A Scheme for Timed-Release Public Key Based Authenticated Encryption

Ivan Osipkov ${ }^{1}$, Yongdae Kim ${ }^{1}$, Jung Hee Cheon ${ }^{2}$
${ }^{1}$ University of Minnesota - Twin Cities, \{osipkov, kyd\}@cs.umn.edu
${ }^{2}$ Seoul National University, Korea, jhcheon@math.snu.ac.kr

Abstract

We propose the first provably-secure scheme (called TR-PKAE) that provides public key based authenticated encryption (PKAE) with timed-release property. Any application that requires delayed opening of information can use our construction, and detailed security model for TR-PKAE is derived from sealed-bid auction example. The proposed protocol has minimal overhead in storage, computation and communication, while providing strong security as well as diverse functionalities. Lastly, the construction requires minimal infrastructure overhead, which can be shared among multiple applications.

1 Introduction

The goal of timed-release cryptography is to "send a message into the future". One way to do this is to encrypt a message such that the receiver cannot decrypt the ciphertext until specific time in the future. A solution to this problem has immediate applications in the real world. For example, in sealed-bid auctions, one can prevent prior opening of bids by a dishonest auction house [31]. E-voting is an another example that requires delayed opening of votes. It can be also used for delayed verification of a signed document, such as lottery [33] and check cashing. Other applications include release of important documents and press releases among many others. In order to further motivate the need for our construction, we discuss in detail sealed-bid auction example in Section 1.1.

The problem of timed-release cryptography was first mentioned by May [26] and then discussed in detail by Rivest et. al. [31]. Let us assume that the message sender is called Alice and the receiver is Bob, and Alice wants to send a message to Bob such that Bob will not be able to open it until certain time. The possible solutions are divided into two ways ${ }^{1}$:

Time-lock puzzle approach. Alice would encrypt her message such that Bob would have to perform non-parallelizable computation without stopping for the required wait time in order to decrypt it.

Agent-based approach. Alice could use trusted agents and encrypt the message such that Bob will need some secret value, published by the agents on the required date in order to decrypt the message.

Time-lock puzzle approach puts immense computational overhead on the message receiver, which makes it impractical for real-life scenarios. In addition, knowing computational complexity does not always lead to correct estimation of time that Bob needs to decrypt the message. Still, this approach is widely used for specific applications $[6,5,33,20,19]$. Using agent-based approach relieves Bob from performing non-stop computation, fixes the date of decryption precisely and does not require Alice to have information on Bob's capabilities. This comes at a price, though. The agents have to be trusted and they have to be available at the designated time.

In this paper we concentrate on the agent-based approach. Several agent-based constructions were suggested by Rivest et. al. [31]. For example, the agent could encrypt messages on request with a secret key

[^0]which will be published on a designated date by the agent. It also could precompute pairs of public/private keys, publish all public ones and release the private keys on the required days. A different scheme was proposed by Di Crescenzo et. al. [15], in which non-malleable encryption was used and receiver would engage in a conditional oblivious transfer protocol with the agent to decrypt the message. In [14], the authors proposed to use bilinear map based IBE scheme [8] for timed-release encryption. In particular, one can replace public key in IBE scheme by future time. An agent would publish a secret key corresponding to current day and consequently the ciphertext will not be decryptable until the specified future time. Another example using IBE was also proposed in [25], which again replaces identity in the encryption primitive with future time. Similar IBE-based approach was presented in [7]. Still security of these IBEbased approaches has never been proven rigorously by the authors. Furthermore, the constructions were either more expensive than our approach or did not provide sufficient functionalities.

1.1 Motivating Application: Sealed-Bid Auction

To motivate our construction, we first investigate the relation between timed-release cryptography and sealed-bid auction. In a sealed-bid auction, bidders submit their bids in closed form to the auction board. Once the bidding is closed, the bids are opened and the winning bid is chosen according to some publicly known metric [16]. Examples of such auctions include government construction bidding auctions, artwork and real estate sales among others. Because of special nature of such auctions, many security requirements need to be carefully analyzed and appropriate measures should be specified [29]. One of the problems that may occur in such auctions is cheating by the auction board [22]. A bid may be opened before the closing time and communicated to another bidder who can adjust his own bid appropriately. Thus, delayed opening of the bid plays a central role in such applications. The following are the main requirements in sealed-bid auctions:

1. The bids should not be opened by anyone until the bidding is closed.
2. The bids should be decryptable only by the auction board and only after the bidding close.
3. The auction board should be able to verify the identity of the bidder when the bids are opened.
4. The auction board should not be able to disavow bid submission.
5. Bidder should not be able to repudiate his bid.
6. Other requirements include correct calculation of winning bid, verification by bidders among many more, but they are beyond the scope of this paper and we presently dispense with these considerations. See $[16,24,22,11,29]$ for more details.

The first three requirements will be discussed in more detail in the next section. Non-repudiation of the bidder (fifth requirement) can be provided by digital signature mechanisms. An alternative way is to construct an encryption scheme that allows receiver to (efficiently) prove to a third party that the bid was indeed submitted by the alleged bidder. The bid submission can be repudiated by the auction board (fourth requirement) as follows: it can say that 1) the bid was never submitted, 2) the ciphertext is not decryptable, 3) the bid has a different value than what the bidder had submitted. The first attack can be resolved by requiring that the auction board signs the bids and publicly posts the signatures in the time-frame between bid-close and bid-opening. ${ }^{2}$ To deal with the second attack, the bidder can provide a proof that the ciphertext is decryptable. To resolve the third attack, the bidder can reveal the bid value and prove that the ciphertext contains this bid.

[^1]
1.2 PKAE and TR-PKAE

The first five requirements in Section 1.1 can be provided by combining timed-release cryptography with public key based authenticated encryption (PKAE) $[2,1]$. The goal of PKAE is to provide privacy and authentication at the same time. In PKAE, the sender uses his secret key and receiver's public key to encrypt a message such that 1) the resulting encryption stays confidential with respect to a third party (IND-CCA), and 2) it provides ciphertext/plaintext unforgeability with respect to the third party (TUFCTXT/PTXT). In addition, it is desirable to ensure that 3) sender's ciphertexts stay confidential even if his secret key is compromised (IND-KC-CCA) ${ }^{3}$ and 4) the receiver cannot forge valid ciphertexts from the sender to itself (RUF-CTXT/PTXT). ${ }^{4}$ If RUF-CTXT/PTXT does not hold and the receiver's secret key is compromised, the adversary will be able to impersonate the sender. A generic PKAE scheme that satisfies all the above is given in [2] and combines public key encryption and digital signature. A more efficient PKAE scheme DHETM [2] is based on symmetric encryption using a shared Diffie-Hellman key (at the expense of losing unforgeability by the receiver).

A solution that satisfies the requirements introduced in Section 1.1 can be obtained by combining PKAE and timed-release primitive. One such primitive can be easily derived from Identity-Based Encryption such as Fullldent by Boneh and Franklin [8]. The ID is replaced by time and the private key generator periodically outputs the private key associated with current time instead of the ID. The receiver will not be able to decrypt until the private key associated with the time used in encryption is published. Now, the plaintext can be first encrypted by PKAE and the result can be doubly encrypted by this timed-release primitive, or vice versa. So far, we have not seen any security or efficiency analysis of these combinations.

Our Contribution This paper proposes a new primitive, called TR-PKAE, that provides timed-release encryption and PKAE functionalities without using double encryption. The contribution of this paper is four fold:

- The proposed protocol is as efficient as FullIdent in terms of computational and spatial complexity.
- The proposed protocol requires minimal infrastructure (i.e. agent) that can be shared in many applications. The proposed protocol can be naturally converted to threshold version, which provides robustness as well as stronger security by allowing outputs of multiple agents to be used.
- The proposed protocol provides provable security under the random oracle model. Namely, it provides
- IND-CCA even when sender's private key and infrastructure are compromised.
- TUF-CTXT/PTXT, i.e. unforgeability of the ciphertext/plaintext by the third party (even when the infrastructure is compromised).
- IND-RTR-CCA, i.e. timed-release version of IND-CCA by the receiver. In other words, before the designated time, IND-CCA is provided with respect to the receiver.
- RUF-TR-CTXT/PTXT, i.e. the receiver cannot forge ciphertext from a sender to the receiver for the future time.
- In addition, even though our protocol does not use digital signatures, receiver can still prove to a third party the message origin without sacrificing security.

Organization: The rest of the paper is organized as follows. An overview of our approach is given in Section 2. In Section 3 we formulate the TR-PKAE cryptosystem and security definitions. In Section 4 we describe proposed protocol and state security results. Section 5 shows how a ciphertext receiver can prove

[^2]message origin to a third party, state security properties and corresponding security results. Section 6 discusses efficiency of the protocol. Finally, in Section 7 we conclude the paper.

2 Timed-Release Infrastructure: Overview

The central concept of our approach is a public agent, call it TiPuS (Timed-release Public Server). Every unit of time T, say every day, it publishes new self-authenticating information I_{T} which combines publicly computable (i.e. it can be precomputed for any future or past day by anyone) information P_{T} and its unique private information S. In other words, TiPuS acts similarly to NTP server [28]. The value P_{T} can be published on its web page or broadcasted when broadcast channel is available. Alice can encrypt a message using P_{T}, her private key and Bob's (receiver's) public key. Only when I_{T} is published on day T, will Bob be able to decrypt the message using I_{T}, his private key and Alice's public key.

