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Abstract. This paper introduces new approaches to Timed-release Cryptography including authenticated
timed-release encryption and timed-release digital signature scheme with their variations. All of our proposed
solutions are built from single mathematical primitive, Bilinear map. This simple construction allows our solu-
tion to be flexible and efficient. The proposed schemes are easily modifiable and extendable in order to satisfy
different application requirements.

1 Introduction

The goal of timed-release cryptography is to encrypt a message in such a way that the receiver cannot
decrypt it until some day in the future, in a sense “send a message into the future”. A solution to this
problem has immediate applications in the real world. For example, in sealed-bid auctions, a dishonest
auction board member could communicate to a bidder the amounts of all bids submitted. The bidder
could then raise the highest bid by $1 and win the auction at the minimum expense. If a scheme exists
that will not allow the bids to be opened until bidding is closed, one could prevent such situation from
occurring [20]. Another relevant application is voting: if a submitted vote cannot be read until the voting
process is over, other voters will not have information on who is winning, based on which they can change
their mind, and will have nothing left but follow their original inclinations. Fair signature exchange without
trusted third party (TTP) can also benefit from timed-release techniques and used to solve a number of
applications and will be discussed more in the related work [2].

Longer-time applications include lottery [23] and check cashing. For example, a payroll may distribute
checks to their employees ahead of time in a way that each check can be cashed starting only on specific
date. Or, a person may decide to submit checks with the same requirement to her mortgage company
thus avoiding need to keep track of when to pay [20]. Submitting sell/buy instructions of shares to a
broker which should be executed/opened only at specific times is another relevant application [8]. Other
applications include release of important documents and press releases among many others. A more focused
application that can benefit from timed-release crypto is delaying release of escrow keys in order to limit
abuse of opening all keys at the same time, which can be used to limit government surveillance abuse of
encrypted communications [1].

We should note that in some applications the message sender may not be available at the disclosure
time to help release the information (he may be dead, for example), or he may be unwilling to do so (in
longer time-lines), in others it may simply not be in his interests to do so (fair exchange). In such a case,
one needs to devise mechanisms which do not require sender participation in message disclosure. Other
applications do make the sender available/interested (short time-line) as in the cases of lottery and voting,
and we can take that into account when simplifying and/or designing solutions. Next, we take a look at
the taxonomy of approaches to timed-release problems and compare them.

1.1 Taxonomy of Approaches

The problem of timed-release was first mentioned by May [16] and then elaborated on by Rivest et al [20].
May suggested three possible directions to solve it: 1) one can simply give the message to a legal attorney
with legally-binding commitment that the message will not be disclosed until certain date, 2) use cryp-
tography with something called “beacons” and/or 3) use a time-lock puzzle approach. The first approach
suffers from efficiency (storage/communication overhead) problems, even though one can distribute trust
among several attorneys, and cost problems [20]. And May mentions that the third approach would need
more predictability to be useful. The “beacons” direction stayed unspecified by May. The work of Rivest
et al [20] rejuvenated interest in the problem. Let us assume that the message sender is called Alice and
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the receiver is Bob, and Alice wants to send a message to Bob in such a way that Bob will not be able
to open it until certain time. The possible solutions that do not require Alice’s participation after initial
communication were divided into two parts:
Time-lock puzzle approach. Alice would encrypt her message in a way that Bob would have to perform
non-parallelizable computation non-stop for the required wait time in order to decrypt it.
Agent-based approach. Alice could use trusted agents to encrypt the message in such a way that Bob
will need some secret value, published by the agents on the required date, in order to decrypt the message.

Direct application of time-lock puzzle approach to “send message into the future” suffers from immense
computational cost incurred by the message receiver which make it impractical for real-life scenarios. In
addition, knowing computational complexity by Alice does not allow her to estimate how long it will take
for Bob to decrypt the message, since Bob’s computational resources cannot be ascertained. As a result, it
may turn out that either Bob will decrypt message much earlier or much later than the designated date.
Also, if the “future” is, say, 50 years ahead, how can Alice estimate what the current technology state-of-
art will be in 10, 20, 30 years? As it turns out, though, one can use the negative side of computational
cost to an advantage when the requirement is exactly to impose this complexity on another party (idea
suggested by Merkle [17]) as in the case of fair exchange without TTP and some key-escrow contexts [2,
1, 23]. Fair exchange can then be used as a building block to address other timed-release applications.
Using agent-based approach relieves Bob from performing non-stop computation, fixes the date of

