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ABSTRACT
The notion of quantum secure direct communication
(QSDC) has been introduced recently in quantum cryptog-
raphy as a replacement for quantum key distribution, in
which two communication entities exchange secure clas-
sical messages without establishing any shared keys pre-
viously. In this paper, a quantum secure direct commu-
nication scheme using quantum Calderbank-Shor-Steane
(CCS) error correction codes is proposed. In the scheme,
a secure message is first transformed into a binary error
vector and then encrypted(decrypted) via quantum cod-
ing(decoding) procedures. An adversary Eve, who has con-
trolled the communication channel, can’t recover the se-
crete messages because she doesn’t know the deciphering
keys. Security of this scheme is based on the assumption
that decoding general linear codes is intractable even on
quantum computers.
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1 Introduction

Quantum key distribution provides a novel way to ob-
tain ultimate security based on quantum mechanics, which
cares about agreeing classical keys between two commu-
nication entities over quantum channel [1]. Different from
quantum key distribution, quantum secure direct commu-
nication permits important messages to be communicated
directly without establishing a random shared key to en-
crypt them. QSDC can be used in some special environ-
ments, with an example where it is difficult to establish a
session key between two communication parties. As a se-
cure QSDC scheme, it requires that the secure messages
encoded in the quantum states should not leak to an eaves-
dropper Eve even if she has controlled the communication
channel. A “good” QSDC scheme also expects that no ad-
ditional classical messages are needed to exchange between
communication entities except the encoded quantum mes-
sages.

Several QSDC protocols have been addressed re-
cently. In 2002, Beigeet al. proposed a QSDC scheme
based on sigle-photon two qubit states [2]. In their scheme,
the secure message can be read only after a transmission

of an additional classical message for each qubit. Boström
and Felbingeer addressed a Ping-Pang QSDC protocol [3]
using Einstein-Podolsky-Rosen (EPR) pairs as quantum in-
formation carriers, in which the secure messages can be de-
coded during the transmission and no final transmission of
additional information is needed. However, wöjcik proved
that, in this scheme, Eve can get a part of the secure mes-
sage with some probability, especially in a noisy quantum
channel. Recently, Denget al. [4] put forward a quantum
one-time-pad based QSDC scheme, in which batches of
single photons were used to serve as a one-time-pad to en-
code the secret messages. However, all the existed QSDC
schemes need to publicize some additional classical mes-
sages to check out whether there exist eavesdroppers over
the quantum communication channel.

In this paper, we propose a QSDC scheme using quan-
tum Calderbank-Shor-Steane codes, more usually known
as CSS codes, after the initials of the inventors of this class
of codes. In the proposed scheme, we suppose that the
channel between communication entities is noiseless. In
this scheme, the receiver Bob sends some quantum states
encoded using quantum CSS codes. Alice transforms the
secure messages into some error vectors and applies these
errors on the qubits and sends them to Bob. Bob receives
the messages and recovers the secure messages. Security
of this scheme is based on the fact that decoding an arbi-
trary linear code is NP-hard and Goppa cods have efficient
decoding algorithm. The remainder of this paper are ar-
ranged as follows:

Section 2 introduces the preliminaries and definitions
that we will use in this paper. Section 3 describes the pro-
posed QSDC scheme. Security analysis is performed in
section 4. Conclusions are made in section 5.

2 Preliminaries

2.1 Quantum CSS Codes

The constructions of quantum CSS codes rely heavily on
the properties of classical error-correcting codes [6, 7].
Here, we first review the basic definitions of binary classi-
cal linear codes. Let’s consider vectors and codes over the
field F2, including two elements, one and zero. The num-
ber of one’s in a binary vectorv ∈ F2 is calledHamming
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weight, noted asw(v). Hamming distanced(v, u) between
two binary vectorsv andu is w(v + w), which denotes the
number of bits differing from each other betweenv andu.
A binary linear codeC is an [n, k] linear code over the fi-
nite fieldF2, or an [n, k] code, for short. IfC has minimum
distanced, which denotes the minimum distance between
two distinct codewords, thenC is called an [n, k, d] linear
code overF2. A linear codec is always specified by ann
by k generator matrixG whose entries are all zeroes and
ones. The generator matrixG mapsk bits of information
to a set of binary vectors of lengthn, called codewords.
Binary linear codes can be alternatively (but equivalently)
formulated by so called parity matrix, which is used to per-
form error-correction. The parity matrixH of a linear code
[n, k] is an(n− k)× n matrix such that

Hx = 0 (1)

for all those and only those vectorsx in the codeC. The
rows ofH aren − k linearly independent vectors, and the
code space is the space of vectors that are orthogonal to all
of these vectors.