We implement the above setting using admissible bilinear map defined in Section 4.1. Public parameters such as groups, bilinear map and a generator $P \in \mathbb{G}_{1}$ are setup independently of TiPuS. Each TiPuS chooses a secret $s \in \mathbb{Z}_{q}$ and publishes authenticated $P_{p u b}=s P$. On day T, it publishes $I_{T}=s H(T)$ (which corresponds to the secret key for identity T in Full-Ident). Returning to the previous notation, we have $s=S, H(T)=P_{T}$. The value of P_{T} is self-authenticating: namely, each user can compute $e(s P, H(T))$ and verify if it is equal to $e(P, s H(T))$, since by bilinearity $(s P, H(T))=e(P, s H(T))=e(P, H(T))^{s}$.

Every user A has private/public key pair $\left(S K_{A}, P K_{A}\right)=(a, a P)$, and $a P$ is certified by a CA. One can authenticate if A indeed possesses A. (for example, using short signatures [9]). Using the information provided by TiPuS, the mentioned public/secret keys and bilinear map, one can construct an efficient TR-PKAE. A high level description is as follows:
Setting : Alice is the sender and Bob is the receiver with secret/public pairs ($a, a P$) and $(b, b P)$ respectively. Encryption : Alice chooses random r, computes hash of bilinear map $e\left(s P+b P,(r+a) P_{T}\right)$ and uses it as the symmetric encryption key. Bob also receives $r \cdot b P$.
Decryption : Bob can extract $r P$, and having $s P_{T}$ can compute the above bilinear map as $e\left(r P+a P, s P_{T}+\right.$ $\left.b P_{T}\right)$. Using the results Bob will be able to decrypt.

The full detailed protocol and all required definitions/discussions are presented in later sections. Note the following practical aspects already exhibited by the sketched scheme:

User Secret vs TiPuS Secret: The secret value of TiPuS is not related to secret keys of users. It will be shown later that compromise of TiPuS does not jeopardize user secrets (more precisely, the protocol provides confidentiality and unforgeability with respect to TiPuS).
Usage: The published value $s P_{T}$ can be shared by multiple applications.
Scalability: The protocol can take full advantage of 1) several independent TiPuS's (if $s_{i} P$ is $P_{p u b}$ of the i-th token generator, then combined $P_{p u b}$ is $\sum s_{i} P$ and combined $s P_{T}$ is $\left.\sum s_{i} P_{T}\right), 2$) threshold generation of $s P_{T}$ (using Pederson's distributed threshold scheme [30], a brief setup is needed between token generators after which they can function independently). The increase in computational complexity is minimal when such schemes are applied to the protocol.

3 Basic Definitions

3.1 Basic Cryptosystem

The goal of proposed Timed-Release Public Key Based Authenticated Encryption (TR-PKAE) is to provide public key based authenticated encryption that takes sender's secret key, receiver's public key and
designated time so that the resulting ciphertext can be decrypted only by receiver and only starting with designated time using receiver's secret key, sender's public key and some secret that will be disclosed only on designated time. We specify TR-PKAE by the following randomized algorithms:

General Setup : On input of security parameter k, it produces in a randomized manner public parameters π_{g}, which include hash functions, message and ciphertext spaces among others.
Timed-Release Setup : On input of π_{g}, it produces in a randomized manner a pair $\left\langle\delta, \pi_{t r}\right\rangle$ where δ is a master secret and $\pi_{t r}$ the corresponding timed-release public parameters. This setup is carried out by TiPuS which keeps the master secret key confidential, while all other parameters are public. We denote the combined public parameters of π_{g} and $\pi_{t r}$ by π.
KeyGenerator $_{\pi_{g}}$: On input of valid private key $s k$ computes corresponding public key $p k$.
TokenGenerator $\pi, \delta:$ On input of valid time encoding T computes corresponding private token $t k n[T]$ using $\langle\delta, \pi\rangle$. This is the functionality performed by TiPuS which (at certain time-intervals) publishes tkn $[T]$ at time T.
Encrypt $_{\pi}$: On input $\left\langle s k_{A}, p k_{B}, m, T\right\rangle$ returns authenticated timed-release ciphertext c denoting encryption from sender A to receiver B of message m and time encoding T.
Decrypt $_{\pi}$: On input $\left\langle p k_{A}, s k_{B}, \widehat{c}, \operatorname{tkn}[T]\right\rangle$ outputs plaintext \widehat{m} and "true" if decryption is successful and "false" otherwise.

For consistency, we require that, $\forall p k_{A}, p k_{B}$, and setup values, if $c=$ Encrypt $_{\pi}\left[s k_{A}, p k_{B}, m, T\right]$ and $\widehat{m}=$ $\operatorname{Decrypt}_{\pi}\left[p k_{A}, s k_{B}, c, t k n[T]\right]$ then $\widehat{m}=m$.

3.2 Security

The introduction of TokenGenerator and the master secret leads to the following question: how much should the security of the cryptosystem depend on these timed-release additions? Should the cryptosystem maintain typical PKAE [2] security properties even if the master secret is compromised? One of our goals is to separate the timed-release infrastructure from PKAE security as much as possible. That is, the timed-release infrastructure should only affect the timed-release properties of the cryptosystem and not the PKAE properties. With this in mind, we discuss required security properties below.

3.2.1 Confidentiality

Suppose Alice is the sender, Bob is the receiver and Alice composes a ciphertext for Bob using designated time T. It is standard to require that the PKAE cryptosystem be secure against IND-CCA adversaries $[34,4,2]$. This confidentiality must be provided even if all tokens $t k n[T]$ are given to the adversary, i.e. it should be time-independent. A stronger requirement is to demand IND-CCA security even if the master secret is out in the open. This requirement separates the timed-release infrastructure from the cryptosystem in the following sense: even if all master secrets are compromised, the sender and receiver will still be guaranteed IND-CCA security against any third party. To strengthen security even more, one can require that the scheme stays IND-CCA even if the secret key of the sender is compromised, ensuring that the adversary will not be able to obtain information on any ciphertexts generated by the sender, even though it will be able to decrypt ciphertexts received by the sender.

The timed-release functionality, i.e. stopping decryption until the designated time, is provided by the token-generating infrastructure (i.e. TiPuS). Not knowing the corresponding token is what keeps the receiver from decrypting ciphertext until a designated time. Therefore, any TR-PKAE cryptosystem must
provide some confidentiality guarantees against the receiver itself until the corresponding token is made available.

Below, we sketch two particular games which will be used in security proofs: 1) IND-CCA game in which the adversary is given the secret key of the sender and the master secret and 2) IND-RTR-CCA game in which the ciphertext receiver is launching an IND-CCA attack for a given designated time.
[IND-KC-CCA] IND-CCA with Key Compromise: Below we sketch a simple variation of IND-CCA game in which the adversary is given the secret key of the sender (i.e. we would like the scheme to provide IND-CCA confidentiality even in the case of sender's key compromise) and the master secret (to separate confidentiality against third party from the timed-release infrastructure).

We say that function $g: \mathbb{R} \rightarrow \mathbb{R}$ is negligible if $g(k)$ is smaller than $1 / f(k)$ for any polynomial f (and $k>n_{f}$). TR-PKAE encryption scheme is said to be semantically secure against an adaptive chosen ciphertext attack with key compromise (IND-KC-CCA) if no polynomial adversary (denoted by $\mathcal{A}_{\text {IND-кс-CCA }}$) has a non-negligible advantage (denoted by $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{F} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\text {IND }}(k)$) against the challenger in the following IND-KC-CCA game:

Setup : The challenger runs setup with security parameter k and generates $\langle\delta, \pi\rangle$, receiver public/secret key pair $\left(p k_{b}, s k_{b}\right)$ and sender public/private pair set $\left\{\left(p k_{a}, s k_{a}\right)\right\}$. The adversary is given $\left\langle\pi, \delta,\left\{s k_{a}\right\}, p k_{b}\right\rangle$. Pre-Challenge : Adversary issues the following queries

Random Oracle Queries: Adversary may query any random oracle, which will model hash functions.
Decryption Queries:Adversary submits ciphertext, time encoding T and $p k_{a}$. Challenger responds with decryption of ciphertext using $p k_{a}$ (sender), $s k_{b}$ (receiver) and time encoding T.
Selection : Adversary chooses two distinct equal-size plaintexts m_{0}, m_{1}, time T, sender key $s k_{a}$ and submits it to the challenger.
Challenge : Challenger flips $\beta \in\{0,1\}$ and returns encryption of m_{β} to adversary using $s k_{a}$ (sender), $p k_{b}$ (receiver) and time T.
Queries Repeated : Adversary repeats queries but does not ask to decrypt the challenge ciphertext using challenge time and keys.
Guess : Adversary answers the challenge with $\widehat{\beta}$ and wins if $\widehat{\beta}=\beta$
We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A} \mathcal{A}, \mathcal{A}}^{\mathrm{IND}-\text { - }}(k)=\operatorname{Pr}[\widehat{\beta}=\beta]-1 / 2$, where k is the system security parameter and probability is taken over random bits used by the challenger and adversary.
[IND-RTR-CCA] Timed-Release Receiver IND-CCA: A prerequisite of a secure TR-PKAE scheme is message confidentiality against the receiver itself prior to the time when the secret $\operatorname{tkn}[T]$ that corresponds to the designated time is made available. We modify the IND-CCA game to restrict adversary access to $t k n[T]$ for designated time, which means that master secret is no longer available to the adversary. Note that this type of security is inherently dependent on the timed-release infrastructure. The adversary plays the ciphertext receiver in the game. In the decryption queries, we allow adversary to decrypt messages destined even for this designated time as long as the ciphertext is different from the challenge.

