicated, an algorithm is randomized.

Encryption schemes. We recall the standard syntax. An asymmetric (also called public-key)
encryption scheme is a tupleAE = (K, E ,D, MsgSp) whose components are as follows. The polynomial-
time key-generation algorithm K takes input 1k, where k ∈ N is the security parameter, and returns
a pair (pk, sk) consisting of a public key and matching secret key. The polynomial-time encryption
algorithm E takes a public key pk and a message M to return a ciphertext C. The deterministic,
polynomial-time decryption algorithm D takes a secret key sk and a ciphertext C to return either a
message M or the special symbol ⊥ indicating that the ciphertext is invalid. The polynomial-time
computable message-space function MsgSp associates to each public key pk a set MsgSp(pk) called
the message space of pk. It is required that for every k ∈ N

Pr
[

(pk, sk)
$

← K(1k) ; M
$

← MsgSp(pk) ; C
$

← E(pk, M) : D(sk, C) = M
]

= 1 .

Standard security notions. We recall the definitions of IND-CPA, IND-CCA1, and IND-CCA2
security that originate in [25], [28], and [30], respectively. We use the formalizations of [5]. Let
AE = (K, E ,D, MsgSp) be an asymmetric encryption scheme, let k ∈ N and b ∈ {0, 1}. Let X be an
algorithm with access to an oracle. For aaa ∈ {cpa, cca1, cca2}, consider the following experiment
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Experiment Exppa1-d
AE,C,D(k)

(pk, sk)
$

← K(1k) ; x
$

← C
D(sk,·)(pk) ; d

$

← D(x) ; Return d

Experiment Exppa1-x
AE,C,D,C∗(k)

(pk, sk)
$

← K(1k) ; Choose coins R[C], R[C∗] for C,C∗, respectively ; St[C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If C makes query Q then

(M, St[C∗])← C
∗(Q, St[C∗]; R[C∗]) ; Return M to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Figure 2: Experiments used to define PA1 and PA0.

Experiment Expind-aaa-b
AE,X (k)

(pk, sk)
$

← K(1k) ; (M0, M1, St)
$

← X
O1(·)(find, pk) ; C

$

← E(pk, Mb)

d← X
O2(·)(guess, C, St) ; Return d

where

If aaa = cpa then O1(·) = ε and O2(·) = ε

If aaa = cca1 then O1(·) = Dsk(·) and O2(·) = ε

If aaa = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In each case it is required that M0, M1 ∈ MsgSp(pk) and |M0| = |M1|. In the case of IND-CCA2,
it is also required that X not query its decryption oracle with ciphertext C. We call X an ind-aaa-

adversary. The ind-aaa-advantage of X is

Advind-aaa
AE,X (k) = Pr

[

Expind-aaa-1
AE,X (k) = 1

]

− Pr
[

Expind-aaa-0
AE,X (k) = 1

]

.

For AAA ∈ {CPA, CCA1, CCA2}, AE is said to be IND-AAA secure if Advind-aaa
AE,X (·) is negligible for

every polynomial-time ind-aaa-adversary X .

3 New notions of plaintext awareness

In this section we provide our formalizations of plaintext-aware encryption. We provide the formal
definitions first and explanations later. We begin with PA1, then define PA0 via this, and finally
define PA2.

Definition 3.1 [PA1] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption scheme. Let C be
an algorithm that has access to an oracle, takes as input a public key pk, and returns a string. Let
D be an algorithm that takes a string and returns a bit. Let C

∗ be an algorithm that takes a string
and some state information, and returns a message or the symbol ⊥, and a new state. We call C

a ciphertext-creator adversary, D a distinguisher, and C
∗ a pa1-extractor. For k ∈ N, we define the

experiments shown in Figure 2. The pa1-advantage of C relative to D and C
∗ is

Advpa1
AE,C,D,C∗(k) = Pr

[

Exppa1-d
AE,C,D(k) = 1

]

− Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

.

We say that C
∗ is a successful pa1-extractor for C if for every polynomial-time distinguisher D the

function Advpa1
AE,C,D,C∗(·) is negligible. We say AE is PA1 secure if for any polynomial-time ciphertext

creator there exists a successful polynomial-time pa1-extractor.
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Experiment Exppa2-d
AE,C,P,D(k)

(pk, sk)
$

← K(1k) ; Clist← [ ]

Choose coins R[C], R[P] for C,P, respectively ; St[P]← ε

Run C on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If C makes query (dec, Q) then

M ← D(sk, Q) ; Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P])← P(Q, St[P]; R[P]) ; C
$

← E(pk, M) ; Clist← Clist@ C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Experiment Exppa2-x
AE,C,P,D,C∗(k)

(pk, sk)
$

← K(1k) ; Clist← [ ]

Choose coins R[C], R[P], R[C∗] for C,P,C∗, respectively ; St[P]← ε ; St[C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If C makes query (dec, Q) then

(M, St[C∗])← C
∗(Q,Clist, St[C∗]; R[C∗]) ; Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P])← P(Q, St[P]; R[P]) ; C
$

← E(pk, M) ; Clist← Clist@ C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Figure 3: Experiments used to define PA2.

Definition 3.2 [PA0] Let AE be an asymmetric encryption scheme. We call a ciphertext-creator
adversary that makes exactly one oracle query a pa0 ciphertext creator. We call a pa1-extractor for a
pa0 ciphertext creator a pa0-extractor. We say that AE is PA0 secure if for any polynomial-time pa0
ciphertext creator there exists a successful polynomial-time pa0-extractor.

We now explain the ideas behind the above formalisms. The core of the formalization of plain-
text awareness of asymmetric encryption scheme AE = (K, E ,D, MsgSp) considers a polynomial-time
ciphertext-creator adversary C that takes input a public key pk, has access to an oracle and returns
a string. The adversary tries to distinguish between the cases that its oracle is D(sk, ·), or it is an
extractor algorithm C

∗ that takes as input the same public key pk. PA1 security requires that there
exist a polynomial-time C

∗ such that C’s outputs in the two cases are indistinguishable. We allow
C

∗ to be stateful, maintaining state St[C∗] across invocations. Importantly, C
∗ is provided with the

coin tosses of C; otherwise, C
∗ would be functionally equivalent to the decryption algorithm and

thus could not exist unless AE were insecure with regard to providing privacy. We remark that this
formulation is stronger than one not involving a distinguisher D, in which C simply outputs a bit
representing its guess, since C

∗ gets the coins of C, but not the coins of D.
PA0 security considers only adversaries that make a single query in their attempt to determine if

the oracle is a decryption oracle or an extractor.

Definition 3.3 [PA2] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption scheme. Let C be an
algorithm that has access to an oracle, takes as input a public key pk, and returns a string. Let P be
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an algorithm that takes a string and some state information, and returns a message and a new state.
Let D be an algorithm that takes a string and returns a bit. Let C

∗ be an algorithm that takes a
string, a list of strings and some state information, and returns a message or the symbol ⊥, and a new
state. We call C a ciphertext-creator adversary, P a plaintext-creator adversary, D a distinguisher,
and C

∗ a pa2-extractor. For k ∈ N, we define the experiments shown in Figure 3. It is required that,
in these experiments, C not make a query (dec, C) for which C ∈ Clist. The pa2-advantage of C

relative to P, D and C
∗ is

Advpa2
AE,C,P,D,C∗(k) = Pr

[

Exppa2-d
AE,C,P,D(k) = 1

]

− Pr
[

Exppa2-x
AE,C,P,D,C∗(k) = 1

]

.

We say that C
∗ is a successful pa2-extractor for C if for every polynomial-time plaintext creator P

and distinguisher D, the function Advpa2
AE,C,P,D,C∗(·) is negligible. We say AE is PA2 secure if for any

polynomial-time ciphertext creator there exists a successful polynomial-time pa2-extractor.

In the definition of PA2, the core setting of PA1 is enhanced to model the real-life capability
of a ciphertext creator to obtain ciphertexts via eavesdropping on communications made by a third
party to the receiver (cf. [5]). Providing C with an encryption oracle does not capture this because
eavesdropping puts into C’s hands ciphertexts of which it does not know the corresponding plaintext,
and, although we disallow C to query these to its oracle, it might be able to use them to create other
ciphertexts whose corresponding plaintext it does not know and on which the extractor fails.

Modeling eavesdropping requires balancing two elements: providing C with a capability to obtain
ciphertexts of plaintexts it does not know, yet capturing the fact that C might have partial information
about the plaintexts, or control of the distribution from which these plaintexts are drawn. We introduce
a companion plaintext-creator adversary P who, upon receiving a communication from C, creates a
plaintext and forwards it to an encryption oracle. The ciphertext emanating from the encryption
oracle is sent to both C and C

∗. C has some control over P via its communication to P, but we
ensure this is not total by denying C and C

∗ the coin tosses of P, and also by asking that C
∗ depend

on C but not on P.
The extractor C

∗ is, as before, provided with the coin tosses of C. Two types of oracle queries
are allowed to C. Via a query (dec, Q), it can ask its oracle to decrypt ciphertext Q. Alternatively, it
can make a query (enc, Q) to call P with argument Q, upon which the latter computes a message M

and forwards it to the encryption oracle, which returns the resulting ciphertext to C, and C
∗ in the

case that C’s oracle is C
∗. We observe that if an asymmetric encryption scheme is PA2 secure then

it is PA1 secure, and if it is PA1 secure then it is PA0 secure.
See [2] for extensive comparisons of these definitions with previous ones, and also for stronger,

statistical versions of these notions.

Comparison. The RO-model definitions PA-BR [8] and PA-BDPR [5] differ from ours in the following
ways.