A quantum bit, or a qubit, is a two-level system which
can be in state

|ψ〉 = a|0〉+ b|1〉. (2)

The numbersα andβ are complex numbers, always noted
asα, β ∈ C, such that(α, β) 6= (0, 0) and|a|2 + |b|2 = 1.
The way a qubit differs from a classical bit is that a qubit
can be the superposition stateα|0〉+ β|1〉, not definitely in
basis state|0〉 or |1〉. An n-qubit state is a non-zero vector
in the tensor product space(C2)⊗n = C2n

. We usually
choose the following orthonormal basis ofC2n

:

{|a0a1 · · · an−1〉 = |a0〉 ⊗ |a1〉 ⊗ · · · ⊗ |an−1〉
| (a0, · · · , an−1) ∈ Fn

2} (3)

Thus ann-qubit state can be expressed by

|ψ〉 =
∑

(a0,···,an−1)∈Fn
2

ca0,···,an−1 |a0, · · · , an−1〉
=

∑
a∈Fn

2

ca|a〉 (4)

whereca ∈ C.
A quantum error correcting code (QECC) Q:[[n, k,

d]] is a 2k-dimensional subspace of the Hilbert spaceC2n

.
It is a way of encodingk-qubit quantum states inton qubits
(k < n) such that any error in≤ [d−1

2 ] qubits can be
measured and subsequently corrected without disturbing
the encoded states.d is called theminimal distanceof Q.
Quantum CSS codes can be constructed by using classical
linear codes:

Theorem 1 [6] Suppose that there exist two classical bi-
nary linear codesC1 = [n, k1, d1], C2 = [n, k2, d2],
andC1

⊥ ⊆ C2 (so thatn ≤ k1 + k2). Then there exists a
QECCQ : [[n, k = k1 + k2 − n, min{d1, d2}]]. A set of
its basis states can be expressed as

{|cw〉 =
1

2
n−k1

2

∑

v∈C1
⊥

|w + v〉 |w ∈ C2/C⊥1 }. (5)

Let Gi, Hi be the generator matrix and parity check
matrix of Ci respectively,(i = 1, 2). Without loss of gen-

erality, we may assume thatG2 =
(

H1

D

)
by C1

⊥ ⊆ C2,

here the rank ofD is k = k1 + k2 − n. Then eachk-qubit
basis state

|m〉 = |m1 · · ·mk〉 (m ∈ Fk
2)

can be encoded into a quantum codeword

|cm〉 = 1

2
n−k1

2

∑
v∈C1

⊥
|v + m ·D〉

= 1

2
n−k1

2

∑
v∈C1

⊥

∣∣v + m1D
(1) + · · ·+ mkD(k)

〉 (6)

whereD(j) is thej′th row of D, 1 ≤ j ≤ k.
Quantum errors will occur when quantum states are

transmitted over quantum channels. There are three basic
errors on a qubit: bit error, phase error and their composi-
tion, which can be described by Pauli matrices respectively:

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
.

(7)
For anya ∈ {x, y, z}, r = (r1, · · · , rn) ∈ Fn

2 , let

σ[r]
a = σ[r1]

a ⊗ · · · ⊗ σ[rn]
a ,

where

σ[ri]
a =

{
I if ri = 0
σa if ri = 1 .

Then every error onn qubits can be represented ase =
σ

[X]
x σ

[Z]
z , hereX = (x1, · · · , xn), Z = (z1, · · · , zn) ∈

Fn
2 . For convenience, we also use binary vector~e = (X|Z)

to describe the errorσ[X]
x σ

[Z]
z . Then the errore acts on

an n-qubit basis state|V 〉 = |v1, · · · , vn〉 (V ∈ Fn
2 ) as

follows

e |V 〉 = (−1)Z·V |X + V 〉
= (−1)z1·v1+···+zn·vn |x1 + v1, · · · , xn + vn〉 (8)

The number of error positions on the quantum state|V 〉 can
be expressed as

wq(~e) = ]{i|(Xi, Zi) 6= (0, 0), 1 ≤ i ≤ n} (9)

.