We say that TR-PKAE encryption scheme is timed-release semantically secure against a receiver adaptive chosen ciphertext attack (IND-RTR-CCA) if no polynomial adversary (denoted by $\mathcal{A}_{\text {IND-RTR-CCA }}$) has a non-negligible advantage (denoted by $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A E}, \mathcal{A}}^{\text {IND }}(k)$) against the challenger in the following IND-RTR-CCA game:
Setup : The challenger runs setup with security parameter k and generates $\langle\delta, \pi\rangle$, sender public/secret key pair $\left(p k_{a}, s k_{a}\right)$, receiver public/private pair set $\left\{\left(p k_{b}, s k_{b}\right)\right\}$ and designated time T_{a}. The public key $p k_{a}$, set $\left\{s k_{b}\right\}$ and T_{a} are given to the adversary.

Pre-Challenge :

Random Oracle Queries : Adversary may query any random oracle.
Queries for $\operatorname{tkn}[T]$: Adversary submits T where $T \neq T_{a}$ and receives $t k n[T]$.
Decryption Queries : Adversary submits ciphertext and time T. Challenger responds with decryption of ciphertext using $p k_{a}$ (sender), $s k_{b}$ (receiver) and $t k n[T]$.
Selection : Adversary chooses two distinct equal-size plaintexts m_{0}, m_{1} and submits them to the challenger. Challenge : Challenger flips $\beta \in\{0,1\}$ and returns encryption of m_{β} to adversary using $s k_{a}$ (the sender), $p k_{b}$ (the receiver) and time T_{a}.
Queries Repeated : Adversary repeats queries but does not ask to decrypt the challenge ciphertext using the same parameters used in the challenge.
Guess: Adversary answers the challenge with $\widehat{\beta}$ and wins if $\widehat{\beta}=\beta$
We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A E}, \mathcal{A}}^{\text {IND }}(k)=\operatorname{Pr}[\widehat{\beta}=\beta]-1 / 2$.
The difference between IND-KC-CCA and IND-RTR-CCA is in reversal of adversary roles. In IND-TR-CCA, the goal is to ensure security against the receiver itself prior to designated time.

3.2.2 Ciphertext (Plaintext) Forgery

If a cryptosystem has a goal of providing some kind of authentication, one should analyze what types of forgeries are possible or impossible. We concentrate on the ciphertext forgery (plaintext forgery is defined analogously). We consider two types of ciphertext forgery: 1) forgery by adversary that does not know the sender's and receiver's secret keys (TUF-CTXT) and 2) forgery by ciphertext receiver itself (RUF-CTXT) [2]. If the TR-PKAE is not secure against TUF-CTXT then the scheme cannot claim authentication properties since a third-person may be able to forge decryptable (perhaps containing junk) ciphertext between two users. If TR-PKAE is not secure against RUF-CTXT, then 1) the receiver itself can generate the ciphertext allegedly coming from another user to itself, which means that the receiver will not be able to prove to anybody that ciphertext was generated by the alleged sender even if all secret information is disclosed, and 2) consequently, if receiver private key is compromised, the attacker can impersonate any sender to this receiver. We introduce the following games which will be used in security proofs.
[RUF-TR-CTXT/PTXT] Timed-Release RUF-CTXT (PTXT) We introduce a slightly weaker notion of RUF-CTXT, which requires that the receiver should not be able to forge ciphertext to itself for a future date. Given such unforgeability: 1) the receiver should discard any ciphertexts received past decryption dates if his secret key may be compromised and 2) the receiver may be able to prove to a 3 rd party that ciphertext was generated by the alleged sender, provided he can produce a proof of ciphertext existence prior to the decryption date. The game below is a slight modification of RUF-CTXT in which the receiver is not given access to one particular token. We say that TR-PKAE encryption is secure against timed-release RUF-CTXT, denoted by RUF-TR-CTXT, if no polynomial adversary (denoted by $\mathcal{A}_{\text {RUf-tr-стхт }}$) has a non-negligible advantage (denoted by $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\text {RUF-Tid }}(k)$) against the challenger in the following RUF-TR-CTXT game:

Challenger Setup : The challenger runs setup with security parameter k and generates $\langle\delta, \pi\rangle$, public/private key pair $\left(p k_{s}, s k_{s}\right)$ of sender and time T_{a}. The adversary receives $\left\langle\pi, p k_{s}, T_{a}\right\rangle$.
Adversary Setup : Adversary runs setup with security parameter k, generates public/private key pair ($p k_{r}, s k_{r}$) and registers it (with a CA for example)

Pre-Forgery :

Random Oracle Queries : Adversary may query any random oracle
Queries for $\operatorname{tkn}[T]$: Adversary submits $T \neq T_{a}$ and receives $t k n[T]$
Encryption Queries : Adversary submits plaintext m, time T and obtains encryption using $s k_{s}$ (sender), $p k_{r}$ (receiver) and T.
Forgery : Adversary submits ciphertext c and private key $s k$.
Outcome : Adversary wins the game if c successfully decrypts using $p k_{s}$ (sender), $s k$ (receiver) and T_{a}, and c was not obtained during encryption queries using the same parameters.

We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\mathrm{RUF}-\mathrm{A}-t X T}(k)=\operatorname{Pr}\left[\operatorname{Decrypt}\left[c, p k_{s}, s k, T_{a}\right]=t r u e\right]$. By requiring that in the above game the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corresponding notion of RUF-TR-PTXT. We skip the details.

TUF-CTXT (PTXT) In addition, below we state a time-independent TUF-CTXT game. A good question would be to ask why would one require TUF-CTXT security if the best we can provide with respect to the receiver is RUF-TR-CTXT? Perhaps we should only require TUF-TR-CTXT, which will automatically be provided given RUF-TR-CTXT security. The main reason for TUF-CTXT security is to ensure that some kind of unforgeability is guaranteed even if the master secret is compromised, i.e. we would like to separate timed-release functionality from PKAE. Thus, in TUF-CTXT the master key is given to the adversary. We say that TR-PKAE encryption is secure against third-person chosen-plaintext ciphertext forgery (TUF-CTXT) if no polynomial adversary (denoted by $\mathcal{A}_{\text {TUF-Стхт }}$) has a non-negligible advantage (denoted by $\mathbf{A d v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\mathrm{TUF}}(k)$) against the challenger in the following TUF-CTXT game:

Setup : The challenger runs setup with security parameter k and generates $\langle\delta, \pi\rangle$ and public/private key pairs $\left(p k_{a}, s k_{a}\right)$ and $\left(p k_{b}, s k_{b}\right)$ of sender and receiver correspondingly. The public keys and both δ and π are given to the adversary.

Pre-forgery :

Random Oracle Queries : Adversary may query any random oracle
Encryption Queries : Adversary submits plaintext m, time T and obtains encryption using $s k_{a}$ (sender), $p k_{b}$ (receiver) and T.
Forgery : Adversary submits ciphertext c and T.
Outcome : Adversary wins the game if c successfully decrypts using $p k_{a}$ (sender) and $s k_{b}$ (receiver), and c was not obtained during encryption queries.

We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\mathrm{TUF}}(k)=\operatorname{Pr}\left[\operatorname{Decrypt}\left[c, p k_{a}, s k_{b}, T\right]=\right.$ true $]$. As in the previous cases, we obtain corresponding TUF-PTXT game.

4 The Proposed TR-PKAE

First, we review the bilinear maps, the assumptions that we make and BDHP definition. Then we specify the proposed protocol and discuss security.

4.1 Bilinear Maps

Let \mathbb{G}_{1} and \mathbb{G}_{2} be two abelian groups of prime order q. We will use additive notation for $\mathbb{G}_{1}(a P$ denotes the P added a times for element $P \in \mathbb{G}_{1}$) and multiplicative notation for $\mathbb{G}_{2}\left(g^{a}\right.$ denotes the g multiplied a times for element g of \mathbb{G}_{2}).

A map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ is called an admissible bilinear map if it satisfies the following conditions:

1. Bilinearity For any $P, Q \in \mathbb{G}_{1}$ and $a, b \in Z_{q}, e(a P, b Q)=e(P, Q)^{a b}$.
2. Non-degeneracy $e(P, Q) \neq 1$ for at least one pair of $P, Q \in \mathbb{G}_{1}$.
3. Efficiency There exists an efficient algorithm to compute the bilinear map.

The Weil and Tate pairings can be used to construct an admissible bilinear pairing. For groups, one can take \mathbb{G}_{1} to be a subgroup of an elliptic curve and \mathbb{G}_{2} a subgroup of the multiplicative group of a finite field. See the details of pairings and the conditions on curves in [13].

We make several comments about $\mathbb{G}_{1}, \mathbb{G}_{2}$ and $e(\cdot, \cdot)$.

1. Discrete Logarithm Problem (DLP) is assumed to be hard in \mathbb{G}_{2}
2. It follows that DLP is also hard in \mathbb{G}_{1} [27]
3. Decisional Diffie-Hellman Problem (DDHP) is easy in \mathbb{G}_{1} [23].
4. Decisional Diffie-Hellman Problem (DDHP) is hard in \mathbb{G}_{2}.
5. Hardness of DDHP in \mathbb{G}_{2} implies that, $\forall Q \in \mathbb{G}_{1}^{*}$, inverting the isomorphism that takes $P \in \mathbb{G}_{1}$ and computes $e(P, Q)$ is hard [8]

Let \mathcal{G} be $B D H$ Parameter Generator [8], i.e. \mathcal{G} is a randomized algorithm that takes positive integer input k, runs in polynomial time in k and outputs prime q, descriptions of $\mathbb{G}_{1}, \mathbb{G}_{2}$ of order q, description of admissible bilinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ along with polynomial deterministic algorithms for group operations and e and generators $P \in \mathbb{G}_{1}, Q \in \mathbb{G}_{2}$.