decryption precisely and does not require Alice to have information on Bob’s capabilities. This comes at
a price, though. The agents have to be trusted and they have to be available at the end of the waiting
period. If the agent gives required information to Bob before the due date, or it is late and/or does not
provide Bob with information on due date, Alice’s and/or Bob’s goals may suffer. A natural way to deal
with this problem is to distribute trust among several agents, using a threshold scheme for example [20].
Threshold centralized schemes suggested by Shamir [21] and distributed versions by Pederson [19] can be
adapted for this purpose. Provided that no more than a threshold number of agents are dishonest, Bob
will not be able to decrypt ahead of time. And if at least threshold number are honest and available, then
Bob will be able to decrypt the message on due date.

1.2 Our Contribution

The contributions of this paper are as follows: Under the agent based paradigm,

– The proposed schemes are simple, flexible and extensible
• The schemes are based on “single” cryptographic primitive resulting in a suite of useful protocols,
some of which combine several cryptographic functionalities in a single stroke.

• The agent is of “offline” type and can be run by anybody with access to the network and a
minimally capable computer. The same agent can be used for various timed-release applications
and multiple independent agents can be used by user to strengthen security. Furthermore, threshold
techniques can be applied to agents to increase robustness. They would require only initial brief
setup interaction between the agents after which agents would again function independently.

• The encrypter/signer need not interact with the agent or obtain any published information. And
decryptor/verifier needs only one value published by the agent on the target date.

– Performance
• Agent: Minimal communication, computation and storage overhead. The values published by agent
are self-authenticating and can be spread to or replicated at other possibly untrusted servers. The
agent keeps a single secret that is used to generate the published values and need not be refreshed
unless it is compromised.
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• User: Minimal communication and key storage overhead. Only one public/private key pair is needed
for all proposed protocols. Computational overhead is comparable to or less than in the existing
approaches.

Organization: The rest of the paper is organized as follows: In Section 2, we introduce related and
previous work of this paper. Section 3 describes our mathematical primitive and basic architecture along
with summary of notation. The major results of this paper, i.e. new solutions for timed-release cryptography
are presented in Section 4 and their extensions are discussed in Section 5. Performance analysis of the
proposed protocols are presented in Section 6 and an exemplary application is available in Section 7.

2 Related Work

2.1 Time-lock Puzzle Approach

We mentioned before that time-lock puzzle is not suitable to “send message into the future” if applied
directly. Besides its clear inefficiency for that purpose, one has to be very careful to guard against denial-of-
service attacks through use special techniques such as zero-knowledge proofs to determine computational
complexity. Still, it turns out that time-lock puzzle approach, can be used indirectly to address the ap-
plications such as sealed-bid auctions and lottery through use of timed fair commitment exchange [23].
In the work of Boneh and Naor [2] on timed commitments a zero-knowledge proof protocol was used to
evaluate computational complexity of decryption, and (based also on additional properties) a strongly
fair signature exchange protocol was proposed using timed commitments as a building block. The work
of Mao [14] has further improved on the complexity of zero-knowledge protocol to make it more suitable
for real-world applications. Fair exchange of digital signatures using time-lock puzzle was extended to ar-
bitrary signatures by Garay and Pomerance [11, 10]. In the sealed-bid auction example mentioned above:
the bidder can submit encrypted bid and exchange commitment signatures. After the bidding period is
over, the bidder can release his encryption key. Similarly, it can easily be applied to lottery applications.
More generally, one can apply it to situations in which the sender is available and willing to participate
in document disclosure. Although, this approach has definite benefit of not requiring TTP, it assumes
knowledge’s of another party’s computational resources and for practical applications it has significant
overhead even with improvements [14, 10, 2], which are inherent limitations of time-lock puzzle.

2.2 Agent-based Approach

The agent-based approach, first suggested by May [16], was elaborated on in [20]. Rivest et al had suggested
two agent constructions. In the first scheme, the agent would perform two duties: 1) it would publish every
day a digitally signed and previously undisclosed secret key and 2) it would, on request, encrypt a user’s
message with a future key of her choosing, time-stamp it and and sign the result. Use of one-way function
similar to one-time password Lamport scheme to generate the secret keys would make the published values
self-authenticating (provided the very first key is signed) and would require publishing of only the current
key from which all the previous ones can be easily determined. To deal with agent trust issues, one can
use a threshold scheme in such a way that the decryption key on the designated day can be constructed
by combining a threshold number of any published secret values published by agents. In addition, the
authors suggest use of agents as a time-stamping signing service resulting in timed-release signatures that
prove document existence at a certain time in the past. In the second offline scheme, the agent would
precompute a pair of public/private keys, would publish all public ones and would release the private keys
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on the required days. In this way, no interaction with the agent is needed to encrypt timed-release message,
but key storage overhead and the fact that all keys past keys need to be published is a deterrent, besides
the fact that time-stamping service is no longer available.