2.2 Goppa Codes

Goppa codes are an important class of linear codes, some
of which can meet the Gilbert-Varshamov bound. Goppa
codes have been widely used to construct public-key en-
cryption systems and message authentication codes since
they have a fast decoding algorithm and a large number
of nonequivalent classes[8]. here we only consider binary
Goppa Codes.
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Definition 1 Supposeg(z) is a polynomial of degreet over
finite fieldsF2m . Let L = {γ0, γ1, · · · , γn−1} ⊂ F2m

such that|L| = n andg(γi) 6= 0 for 0 ≤ i ≤ n − 1. Then
the Goppa codeΓ(L, g) with Goppa polynomialg(z) is
defined to be the set of codewords

{c = (c0, c1, · · · , cn−1) ∈ Fn
2 |

n−1∑

i=0

ci

z − γi

≡ 0 (mod g)(z). (10)

From the above definitions, it’s easy to know that
Goppa codeΓ(L, g) is uniquely determined byg(z) and
L and has parameters[n, k ≥ n − mt, d ≥ t + 1].
By some computing results over finite fields we know that
Goppa codes have a large number of nonequivalent classes,
which makes it possible to construct cryptosystems by us-
ing Goppa codes. The specific description of Goppa codes
can refer to Ref.[11].

3 The Proposed Scheme

Let Ci = Γ(Li , gi(z)) = [n, ki, di](i = 1, 2) be both bi-
nary Goppa codes such thatC⊥1 ⊆ C2, d = min{d1 , d2},
the Hamming weight of the error vectorst =

⌊
d−1
2

⌋
,

k = k1 + k2 − n. We assume that the quantum channel
used in this scheme is noiseless channel.

3.1 Encoding

Bob randomly chooses a generator matrixGi and parity

check matrixHi of Ci(i = 1, 2) such thatG2 =
(

H1

D

)
,

here the rank ofD is k = k1 + k2 − n. He then randomly
prepares a basis state|m〉 such thatm ∈ Fk

2 and encodes it
into |c〉 using quantum CSS codesQ according to equation
(6). Bob acts some error~e′ = (X ′|Z ′) on |c〉 as

|ψ〉 = e′ |c〉
= 1

2
n−k1

2

∑
v∈C1

⊥
(−1)(v+m·D)·Z′ |v + m ·D + X ′〉

(11)
such thatwq(~e′) ≤ [ t

2 ] andt = [min{d1,d2}−1
2 ], d1 andd2

are defined the same as in Theorem1. Bob keeps the matrix
Gi, Ci, D (i = 1, 2) and the bits string~e′, m as his private
keys and sends|ψ〉 to Alice over a public quantum channel.

3.2 Encryption

Suppose that Alice has a privacy messagep in hand and
wants to transmit it to Bob securely. She firstly applies an
algorithm (algorithm1) to transformp into a binary error
vector ~e′′ = (X ′′|Z ′′) such thatt′′ = wq( ~e′′) ≤ [ t

2 ]. Alice
receives Bob’s qubits|ψ〉 and applies errore′′ on them as

|ψ′〉 = e′′|ψ〉
= 1

2
n−k1

2

∑
v∈C1

⊥
(−1)(v+m·D)·Z′·Z′′ |v + m ·D + X ′ + X ′′〉

(12)

Alice sends|ψ〉 back to Bob.

For quantum CCS codes, there are3t′′ ·
(

N
t′′

)
error

vectors whose Hamming weight ist′′. For convenience,
we assume that, in Algorithm 1, if we apply an error on
a qubit, a bit flip error must happen. Therefore, there

is a total of2t′′ ·
(

N
t′′

)
of this class of errors. Bor-

rowing the idea from the literature [15], we can construct
one-to-one correspondence between this set of quantum er-
ror vectorse′′ = (X ′′|Z ′′) and integerp if they satisfy

0 ≤ p < 2t′′
(

N
t′′

)
.