The RO-model definitions did not give the extractor the coins of the ciphertext creator. As we
indicated above, in the absence of ROs, providing the extractor with the coins of the ciphertext creator
is necessary for the non-triviality of PA, since otherwise the extractor can be used for decryption and
the scheme will not be IND-CPA secure. Furthermore, the basic intuition is that the extractor is the
subconscious of the ciphertext creator, and thus should have all the inputs of the latter, meaning it
should be given the public key and the coins that were given to the ciphertext creator.

The RO-model definitions required the extractor to return the decryption of a given ciphertext.
We have weakened this requirement, asking only that the outputs of the extractor be computationally
indistinguishable from the outputs of the decryption oracle, because this weakening preserves the main
implications and applications of PA while increasing the possibility of finding constructions. However,
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as discussed below, one can consider a stronger, statistical version of our definitions which captures
requiring the extractor to return correct decryptions, and this might be useful in some contexts.

The RO-model definitions only consider ciphertext creators that output a single ciphertext which
the extractor must decrypt, while we have considered an oracle-based formulation, corresponding to
ciphertext creators that adaptively create multiple ciphertexts for the extractor to decrypt.

The most important changes are with regard to modeling eavesdropping. In PA-BDPR [5], eaves-
dropping capability was modeled by providing the ciphertext creator with an encryption oracle but
denying it and the extractor the so-called indirect random-oracle queries, namely those made by the
encryption oracle. Adopting this approach in the absence of ROs would reduce to providing the ci-
phertext creator with an encryption oracle, which, as we discussed above, does not correctly model
eavesdropping because the ciphertext creator knows the decryptions of ciphertexts it obtains via an
encryption oracle, and we want to provide it a means of obtaining ciphertexts whose decryptions it may
not know. In particular, the encryption-oracle-based notion seems too weak to prove Theorem 4.2.
We have used the plaintext creator instead.

The plaintext extractor in PA-BDPR [5] is black box, meaning there is a single extractor that
works for all ciphertext creators, upon being given the transcript of interactions of the ciphertext
creator with its oracles. We have weakened this requirement, allowing the extractor code to depend
non-uniformly on the code of the ciphertext creator. Again, this was done in order to increase the
possibility of finding constructions. Evidence of the power of non-black-box formulations is provided,
in another context, by [3].

We note that it is easy to “lift” our standard-model definitions to counterpart RO-model definitions
following the paradigm of [7]. Call these PA0-RO, PA1-RO and PA2-RO. Given the above, we suggest
that these make more suitable RO model notions than the existing PA-BR [8] and PA-BDPR [5] ones,
since they are rooted in the standard model rather than being RO-model definitions with no standard-
model counterparts. We remark that PA-BR implies PA0-RO and PA-BDPR implies PA2-RO, which
says that we have weakened the definitions. Yet we are still in line with the original intuition and have
preserved the important implications and application potential.

Statistical PA. Stronger versions of our definitions of PA0, PA1 and PA2 are obtained by requiring
that the outputs of the ciphertext creator, in the case where its oracle is the decryption algorithm and
in the case where it is the extractor, are statistically rather than computationally indistinguishable.
Formally, this can be captured by simply allowing the distinguisher to be computationally unlimited.
In other words, let us say AE is sPA1 secure if for any polynomial-time ciphertext creator C there
exists a polynomial-time extractor C

∗ such that the function Advpa1
AE,C,D,C∗(·) is negligible for every

(not necessarily polynomial time) distinguisher D. We can define sPA0 and sPA2 analogously.
The statistical versions of our definitions amount simply to saying that the extractor must return

the correct decryption of any ciphertext it is given, except with negligible probability. Accordingly, this
could certainly have been formulated in a simpler way without introducing distinguishers at all, and,
indeed, it may have been pedagogically preferable to begin with this simpler and stronger definition
and only then get to our current ones. We preferred the current distinguisher-based approach because
it allows us to fit the computational and statistical settings into a common definitional framework.

As indicated above, we have chosen to make the computational versions of the definitions the
main ones because they suffice for the applications of Theorems 4.1 and 4.2, and might make future
constructions easier to find. We remark, however, that the schemes DEG and CS-lite that we show
to achieve PA0 or PA1 actually achieve sPA0 and sPA1 under the same assumptions, meaning that
Theorems 5.3, and 5.4 are true if we replace PA0 by sPA0 and PA1 by sPA1.
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4 Relations among notions

We now state the formal results corresponding to Figure 1, beginning with the two motivating appli-
cations of our notions of plaintext awareness. The proof of the following is in Section 4.1.

Theorem 4.1 [PA1+IND-CPA ⇒ IND-CCA1] Let AE be an asymmetric encryption scheme. If
AE is PA1 secure and IND-CPA secure, then it is IND-CCA1 secure.

The proof of the following is in Section 4.2.

Theorem 4.2 [PA2+IND-CPA ⇒ IND-CCA2] Let AE be an asymmetric encryption scheme. If
AE is PA2 secure and IND-CPA secure, then it is IND-CCA2 secure.

It is natural to ask whether the converse of Theorem 4.2 (respectively, Theorem 4.1) is true, namely
whether an asymmetric encryption scheme that is IND-CCA2 (respectively, IND-CCA1) secure is also
PA2 (respectively, PA1) secure. (It is, of course, IND-CPA secure). The answer is no. The following
theorem implies that PA2 (respectively, PA1) security (in conjunction with IND-CPA security) is a
strictly stronger requirement than IND-CCA2 (respectively, IND-CCA1) security, unless there simply
do not exist any IND-CCA2-secure schemes. The proof is in Section 4.3.

Theorem 4.3 [IND-CCA2 6⇒ PA0+IND-CPA] Assume there exists an IND-CCA2-secure asym-
metric encryption scheme. Then there exists an IND-CCA2-secure asymmetric encryption scheme
that is not PA0 secure.

We remind the reader that each notion of PA in the absence of IND-CPA security is trivial to achieve.
(In particular, the encryption scheme in which the encryption function sets the ciphertext equal to
the plaintext is PA2 secure, but not IND-CPA secure.) Thus the fact that the scheme guaranteed by
Theorem 4.3 is IND-CPA secure is important.

To complete the picture of implications and separations between the PA+IND-CPA notions and
the IND-AAA notions, we now show that PA1 security (in conjunction with IND-CPA security) is not
sufficient to achieve IND-CCA2 security, and PA0 security (in conjunction with IND-CPA security) is
not sufficient to achieve IND-CCA1 security. The proof of the following is in Section 4.4.

Theorem 4.4 [PA1+IND-CPA 6⇒ IND-CCA2] Assume there exists a PA1 secure and IND-
CPA-secure asymmetric encryption scheme. Then there exists a PA1 secure and IND-CPA-secure
asymmetric encryption scheme that is not IND-CCA2 secure.

The proof of the following is in Section 4.5.

Theorem 4.5 [PA0+IND-CPA 6⇒ IND-CCA1] Assume there exists a PA0 secure and IND-
CPA-secure asymmetric encryption scheme. Then there exists a PA0 secure and IND-CPA-secure
asymmetric encryption scheme that is not IND-CCA1 secure.

4.1 Proof of Theorem 4.1

Assume that AE is PA1 secure and IND-CPA secure, and let X be a polynomial-time ind-cca1-
adversary attacking AE . We construct a polynomial-time ciphertext creator C for AE , based on X ,
and let C

∗ be a successful polynomial-time pa1-extractor for it. Then we construct a polynomial-time
ind-cpa-adversary Y forAE , based on X and C

∗. Finally, we construct polynomial-time distinguishers
D0 and D1 for C, and prove that for every k ∈ N

Advind-cca1
AE,X (k) ≤ Advind-cpa

AE,Y (k) + Advpa1
AE,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k) . (1)
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Ciphertext creator C(pk; R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If X(find, ·) makes query Q then

Make query Q ; Upon receiving a response M , return M to X(find, ·) as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)

Return (M0, M1, St, pk)

Adversary Y (find, pk; R[Y ])

Parse R[Y ] as R[C]‖R[C∗] ; St[C∗]← (pk, R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If X(find, ·) makes query Q then

(M, St[C∗])← C
∗(Q, St[C∗]; R[C∗]) ; Return M to X(find, ·) as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)

Return (M0, M1, St)

Adversary Y (guess, C, St)

d← X(guess, C, St)

Return d

Distinguisher D0(x) Distinguisher D1(x)

Parse x as (M0, M1, St, pk) Parse x as (M0, M1, St, pk)

C
$

← E(pk, M0) ; d← X(guess, C, St) C
$

← E(pk, M1) ; d← X(guess, C, St)

Return d̄ Return d

Figure 4: Ciphertext-creator adversary C, ind-cpa-adversary Y , and distinguishers D0,D1 for the
proof of Theorem 4.1.

The assumption that AE is PA1 secure and IND-CPA secure implies that Advind-cca1
AE,X (·) is negligible,

and thus that AE is IND-CCA1 secure. We proceed to the constructions and analysis.
The four algorithms we construct are defined in Figure 4. Clearly, they all run in polynomial

time. Ciphertext-creator adversary C is essentially the same as X(find, ·), except that it returns the
public key along with M0, M1, St. By the assumption that AE is PA1 secure, there is a successful
polynomial-time pa1-extractor C

∗ for C.
A random tape R[C]‖R[C∗] for ind-cpa-adversary Y has two parts, one being a random tape for

C (equivalently, for X) and the other being a random tape for C
∗. Y (find, ·) initializes and then

maintains state for C
∗. It runs X(find, ·), and if the latter makes a query, then Y (find, ·) runs C

∗ to
compute a reply, which it returns to X(find, ·). When X(find, ·) stops, Y (find, ·) returns the former’s
output. Y (guess, ·) is identical to X(guess, ·).