We say that algorithm \mathcal{A} has advantage $\epsilon(k)$ in solving BDHP for \mathcal{G} if there exists k_{0} such that:

$$
\begin{align*}
& \operatorname{Adv}_{\mathcal{G}, \mathcal{A}}(k)=\operatorname{Pr}\left[\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle \leftarrow \mathcal{G}\left(1^{k}\right), P \leftarrow \mathbb{G}_{1}^{*}, a, b, c \leftarrow \mathbb{Z}_{q}^{*}:\right. \\
& \tag{1}\\
& \left.\qquad \mathcal{A}\left(q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, P, a P, b P, c P\right)=e(P, P)^{a b c}\right] \geq \epsilon(k), \forall k>k_{0}
\end{align*}
$$

We say that \mathcal{G} satisfies Bilinear Diffie-Hellman Assumption (BDH assumption) if for any randomized polynomial algorithm \mathcal{A} and any polynomial $f \in \mathbb{Z}[x]$ we have $A d v_{\mathcal{G}, \mathcal{A}}(k)<1 / f(k)$ for sufficiently large k

4.2 Description of the Scheme

Let \mathcal{G} be BDH Parameter Generator that satisfies BDH assumption.
General Setup : Given security parameter $k \in \mathbb{Z}^{+}$, the following steps are followed
$1: \mathcal{G}$ takes k and generates a prime q, two groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ of order q and an admissible bilinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$. Arbitrary generator $P \in \mathbb{G}_{1}$ is chosen.
2 : The following cryptographic hash functions are chosen: 1$\left.)^{5} H_{1}:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}^{*}, 2\right) H_{2}: \mathbb{G}_{2} \rightarrow\{0,1\}^{n}$ for some $n, 3) H_{3}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{Z}_{q}^{*}$ and 4) $H_{4}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. These functions will be treated as random oracles in security considerations.
3 : The message space is chosen to be $\mathcal{M}=\{0,1\}^{n}$ and the ciphertext space is $\mathcal{C}=\mathbb{G}_{1}^{*} \times\{0,1\}^{n} \times\{0,1\}^{n}$. The general system parameters are $\pi_{g}=\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, P, H_{i}, i=1 \ldots 4\right\rangle$

Timed-Release Setup :

1: Random $s \in \mathbb{Z}_{q}^{*}$ is chosen and one sets $P_{p u b}=s P$.
2 : The timed-release public system parameter is $\pi_{t r}=P_{p u b}$ and the master key δ is $s \in \mathbb{Z}_{q}^{*}$. The combined public parameters are $\pi=\pi_{g} \| \pi_{t r}=\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, P, P_{p u b}, H_{i}, i=1 \ldots 4\right\rangle$
KeyGenerator : Given secret key $s k=a \in \mathbb{Z}_{q}^{*}$, the corresponding public key $p k$ is $a P \in \mathbb{G}_{1}^{*}$.

[^3]TokenGenerator : On input of time encoding $T \in\{0,1\}^{n}$ outputs $s P_{T}$ where $P_{T}=H_{1}(T)$
Encrypt : Given secret key $s k_{a}$ of sender, public key $p k_{b}$ of receiver, plaintext $m \in \mathcal{M}$ and designated time encoding T, encryption is done as follows: 1) random $\sigma \in\{0,1\}^{n}$ is chosen, one computes $r=H_{3}(\sigma, m)$ and sets $\left.Q=r \cdot p k_{b}, 2\right)$ symmetric key is computed as $K=H_{2}\left[e\left(P_{p u b}+p k_{b},\left(r+s k_{a}\right) P_{T}\right)\right]$ and 4) the ciphertext c is set to be $c=\left\langle Q, \sigma \oplus K, m \oplus H_{4}(\sigma)\right\rangle$
Decrypt : Given ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle$ encrypted using $s k_{a}$ and $p k_{b}$ and time T, one decrypts it as follows: 1) $\operatorname{tkn}[T]=s P_{T}$ is obtained, 2) one computes $R=s k_{b}^{-1} Q$ and $\widehat{K}=H_{2}\left[e\left(R+p k_{a}, s P_{T}+s k_{b} P_{T}\right)\right]$, $3)$ one retrieves $\widehat{\sigma}=c_{1} \oplus \widehat{K}$ and then $\widehat{m}=c_{2} \oplus H_{4}(\widehat{\sigma})$ and 4) one verifies $R=H_{3}(\widehat{\sigma}, \widehat{m}) P$

The symmetric encryption scheme above is due to Fujisaki and Okamoto [18]. Next we show that the proposed encryption scheme is consistent. Given ciphertext $c=\left\langle Q, \sigma \oplus K, m \oplus H_{4}(\sigma)\right\rangle$ computed using $s k_{a}, p k_{b}$ and T, we note that in the corresponding Decrypt computations the following hold:

1. $R=r P$
2. $\widehat{K}=K$ since $e\left(R+p k_{a}, s P_{T}+s k_{b} P_{T}\right)=e\left(r P+s k_{a} P, s P_{T}+s k_{b} P_{T}\right)=e\left(\left[r+s k_{a}\right] P,\left[s+s k_{b}\right] P_{T}\right)=$ $e\left(\left[s+s k_{b}\right] P,\left[r+s k_{a}\right] P_{T}\right)=e\left(P_{p u b}+p k_{b},\left[r+s k_{a}\right] P_{T}\right)$.
3. It follows that $\widehat{\sigma}=\sigma$ since $c_{1} \oplus \widehat{K}=(\sigma \oplus K) \oplus K=\sigma$
4. $\widehat{m}=m$ since $c_{2} \oplus H_{4}(\widehat{\sigma})=\left(m \oplus H_{4}(\sigma)\right) \oplus H_{4}(\sigma)=m$
5. It follows that $R=r P=H_{3}(\widehat{\sigma}, \widehat{m}) P$

Thus the original plaintext is retrieved.

4.3 Security of the Scheme

The following security results apply to the proposed TR-PKAE. The proofs are given in Appendix B. First, we note that proposed scheme satisfies a stronger version of IND-CCA with sender key compromise.

Theorem 1 (IND-KC-CCA). Let \mathcal{A} be IND-KC-CCA adversary, q_{d} be the number of decryption queries and q_{2} the number of queries made to the H_{2} oracle. Assume that $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{I N D-K C-C A}(k) \geq \epsilon$. Then there exists an algorithm that solves $B D H P$ with advantage $\boldsymbol{A d v}(k) \geq \frac{2 \epsilon}{q_{d}+q_{2}}$ and running time $O($ time $(\mathcal{A}))$.

Also, the proposed protocol is TUF-CTXT secure.
Theorem 2 (TUF-CTXT). Let \mathcal{A} be TUF-CTXT adversary, let q_{e} be the number of encryption queries and q_{2} be the number of queries to random oracle H_{2}. Assume that $\boldsymbol{A} \boldsymbol{d v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A E}, \mathcal{A}}^{T U F-C X}(k) \geq \epsilon$. Then there exists an algorithm that solves $B D H P$ with advantage $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}(k) \geq\left[\frac{\epsilon}{q_{e} \cdot q_{2}+1}\right]^{2}$ and running time $O($ time $(\mathcal{A}))+$ $O\left(q_{e} \cdot q_{2}\right)$.
The corresponding result/proof for TUF-PTXT is omitted, since it is similar to that of TUF-CTXT.
Theorem 3 (IND-RTR-CCA). Let \mathcal{A} be IND-RTR-CCA adversary, let q_{d} be the number decryption queries and q_{2} the number of queries made to the H_{2} oracle. Assume that $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A E}, \mathcal{A}}^{I N D-R T R-C C A}(k)$. Then there exists an algorithm that solves $B D H P$ with advantage $\boldsymbol{A d v}(k) \geq \frac{2 \epsilon}{q_{d}+q_{2}}$ and running time $O($ time $(\mathcal{A}))$.

Theorem 4 (RUF-TR-CTXT). Let \mathcal{A} be RUF-TR-CTXT adversary, let q_{e} be the number of encryption queries and q_{2} be the number of queries to random oracle H_{2}. Assume that $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{R} \mathcal{A E}, \mathcal{A}}^{\text {RUFTMT }}(k) \geq \epsilon$. Then there exists an algorithm that solves BDHP with advantage $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}(k) \geq \frac{\epsilon}{q_{e} \cdot q_{2}+1}$ and running time $O(\operatorname{time}(\mathcal{A}))+O\left(q_{e} \cdot q_{2}\right)$.

The corresponding result/proof for RUF-TR-PTXT is also omitted, since it is similar to that of RUF-TRCTXT.

5 Proof of Ciphertext/Plaintext Origin to a Third Party For The Proposed Scheme

In this section, we restrict ourselves to the specific implementation of TR-PKAE proposed in the previous sections.

5.1 Basic Definitions

Let $p k_{b}$ be the public key of receiver, $s k_{a}$ the public key of sender and T the designated time. We note that given security against RUF-TR-CTXT (PTXT) and TUF-TR-CTXT (PTXT), the receiver cannot forge a ciphertext with specified parameters unless $t k n[T]$ is disclosed. If receiver obtains a time-stamp on the ciphertext from a trusted signing authority at time at which $\operatorname{tkn}[T]$ has not been disclosed (where T is the designated time), and eventually proves that the ciphertext can be constructed using $p k_{a}$ (sender), $s k_{b}$ (receiver) and $t k n[T]$ to a third party, then this would prove that the ciphertext was indeed generated by the alleged sender. ${ }^{6}$.