A different scheme was proposed by Di Crescenzo et al [8]. In their design, the sender would use public
key of the receiver and the release time together to encrypt the message. The result would be encrypted
using agent’s public key and non-malleable encryption primitive. For receiver to decrypt the message, it
will have to interact with the agent using conditional oblivious transfer protocol. If the encrypted release
time is not less than agent’s current time, then at the end of oblivious transfer agent decrypts the message.
Otherwise, protocol fails. In both cases, agent does not learn the identity of the sender. The computational
and communication overheads are logarithmic with respect to the waiting time of the message before it
can be decrypted.

The latest scheme was proposed in [15] and uses the identity-based encryption based on quadratic
residues [7] as a “time-capsule”. This capsule can be decrypted only on a certain day when agent publishes
appropriate value and can carry inside encryptions and digital signatures depending on the goals that need
to be achieved. More precisely, one can replace identity in the encryption primitive with future time and
the job of the agent would be each day to compute the corresponding decryption key for current day and
publish it to a web-server.

3 Background

3.1 Bilinear Maps

Let G1 and G2 be two abelian groups of prime order q. We will use the additive notation for G1 (aP
denotes the P added a times for element P ∈ G1) and the multiplicative notation for G2 (g

a denotes the
g multiplied a times for element g of G2).

A map e : G1 ×G1 → G2 is called an admissible bilinear map if it satisfies the following conditions:

1. Bilinearity For any P, Q ∈ G1 and a, b ∈ Zq, e(aP, bQ) = e(P, Q)ab.

2. Non-degeneracy e(P, Q) 6= 1 for at least one pair of P, Q ∈ G1.

3. Efficiency There exist an efficient algorithm to compute the bilinear map.

The Weil pairing can be used to construct an admissible bilinear pairing. In that case, one can take
G1 to be a subgroup of an elliptic curve and G2 a subgroup of the multiplicative group of a finite field.
See the details of pairings and the conditions of curves in [6].

We make several comments about G1, G2 and e(·, ·). First, the Discrete Logarithm Problem (DLP) is
assumed to be hard in G1 and G2. Second, the Decisional Diffie-Hellman Problem (DHP) is easy in G1

since ∀a, b, c ∈ Zq, if we are given aP , bP and cP , then c = ab if and only if e(aP, bP ) = e(cP, P ). Third,
the Bilinear Diffie-Hellman Problem (BDHP) to find e(P, P )abc from P, aP, bP, cP ∈ G1 is assumed to be
hard. It is called the Bilinear Diffie-Hellman (BDH) Assumption. In other words, the BDH assumption
says that e(P, P )abc is hard to compute unless at least one of a, b, and c is computable. If one of them is
known, e(P, P abc is easily computed.

For the rest of the paper, we denote by P a fixed generator of G1. This information along
with details on G1, G2 and the bilinear map is assumed to be publicly known and fixed for
the purposes of following protocols.
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3.2 Basic Architecture

The central concept of our proposal to implement timed-release cryptography is a public agent called
TiPuS (Timed-release Public Server). Every unit of time, say every day, it publishes new self-authenticating
information I which combines public precomputable (i.e. it can be precomputed for any future or past
day by anyone) information PI and its unique private information SI. (In other words, I = f(PI, SI) for
some function f .) It can be published on its web page or broadcasted when broadcast channel is available.
Alice can encrypt (or sign) a message using PI with an option of combining it with public key of the
receiver (and/or her private key). Only when I is published on day T , Bob (the receiver) will be able to
decrypt (or verify) the message using I and optionally his private key (and/or Alice’s public key).
We implement the above setting using admissible bilinear map defined in Section 3.1. Each TiPuS

chooses a secret s ∈ Zq and publishes authenticated sP . (For example, a CA certifies sP as the public
key of the TiPuS.) On day i, it publishes sH(i), that corresponds to I above where s = SI, H(i) = PI
and f(SI, PI) = s · H(i). (For simplicity, we denote H(i) by Pi in the rest of the paper.) This value is
self-authenticated : namely, each user can compute e(sP, H(i)) and verify if it is equal to e(P, sH(i)), since
by bilinearity (sP, H(i)) = e(P, sH(i)) = e(P, H(i))s.
Every user A has private/public key pair (SKA, PKA) = (a, aP ), and aP is certified by a CA. One

can authenticate if A indeed possesses A. (for example, using short signature [4]) In Section 4 and 5,
we will build several timed-release cryptographic protocols from this setting. Before going into detail, we
emphasize few properties of TiPuS:

– TiPuS cannot be completely untrusted. Even so, some of our protocols ensure that even TiPuS cannot
decrypt messages or forge signatures of other users. (For example, see Section 4.1)

– TiPuS can be shared for multiple applications, even though it publishes only single Pi (shared among
all applications and all users) for day i. A malicious TiPuS may publish Pi to a specific user B before
day i and, therefore, B can decrypt the ciphertext ahead of time. To prevent that, one can combine
multiple TiPuS in a single protocol. (See Section 5.1).

– Due to simple protocol structure, several TiPuSes can be used for threshold timed-release cryptography
easily. (See Section 5.2)

In the rest of the paper, we introduce variety of new approaches for timed-release cryptography from
the above settings.

3.3 Summary of Notation

Throughout the rest of the paper, we use the following notations:

– P : a generator in G1.
– T : Target date. For example, Alice will encrypt a message to be decrypted at time T .
– PT : H(T ). sPT will be published by TiPuS at time T .
– EK(m): A symmetric key encryption providing authentication also. We use Encryption-then-MAC,
encrypt the plaintext to get a ciphertext C and append a MAC of C.

– DK(c): A symmetric key decryption providing verification also. It should perform Decrypt-and-Verify.
– h : {0, 1}∗ → {0, 1}n: A collision-free hash function with output size n
– H : {0, 1}∗ → G1: A collision-free full domain hash function [4].
– H∗ : G2 → Zq: A collision-free full domain hash function, which can be obtained by applying a standard
hash function with output n = blog qc bits to the bit encoding of elements of G2.

– TET

A→B
(m): Authenticated Timed-release encryption of message m from user A to B, which will be

decrypted at time T .
– TST

A
(m): Timed-release signature of message m by user A, which will be verified at time T .
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4 New Approaches to Timed-Release Cryptography

4.1 (Authenticated) Timed-Release Encryption

The proposed authenticated timed-release encryption scheme has the following properties: Alice sends a
ciphertext to Bob so that 1) Timed-release confidentiality: only Bob can decrypt it only at time T , in addition
2) Message authentication: Bob can verify that the message was sent by Alice, under the assumption that
1) Public timestamp of the ciphertext: Prior to time T , the ciphertext should be timestamped and 2)Trust on
TiPuS : TiPuS has to be trusted not to collaborate with others. The last assumption will be weakened in
Section 5.2. Rivest, Shamir and Wagner [20] provided few motivating applications for public timed-release
encryption. For example in sealed bid auction, “the bidder wants to seal her bid so that it can only be
opened after the bidding period is closed” [20].

Authenticated Timed-release Encryption: TET

A→B
(m)

Setting: Bob’s authentic public key: bP , Private key of Alice: a, Certificate of Alice containing
her public key aP : CertA(aP ).

Encryption: Alice computes K = H∗[e(sP + bP, PT )
a] and sends (EK(m), CertA(aP )) to Bob.

Decryption: at time T after verifying the Alice’s certificate, Bob can compute K =
H∗[e(aP, sPT + bPT )] as in the previous scheme and thus decrypt the message.

Discussion

Security To analyze the protocol, we need some analysis on the derivation of the key K:

e(sP + bP, PT )
a = e(asP + abP, PT )

= e(asP, PT )
︸ ︷︷ ︸

(a)

· e(abP, PT )
︸ ︷︷ ︸

(b)

(1)

= e(aP, sPT )
︸ ︷︷ ︸

(a)

· e(abP, PT )
︸ ︷︷ ︸

(b)

(2)

Alice can encrypt the message, since it knows public keys (sP, bP ) of TiPuS and Bob as well as PT .
The fact that Bob can decrypt the message can be derived from Eq. (2). Eq. (2)-a can be computed by
anyone at time T , since aP is public of A and sPT is published by TiPuS at time T . Eq. (2)-b can be
computed by only Bob at any time, since abP is long-term Diffie-Hellman key shared between Alice and
Bob on G1 and PT is a public value. Therefore, Bob can derive the same key K and decrypt the ciphertext.
When we look at Eq. (1)-a, we can find more interesting fact. In fact, asP can be thought as the

long-term Diffie-Hellman key shared between Alice and TiPuS. Therefore, Alice can always precompute
asP and abP , while 1) Time-lock: Bob cannot compute Eq. (1)-a prior to time T and 2) Confidentiality
from TiPuS : Eq. (1)-b cannot be computed by TiPuS since it is derived from long-term Diffie-Hellman
key between Alice and Bob.