Consider distinguishers D0 and D1. Intuitively, for b ∈ {0, 1}, when Db is run on the output of C

after the latter has interacted with the decryption oracle, D0 computes the complement of the outcome
of experiment Expind-cca1-0

AE,X (k), and D1 computes the outcome of experiment Expind-cca1-1
AE,X (k).

We claim that Equation (1) holds for all k ∈ N. To prove this, fix k ∈ N. We state four claims,
conclude the proof given them, and then return to prove the claims. The first two claims relate the
probability that X guesses the value of challenge bit b, in each of its experiments, to the probability
that distinguisher Db returns 1 when it is run on the output of C after the latter has interacted with

13



the decryption oracle, in experiment Exppa1-d
AE,C,Db

(k).

Claim 4.6 Pr
[

Expind-cca1-1
AE,X (k) = 1

]

= Pr
[

Exppa1-d
AE,C,D1

(k) = 1
]

.

Claim 4.7 Pr
[

Expind-cca1-0
AE,X (k) = 1

]

= 1− Pr
[

Exppa1-d
AE,C,D0

(k) = 1
]

.

The other claims relate the probability that Y guesses the value of challenge bit b, in each of its
experiments, to the probability that distinguisher Db returns 1 when it is run on the output of C after
the latter has interacted with pa2-extractor C

∗, in experiment Exppa1-x
AE,C,Db,C

∗(k).

Claim 4.8 Pr
[

Expind-cpa-1
AE,Y (k) = 1

]

= Pr
[

Exppa1-x
AE,C,D1,C∗(k) = 1

]

.

Claim 4.9 Pr
[

Expind-cpa-0
AE,Y (k) = 1

]

= 1− Pr
[

Exppa1-x
AE,C,D0,C∗(k) = 1

]

.

Applying these claims, we obtain Equation (1) as follows:

Advind-cca1
AE,X (k) = Pr

[

Expind-cca1-1
AE,X (k) = 1

]

− Pr
[

Expind-cca1-0
AE,X (k) = 1

]

= Pr
[

Exppa1-d
AE,C,D1

(k) = 1
]

−
(

1− Pr
[

Exppa1-d
AE,C,D0

(k) = 1
])

=
(

Pr
[

Exppa1-x
AE,C,D1,C∗(k) = 1

]

+ Advpa1
AE,C,D1,C∗(k)

)

− 1

+
(

Pr
[

Exppa1-x
AE,C,D0,C∗(k) = 1

]

+ Advpa1
AE,C,D0,C∗(k)

)

= Pr
[

Exppa1-x
AE,C,D1,C∗(k) = 1

]

−
(

1− Pr
[

Exppa1-x
AE,C,D0,C∗(k) = 1

])

+Advpa1
AE,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k)

= Pr
[

Expind-cpa-1
AE,Y (k) = 1

]

− Pr
[

Expind-cpa-0
AE,Y (k) = 1

]

+Advpa1
AE,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k)

= Advind-cpa
AE,Y (k) + Advpa1

AE,C,D0,C∗(k) + Advpa1
AE,C,D1,C∗(k) .

It remains to prove the four claims above.

Proof of Claim 4.6: Let Scca1-1 denote the sample space underlying Expind-cca1-1
AE,X (k). A member

of this space is a string specifying coin tosses for all algorithms involved, which in this case means
the coins of the key-generation algorithm, the random tape of X itself, and the coins used by the
encryption algorithm.

A member of the sample space Spa1-d-1 underlying Exppa1-d
AE,C,D1

(k) is a string specifying the coins of
the key-generation algorithm, the random tape of C, and the random tape of D1. Claim 4.6 follows
once we observe that by the definitions of C and D1, Spa1-d-1 is equal to Scca1-1 (The random tape of
C consists of coins for X , and the random tape of D1 consists of coins for the encryption algorithm.),

and Expind-cca1-1
AE,X (k) = 1 if and only if Exppa1-d

AE,C,D1
(k) = 1.

Proof of Claim 4.7: Similarly to the proof of Claim 4.6, it is easy to see that the sample
space underlying Expind-cca1-0

AE,X (k) is identical to the sample space underlying Exppa1-d
AE,C,D0

(k), and

Expind-cca1-0
AE,X (k) = 1 if and only if Exppa1-d

AE,C,D0
(k) = 0.
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Proof of Claim 4.8: Let Spa1-x-1 denote the sample space underlying Exppa1-x
AE,C,D1,C∗(k). A member

of this space is a string specifying the coins of the key-generation algorithm, the random tape of C,
the random tape of C

∗, and the random tape of D1. The latter consists of coins for the encryption
algorithm.

A member of the sample space Scpa-1 underlying Expind-cpa-1
AE,Y (k) is a string specifying the coins of

the key-generation algorithm, the random tape of Y , and the coins used by the encryption algorithm.
The random tape of Y consists of coins for C and coins for C

∗. Hence Scpa-1 = Spa1-x-1. We observe

that Expind-cpa-1
AE,Y (k) = 1 if and only if Exppa1-x

AE,C,D1,C∗(k) = 1. Claim 4.8 follows.

Proof of Claim 4.9: Similarly to the proof of Claim 4.8, it is easy to see that the sample
space underlying Expind-cpa-0

AE,Y (k) is identical to the sample space underlying Exppa1-x
AE,C,D0,C∗(k), and

Expind-cpa-0
AE,Y (k) = 1 if and only if Exppa1-x

AE,C,D0,C∗(k) = 0.

4.2 Proof of Theorem 4.2

Assume that AE is PA2 secure and IND-CPA secure, and let X be a polynomial-time ind-cca2-
adversary attacking AE . We construct a polynomial-time ciphertext creator C for AE , based on X ,
and polynomial-time plaintext creators P0 and P1, and let C

∗ be a successful polynomial-time pa2-
extractor for C. Then we construct a polynomial-time ind-cpa-adversary Y for AE , based on X and
C

∗. Finally, we construct polynomial-time distinguishers D0 and D1 for C, and prove that for every
k ∈ N

Advind-cca2
AE,X (k) ≤ Advind-cpa

AE,Y (k) + Advpa2
AE,C,P0,D0,C∗(k) + Advpa2

AE,C,P1,D1,C∗(k) . (2)

The assumption that AE is PA2 secure and IND-CPA secure implies that Advind-cca2
AE,X (·) is negligible,

and thus that AE is IND-CCA2 secure. We proceed to the constructions and analysis.
The six algorithms we construct are defined in Figure 5. Clearly, they all run in polynomial time.

Ciphertext creator C is essentially the same as X , except that instead of outputting (M0, M1, St),
it calls a plaintext creator with argument (M0, M1) and, upon receiving a response C, it continues
the execution of X by running X(guess, ·) on input C, St. Plaintext creator P0 takes input a pair
of messages, and selects the first message. Plaintext creator P1 takes input a pair of messages, and
selects the second message. We observe that for b ∈ {0, 1}, since in experiment Expind-cca2-b

AE,X (k),

X does not query its decryption oracle with ciphertext C, in experiments Exppa2-d
AE,C,Pb,Db

(k) and

Exppa2-x
AE,C,Pb,Db,C

∗(k), C does not make a query (dec, Q) for which Q ∈ Clist. By the assumption
that AE is PA2 secure, there is a successful polynomial-time pa2-extractor C

∗ for C.
A random tape R[C]‖R[C∗] for ind-cpa-adversary Y has two parts, one being a random tape for

C (equivalently, for X) and the other being a random tape for C
∗. Y (find, ·) initializes and then

maintains state for C
∗. It runs X(find, ·), and if the latter makes a query, then Y (find, ·) runs C

∗

to compute a reply, which it returns to X(find, ·). When X(find, ·) outputs (M0, M1, St) and stops,
Y (find, ·) computes some state information St′ that is used by Y (guess, ·) and returns (M0, M1, St′).
Y (guess, ·) runs X(guess, ·), and if the latter makes a query, then Y (guess, ·) runs C

∗ to compute a
reply, which it returns to X(guess, ·). When X(guess, ·) stops, Y (guess, ·) returns the former’s output.

Distinguisher D0 returns the bitwise complement of its input and D1 computes the identity func-
tion.

We claim that Equation (2) holds for all k ∈ N. To prove this, fix k ∈ N. We state four claims,
conclude the proof given them, and then return to prove the claims. The first two claims relate the
probability that X guesses the value of challenge bit b, in each of its experiments, to the probability
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Ciphertext creator C(pk; R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If X(find, ·) makes query Q then

Make query (dec, Q) ; Upon receiving a response M , return M to X(find, ·) as the reply

EndIf

Let (M0, M1, St) denote the output of X(find, ·)

Make query (enc, (M0, M1)) ; Upon receiving a response C,

run X(guess, ·) on input C, St, until it halts, replying to its oracle queries as follows:

– If X(guess, ·) makes query Q then

Make query (dec, Q) ; Upon receiving a response M , return M to X(guess, ·) as the reply

EndIf

Let d denote the output of X(guess, ·)

Return d

Plaintext creator P0(Q, St[P]; R[P]) Plaintext creator P1(Q, St[P]; R[P])

Parse Q as (M0, M1) Parse Q as (M0, M1)

Return (M0, St[P]) Return (M1, St[P])

Adversary Y (find, pk; R[Y ])

Parse R[Y ] as R[C]‖R[C∗] ; St[C∗]← (pk, R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its oracle queries as follows:

– If X(find, ·) makes query Q then

(M, St[C∗])← C
∗(Q, St[C∗]; R[C∗]) ; Return M to X(find, ·) as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)

St′ ← (St, St[C∗], R[C∗])

Return (M0, M1, St′)

Adversary Y (guess, C, St′)

Parse St′ as (St, St[C∗], R[C∗])

Run X(guess, ·) on input C, St until it halts, replying to its oracle queries as follows:

– If X(guess, ·) makes query Q then

(M, St[C∗])← C
∗(Q, St[C∗]; R[C∗]) ; Return M to X(guess, ·) as the reply EndIf

Let d denote the output of X(guess, ·)

Return d

Distinguisher D0(x) Distinguisher D1(x)

Return x̄ Return x

Figure 5: Ciphertext-creator adversary C, plaintext-creator adversaries P0,P1, ind-cpa-adversary Y ,
and distinguishers D0,D1 for the proof of Theorem 4.2.

that distinguisher Db returns 1 when it is run on the output of C after the latter has interacted with
the decryption oracle, in experiment Exppa2-d

AE,C,Pb,Db
(k).