Now suppose the sender received a time-stamped signature from the receiver on the ciphertext prior to the decryption time. Suppose now that the receiver decides to 1) deny that $p k_{a}$ had sent the ciphertext, or 2) claim that the ciphertext is not decryptable, or 3) claim that the plaintext contains a value different from what the sender alleges. In this case, if the sender manages to prove to a third party that the ciphertext was formed correctly this type of attack could be prevented. Both of these situations are directly applicable to sealed-bid auction as discussed in Section 1.1. Below we concentrate only on proof by the receiver, as we proceed, but we will comment on the case when the sender has to prove to a third party.

When we look at the scheme, it is rather easy to see that the receiver may be able to (efficiently) prove ciphertext origin to a third party only if he is willing to: 1) disclose the plaintext, 2) disclose the symmetric encryption key K. In addition, he will have to prove that the hash pre-image of K has a certain form which may leak some information to the verifier. This is somewhat expected since the scheme uses symmetric encryption. Still, it turns out that the scheme will retain forward/backward security with respect to time. More precisely, the verifier will only be able to forge ciphertexts for this particular sender/receiver pair and only for the designated time used in the verified ciphertext.

We define the following additional algorithms:
TokenTester ${ }_{\text {TokenGenerator }}$: Given designated time T, it outputs either (corresponding token is) "published" or "unpublished". Note that this algorithm depends on the internal state of TokenGenerator.
TimeStamp TokenGenerator : Given signing authority $\mathcal{S A}$, on input of any message c it generates $t s_{\mathcal{S A}}\left(c, T\right.$, Tokens $\left._{\text {pub }}\right)$, signature on $\left\langle c, T\right.$, Tokens $\left._{\text {pub }}\right\rangle$ using $\mathcal{S} \mathcal{A}$'s secret key (and possibly different cryptosystem). Tokenspub denotes a set of times for which TokenTester outputs "published".
We will present a protocol for the proposed TR-PKAE scheme that allows receiver to prove to a third-party the ciphertext/plaintext origin. Abstractly, the corresponding algorithm is defined as follows:
Prove $_{\pi}$: This is an abstract function which involves a prover P and verifier V.
Prover submits $\left\langle p k_{A}, p k_{B}, T, \mathcal{R}\left(s k_{B}, p k_{A}, T, t k n[T], c\right), t s_{\mathcal{S A}}\left(c, T^{\prime}\right.\right.$, Tokens $\left.\left._{p u b}\right)\right\rangle$ to the verifier, where $c \in$ $\{0,1\}^{n}$ is the corresponding ciphertext allegedly encrypted using $s k_{A}$ (sender), $p k_{B}$ (receiver) and time T. Then both parties engage in an interactive proof. Verifier outputs either "true" or "false", where "true" means that verifier confirms that ciphertext (and corresponding plaintext) were indeed generated by A.
For consistency, we require that Prove $_{\pi}$ outputs "true" in the case of honest-prover and honest-verifier.

[^4]
5.2 Protocol Description

As we have seen previously, our specific construction for TR-PKAE is based on symmetric key encryption. In general, an authenticated encryption based on symmetric key encryption does not allow for the receiver to prove the origin of the message to a third party. Nevertheless, this property would be desirable, even though perhaps counter-intuitive. In this section, we show how the proposed TR-PKAE scheme allows for proof of ciphertext/plaintext origin to a third party.

The Prove algorithm works as follows:
Setting : Prover P with public/secret pair $\left\langle p k_{p}, s k_{p}\right\rangle$, verifier V, ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle$, time T, timestamp $t s_{\mathcal{S A}}[c$, Tokenspub $]$. Assume that $t k n[T]$ has been made public, i.e. TokenTester(T) outputs "published".
Decryption : Prover decrypts c using $p k_{a}$ (sender), $s k_{p}$ (receiver) and $t k n[T]$. Corresponding σ, plaintext m are retrieved.
Step 1 : Prover picks random $r \in \mathbb{Z}_{q}^{*}$ and submits $\left\langle T, m, \sigma, K B, J_{1}=k P_{T}, J_{2}=s k_{p} J_{1}, t s \mathcal{S A}\left[c\right.\right.$, Tokens $\left.\left.{ }_{p u b}\right]\right\rangle$ to the verifier where $K B=e\left(s k_{p}^{-1} Q+p k_{a}, t k n[T]+s k_{p} P_{T}\right)$.
Step 2 :

1. Verifier computes ciphertext using submitted $\sigma, m, K B$ and T.
2. It verifies the time-stamp $t s_{\mathcal{S A}}$ using the computed ciphertext and public key of $\mathcal{S A}$.
3. It checks that $T \notin$ Tokens $_{\text {pub }}$

Step 3 : Verifier checks equality $e\left(J_{2}, P\right)=e\left(J_{1}, p k_{p}\right)$ and then computes

1. $K B_{2}=e\left(r P+p k_{a}, t k n[T]\right) e\left(p k_{p}, r P_{T}\right)$ where $r=H_{3}(\sigma, m)$
2. $K B_{\text {part }}=K B / K B_{2}$
3. $K B^{*}=e\left(p k_{a}, J_{2}\right)$

Interactive Proof : Let $L^{*}=e\left(J_{1}, P_{T}\right)$ and $L=e\left(P_{T}, P_{T}\right)$. Prover proves to verifier that $K B_{\text {part }}^{k^{*}}=K B^{*}$ and $L^{k^{*}}=L^{*}$ for the same k^{*} (and knowledge of k^{*}) using zero-knowledge proof [3]. Alternatively expressed, P proves equality $\log _{K B_{\text {part }}} K B^{*}=\log _{L} L^{*}$ and knowledge of the logarithms.

From group properties, it follows that if $e\left(J_{2}, P\right)=e\left(J_{1}, p k_{p}\right)$, then $\left\langle J_{1}, J_{2}\right\rangle$ must have the form $\left\langle X, s k_{p} X\right\rangle$ for some $X \in \mathbb{G}_{1}$. Note that $K B_{2} \cdot e\left(p k_{a}, s k_{p} P_{T}\right)=e\left(r P+p k_{a}, t k n[T]+s k_{p} P_{T}\right)$. Thus the prover has to show that $K B=K B_{2} \cdot e\left(p k_{a}, s k_{p} P_{T}\right)$, or equivalently that $K B_{\text {part }}=K B / K B_{2}=$ $e\left(p k_{a}, s k_{p} P_{T}\right)$. Verifier can compute $e\left(p k_{a}, s k_{p} X\right)$. Zero-knowledge proof proves knowledge of $k^{*}=\log _{P_{T}} X$ and that $e\left(p k_{a}, s k_{p} X\right)^{1 / k^{*}}=K B_{\text {part }}$. Noting that $1 / k^{*}=\log _{X} P_{T}$, we obtain that $e\left(p k_{a}, s k_{p} X\right)^{1 / k^{*}}=$ $e\left(p k_{a}, s k_{p} \log _{X}\left(P_{T}\right) X\right)=e\left(p k_{a}, s k_{p} P_{T}\right)$. As a result, this proves that $K B$ has the required form. Since TR-PKAE is secure against RUF-TR-CTXT and TUF-CTXT and provided the time-stamp verifies, it follows that the alleged sender had generated the ciphertext.
Leaked Information The verification protocol exposes the following information to the verifier: plaintext/ciphertext, $s k_{p}\left(k P_{T}\right), k P_{T}$ and $e\left(p k_{a}, s k_{p} P_{T}\right)$.

Note that due to the symmetric nature of the protocol (once $\operatorname{tkn}[T]$ is known), the sender can prove to a third party that the ciphertext/plaintext is generated by either the sender or receiver if he saves the value r used in the encryption. The protocol is almost identical except that in Step 3, the sender submits $J_{2}=s k_{a} J_{1}$. This property is useful in sealed-bid auction.

5.3 Security Experiments

From now on we consider solely the case when the prover is the receiver. The case when the prover is the sender is almost the same with obvious modifications. We need to answer the following questions:

1. Does the above protocol affect confidentiality of prover's other ciphertexts?
2. Can the verifier generate ciphertexts on behalf of the prover using the obtained information?

Below we briefly mention the security properties but defer the full game descriptions to the Appendix A

5.3.1 Confidentiality

To answer the first question, we need to determine if the proposed TR-PKAE scheme will stay IND-KC-CCA and IND-RTR-CCA given the information obtained by verifier.

IND-KC V_{V}-CCA We modify IND-KC-CCA game to include verifications. More precisely, the adversary is again in posession of a sender's secret key and obtains information leaked by the receiver during verifications for ciphertexts sent by any sender, other than for ciphertext generated during the challenge.

IND-RTR ${ }_{V}$-CCA We also modify IND-RTR-CCA to add verifications. Now, the receiver obtains information exposed during verifications carried out by the sender.

5.3.2 Ciphertext (Plaintext) Forgery

Note that in the proposed scheme, the verifier obtains $e\left(p k_{a}, s k_{p} P_{T}\right)$ which will allow the verifier to forge ciphertexts between this sender and receiver for time T. Thus, we lose TUF-CTXT/PTXT. Still, it turns out that given verification for designated time T^{\prime} it will be hard for the verifier to forge a ciphertext if one the following holds: 1) designated time of the forgery $T \neq T^{\prime}, 2$) either the sender or receiver of the forgery was not part of the verified ciphertext. This will be true even if the master key is known to the adversary. Besides TUF-CTXT, we also need to ask ourselves if RUF-TR-CTXT is retained, that is, if the verifier can forge ciphertext with the prover as the sender and verifier as the receiver for a designated time T without knowledge of corresponding $\operatorname{tkn}[T]$.