– Confidentiality: Assuming the BDH problem, it is hard to compute e((s+b)P, aPT ) (or e((s+b)P, PT )
a)

from P, PT , aP, sP, bP unless a or s+b is known. Thus only collaboration of Bob and TiPuS can compute
K before time T . Even after time T , TiPuS will not be able to decrypt the message without Bob’s
help since the second underbrace in Eq. (1)-b is an ElGamal Encryption to Bob.

– Message Authentication: When Bob receives this message, he can be assure that the message was
indeed generated by Alice, since nobody knows abP .
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– Non-repudiation of Alice without revealing abP : Furthermore, Alice cannot repudiate that the message
was indeed generated by Alice, when TiPuS is trusted and the ciphertext is publicly time-stamped by
Bob prior to time t (See below sealed-bid auction example for public time-stamping). This is quite
counter-intuitive, since the security of the whole system seems to depend on asP and abP .
Since abP can be computed by only Alice and Bob, we need to consider if Bob can forge the ciphertext.
In other words, if Bob provides a “proof” that the message was indeed encrypted by Alice, it should
really be the case that Alice was the encrypter.

1. Suppose Alice decides to repudiate the submission of the ciphertext after it was sent to Bob.
2. Bob can time-stamp the message prior to day T , and, once Alice repudiates, Bob can submit K
and bPT to the authorities.

3. If needed, authorities would wait until day T . Then they compute K∗ = K/e(aP, sPT ), and verify
if K∗ = e(aP, bPT ) and e(bPT , P ) = e(PT , bP ), using Alice’s public key aP and Bob’s public key
bP .

We note that TiPuS is assumed to be trusted. If the above protocol verifies, it proves to the authorities
that Alice indeed generated the ciphertext. Note that this non-repudiation does not affect decryption
of any previous ciphertext provided by either Alice or Bob.

Efficiency Alice needs one exponentiation in G2 and one bilinear map computation while Bob needs one
exponentiation in G1 and one bilinear map computation. It has almost the same performance with a public
timed-release encryption.

Variations Depending on the parameter setting, this protocol can be transformed to different timed-
release protocols as follows:

Public Timed-release Encryption

When: a = r, rP is used instead of Certa(aP ) and b = 0
Meaning: A public timed-release encryption has the following properties: A plaintext is encrypted by
the sender, while the ciphertext can be open to public only after certain period. In this case, identity
of sender does not have to be part of message and, since it should be read by any user, no recipient
need to be specified.

Security: In this case, Eq. (1) = e(rsP, PT ) and Eq. (2) = e(rP, sPT ). Therefore, confidentiality is com-
pletely dependent on TiPuS, since it can fast-forward the time. (i.e. sPT can be always computable
by TiPuS.)

Applications : One can use this protocol as a “time-capsule” that carries additional functionality. Other
applications include anonymous public “whistle-blowing”: a person that collected compromising
material may want to stay anonymous but thinks that the information is something the public
should know about. To make sure that time-wise he is not linked to this information, he decides
that it should be revealed only after a certain time.

Authenticated Public Timed-release Encryption

When: b = 0
Meaning: First we consider encryption of a message that would convince the decryptor that it was
generated by Alice and no one else. We note that in any agent-based authenticated public timed-
release encryption, 1 agent that publishes required information on a certain time has to be assumed
trusted, since the message has to be decryptable by anyone and thus requires only sender’s public

1 We again note that Time-lock puzzle can still achieve this by sacrificing a lot of computational overhead.
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key and the information published by agent. In particular, in any such scheme agent itself will be
able to decrypt the message once it is posted. Likewise, TiPuS itself can generate the ciphertext
pretending to be Alice. Therefore, in this protocol we assume that TiPuS is indeed trusted. This
is intended for a message that will be decrypted by anyone at time T , but the sender wants to be
authenticated.