Claim 4.10 Pr
[

Expind-cca2-1
AE,X (k) = 1

]

= Pr
[

Exppa2-d
AE,C,P1,D1

(k) = 1
]

.

16



Claim 4.11 Pr
[

Expind-cca2-0
AE,X (k) = 1

]

= 1− Pr
[

Exppa2-d
AE,C,P0,D0

(k) = 1
]

.

The other claims relate the probability that Y guesses the value of challenge bit b, in each of its
experiments, to the probability that distinguisher Db returns 1 when it is run on the output of C after
the latter has interacted with pa2-extractor C

∗, in experiment Exppa2-x
AE,C,Pb,Db,C

∗(k).

Claim 4.12 Pr
[

Expind-cpa-1
AE,Y (k) = 1

]

= Pr
[

Exppa2-x
AE,C,P1,D1,C∗(k) = 1

]

.

Claim 4.13 Pr
[

Expind-cpa-0
AE,Y (k) = 1

]

= 1− Pr
[

Exppa2-x
AE,C,P0,D0,C∗(k) = 1

]

.

Applying these claims, we obtain Equation (2) as follows:

Advind-cca2
AE,X (k) = Pr

[

Expind-cca2-1
AE,X (k) = 1

]

− Pr
[

Expind-cca2-0
AE,X (k) = 1

]

= Pr
[

Exppa2-d
AE,C,P1,D1

(k) = 1
]

−
(

1− Pr
[

Exppa2-d
AE,C,P0,D0

(k) = 1
])

=
(

Pr
[

Exppa2-x
AE,C,P1,D1,C∗(k) = 1

]

+ Advpa2
AE,C,P1,D1,C∗(k)

)

− 1

+
(

Pr
[

Exppa2-x
AE,C,P0,D0,C∗(k) = 1

]

+ Advpa2
AE,C,P0,D0,C∗(k)

)

= Pr
[

Exppa2-x
AE,C,P1,D1,C∗(k) = 1

]

−
(

1− Pr
[

Exppa2-x
AE,C,P0,D0,C∗(k) = 1

])

+Advpa2
AE,C,P0,D0,C∗(k) + Advpa2

AE,C,P1,D1,C∗(k)

= Pr
[

Expind-cpa-1
AE,Y (k) = 1

]

− Pr
[

Expind-cpa-0
AE,Y (k) = 1

]

+Advpa2
AE,C,P0,D0,C∗(k) + Advpa2

AE,C,P1,D1,C∗(k)

= Advind-cpa
AE,Y (k) + Advpa2

AE,C,P0,D0,C∗(k) + Advpa2
AE,C,P1,D1,C∗(k) .

It remains to prove the four claims above.

Proof of Claim 4.10: Let Scca2-1 denote the sample space underlying Expind-cca2-1
AE,X (k). A member

of this space is a string specifying the coins of the key-generation algorithm, the random tape of X ,
and the coins used by the encryption algorithm.

A member of the sample space Spa2-d-1 underlying Exppa2-d
AE,C,P1,D1

(k) is a string specifying the coins
of the key-generation algorithm, the random tape of C, the random tape of P1, the coins used by
the encryption algorithm across its invocations, and the random tape of D1. Claim 4.10 follows once
we observe that by the definitions of C, P1 and D1, Spa2-d-1 is equal to Scca2-1 (The random tape of
C consists of coins for X ; P1 and D1 are deterministic, so their random tapes have length 0; and in
Exppa2-d

AE,C,P1,D1
(k), the encryption algorithm is invoked once.), and Expind-cca2-1

AE,X (k) = 1 if and only if

Exppa2-d
AE,C,P1,D1

(k) = 1.

Proof of Claim 4.11: Similarly to the proof of Claim 4.10, it is easy to see that the sample
space underlying Expind-cca2-0

AE,X (k) is identical to the sample space underlying Exppa2-d
AE,C,P0,D0

(k), and

Expind-cca2-0
AE,X (k) = 1 if and only if Exppa2-d

AE,C,P0,D0
(k) = 0.

Proof of Claim 4.12: Let Spa2-x-1 denote the sample space underlying Exppa2-x
AE,C,P1,D1,C∗(k). A

member of this space is a string specifying the coins of the key-generation algorithm, the random tape
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of C, the random tape of P1, the random tape of C
∗, the coins used by the encryption algorithm

across its invocations, and the random tape of D1. We observe that P1 and D1 are deterministic,
so their random tapes have length 0, and that in Exppa2-x

AE,C,P1,D1,C∗(k), the encryption algorithm is
invoked once.

A member of the sample space Scpa-1 underlying Expind-cpa-1
AE,Y (k) is a string specifying the coins of

the key-generation algorithm, the random tape of Y , and the coins used by the encryption algorithm.
The random tape of Y consists of coins for C and coins for C

∗. Hence Scpa-1 = Spa2-x-1. We observe

that Expind-cpa-1
AE,Y (k) = 1 if and only if Exppa2-x

AE,C,P1,D1,C∗(k) = 1. Claim 4.12 follows.

Proof of Claim 4.13: Similarly to the proof of Claim 4.12, it is easy to see that the sample
space underlying Expind-cpa-0

AE,Y (k) is identical to the sample space underlying Exppa2-x
AE,C,P0,D0,C∗(k),

and Expind-cpa-0
AE,Y (k) = 1 if and only if Exppa2-x

AE,C,P0,D0,C∗(k) = 0.

4.3 Proof of Theorem 4.3

Let AE ′ = (K′, E ′,D′) be an IND-CCA2-secure asymmetric encryption scheme. We construct an IND-
CCA2-secure asymmetric encryption scheme AE = (K, E ,D) that is not PA0 secure. Let f : {0, 1}∗ →
{0, 1}∗ be a length preserving one-way function. (This exists assuming IND-CCA2-secure asymmetric
encryption schemes exist.) The algorithms constituting AE are defined as follows:

Algorithm K(1k)

(pk′, sk′)
$

← K′(1k)

u
$

← {0, 1}k ; U ← f(u)
pk ← (pk ′, U) ; sk ← (sk ′, u)
Return (pk, sk)

Algorithm Epk(x)
Parse pk as (pk ′, U)
Return (0, E ′

pk′(x))

Algorithm Dsk(y)
Parse sk as (sk ′, u)
Parse y as (v, y′)
If v = 0 then return D′

sk′(y′) EndIf

If v = 1 then
If y′ = f(u) then return u

Else return ⊥ EndIf EndIf

To prove that AE is not PA0 secure, we proceed by contradiction. Assume that AE is PA0 secure
and consider the pa0 ciphertext creator C depicted in Figure 6. Notice that C is deterministic and
it runs in polynomial time. Let C

∗ be a successful polynomial-time pa0-extractor for it. We define a
polynomial-time distinguisher D for C and a polynomial-time inverter I for function f as shown in
Figure 6. Fix k ∈ N. The probability that I is successful can be computed as follows.

Pr
[

U ← {0, 1}k ; u′ $

← I(U) : f(u′) = U
]

= Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

= Pr
[

Exppa1-d
AE,C,D(k) = 1

]

−Advpa1
AE,C,D,C∗(k)

= 1−Advpa1
AE,C,D,C∗(k) .

Since C
∗ is a successful pa0-extractor, Advpa1

AE,C,D,C∗(·) is negligible and hence the probability of
success of I is not negligible. This contradicts the one-wayness of f , as desired.

We proceed to prove that AE is IND-CCA2 secure. Let X be an ind-cca2-adversary attacking AE .
We define an ind-cca2-adversary X

′ attacking AE ′ as depicted in Figure 6. A random tape u‖R[X ]
for adversary X

′ has two parts. The first part is a k-bit string that X
′ uses to reply to X ’s queries of

the form (1, f(u)). (The answer to such a query in experiment Expind-cca2-b
AE,X (k) would be the randomly

chosen k-bit string u that corresponds to the second component of the secret key sk.) The second part
is a random tape for X . X

′ runs X and uses its decryption oracle and the value u to reply to the oracle
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Ciphertext creator C(pk; R[C])

Parse pk as (pk ′, U) ; Make query (1, U) ; Upon receiving a response u′,

Return (pk ′, U, u′)

Distinguisher D(x)

Parse x as (pk ′, U, u′) ; If f(u′) = U then return 1 else return 0 EndIf

Inverter I(U)

k ← |U | ; (pk ′, sk′)
$

← K′(1k) ; pk ← (pk ′, U)

Choose coins R[C∗] for C
∗ ; St[C∗]← (pk, ε) ; (u′, St[C∗])← C

∗((1, U), St[C∗]; R[C∗])

Return u′

Adversary X
′(find, pk ′; R[X ′])

Parse R[X ′] as u‖R[X ], where u ∈ {0, 1}k ; U ← f(u) ; pk ← (pk ′, U)

Run X(find, ·) on input pk and coins R[X ] until it halts, replying to its oracle queries as follows:

– If X(find, ·) makes query (v, y′) then

If v = 0 then

Make query y′ ; Upon receiving a response M , return M to X(find, ·) as the reply EndIf

If v = 1 then

If y′ = U then return u to X(find, ·) as the reply

Else return ⊥ to X(find, ·) as the reply EndIf EndIf EndIf

Let (M0, M1, St) denote the output of X(find, ·)

St′ ← (St, u, U)

Return (M0, M1, St′)

Adversary X
′(guess, C ′, St′)

Parse St′ as (St, u, U) ; C ← (0, C ′)

Run X(guess, ·) on input C, St until it halts, replying to its oracle queries as follows:

– If X(guess, ·) makes query (v, y′) then

If v = 0 then

Make query y′ ; Upon receiving a response M , return M to X(guess, ·) as the reply EndIf

If v = 1 then

If y′ = U then return u to X(guess, ·) as the reply

Else return ⊥ to X(guess, ·) as the reply EndIf EndIf EndIf

Let d denote the output of X(guess, ·)

Return d

Figure 6: Ciphertext-creator adversary C, distinguisher D, inverter I , and ind-cca2-adversary X
′ for

the proof of Theorem 4.3.

queries of the latter. Clearly, X
′ runs in polynomial time. Furthermore, for b ∈ {0, 1} and k ∈ N, the

replies that experiment Expind-cca2-b
AE ′,X ′ (k) computes to X

′’s queries allow this adversary to respond to

X ’s queries exactly as experiment Expind-cca2-b
AE,X (k) does. Therefore, Advind-cca2

AE ′,X ′ (k) = Advind-cca2
AE,X (k).

The assumption that AE ′ is IND-CCA2 secure implies that Advind-cca2
AE ′,X ′ (·) is negligible, and thus
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Adversary X(find, pk; R[X ])

Return (0, 1, ε)

Adversary X(guess, C, St)

Parse C as (r, C ′)

Make query (r̄, C ′) ; Let M denote the response

If M = 0 then d← 0 else d← 1 EndIf

Return d

Ciphertext creator C
′(pk; R[C ′])

Run C on input pk and coins R[C ′] until it halts, replying to its oracle queries as follows:

– If C makes query (r, y′) then

Make query y′ ; Upon receiving a response M , return M to C as the reply EndIf

Let x denote the output of C ; Return x

pa1-extractor C
∗(Q, St[C∗]; R[C∗])

Parse Q as (r, y′) ; (M, St[C ′∗])← C
′∗(y′, St[C∗]; R[C∗]) ; Return (M, St[C ′∗])

Adversary Y
′(find, pk; R[Y ′])

Parse R[Y ′] as r‖R[Y ], where r ∈ {0, 1}

(M0, M1, St)
$

← Y (find, pk; R[Y ]) ; St′ ← (St, r)

Return (M0, M1, St′)

Adversary Y
′(guess, C ′, St′)

Parse St′ as (St, r) ; C ← (r, C ′)

d← Y (guess, C, St)

Return d

Figure 7: ind-cca2-adversary X , ciphertext-creator adversary C
′, pa1-extractor C

∗, and ind-cpa-
adversary Y

′ for the proof of Theorem 4.4.

Advind-cca2
AE,X (·) is negligible. Hence AE is IND-CCA2 secure.

4.4 Proof of Theorem 4.4

Let AE ′ = (K, E ′,D′) be a PA1 secure and IND-CPA-secure asymmetric encryption scheme. We
construct a PA1 secure and IND-CPA-secure asymmetric encryption scheme AE = (K, E ,D) that is
not IND-CCA2 secure. Notice that the key-generation algorithm is the same. The encryption and
decryption algorithms are defined as follows:

Algorithm Epk(x)

r
$

← {0, 1}
Return (r, E ′pk(x))

Algorithm Dsk(y)
Parse y as (r, y′) ; x← D′

sk(y′)
Return x

To prove that AE is not IND-CCA2 secure, we define an ind-cca2-adversary X attacking AE as shown
in Figure 7. Clearly, X runs in polynomial time and Advind-cca2

AE,X (k) = 1 for every k ∈ N.
To prove that AE is PA1 secure, let C be a polynomial-time ciphertext creator attacking AE . We

define a ciphertext creator C
′ attacking AE ′ as shown in Figure 7. Clearly, C

′ runs in polynomial
time. By the assumption that AE ′ is PA1 secure, there is a successful polynomial-time pa1-extractor
C

′∗ for C
′. We construct a pa1-extractor C

∗ for C, based on C
′∗ as shown in Figure 7. It is clear

that C
∗ runs in polynomial time. Let D be a polynomial-time distinguisher for C, and fix k ∈ N. It

is easy to see that

Pr
[

Exppa1-d
AE,C,D(k) = 1

]

= Pr
[

Exppa1-d
AE ′,C ′,D

(k) = 1
]

and

Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

= Pr
[

Exppa1-x
AE ′,C ′,D,C ′∗(k) = 1

]

.
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Therefore,

Advpa1
AE,C,D,C∗(k) = Advpa1

AE ′,C ′,D,C ′∗(k) .

Since C
′∗ is a successful pa1-extractor for C

′, for every polynomial-time distinguisher D, the function
Advpa1

AE ′,C ′,D,C ′∗(·) is negligible and hence for every polynomial-time distinguisher D, the function

Advpa1
AE,C,D,C∗(·) is negligible. Thus C

∗ is a successful pa1-extractor for C, and AE is PA1 secure.
To prove that AE is IND-CPA secure, let Y be an ind-cpa-adversary attacking AE . Consider the

ind-cpa-adversary Y
′ attacking AE ′ depicted in Figure 7. A random tape r‖R[Y ] for adversary Y

′

has two parts. The first part is a bit that Y
′ uses to compute the challenge ciphertext C for Y . The

second part is a random tape for Y . Y
′ runs Y and returns the output of the latter. Clearly, Y

′ runs
in polynomial time and Advind-cpa

AE ′,Y ′ (k) = Advind-cpa
AE,Y (k) for every k ∈ N. The assumption that AE ′ is

IND-CPA secure implies that the ind-cpa-advantage of Y
′ is negligible, and hence it follows that the

ind-cpa-advantage of Y is negligible. Thus AE is IND-CPA secure.

4.5 Proof of Theorem 4.5

Let AE ′ = (K, E ′,D′) be a PA0 secure and IND-CPA-secure asymmetric encryption scheme. We
construct a PA0 secure and IND-CPA-secure asymmetric encryption scheme AE = (K, E ,D) that is
not IND-CCA1 secure. Its constituent algorithms are defined as follows:

Algorithm K(1k)

(pk′, sk′)
$

← K′(1k)

u
$

← {0, 1}|sk
′| ; sk ← (sk′, u)

Return (pk′, sk)

Algorithm Epk(x)
Return (0, E ′pk(x))

Algorithm Dsk(y)
Parse sk as (sk′, u)
Parse y as (v, y′)
If v = 0 then return D′

sk′(y′) EndIf
If v = 1 then

If y′ = 0 then return u

Else return u⊕ sk′ EndIf EndIf

To prove that AE is not IND-CCA1 secure, we define an ind-cca1-adversary X attacking AE as shown
in Figure 8. Clearly, X runs in polynomial time and Advind-cca1

AE,X (k) = 1 for every k ∈ N.
To prove that AE is PA0 secure, let C be a polynomial-time pa0 ciphertext creator attacking

AE . We define a pa0 ciphertext creator C
′ attacking AE ′ as shown in Figure 8. Clearly, C

′ runs in
polynomial time. By the assumption that AE ′ is PA0 secure, there is a successful polynomial-time
pa0-extractor C

′∗ for C
′. We construct a pa0-extractor C

∗ for C, based on C
′∗ as shown in Figure 8.

It is clear that C
∗ runs in polynomial time. Let D be a polynomial-time distinguisher for C, and fix

k ∈ N. It is easy to see that

Pr
[

Exppa1-d
AE,C,D(k) = 1

]

= Pr
[

Exppa1-d
AE ′,C ′,D

(k) = 1
]

and

Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

= Pr
[

Exppa1-x
AE ′,C ′,D,C ′∗(k) = 1

]

.

Therefore,

Advpa1
AE,C,D,C∗(k) = Advpa1

AE ′,C ′,D,C ′∗(k) .

Since C
′∗ is a successful pa0-extractor for C

′, for every polynomial-time distinguisher D, the function
Advpa1

AE ′,C ′,D,C ′∗(·) is negligible and hence for every polynomial-time distinguisher D, the function

Advpa1
AE,C,D,C∗(·) is negligible. Thus C

∗ is a successful pa0-extractor for C, and AE is PA0 secure.
To prove that AE is IND-CPA secure, let Y be an ind-cpa-adversary attacking AE . Consider the

ind-cpa-adversary Y
′ attacking AE ′ depicted in Figure 8. Clearly, Y

′ runs in polynomial time and
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Adversary X(find, pk; R[X ])

Make query (1, 0) ; Let M0 denote the response

Make query (1, 1) ; Let M1 denote the response

sk′ ←M0 ⊕M1 ; Return (0, 1, sk ′)

Adversary X(guess, C, St)

Parse C as (0, C ′)

If D′
St(C

′) = 0 then d← 0 else d← 1 EndIf

Return d

Ciphertext creator C
′(pk; R[C ′])

Parse R[C ′] as u‖R[C]

Run C on input pk and coins R[C] until it halts, replying to its oracle query as follows:

– When C makes query (v, y′) do

Make query y′ ; Let M denote the response ; If v = 1 then M ← u EndIf

Return M to C as the reply

Let x denote the output of C ; Return x

pa0-extractor C
∗(Q, St[C∗]; R[C∗])

Parse St[C∗] as (pk, R[C]) ; Parse R[C∗] as u‖R[C ′∗] ; Parse Q as (v, y′)

St[C ′∗]← (pk, u‖R[C]) ; (M, St[C ′∗])← C
′∗(y′, St[C ′∗]; R[C ′∗]) ; If v = 1 then M ← u EndIf

Return (M, St[C ′∗])

Adversary Y
′(find, pk; R[Y ′])

(M0, M1, St)
$

← Y (find, pk; R[Y ′])

Return (M0, M1, St)

Adversary Y
′(guess, C ′, St)

C ← (0, C ′) ; d← Y (guess, C, St)

Return d

Figure 8: ind-cca1-adversary X , pa0 ciphertext-creator adversary C
′, pa0-extractor C

∗, and ind-cpa-
adversary Y

′ for the proof of Theorem 4.5.