TUF-TR ${ }_{V}$-CTXT (PTXT) The corresponding game is a modification of TUF-CTXT game. Now, the challenger also generates time T_{c}. The adversary is allowed to obtain verification information on ciphertexts using the above sender and receiver only for designated time $T \neq T_{c}$. Otherwise, it can obtain any verification information. The goal is to forge a valid ciphertext with these public keys (representing sender and receiver) and time T_{c}.

RUF-TR ${ }_{V}$-CTXT (PTXT) We modify the RUF-TR-CTXT(PTXT) in which the adversary (receiver) obtains information exposed during verifications carried out by the sender.

5.4 Security Results

Below we state security properties of TR-PKAE against IND-KC $V_{V}-\mathrm{CCA}, \mathrm{IND}^{\text {-RTR }}{ }_{V}$-CCA, $\mathrm{TUF}^{\text {-TR }}{ }_{V^{-}}$ CTXT and RUF-TR ${ }_{V}$-CTXT. The proofs are given in Appendix B.

Theorem 5 (IND-KC V_{V}-CCA). Let \mathcal{A} be IND-KC $V_{V}-C C A$ adversary, q_{d} be the number of decryption queries and q_{2} the number of queries made to the H_{2} oracle. Assume that $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\text {IND-KC }-C C A}(k) \geq \epsilon$. Then there exists an algorithm that solves BDHP with advantage $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}(k) \geq\left[\frac{2 \epsilon}{q_{d}+q_{2}}\right]^{2}$ and running time $O($ time $(\mathcal{A}))$.

Theorem 6 (IND-RTR ${ }_{V}$-CCA). Let \mathcal{A} be IND-RTR $V_{V}-C C A$ adversary, let q_{d} be the number of decryption queries and q_{2} the number of queries made to the H_{2} oracle. Assume that $\boldsymbol{A d v} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{I N-R T-C C A}(k) \geq \epsilon$. Then there exists an algorithm that solves BDHP with advantage $\boldsymbol{A d v}(k) \geq \frac{2 \epsilon}{q_{d}+q_{2}}$ and running time $O($ time $(\mathcal{A}))$.

Theorem 7 (TUF-TR ${ }_{V}$-CTXT). Let \mathcal{A} be TUF-TR R_{V} CTXT adversary, let q_{e} be the number of encryption queries and q_{2} be the number of queries to random oracle H_{2}. Assume that $\boldsymbol{A d v} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{T U F-T R T}(k) \geq \epsilon$. Then there exists an algorithm that solves BDHP with advantage $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}(k) \geq \frac{\epsilon}{q_{e} \cdot q_{2}+1}$ and running time $O($ time $(\mathcal{A}))+O\left(q_{e} \cdot q_{2}\right)$.

Again, TUF-TR ${ }_{V}$-PTXT can be proven similarly to $\mathrm{TUF}-\mathrm{TR}_{V}$-CTXT.
Theorem 8 (RUF-TR ${ }_{V}$-CTXT). Let \mathcal{A} be RUF-TR R_{V} CTXT adversary, let q_{e} be the number of encryption queries and q_{2} be the number of queries to random oracle H_{2}. Assume that $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A E}, \mathcal{A}}^{R U F T R}(k) \geq \epsilon$. Then there exists an algorithm that solves BDHP with advantage $\boldsymbol{A d v}(k) \geq \frac{\epsilon}{q_{e} \cdot q_{2}+1}$ and running time $O($ time $(\mathcal{A}))+O\left(q_{e} \cdot q_{2}\right)$.

RUF-TR ${ }_{V}$-PTXT can be proven similarly to RUF-TR ${ }_{V}$-CTXT.

6 Efficiency

We note that the proposed scheme is almost as efficient as the Fullldent [8] in terms of computational and spatial complexity. First, encryption operation in Fullldent and the proposed scheme for TR-PKAE both require the same number of significant operations: 1 bilinear pairing, 1 MapToPoint, 2 exponentiations in \mathbb{G}_{1}. The decryption in IBE requires 1 bilinear pairing and 1 exponentiation in \mathbb{G}_{1} while the proposed TR-PKAE adds 2 additional exponentiations in \mathbb{G}_{1}. Second, the proposed scheme shares the same spatial complexity with Fullldent. Therefore, the hybrid protocols (suggested in Section 1.2) that combine IBE with additional cryptographic primitives are bound to be at least as expensive as our scheme.

We implemented the proposed primitives using Miracl library v.4.8.2 [32]. The group \mathbb{G}_{1} was chosen to be a subgroup of order q in a supersingular elliptic curve E over \mathbb{F}_{p}, where p is a 512 bit and q is a 160 bit primes. Group \mathbb{G}_{2} was a subgroup of a finite field of order 1024 bits. The library uses Tate pairing for the bilinear map. We used a P3-977 MHz GHz desktop with 512 MB of memory. The performance measurements are summarized in Table 1 and include 1) comparison of basic operations with RSA 2) encryption/decryption in the proposed scheme.

7 Concluding Remarks and Future Work

In this paper, we presented a new cryptographic scheme for timed-release public-key based authenticated encryption (TR-PKAE), and proved that it is IND-CCA (even when sender key is compromised) and TUF-CTXT secure. Our security model introduces additional timed-release security notions such as timedrelease IND-CCA (against the receiver) and timed-release RUF-CTXT: the receiver cannot distinguish ciphertexts until the designated time and cannot forge ciphertexts to itself for the future designated time. The proposed scheme allows for a proof of message origin to a third party while at the same time maintaining its IND-KC-CCA property and a slightly weaker variation of TUF-CTXT, in which third party can forge ciphertexts only between verified users and only for the verified time. This result is quite interesting, since general authenticated encryption scheme constructed from symmetric key encryption

Table 1. Cost of basic operations

Function	modulus (bits)	exponent (bits)	performance (msec)
RSA(Sig/Dec)	1024	1024	4.65
RSA(Ver/Enc)	1024	$16\left(e=2^{16}+1\right)$	0.36
Expo in \mathbb{F}_{p}	1024	160	3.93
Scalar Mul in EC over \mathbb{F}_{p}	160	160	3.44
BLS sign	512	160	7.33
MapToPoint	-	-	2.42
Pairing	512	-	31.71
TR-PKAE Enc	512	160	41
TR-PKAE Dec	512	160	42

does not allow message origin proof to a third party without exposing the secret key of the prover. The proposed scheme is at least as efficient and compact as other possible IBE-based constructions.

In the proposed schemes, the past tokens have to be stored in a repository in case a user attempts to decrypt message with designated time well in the past. Recently, there was a discussion in newsgroup sci.crypt [17] regarding whether HIBE (hierarchical id-based encryption) [21] can remove the infrastructure required to store the agent's published tokens. Strictly speaking, FSE [12] (forward secure encryption) would be sufficient to provide this functionality, since in this case one can compute a previous token from a later one. However, existing FSE schemes (including HIBE) are too expensive for practical applications and the question whether there exists a practical scheme that does not require a repository still remains unanswered.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions and an analysis of dhies. In $L N C S$, volume 2020, pages 143-158. Springer-Verlag., 2001.
2. J. H. An. Authenticated encryption in the public-key setting: Security notions and analyses. http://eprint.iacr.org/ 2001/079/, 2001.
3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group signature scheme. In Proceedings CRYPTO 2000, Springer LNCS 1880, pp 255-270, 1999.
4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption schemes. In Proceedings CRYPTO 1998, Springer LNCS 1462, pp 26-45, 1998.
5. M. Bellare and S. Goldwasser. Encapsulated key escrow. In In MIT/LCS/TR-688, 1996.
6. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In Proc. of Asiacrypt '00, Lecture Notes in Computer Science, Vol. 1976, 2000.
7. I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-anonymous timed release public key encryption from bilinear pairing. http://eprint.iacr.org/2004/211/, 2004.
8. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Proc. of Crypto '01, 2003.
9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Proc. of Asiacrypt '01, 2001.
10. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for identity-based cryptography. In Proceedings CRYPTO 2003, Springer LNCS 2729, pp 382-398, 2003.
11. F. Brandt. Fully private auctions in a constant number of rounds. In In Proceedings of the 7th Annual Conference on Financial Cryptography (FC), 2003.
12. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In Proceedings EUROCRYPT 2003, Springer LNCS 2656, pp 255-271, 2003.
13. J. Cha and J. Cheon. An id-based signature from gap-diffie-hellman groups. In In Public Key Cryptography - PKC 2003, 2003.
14. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities in pairing based cryptosystems. In Proceedings InfraSec 2002, Springer LNCS 2437, pp 260-275, 2002.
15. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer and timed-release encryption. In Proc. of Eurocrypt '99, 1999.
16. M. K. Franklin and M. K. Reiter. The design and implementation of a secure auction service. In Proceedings of 1995 IEEE Symposium on Security and Privacy, pp. 2-14, Oakland, California, 1995.
17. P. from newsgroup sci.crypt. Key evolving encryption. Available from http://www.groupsrv.com/science/viewtopic. php?t=61168\&start=0, 2004.
18. E. Fujisaki and T. Okamoto. Secure integration of assymetric and symmatric encryption schemes. In Proceedings CRYPTO 1999, Springer LNCS 1666, pp 537-554, 1999.
19. J. Garay and C. Pomerance. Timed fair exchange of arbitrary signatures. In In Financial Crypto, 2003.
20. J. A. Garay and C. Pomerance. Timed fair exchange of standard signatures. In In Financial Cryptography '02, 2002.
21. C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Proceedings Asiacrypt 2002, Springer LNCS 2501, pp 548-566, 2002.
22. J. T. Harkavy and H. Kikuchi. On cheating in sealed-bid auctions. In EC'03, 2003.
23. A. Joux and K. Nguyen. Separating decision diffie-hellman from diffie-hellman in cryptographic groups. Available from http://eprint.iacr.org/2001/003/, 2001.
24. J. T. M. Harkavy and H. Kikuchi. Electronic auctions with private bids. In 3 rd USENIX Workshop on Electronic Commerce, Boston, Mass., pp. 61-73, 1998.
25. K. H. Marco Casassa Mont and M. Sadler. The hp time vault service: Exploiting ibe for timed release of confidential information. In $W W W 2003,2003$.
26. T. May. Timed-release crypto. http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html-.
27. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. In IEEE Transactions on Information Theory IT-39, 5 (1993), 1639-1646, 1993.
28. D. Mills. Network time protocol (version 3) specification, implementation. Technical Report 1305, Mar. 1992.
29. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proceedings of ACM Conference on Electronic Commerce, pp. 129-139, 1999.
30. T. P. Pederson. A threshold cryptosystem without a trusted party. In In Advances in Cryptology-Eurocrypt 91, 1991.
31. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and time-released crypto. In MIT laboratory for Computer Science, MIT/LCS/TR-684, 1996.
32. Shamus Software Ltd. Miracl: Multiprecision integer and rational arithmetic c/c++ library. http://indigo.ie/ $\sim \mathrm{mscott} /$.
33. P. F. Syverson. Weakly secret bit commitment: Applications to lotteries and fair exchange. In 1998 IEEE Computer Security Foundations Workshop (CSFW11), 1998.
34. C. Tackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Proceedings CRYPTO 1991, Springer LNCS 576, pp 433-444, 1992.