Security: In this case, Eq. (1) = e(asP, PT ) and Eq. (2) = e(aP, sPT ). Therefore, confidentiality is
completely dependent on TiPuS as before. (i.e. asP can be always computable by TiPuS.) Also it
can forge messages for Alice (Since it knows asP ). However, as long as TiPuS is trusted and the
message is publicly timestamped before time T , this provides message authentication. However, it
does not provide non-repudiation.

Designated Timed-release Encryption

When: a = r, rP is used instead of Certa(aP )
Meaning: This is intended for a message that will be decrypted by a specific user (say Bob) at time T
and the sender does not need to be specified. APPLICATION!!!

Security: In this case, Eq. (1) = e(asP, PT )·e(abP, PT ) and Eq. (2) = e(aP, sPT )·e(abP, PT ). Therefore,
confidentiality is guaranteed: No one except Alice and Bob cannot decrypt the message.

Applications: If a “whistle-blower” in a company wants to anonymously inform the authorities but may
prefer if any action would be taken only after he left the company. In that case, he can send an
encrypted information so that only the appropriate authorities can read it but not until a certain
date. Another example includes anonymous voting. An authorized voter submits non-authenticated
designed encryption of his vote so that it can be decrypted only when voting booths are closed.

Authenticated Designated Timed-release Encryption : This is the basic protocol intro-
duced above. This is intended for a message that will be decrypted by a specific user (say Bob) at time
T and the sender has to be authenticated.

Key Compromise
In the above scheme, even though TiPuS secret s is compromised, K stays secure since abP is computed
only by Alice or Bob. But if Alice’s secret a is compromised, all the previous messages encrypted by Alice
are disclosed even prior to time T since K = H∗[e(sP + bP, PT )

a]. To prevent this, we can consider the
following encryption scheme:

Authenticated Timed-release Encryption against Key Compromise

Setting: Bob’s authentic public key: bP , Private key of Alice: a, Certificate of Alice containing
her public key aP : CertA(aP ).

Encryption: Alice computes K = H∗[e(sP+bP, PT )
ar] and sends (EK(m), rP, arP, CertA(aP ))

to Bob.
Decryption: At time T after verifying the Alice’s certificate, Bob can compute K =

H∗[e(arP, sPT + bPT )] as in the previous scheme and thus decrypt the message.

This scheme is obtained by taking a random r ∈ Zq and using ar and arP instead of a and aP in the
authenticated timed-release encryption. Thus this scheme is secure and authenticated if arP is of right
form, which is verified by e(aP, rP ) = e(P, arP ). In that case, even if the long term secret a of Alice is
compromised, the session key K is still secure since r stays secret. However if b is compromised, K is
computed after time T since K = H∗[e(arP, sPT ) ∗ e(arP, PT )

b]. In other words, the receiver can always
decrypt the received message after T time, but the sender can not once he encrypted and erased the
random r. Also, as the previous scheme, it is secure even when TiPuS secret s is compromise.
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4.2 Timed-Release Digital Signature

We design a signature generation/verification scheme with non-repudiation that can be checked starting
only at time T .

Timed-release Digital Signature: TST

A
(m)

Settings: Private key of Alice: a, Certificate of Alice containing her public key aP : CertA(aP ).
Signature: Alice computes r = H∗(e(asP, PT )) mod q and sends {m, 1

r+a+h(m)P} to Bob.

Verification: at time T , Bob computes r = H∗(e(aP, sPT )) mod q, and verifies that
e( 1

r+a+h(m)P, aP + (r + h(m))P ) is equal to e(P, P ).

Security : If we publish r1 and r2P with the signature where r1 and r2 are random splits of r (i.e. r1+r2 ≡ r
mod q), the signature scheme is merely the Boneh-Boyen signature scheme [3] since r itself is random.
Boneh-Boyen scheme was proved to be secure without random oracles. Thus this scheme is secure until
r stays secret (Keeping r secret is more secure than publishing r2P and r1 = r − r2). It was proved
in Section 4.1 that r is not computable by anyone except Alice before time T if TiPuS is trusted. In
addition, after r is revealed (that is, on or after T ), r is no longer used for a new signature generation.
Hence this signature scheme is secure if TiPuS is trusted. Further, even though TiPuS is corrupted,
this scheme is secure (against existential forgery) under a weak chosen message attack. For the detail,
refer to [3].