Then, an algorithm can be devised to transform any
integerp described above into a quantum error vectore′′

using the order-preserving mapping induced by the lexico-
graphic order of the vectors and the natural order of the
integers.

Algorithm 1
s ←bp/2t′′c;u ← t′′; v ← p;
For j = 1, 2, · · · , N {
if s ≥

(
N − j
t′′

)
then{X ′′

j ← 1;

s ←
(

s−
(

N − j
t′′

))
; t′′ ← (t′′ − 1);}

elseX ′′
j ← 0;

}
kbinary = (k1, k2, · · · , kt′) ← (v − 2u·bp/2uc);
For j = 1, 2, · · · , N {
l = 0
if X ′′

j = 0 then{Z ′′j = 0;}
elsel = l + 1; if kl = 1 then{
Z ′′j = 1;
}
elseZ ′′j = 0;
}

3.3 Decoding

Let H
(i)
1 , H

(j)
2 represent thei’th row of H1 and thej’th

row of H2 respectively,1 ≤ i ≤ n− k1 , 1 ≤ j ≤ n− k2.
Bob receives the quantum stateC and measures the eigen-

values ofσ
[H

(i)
1 ]

x and σ
[H

(j)
2 ]

z (say (−1)z(i) and (−1)x(j),
z(i) , x(j) ∈ F2) respectively. After that, Bob obtains the
syndromesY1 andY2. i.e.

σ
[H

(i)
1 ]

x |Ψ〉 = (−1)z(i) |Ψ〉 , 1 ≤ i ≤ n− k1

σ
[H

(j)
2 ]

z |Ψ〉 = (−1)x(j) |Ψ〉 , 1 ≤ j ≤ n− k2

Y1 = (z(1) , · · · , z(n− k1)),
Y2 = (x(1) , · · · , x(n− k2)).

Bob computes Z = (z1, · · · , zn), X =
(x1, · · · , xn) ∈ Fn

2 such that

H1 · ZT = Y T
1 , (13)
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H2 ·XT = Y T
2 . (14)

Bob obtains the error vectore = (X|Z) and recovers
|m′〉 by decoding the quantum codes|ψ′〉. He measures
|m′〉 using computationally basis{|0〉, |1〉} and compares
the measurement resultm′ with his original bitsm. If m 6=
m′, he believes that eavesdropping happens in the quantum
channel. Otherwise, he computese′′ = (X ′′|Z ′′)

e′′ = e + e′ (15)

and performs algorithm2 to recover Alice’s secrete bitsp.

Algorithm 2
u ← t′′;
For j = 1, 2, · · · , N {
if X ′′

j = 1 then
{X ′′

j = 1;

s ←
(

s +
(

N − j
t′′

))
; t′′ ← (t′′ − 1);}

}
For j = 1, 2, · · · , N {
λ = 0;
if X ′′

j = 1 then{
λ = λ + 1;
if Z ′′j = 1 then{
kλ = 1}
elsekλ = 0;
}}
t′′ ← u;
k′ =

∑t′′

i=1 ki2i;
p = s · 2u + k′.

4 Analysis

4.1 Correctness

Theorem 2 (Correctness) Supposing all the entities in-
volved in the scheme follow the protocol, then Bob obtains
Alice’s secret messages correctly.

Proof. The correctness of this scheme can be easily seen
by inspection. In the absence of intervention and noise over
quantum channel, Bob and Alice add some errorse′ ande′′

on the encoded messages respectively in the encoding and
encryption phases. Because the summation of the numbers
of error positions ofe′ ande′′ is not larger thant, which can
be corrected without disturbing the quantum states. Bob
can obtain Alice’s secret messagep by computinge′′ =
e′+e and performing algorithm2 in the end of the decoding
phase. By comparing the decoded bitsm′ with m, Bob can
detect the existence of eavesdropper in the communication
channel.