Advind-cpa
AE ′,Y ′ (k) = Advind-cpa

AE,Y (k) for every k ∈ N. The assumption that AE ′ is IND-CPA secure implies

that the ind-cpa-advantage of Y
′ is negligible, and hence it follows that the ind-cpa-advantage of Y

is negligible. Thus AE is IND-CPA secure.

5 Constructions

Approaches. Before presenting our results, we discuss some possible approaches to designing PA
encryption schemes. One natural approach is based on the use of non-interactive zero-knowledge
proofs of knowledge (NIZK-POKs) [16]. In particular, a candidate construction is the following. Let
the public key have the form (pk, R) where pk is the public key of some IND-CPA (or even IND-CCA2)
“base” encryption scheme and R is a random reference string. Encryption consists of providing an
encryption of the message under pk via the base scheme, together with a NIZK-POK of the message
relative to reference string R. However, this type of approach fails to yield even the weakest form
of PA. The problem is that the PA extractor must work with the given public key of the ciphertext
creator, and hence a given reference string, while the NIZK-POK extractor that one would hope to
use to define the PA extractor, creates a simulated reference string with accompanying trapdoor.

This might lead one to ask why our definition of PA is not relaxed to allow the extractor to choose
or simulate the public key rather than having to work with the given one. Besides the fact that the
intuition captured is quite different, it is not clear how to make such a relaxation while preserving
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Experiment Expdhk1
G,H ,H∗(k)

(p, q, g)
$

← G(1k) ; a
$

← Zq ; A← ga mod p

Choose coins R[H ], R[H∗] for H ,H∗, respectively ; St[H∗]← ((p, q, g, A), R[H ])

Run H on input p, q, g, A and coins R[H ] until it halts, replying to its oracle queries as follows:

– If H makes query (B, W ) then

(b, St[H∗])← H
∗((B, W ), St[H∗]; R[H∗])

If W ≡ Ba (mod p) and B 6≡ gb (mod p) then return 1

Else return b to H as the reply EndIf EndIf

Return 0

Figure 9: Experiment used to define the DHK1 and DHK0 assumptions.

the PA1+IND-CPA → IND-CCA1 and PA2+IND-CPA → IND-CCA2 implications of Theorems 4.1
and 4.2. (In particular, if we allow the extractor to simply choose a public key, it can choose one whose
corresponding secret key it knows, making the notion trivial to achieve and making the implications
fail.)

As such approaches are considered and discarded, it becomes apparent that achieving even the
weaker forms of PA under standard assumptions may be difficult. We have been able to make progress,
however, under some strong assumptions, as we now describe.

Prime-order groups. If p, q are primes such that p = 2q + 1, then we let Gq denote the subgroup
of quadratic residues of Z

∗
p. Recall this is a cyclic subgroup of order q. If g is a generator of Gq then

dlogq,g(X) denotes the discrete logarithm of X ∈ Gq to base g. A prime-order-group generator is a

polynomial-time algorithm G that on input 1k returns a triple (p, q, g) such that p, q are primes with
p = 2q + 1, g is a generator of Gq, and 2k−1 < p < 2k (p is k bits long).

The DHK assumptions. Let G be a prime-order-group generator, and suppose (p, q, g) ∈ [G(1k)].
We say that (A, B, W ) is a DH-triple if there exist a, b ∈ Zq such that A = ga mod p, B = gb mod p

and W = gab mod p. We say that (B, W ) is a DH-pair relative to A if (A, B, W ) is a DH-triple. One
way for an adversary H taking input p, q, g, A to output a DH-pair (B, W ) relative to A is to pick —
and thus “know”— some b ∈ Zq, set B = gb mod p and W = Ab mod p, and output (B, W ). Damg̊ard
[15] makes an assumption which, informally, says that this is the “only” way that a polynomial-time
adversary H can output a DH-pair relative to A. His framework to capture this requires that there
exist a suitable extractor H

∗ that can compute dlogq,g(B) whenever H outputs some DH-pair (B, W )
relative to A.

We provide a formalization of this assumption that we refer to as the DHK0 (DHK stands for
Diffie-Hellman Knowledge) assumption. We also present a natural extension of this assumption that
we refer to as DHK1. Here the adversary H , given p, q, g, A, interacts with the extractor, querying it
adaptively. The extractor is required to be able to return dlogq,g(B) for each DH-pair (B, W ) relative
to A that is queried to it. Below we first present the DHK1 assumption, and then define the DHK0
assumption via this.

Assumption 5.1 [DHK1] Let G be a prime-order-group generator. Let H be an algorithm that has
access to an oracle, takes two primes and two group elements, and returns nothing. Let H

∗ be an
algorithm that takes a pair of group elements and some state information, and returns an exponent
and a new state. We call H a dhk1-adversary and H

∗ a dhk1-extractor. For k ∈ N we define the
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Algorithm K(1k)

(p, q, g)
$

← G(1k)

x1
$

← Zq ; X1 ← gx1 mod p

x2
$

← Zq ; X2 ← gx2 mod p

Return ((p, q, g, X1, X2), (p, q, g, x1, x2))

Algorithm E((p, q, g, X1, X2), M)

y
$

← Zq ; Y ← gy mod p

W ← X
y
1 mod p ; V ← X

y
2 mod p

U ← V ·M mod p

Return (Y, W, U)

Algorithm D((p, q, g, x1, x2), (Y, W, U))

If W 6≡ Y x1 (mod p) then return ⊥

Else M ← U · Y −x2 mod p ; Return M EndIf

MsgSp((p, q, g, X1, X2)) = Gq

Figure 10: Algorithms of the encryption scheme DEG = (K, E ,D, MsgSp) based on prime-order-group
generator G.

experiment shown in Figure 9. The dhk1-advantage of H relative to H
∗ is

Advdhk1
G,H ,H∗(k) = Pr

[

Expdhk1
G,H ,H∗(k) = 1

]

.

We say that G satisfies the DHK1 assumption if for every polynomial-time dhk1-adversary H there
exists a polynomial-time dhk1-extractor H

∗ such that Advdhk1
G,H ,H∗(·) is negligible.

Assumption 5.2 [DHK0] Let G be a prime-order-group generator. We call a dhk1-adversary that
makes exactly one oracle query a dhk0-adversary. We call a dhk1-extractor for a dhk0-adversary
a dhk0-extractor. We say that G satisfies the Diffie-Hellman Knowledge (DHK0) assumption if for
every polynomial-time dhk0-adversary H there exists a polynomial-time dhk0-extractor H

∗ such that
Advdhk1

G,H ,H∗(·) is negligible.

We observe that DHK1 implies DHK0 in the sense that if a prime-order-group generator satisfies the
former assumption then it also satisfies the latter assumption.

Constructions. We would like to build an asymmetric encryption scheme that is PA0 secure (and
IND-CPA secure) under the DHK0 assumption. An obvious idea is to use ElGamal encryption. Here
the public key is X = gx, where x is the secret key, and an encryption of message M ∈ Gq has
the form (Y, U), where Y = gy mod p and U = Xy ·M mod p = gxy ·M mod p. However, we do
not know whether this scheme is PA0 secure. (We can show that it is not sPA0 secure unless the
discrete-logarithm problem is easy, but whether or not it is PA0 remains open.)

We consider a modification of the ElGamal scheme that was proposed by Damg̊ard [15]. We call
this scheme Damg̊ard ElGamal or DEG. It is parameterized by a prime-order group generator G, and
its components are depicted in Figure 10. The proof of the following is in the full version of this paper
[2]:

Theorem 5.3 Let G be a prime-order-group generator and let DEG = (K, E ,D, MsgSp) be the as-
sociated Damg̊ard ElGamal asymmetric encryption scheme defined in Figure 10. If G satisfies the
DHK0 and DDH assumptions then DEG is PA0+IND-CPA secure. If G satisfies the DHK1 and DDH
assumptions then DEG is PA1+IND-CPA secure.

As a consequence of the above and Theorem 4.1, DEG is IND-CCA1 secure under the DHK1 and
DDH assumptions. DEG is in fact the most efficient known IND-CCA1 scheme with some proof of
security in the standard model.
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Algorithm K(1k)

(p, q, g1)
$

← G(1k) ; g2
$

← Gq \ {1}

x1
$

← Zq ; x2
$

← Zq ; z
$

← Zq

X ← gx1

1 · g
x2

2 mod p ; Z ← gz
1 mod p

Return ((p, q, g1, g2, X, Z), (p, q, g1, g2, x1, x2, z))

Algorithm E((p, q, g1, g2, X, Z), M)

r
$

← Zq

R1 ← gr
1 mod p ; R2 ← gr

2 mod p

E ← Zr ·M mod p ; V ← Xr mod p

Return (R1, R2, E, V )

Algorithm D((p, q, g1, g2, x1, x2, z), (R1, R2, E, V ))

If V 6≡ Rx1

1 ·R
x2

2 (mod p) then return ⊥

Else M ← E ·R−z
1 mod p ; Return M EndIf

MsgSp((p, q, g1, g2, X, Z)) = Gq

Figure 11: Algorithms of the encryption scheme CS-lite = (K, E ,D, MsgSp) based on prime-order-
group generator G.