Efficiency : Alice takes one pairing computation and one exponentiation in G2. Bob takes two pairing
computations and one exponentiation in G1. Note that asP is stored by Alice as a secret key and
e(P, P ) is precomputed and stored.

Application : In some applications the message that is sent does not (should not) be encrypted, but the
action that one can take with this message should be delayed. For example, a person gives a set of
future payment checks to her mortgage company [20]. In this case, checks do not need to be encrypted
and, in fact, mortgage company may want to double-check that the person did not make a mistake.
Using timed-release signatures, the person can sign each so that the signature becomes valid only
starting with certain date preventing mortgage company from early cashing. The same applies to the
payroll check distribution example mentioned in the introduction.

5 Multiple TiPuSes

In this section, we consider how multiple independent TiPuSes can be used to strengthen the security and
the flexibility of the system and then extend this construction to threshold TiPuSes to provide availability.

5.1 Combining TiPuSes

Suppose Alice wants to increase security and use several independent TiPuSes instead of just one, {TiPuSi :
i = 1, ..., m}. We can achieve this by replacing s in the above schemes by

∑m
i=1 si. To use the adapted

protocols, Alice and Bob will have in addition to only perform m additions in G1 each time a crypto-
graphic primitive from {TiPuSi} is used. More precisely, we have the following identities: sP =

∑
siP ,

sPT =
∑

siPT

We note that the chosen agents can be completely independent, do not have to know about each other
and do not have to communicate between themselves. In this way, by using multiple TiPuSes, Alice can
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increase probability that sPT will not be disclosed prior to time T . If at least one chosen TiPuS is honest,
Alice does achieve this objective. If required, Alice and Bob can mutually agree on which agents to use.

Still, we should notice that, in this case, if at least one TiPuS fails to publish on the due date, then Bob
will not be able to perform decryption/verification. The fact that this agent failed to publish, of course,
becomes public knowledge and it may be blacklisted from further participation. Still, this does not help
the current message since the message cannot be decrypted/verified by Bob. To increase robustness, we
discuss a threshold adaptation next.

5.2 Threshold Adaptation

To adapt the previous scheme, the agents will have to perform initial setup between themselves after
which they can return to fully independent functioning. We adapt the distributed threshold protocol of
Pederson [19]. The initial setup will follow this protocol.

1. Initial Setup Very briefly, let fi(z) = fi,0+ fi,1z+ ...+ fi,k−1z
k−1 be the random polynomial chosen

by TiPuSi where si = fi,0. Using secret channels, every TiPuSi obtains di =
∑m

j=1 fj(i). See [19] for
full details.

2. Post-Setup Functioning Each TiPuS publishes authenticated diP and at time T publishes diPT .

3. User Actions To calculate sP , a user chooses a subset of k TiPuSes, call it {TiPuSij : j = 1, ..., k}, and

computes sP =
∑k

j=1 ajdijP where the Lagrange coefficient aj =
∏

h6=j

ih
ih−ij

. Similarly, user computes

sPT (one should replace P by PT in the previous calculation)

To admit additional TiPuSm+1 into the group, each TiPuSi, i = 1, ..., m sends fi(m+1) to TiPuSm+1

using a secret channel, the new TiPuS takes a random polynomial fm+1(z) = fm+1,0 + fm+1,1z + ... +
fm+1,k−1z

k−1 and then sends secretly fm+1(i) to TiPuSi. Every TiPuSi thus obtains the new di =
∑m+1

j=1 fj(i) and the protocol then proceeds as before.

Provided that no more than k − 1 agents are dishonest, one cannot construct sPT prior to time T .
Using {TiPuSi}, a user just needs any k published values to construct sP and sPT . In this way, we can
improve not only security but robustness as well. The agents can continue to publish siP and siPT if they
want also to act as before.

6 Performance

To estimate the performance of our scheme, we first present experimental results for the cost of several
cryptographic primitives in Table 1. We used Miracl library v.4.8.2 [22] in P3-977 MHz with 512 Mbytes
memory. In MapToPoint and Pairing, we considered a subgroup of order q in a supersingular elliptic curve
E over Fp, where p is a 512 bit prime and q is a 160 bit prime. Note that the pairing value belongs to a
finite field of 1024 bits.