A Experiments With Verifications

IND-KC V_{V}-CCA We say that the proposed scheme is secure against adaptive chosen-ciphertext with verifications (and key compromise) attack (IND-KC V_{V}-CCA) if no polynomial adversary (denoted by
 the IND- KC_{V}-CCA game. The IND-KC V_{V}-CCA game is identical to the IND-KC-CCA except for the following addition:

Verifications: Adversary submits valid ciphertext c encrypted with $p k \in\left\{p k_{a}\right\}$ (sender), $p k_{b}$ (receiver) and time T. Adversary is not allowed to submit the ciphertext obtained during the challenge with the same keys and time. Adversary obtains information exposed during verification.
We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A} \mathcal{A}, \mathcal{A}}^{\text {IND-KClocA }}(k)=\operatorname{Pr}[\widehat{\beta}=\beta]-1 / 2$.
IND-RTR $_{V}$-CCA We say that the proposed scheme is secure against timed-release receiver adaptive chosen-ciphertext with verifications attack (IND-RTR V_{V}-CCA) if no polynomial adversary (denoted by $\mathcal{A}_{\text {IND-RTR }}^{V}$-CCA $)$ has a non-negligible advantage (denoted by $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} K \mathcal{A} \mathcal{A}, \mathcal{A}}^{\text {IND-RTR }}(k)$) against the challenger in the IND-RTR V_{V}-CCA game. The IND-RTR V_{V}-CCA game is identical to the IND-RTR-CCA except for the following addition:

Verifications : Adversary submits valid ciphertext $c, p k_{s}$ (from the set of receiver public keys) and time T. The receiver in the ciphertext is $p k_{a}$ and sender is $p k_{s}$. Adversary obtains information exposed during verification.

We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P K} \mathcal{A} \mathcal{A}, \mathcal{A}}^{\text {IND-RTR }}(k)=\operatorname{Pr}[\widehat{\beta}=\beta]-1 / 2$.
TUF-TR $_{V}$-CTXT (PTXT) We say that TR-PKAE encryption is secure against timed-release thirdparty chosen-plaintext ciphertext forgery with verifications attack (TUF-TR ${ }_{V}$-CTXT) if no polynomial adversary (denoted by $\mathcal{A}_{\text {TUF-TR }_{V}-\text { Стхт }}$) has a non-negligible advantage (denoted by $\boldsymbol{A d v}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A} \mathcal{E}, \mathcal{A}}^{\mathrm{TUF}}(k)$) against the challenger in the following TUF-TR V_{V}-CTXT game:

Setup : The challenger runs setup with security parameter k and generates $\langle\delta, \pi\rangle$, time T_{c}, public/private key pairs $\left(p k_{a}, s k_{a}\right),\left(p k_{b}, s k_{b}\right)$ and a random set of public/private pairs $\left\{\left(p k_{v}, s k_{v}\right)\right\}$. The adversary receives $\left\langle\pi, \delta, T_{c}, p k_{a}, p k_{b},\left\{s k_{v}\right\}\right\rangle$. Denote $S_{v}=\left\{p k_{v}\right\} \bigcup p k_{a} \bigcup p k_{b}$ and $R_{v}=p k_{a} \bigcup p k_{b}$.
Pre-Forgery :
Random Oracle Queries: Adversary may query any random oracle
Verifications : Adversary chooses different $p k_{s} \in S_{v}$ (sender), $p k_{r} \in R_{v}$ (receiver) and time T. It submits ciphertext with these parameters and obtains information exposed during verification. The only restriction is for time $T=T_{c}$: in this case it is not allowed that both $p k_{s}$ and $p k_{r}$ come from $\left\{p k_{a}, p k_{b}\right\}$.
Encryption Queries:Adversary submits plaintext m, time T and obtains encryption using $p k_{a}$ (sender), $p k_{b}$ (receiver) and time T.
Forgery: Adversary submits ciphertext c.
Outcome : Adversary wins the game if c successfully decrypts using $p k_{a}$ (sender), $p k_{b}$ (receiver) and T_{c}, and c was not obtained during encryption queries.

We define $\operatorname{Adv}_{\mathcal{T R}-\mathcal{P} \mathcal{K} \mathcal{A E}, \mathcal{A}}^{\text {TUF-Tr }}(k)=\operatorname{Pr}\left[\operatorname{Decrypt}\left[c, p k_{a}, s k_{b}, T_{c}\right]=\right.$ true $]$. By requiring that in the above game the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corresponding notion of TUF-TR V_{V}-PTXT. We skip the details.

RUF-TR $_{V}$-CTXT (PTXT) We say that TR-PKAE encryption is secure against timed-release receiver chosen-plaintext ciphertext forgery with verifications attack (RUF-TR ${ }_{V}$-CTXT) if no polynomial adversary
 challenger in the RUF-TR V_{V}-CTXT game. The game is identical to that of RUF-TR-CTXT except for the following addition:

Verifications : Attacker submits a sender secret key $s k$ (or alternatively, a set of such keys could be generated by the challenger and given to the adversary), time T and ciphertext encrypted with $s k, p k_{s}$ (receiver) and T. Attacker obtains the information exposed during the verification.

We define $\operatorname{Adv}_{\mathcal{T} \mathcal{R}-\mathcal{P} \mathcal{K} \mathcal{A E} \mathcal{A}, \mathcal{A}}^{\mathrm{RUF}-\mathrm{TR}-\mathrm{CTXT}}(k)=\operatorname{Pr}\left[\operatorname{Decrypt}\left[c, p k_{s}, s k_{b^{*}}, T_{a}\right]=\right.$ true $]$. By requiring that in the above game the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corresponding notion of RUF-TR ${ }_{V}$-PTXT. We skip the details.

B Security Proofs

Proof of Theorem 1 [IND-KC-CCA] The Theorem result follows from Corollary 13. Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ (output by $\mathcal{G}\left(1^{k}\right)$) and a random instance of BDH parameters $\left\langle X, a^{\prime} X, b^{\prime} X, c^{\prime} X\right\rangle$ be given, where X is a
generator of \mathbb{G}_{1}. Consider an adversary \mathcal{A} against IND-KC-CCA. We design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real IND-KC-CCA game for the adversary in order to compute solution to BDHP $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$

Setup :

Choice of Generator : \mathcal{B} chooses generator P to be $P=a^{\prime} X$.
Choice of $s: \mathcal{B}$ chooses master secret s and makes it public.
Choice of $p k_{b}: \mathcal{B}$ chooses receiver public key $p k_{b}$ to be X. The adversary \mathcal{A} receives $p k_{b}$.
Choice of Set $\left\{\left(s k_{a}, p k_{a}\right)\right\}: \mathcal{B}$ chooses $a_{i} \in \mathbb{Z}_{q}^{*}$ at random and forms the set $\left\{\left(a_{i}, a_{i} P\right)\right\}$. The adversary \mathcal{A} receives $\left\{a_{i}\right\}$.
Databases: Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database \mathcal{L} of possible values of $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$ updated in the Decryption Queries After Challenge phase.