4.2 Security against eavesdropping

In this subsection, we consider an adversary Eve who has
controlled the quantum channel linking Alice and Bob and

tries to recover the plaintextp that Alice has sent to Bob.
Supposing Eve knows the parity check matrixH1 andH2,
she can obtain the error vectors if she can computeX and
Z from the equations (13) and (14). We know that re-
solving equations (13) and (14) equals to the problem of
decoding general linear codes, which is an NP-C problem
[8]. Though quantum algorithms are shown exponentially
faster than classical ones when coping with some problems,
such as integer factor and discrete logarithm problem, it is
widely believed that NP-C problems are still intractable by
quantum (probabilistic) polynomial-time Turing machines
[10]. We know that the Goppa codes used in the proposed
scheme are uniquely decided by polynomialsg(Z) and or-
dered setsL. Therefore, if Eve wants to get the fast de-
coding algorithm of Goppa codesC1 , C2, she must find
g(z) andL. But the computational complexity of quantum
Grover search algorithm to obtaing(z) andL by the key
G2 , H1 is O((2mtn!)

1
2 ), it’s still infeasible to break this

cryptosystem by quantum searching algorithm in polyno-
mial time. In fact, Eve doesn’t know the matrixH1, H2 and
G2 because the generation matricesG1, G2 and the parity
check matricesH1, H2 are Bob’s private keys. Therefore,
the difficulties of Eve’s recovering of the secret messages
are at least as decoding general linear codes.

The essential difference between this scheme with the
EPR protocol[3], Ping-Pong protocol [5] and one-time-pad
based [4] protocol is that it doesn’t need to establish a quan-
tum entangled channel and doesn’t need to exchange (or
broadcast) any additional classical messages to detect the
existence of eavesdropper. In the proposed scheme, eaves-
dropping can be detected just by comparing some recov-
ered bitsm′ and Bob’s original bitsm.

4.3 Man-in-the-middle attack

Just like all the existed QSDC schemes and Quantum key
distribution, the proposed scheme does not also support
the authenticity of the transferred message itself and works
well only on an authenticated quantum channel. Similar
to Diffie-Hellman protocol [13], this scheme permits Alice
to communicate securely with Bob over an authenticated
quantum channel without knowing Bob’s secret keys. An
active adversary in the middle of the communication be-
tween Alice and Bob can recover the secure messages and
deceive both sides. This type of attack is so called man-in-
the-middle attack (see protocol 1).

Protocol 1 (man-in-the-middle attack)

1. Bob encodes|m〉 using quantum CSS codesQ and
adds some errore′, and sends the states|ψ〉 to Alice.

2. Eve intercepts|ψ〉 and chooses a vicious messagep′

and transforms it to error vectorea. She applies er-
ror ea on |ψ〉 and obtains|ψa〉, and she impersonates
Alice to send them back to Bob. At the same time, she
prepares another quantum states|ψe〉 using her own
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CSS codesQ′ (Q 6= Q′) and impersonates Bob to send
them to Alice.

3. Alice performs algorithm1 and transforms her secrete
messagesp to e′′. She appplies errore′′ on her re-
ceived quantum states|ψe〉 and sends them back to
Bob.

4. Eve intercepts Alice’s encoded states and decodes
them ase′′. She can do this because she knows the
fast decoding algorithm ofQ′. Eve recoversp using
algorithm2 and obtains Alice’s secrete states.

5. The states Bob received in the decoding phase are the
states that Eve has sent and the messages Bob recov-
ers are Eve’s spurious messagesp′.

There are two possible methods to avoid this kind of
attack. One is to establish an quantum authenticated chan-
nel between the communication entities. Another way is
that the communication entities Alice and Bob should pre-
share some secret keys. Studies of quantum message au-
thentication are beyond the scope of this paper and the
reader can refer to the literature [16]. Though the security
of this scheme should be based on the existence of quantum
authenticated channel, it can be used to securely transmit
messages in some special cases in which the transmission
time is urgent and it is difficult to establish session keys
between two communication parties.

5 Conclusions

Error correcting codes have been widely used to construct
cryptosytems in modern cryptography, including private-
key and public-key encryption schemes. In this paper, a
QSDC scheme is proposed using quantum CSS codes. In
the proposed scheme, Alice can securely transmit some
classical messages to Bob over an authenticated quan-
tum channel without establishing any pre-shared keys and
transforming any additional classical information. In this
scheme, Alice firstly maps her secure messages to some er-
ror vector and applies this error on the encoded states that
Bob sent to her. Eve can’t recover the plaintext because
she knows nothing about Bob’s secrete keys. The security
of the proposed scheme is based on the fact that decoding
general linear codes is NP-C problem and Goppa cods have
efficient decoding algorithm.
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