We summarize the number of significant operations for each scheme in Table 2. Surprisingly, the
schemes with additional functionalities have similar performance to the basic one. This shows that our
advanced schemes are designed at minimum additional costs and more efficient than just combining basic
timed-release encryption and other primitives.
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Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)

RSA(Sig/Dec) 1024 1024 4.65

RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.36

Expo in Fp 1024 160 3.93

Scalar Mul in EC over Fp 160 160 3.44

BLS sign 512 160 7.33

MapToPoint - - 2.42

Pairing 512 - 31.71

Table 2. Significant operations needed for each scheme

Scheme Pairing Exp. in G1 Exp. in G2

TE
T

∗→∗
(·)/Enc 1 1 1

TE
T

∗→∗
(·)/Dec 1 0 0

ATE
T

A→∗
(·)/Dec 1 0 0

ATE
T

A→∗
(·)/Dec 1 0 0

TE
T

∗→B(·)/Enc 1 2 0

TE
T

∗→B(·)/Dec 1 1 0

ATE
T

A→B(·)/Dec 1 0 1

ATE
T

A→B(·)/Dec 1 1 0

TS
T

A(·)/Sig 1 1 0

TS
T

A(·)/Ver 2 1 0

7 Application to Sealed-Bid Auction

In a sealed-bid auction, bidders submit their bids in closed form to the auction board. Once the bidding
is closed, the bids are opened and the winning bid is chosen according to some publicly known metric [9].
Examples of such auctions include government construction bidding auctions, artwork and real estate
sales among others. Because of special nature of such auctions, many security considerations need to be
carefully analyzed and appropriate measure should be specified [18]. One of the problems that may occur
in such auctions is cheating by the auction board [12]. A bid may be opened before the closing time
and communicated to another bidder who can adjust his own bid appropriately (see more details in the
introduction). Thus timing considerations play a central role in such applications. We identify the following
as central requirements in sealed-bid auctions:

– The bids should not be opened until the bidding is closed

– The auction board should not be able to disavow bid submission

– Bidder should not be able to repudiate his bid

– Other requirements include correct calculation of winning bid, verification by bidders among many
more, but they are beyond the scope of this paper and we presently dispense with these considerations.
See [9, 13, 12, 5, 18] for more details.

Use of the authenticated designated timed-release encryption can resolve the first problem and third
problems. A bid encrypted with such primitive cannot be opened until the time specified by the encrypter.
Once the bid is submitted, the auction board can time-stamp it. In that case, as we saw before, the bidder
will not be able to repudiate his bid later on. In order to make sure that the auction board cannot disavow
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a bid, one can use standard cryptographic mechanisms. In particular, each submitted bid can be signed
by the auction board right after the closing period but before the bids can be opened (assume for example
that there is a two-day gap before the closing of auction and bid opening). The signatures can be made
public and posted somewhere. We note that it may not be in the interests of the auction board to throw
out bids since their contents are known yet. Once the bids can be opened, the auction will not be able to
disavow a bid.
To summarize, let Alice be the bidder and Bob be the auction board. Suppose the bidding closes on

day 5 and bids are opened on day 7

1. Alice encrypts the bid using authenticated designated timed-release encryption protocol using Bob’s
authentic public key and her private key and sends the result to Bob prior to or on day 5. The message
can be decrypted only by Bob and starting with day 7 only.

2. Bob time-stamps the submitted bid using trusted time-stamping service
3. On day 6, Bob computes digital signature of the submission and posts the result to a public board.
Only these bids will participate in the auction.

4. On day 7, Bob can decrypt the bids.

Due to the properties of the encryption protocol, Bob not only knows that the bid did come from Alice
but he can prove it to others without revealing any private information or shared keys. That means that
Alice is bound to follow-up on her bid should she win. Provided that signature of Alice’s submission had
been posted, Bob will not be able to drop her bid once he opens it.
We note that this example certainly not a full solution, but it shows that the primitive presented in

this paper can be very beneficial in solving some of its central problems.

8 Conclusions

We have presented novel solutions for timed-release cryptography. All of the proposed schemes are con-
structed from single mathematical primitive, which results in simple, flexible and extensible design. The
centralized agent, TiPuS has minimal communication, computation and storage overhead. Users also have
mininal communication and storage overhead with comparable computation overhead. We believe our solu-
tions can be applied to many practical applications, which require “delay of time”. The proposed protocols
are efficient. In addition we show how our protocols allow easily to combine several independent agents to
increase security of the proposed primitives. The scheme is also very easily adaptable to threshold design
in which the agents after a brief setup session return to completely independent functioning. In this way,
our design allows to achieve not only security but robustness as well.
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