Next we consider the “lite” version of the Cramer-Shoup asymmetric encryption scheme [14]. The
scheme, denoted CS-lite, is parameterized by a prime-order group generator G, and its components
are depicted in Figure 11. This scheme is known to be IND-CCA1 secure under the DDH assumption
[14]. We are able to show the following. The proof can be found in [2].

Theorem 5.4 Let G be a prime-order-group generator, and let CS-lite = (K, E ,D, MsgSp) be the
associated Cramer-Shoup lite asymmetric encryption scheme defined in Figure 11. If G satisfies the
DHK0 and DDH assumptions then CS-lite is PA0+IND-CPA secure. If G satisfies the DHK1 and
DDH assumptions then CS-lite is PA1+IND-CPA secure.

Again, the above and Theorem 4.1 imply that CS-lite is IND-CCA1 secure under the DHK1 and DDH
assumptions. This however is not news, since we already know that DDH alone suffices to prove it
IND-CCA1 [14]. However, it does perhaps provide a new perspective on why the scheme is IND-CCA1,
namely that this is due to its possessing some form of plaintext awareness.

In summary, we have been able to show that plaintext awareness without ROs is efficiently achiev-
able, even though under very strong and non-standard assumptions.

5.1 A lemma

We first state and prove a lemma that will be used in the proofs of the theorems stated above.

Lemma 5.5 Let AE be an asymmetric encryption scheme. Let C be a polynomial-time cipher-
text creator attacking AE , D a polynomial-time distinguisher, and C

∗ a polynomial-time pa1-
extractor. Let DecOK denote the event that all C∗’s answers to C’s queries are correct in experiment
Exppa1-x

AE,C,D,C∗(k). Then,

Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

≥ Pr
[

Exppa1-d
AE,C,D(k) = 1

]

− Pr
[

DecOK
]

.

Proof: We observe that if experiment Exppa1-x
AE,C,D,C∗(k) returns 0 and event DecOK occurs, then

experiment Exppa1-d
AE,C,D(k) also returns 0. Therefore,

1− Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

= Pr
[

Exppa1-x
AE,C,D,C∗(k) = 0

]
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dhk1-adversary H(p, q, g, A; R[H ])

Parse R[H ] as X2‖R[C] where X2 ∈ Gq

Run C on input (p, q, g, A, X2) and coins R[C] until it halts, replying to its oracle queries as follows:

– If C makes query (Y, W, U) then

Make query (Y, W ) ; Let b denote the response

If
(

Y 6≡ gb (mod p) or W 6≡ Ab (mod p)
)

then M ← ⊥ else M ← U ·X−b
2 mod p EndIf

Return M to C as the reply EndIf

Halt

pa1-extractor C
∗(Q, St[C∗]; R[C∗])

If St[C∗] is the initial state then

Parse St[C∗] as ((p, q, g, A, X2), R[C]) ; St[H∗]← ((p, q, g, A), X2‖R[C])

Else Parse St[C∗] as ((p, q, g, A, X2), St[H∗]) EndIf

Parse Q as (Y, W, U) ; (b, St[H ∗])← H
∗((Y, W ), St[H∗]; R[C∗])

If
(

Y 6≡ gb (mod p) or W 6≡ Ab (mod p)
)

then M ← ⊥ else M ← U ·X−b
2 mod p EndIf

St[C∗]← ((p, q, g, A, X2), St[H∗])

Return (M, St[C∗])

Adversary Y
′(find, (p, q, g, X); R[Y ′])

Parse R[Y ′] as x1‖R[Y ], where x1 ∈ Zq ; X1 ← gx1 mod p

(M0, M1, St)
$

← Y (find, (p, q, g, X1, X); R[Y ]) ; St′ ← (St, x1)

Return (M0, M1, St′)

Adversary Y
′(guess, C ′, St′)

Parse St′ as (St, x1) ; Parse C ′ as (Y, U) ; W ← Y x1 mod p ; C ← (Y, W, U)

d← Y (guess, C, St) ; Return d

Figure 12: dhk1-adversary H , pa1-extractor C
∗, and ind-cpa-adversary Y

′ for the proof of
Theorem 5.3.

= Pr
[

Exppa1-x
AE,C,D,C∗(k) = 0 ∧DecOK

]

+ Pr
[

Exppa1-x
AE,C,D,C∗(k) = 0 ∧DecOK

]

≤ Pr
[

Exppa1-d
AE,C,D(k) = 0

]

+ Pr
[

DecOK
]

= 1− Pr
[

Exppa1-d
AE,C,D(k) = 1

]

+ Pr
[

DecOK
]

Transposing terms and simplifying completes the proof of the lemma.

5.2 Proof of Theorem 5.3

We first show that the DHK1 assumption implies DEG is PA1 secure, and then that the DDH assump-
tion implies it is IND-CPA secure. Finally we briefly indicate how to show that the DHK0 assumption
implies DEG is PA0 secure.

Let C be a polynomial-time ciphertext creator attacking DEG. We build a polynomial-time
pa1-extractor C

∗ for it. To do so, we first define a polynomial-time dhk1-adversary H attacking
prime-order-group generator G. By the DHK1 assumption, H has a polynomial-time dhk1-extractor
H

∗. We then use H
∗ to build C

∗. The descriptions of H and C
∗ are in Figure 12.
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The random tape X2‖R[C] of H consists of a choice X2 of an element in the group Gq together
with a random tape R[C] for C. The random tape of pa1-extractor C

∗ consists of a random tape
for dhk1-extractor H

∗. Observe that extractor C
∗ gets input the random tape R[C] of C, while

extractor H
∗ must get as input the random tape R[H ] = X2‖R[C] of H . Clearly, H and C

∗ are
polynomial time. We claim that C

∗ is a successful pa1-extractor for C. To prove this, let D be a
polynomial-time distinguisher for C, and fix k ∈ N. We state a claim, conclude the proof given this
claim and Lemma 5.5, and then return to prove the claim.

Claim 5.6 Let DecOK denote the event that all C∗’s answers to C’s queries are correct in experiment
Exppa1-x

DEG,C,D,C∗(k). Then, Pr
[

DecOK
]

≤ Advdhk1
G,H ,H∗(k) .

Applying Lemma 5.5 and Claim 5.6, we obtain the desired result as follows.

Advpa1
DEG,C,D,C∗(k) = Pr

[

Exppa1-d
DEG,C,D(k) = 1

]

− Pr
[

Exppa1-x
DEG,C,D,C∗(k) = 1

]

≤ Pr
[

Exppa1-d
DEG,C,D(k) = 1

]

− Pr
[

Exppa1-d
DEG,C,D(k) = 1

]

+ Pr
[

DecOK
]

≤ Advdhk1
G,H ,H∗(k)

By the DHK1 assumption, the function Advdhk1
G,H ,H∗(·) is negligible and hence for every polynomial-time

distinguisher D, the function Advpa1
DEG,C,D,C∗(·) is negligible. Thus C

∗ is a successful pa1-extractor
for C, and DEG is PA1 secure. It remains to prove the claim above.

Proof of Claim 5.6: We observe that by the definition of pa1-extractor C
∗ and DEG’s decryp-

tion algorithm D, if C
∗’s response M to a query (Y, W, U) made by C is such that M 6= ⊥ then

D((p, q, g, x1, x2), (Y, W, U)) 6= ⊥ and M = D((p, q, g, x1, x2), (Y, W, U)). Therefore,

Pr
[

DecOK
]

= Pr [C makes a query (Y, W, U) for which C
∗’s response M is such that

M 6= D((p, q, g, x1, x2), (Y, W, U))]

≤ Pr [C makes a query (Y, W, U) for which C
∗’s response M is such that

M = ⊥ ∧D((p, q, g, x1, x2), (Y, W, U)) 6= ⊥]

≤ Pr [C makes a query (Y, W, U) for which C
∗’s response M is such that

Y 6≡ gb (mod p) ∧W ≡ Y dloggA (mod p)]

≤ Advdhk1
G,H ,H∗(k)

The last inequality follows from the definition of dhk1-adversary H .

To prove that DEG is IND-CPA secure under the DDH assumption, we use the fact that if this
assumption holds, then the ElGamal scheme EG is IND-CPA secure. Let Y be an ind-cpa-adversary
attacking DEG. Consider the ind-cpa-adversary Y

′ attacking EG depicted in Figure 12. A random
tape x1‖R[Y ] for adversary Y

′ has two parts. The first part is a choice x1 of an exponent in Zq that
Y

′ uses to compute the public key (p, q, g, X1, X) and the challenge ciphertext C for Y . The second
part is a random tape for Y . Y

′ runs Y and returns the output of the latter. Clearly, Y
′ runs in

polynomial time and Advind-cpa
EG,Y ′ (k) = Advind-cpa

DEG,Y (k), for every k ∈ N. Since EG is IND-CPA secure,
the ind-cpa-advantage of Y

′ is negligible, and hence it follows that the ind-cpa-advantage of Y is
negligible. Thus DEG is IND-CPA secure.

The proof that the DHK0 assumption implies DEG is PA0 secure is analogous to the proof that
the DHK1 assumption implies DEG is PA1 secure. The difference is that the given ciphertext creator
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dhk1-adversary H(p, q, g, A; R[H ])

Parse R[H ] as g2‖x2‖Z‖R[C] where g2 ∈ Gq, x2 ∈ Zq, and Z ∈ Gq ; X ← A · gx2

2 mod p

Run C on input (p, q, g1, g2, X, Z) and coins R[C] until it halts, replying to its oracle queries

as follows:

– If C makes query (R1, R2, E, V ) then

W ← V ·R−x2

2 mod p ; Make query (R1, W ) ; Let b denote the response

If
(

R1 6≡ gb
1 (mod p) or R2 6≡ gb

2 (mod p) or V 6≡ Xb (mod p)
)

then M ← ⊥

Else M ← E · Z−b mod p EndIf

Return M to C as the reply EndIf

Halt

pa1-extractor C
∗(Q, St[C∗]; R[C∗])

If St[C∗] is the initial state then

Parse St[C∗] as ((p, q, g1, g2, X, Z), R[C]) ; Parse R[C∗] as x2‖R[H∗] where x2 ∈ Zq

A← X · g−x2

2 mod p ; St[H∗]← ((p, q, g, A), g2‖x2‖Z‖R[C])

Else Parse St[C∗] as ((p, q, g1, g2, X, Z), St[H∗], R[H∗]) EndIf

Parse Q as (R1, R2, E, V ) ; W ← V ·R−x2

2 mod p ; (b, St[H∗])← H
∗((R1, W ), St[H∗]; R[H∗])

If
(

R1 6≡ gb
1 (mod p) or R2 6≡ gb

2 (mod p) or V 6≡ Xb (mod p)
)

then M ← ⊥

Else M ← E · Z−b mod p EndIf

St[C∗]← ((p, q, g1, g2, X, Z), St[H∗], R[H∗])

Return (M, St[C∗])

Figure 13: dhk1-adversary H and pa1-extractor C
∗ for the proof of Theorem 5.4.

C attacking DEG makes a single oracle query, and thus the dhk1-adversary H attacking prime-
order-group generator G is a dhk0-adversary. The DHK0 assumption then implies the existence of
a polynomial-time dhk0-extractor H

∗ for H . The extractor C
∗ defined in Figure 12 is then a pa0-

extractor. The proof that C
∗ is a successful polynomial-time pa0-extractor for C is exactly as before.

5.3 Proof of Theorem 5.4

CS-lite is known to be IND-CCA1 secure (and hence IND-CPA secure) under the DDH assumption
(cf. [14]). Therefore, it is sufficient to prove that it is PA1 secure under the DHK1 assumption and
PA0 secure under the DHK0 assumption.

We begin with the former. Let C be a polynomial-time ciphertext creator attacking CS-lite. We
build a polynomial-time pa1-extractor C

∗ for it. First, we construct a polynomial-time dhk1-adversary
H attacking prime-order-group generator G. By the DHK1 assumption, H has a polynomial-time
dhk1-extractor H

∗. We then use H
∗ to build C

∗. Algorithms H and C
∗ are defined in Figure 13.

The random tape g2‖x2‖Z‖R[C] of H consists of a choice g2 of an element in the group Gq, a
choice x2 of an exponent in Zq, a choice Z of an element in Gq, and a random tape R[C] for C. The
random tape x2‖R[H∗] of pa1-extractor C

∗ consists of a choice x2 of an exponent in Zq and a random
tape for dhk1-extractor H

∗. C
∗ uses x2 to compute value A and a random tape g2‖x2‖Z‖R[C]

corresponding to H , for H
∗. While extractor C

∗ gets input the random tape R[C] of C, extractor
H

∗ must be given input the random tape R[H ] = g2‖x2‖Z‖R[C] of H . Clearly, H and C
∗ are

polynomial time. We claim that C
∗ is a successful pa1-extractor for C. To prove this, let D be a

polynomial-time distinguisher for C, and fix k ∈ N. We state a claim, conclude the proof given this
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claim and Lemma 5.5, and then return to prove the claim.

Claim 5.7 Let DecOK denote the event that all C
∗’s answers to C’s queries are correct in exper-

iment Exppa1-x
CS-lite,C,D,C∗(k). Then there exists a negligible function νD such that Pr

[

DecOK
]

≤

Advdhk1
G,H ,H∗(k) + νD(k) .

Analogously to the proof of Theorem 5.3, Lemma 5.5 and Claim 5.7 imply that

Advpa1
CS-lite,C,D,C∗(k) ≤ Advdhk1

G,H ,H∗(k) + νD(k) .

By the DHK1 assumption, the function Advdhk1
G,H ,H∗(·) is negligible and hence for every polynomial-time

distinguisher D, the function Advpa1
CS-lite,C,D,C∗(·) is negligible. Thus C

∗ is a successful pa1-extractor
for C, and CS-lite is PA1 secure. It remains to prove Claim 5.7.

Sketch of Proof of Claim 5.7: We call (R1, R2, E, V ) ∈ G4
q a valid ciphertext with respect to

public key (p, q, g1, g2, X, Z) if dlogg1
R1 = dlogg2

R2, and an invalid ciphertext otherwise. Cramer and
Shoup [14] proved that the decryption algorithm of their IND-CCA2-secure scheme rejects all invalid
ciphertexts generated by an adversary with all but negligible probability. By slightly modifying their
proof, we can show that the decryption algorithm of CS-lite rejects all invalid ciphertexts generated
by an adversary with all but negligible probability. Using this fact, we can prove that

Advpa1
CS-lite,C,D,C∗(k) ≤ Advdhk1

G,H ,H∗(k) + νD(k) ,

for a negligible function νD. Details will be included in the full version of this paper [2].

The proof that the DHK0 assumption implies CS-lite is PA0 secure is analogous to the proof
that the DHK1 assumption implies CS-lite is PA1 secure. The difference is that the given ciphertext
creator C attacking CS-lite makes a single oracle query, and thus the dhk1-adversary H attacking
prime-order-group generator G is a dhk0-adversary. The DHK0 assumption then implies the existence
of a polynomial-time dhk0-extractor H

∗ for H . The extractor C
∗ defined in Figure 13 is then a

pa0-extractor. The proof that C
∗ is a successful polynomial-time pa0-extractor for C is exactly as

before.
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A Damg̊ard’s arguments about the security of DEG

We first review Damg̊ard’s security notions and then his proof.

RPR security. Let AE = (K, E ,D, MsgSp) be an encryption scheme. Damg̊ard [15] considers
security against recovery of a random plaintext under a type 1 chosen-ciphertext attack. Namely, let
us say that AE is RPR-CCA1 secure if for every polynomial time R, the probability that the following
experiment returns 1 is negligible as a function of k:

(pk, sk)
$

← K(1k) ; St
$

← R
Dsk(·)(find, pk) ; M

$

← MsgSp(pk) ; C
$

← E(pk, M) ; M ′ ← R(guess, C, St)
If M = M ′ then return 1 else return 0

One can show that IND-CCA1 → RPR-CCA1 and RPR-CCA1 6→ IND-CCA1, meaning this notion
of security is weaker than IND-CCA1 security. One can define RPR-CPA security too, just by not
giving R the decryption oracle in the first stage above.

Claim and proof approach. Damg̊ard [15, Theorem 2] claims that DEG is RPR-CCA1 secure
assuming DHK0 and the security of the ElGamal encryption scheme under RPR-CPA. He first shows
that if ElGamal is RPR-CPA then so is DEG [15, Lemma 1]. His proof of his Theorem 2 [15, Page 453]
claims to turn a given RPR-CCA1 adversary into an RPR-CPA adversary. Applying his Lemma 1, he
can conclude. The issue is how an RPR-CCA1 adversary R is turned into an RPR-CPA one. Quoting
from the proof of [15, Page 453], with some minor changes for consistency with our notation:

Let C1, C2, . . . be the sequence of ciphertexts whose decryptions R requests from its oracle.
Let Hi be the algorithm that simulates R until the output of Ci and then stops. We can
now show by induction that for all i, Hi can be simulated without access to a decryption
oracle. H1 is clear. To do Hi+1, observe that by induction, Hi can be simulated without
the oracle. Then the DHK0 assumption guarantees us the existence of an algorithm H

∗
i

that outputs y where Ci = (Y, W, U) and Y = gy, whenever Ci produces a non-null output
from the decryption. Knowledge of y suffices to decrypt Ci, and therefore we can simulate
also the last steps of Ri+1. From R we can therefore build an algorithm that breaks the

system under an RPR-CPA attack, and we are done by Lemma 1.

The problem is the emphasized text at the end of the quoted proof above. An algorithm is by definition
a finite object. We could view it as a program, or, more formally, as a Turing machine, but it must have
a finite description of size independent of the size of the input. However, the algorithm resulting from
the above proof contains descriptions of the extractors H

∗
1 ,H∗

2 , . . . which it must run as subroutines.
We claim this list is infinite, so that the constructed “algorithm” is actually an object having an
infinite description, and not an algorithm at all.

Why is the list of extractors infinite? The list is finite for any given value of the security parameter.
But suppose R makes q(k) = k oracle queries. The constructed algorithm must work for any value of
k. So it must include the list of extractors corresponding to all values of k, and this list is unbounded.
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The easiest fix to the above is to use the DHK1 assumption instead. This guarantees a single
extractor that can interactively take inputs and extract the appropriate quantities from them. In that
case, Damg̊ard’s proof goes through to show that DEG is RPR-CCA1 secure assuming DHK1 and the
RPR-CPA security of ElGamal. (Note we show something somewhat stronger, namely IND-CCA1
security, and we also show PA0, PA1.)

We remark that a strategy similar to Damg̊ard’s is used by [5] in their proof that PA-BDPR+IND-
CPA implies IND-CCA2 in the RO model. They can avoid having their algorithm remember infinitely
many extractors because in their definition of PA-BDPR the extractor does not depend on the adver-
sary.
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