Oracle queries :

P_{T} (or H_{1}) Queries: \mathcal{B} returns $c_{T} Z$ for random $c_{T} \in \mathbb{Z}_{q}^{*}$, where $Z=c^{\prime} X$, and stores the query T in the database coupled with c_{T}. Repeated queries retrieve answers from the database.
H_{2}, H_{3}, H_{4} Queries : \mathcal{B} returns a random value and stores it in its database coupled with the query. Whenever a query is made, this query is stored in a database along with the answer given. Repeated queries retrieve answers from the database.
Decryption Queries Before Challenge : \mathcal{A} submits ciphertext $\left\langle T, Q, a P=a_{i} P, c_{1}, c_{2}\right\rangle$ where c_{1} denotes $\sigma \oplus K$ and c_{2} denotes $m \oplus H_{4}(\sigma), Q$ represents $r \cdot p k_{b}, a$ (note that simulator can extract $a=a_{i}$ from $\left.a P=a_{i} P\right)$ is the sender secret key and T is the designated time.
\mathcal{B} goes through the database of H_{3} searching for appropriate r (by multiplying each r by $p k_{b}$ and comparing with Q). If it is not found, false is returned. If it is found, then corresponding σ and m are retrieved. Then database of H_{4} is searched for query with σ. If this σ was not queried in H_{4} then false is returned. Otherwise, \mathcal{B} computes $c_{2} \oplus H_{4}(\sigma)$ and compares it with m. If they are not equal, false is returned. Next, database of H_{1} is queried: if it never returned $H_{1}(T)$ false is returned. Next \mathcal{B} computes $K=c_{1} \oplus \sigma$ and queries the database of H_{2} to see if this K was ever returned. If it was not, false is returned. If it was, it obtains corresponding query given to H_{2} and compares it with the true value of the bilinear map which can be computed as $e\left(r P, s H_{1}(T)\right) e\left(a P, s H_{1}(T)\right) e\left(p k_{b}, a H_{1}(T)\right) e\left(Q, H_{1}(T)\right)$ (note that simulator knows r). If they are equal, true is returned. Otherwise, false is returned.
Selection : \mathcal{A} chooses two equal-sized plaintexts m_{0}, m_{1}, sender secret key $a^{*} \in\left\{a_{i}\right\}$ and $T=T^{*}$.
Challenge : \mathcal{B} chooses arbitrary $\beta \in\{0,1\}$, arbitrary $t^{*} \in \mathbb{Z}_{q}^{*}$ and assigns $Q^{*}=t^{*}\left(b^{\prime} X\right)$. Then \mathcal{B} chooses σ^{*}, two random strings c_{1}^{*} and c_{2}^{*}, and composes and returns ciphertext $c^{*}=\left\langle T^{*}, Q^{*}, a^{*}, c_{1}^{*}, c_{2}^{*}\right\rangle$. The databases are updated as follows:
$H_{3}: \mathcal{B}$ puts $r \cdot p k_{b}=Q^{*}$ as a value (marked appropriately in the database) and $\left(\sigma^{*}, m_{\beta}\right)$ as the query. If such $\left(\sigma^{*}, m_{\beta}\right)$ was queried previously, a new choice of σ^{*} is made. In addition, Q^{*} is checked against existing replies in the database (by multiplying each reply by $p k_{b}$ and comparing it with $\left.Q^{*}\right)$ and if it already exists, a new choice for t^{*} is made.
$H_{4}: \mathcal{B}$ puts $m_{\beta} \oplus c_{2}^{*}$ as a value and σ^{*} as the query into database of H_{4}. If σ^{*} was already queried, a new choice of σ^{*} is made (in addition, corresponding $\left(\sigma^{*}, m_{\beta}\right)$ should not have been queried from H_{3}). If $m_{\beta} \oplus c_{2}^{*}$ was returned previously as a reply to some query, a new choice of c_{2}^{*} is made.
H_{1} : If $H_{1}\left(T^{*}\right)$ was never queried then the query is made.
H_{2} : The database of H_{2} is instructed never to return the corresponding value of $K=K^{*}=\sigma^{*} \oplus c_{1}^{*}$ (if it returned this value previously, a new choice of c_{1}^{*} is made)

Queries Cont'd : \mathcal{A} has a choice to continue queries or to reply to the challenge. \mathcal{A} is not allowed to query for decryption of c^{*} using a^{*} and T^{*} chosen for the challenge. For decryption queries, \mathcal{B} behaves according to Decryption Queries After Challenge phase.
Decryption Queries After Challenge : \mathcal{A} submits ciphertext $\left\langle T, Q, a P=a_{i} P, c_{1}, c_{2}\right\rangle$. \mathcal{B} searches for r corresponding to Q in database of H_{3}. Three cases are possible:
Q is found without r : Then $Q=Q^{*}$ and \mathcal{B} returns false independent of the rest of the ciphertext. In addition the following local actions are carried out. If $c_{2}=c_{2}^{*}$ and $c_{1} \neq c_{1}^{*}, \mathcal{B}$ retrieves appropriate $\sigma=\sigma^{*}$ and computes $K=c_{1} \oplus \sigma^{*} \neq K^{*}$. If H_{2} did return this value of K for query Y, then \mathcal{B} computes $\left[Y /\left[e\left(s P+p k_{b}, a H_{1}(T)\right) e\left(Q, H_{1}(T)\right)\right]\right]^{\left(s c_{T} t^{*}\right)^{-1}}$ and writes the result in the list \mathcal{L} as a possible value of $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$.
r is found : If $Q=Q^{*}$, then \mathcal{B} quits and computes $e\left(r P, s H_{1}(T)\right)=e\left(b^{\prime} X / s k_{b}, Z\right)^{s c_{T} t^{*}}$. Thus \mathcal{B} can calculate $e\left(b^{\prime} X / \log _{P} X, Z\right)=e\left(\log _{X}(P) \cdot b^{\prime} X, Z\right)=e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$. Otherwise, the same procedure as in the Before Challenge case is followed.
None of the above : false is returned
Outcome : β is returned or simulation halts.

1. If r corresponding to challenge Q^{*} was found in the After Challenge phase, then the procedure specified there produces $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$. This value is the solution to BDHP and is output by \mathcal{B}.
2. Otherwise, \mathcal{B} goes through all q_{2} adversary queries to H_{2} and the list \mathcal{L} that was produced in the After Challenge phase and picks a random value Y. If Y comes from queries to H_{2}, \mathcal{B} computes $\left[Y /\left[e\left(s P+p k_{b}, a^{*} H_{1}\left(T^{*}\right)\right) e\left(Q^{*}, H_{1}\left(T^{*}\right)\right)\right]\right]^{\left(s c_{T^{*}} t^{*}\right)^{-1}}$ and outputs the result as the solution to BDHP. If the choice came from the After Challenge list, this choice in its original form is output as a solution to BDHP.

Definition 9. We say that simulation above becomes inconsistent when: 1) \mathcal{A} makes a query to H_{2} with a true value of challenge bilinear map $e\left(s P+p k_{b},\left(r+a^{*}\right) H_{1}\left(T^{*}\right)\right.$ where $r \cdot p k_{b}=t^{*} b^{\prime} X$ or 2$)$ in the After Challenge phase \mathcal{B} returns false where true is due, were the calculation done the same way as in Before Challenge phase.

Lemma 10. If the simulation above becomes inconsistent, then \mathcal{B} outputs correct answer to BDHP with probability $\frac{1}{q_{d}+q_{2}}$

Proof: Suppose simulation becomes inconsistent due to queries to H_{2} and let Y be the query which is the true value of the challenge bilinear map. Then $Y /\left[e\left(s P+p k_{b}, a^{*} H_{1}\left(T^{*}\right)\right) e\left(Q^{*}, H_{1}\left(T^{*}\right)\right)\right]=e\left(s P, r H_{1}\left(T^{*}\right)\right)$ where $r \cdot p k_{b}=t^{*}\left(b^{\prime} P\right)$ and $e\left(s P, r H_{1}\left(T^{*}\right)\right)=e\left(b^{\prime} X / s k_{b}, Z\right)^{s c_{T^{*}} t^{*}}=e\left(b^{\prime} X / \log _{P} X, Z\right)^{s c_{T^{*} t^{*}}}=e\left(\log _{X}(P)\right.$. $\left.b^{\prime} X, Z\right)^{s c_{T^{*}} t^{*}}=e(X, X)^{\left(a^{\prime} b^{\prime} c^{\prime}\right)\left(s c_{T^{*}} t^{*}\right)}$. Thus if this Y is chosen in the Outcome phase, the corresponding computation by \mathcal{B} will output the true solution to BDHP.

If simulation becomes inconsistent due to incorrect reply in the After Challenge phase, then \mathcal{A} must have submitted ciphertext $\left\langle T, Q, a, c_{1}, c_{2}\right\rangle$ where $Q=Q^{*}$. To return true to this query we must have:

1. $c_{2}=c_{2}^{*}$ (since σ and m are the same in both cases)
2. and $c_{1} \neq c_{1}^{*}$. If $c_{1}=c_{1}^{*}$, then $K^{*}=K$ which is true only when $a=a^{*}$ and $T=T^{*}$ (up to some negligible probability) provided that no query to H_{2} with a true value of the challenge bilinear map was made. In this case, submitted ciphertext is the same as the challenge ciphertext and \mathcal{B} should return false.

If true should have been returned, then \mathcal{A} must have made a query Y to H_{2} and received $K=c_{1} \oplus \sigma$, where Y is the correct value of the bilinear map $e\left(s P+a P,\left(r+s k_{b}\right) P_{T}\right)$. In this case, Y can be re-written as $e(s P+$ $\left.p k_{b}, a H_{1}(T)\right) e\left(Q, H_{1}(T)\right) e\left(r P, s H_{1}(T)\right)$ where $e\left(s P, r H_{1}(T)\right)=e\left(b^{\prime} X / s k_{b}, Z\right)^{s c_{T} t^{*}}=e(X, X)^{\left(a^{\prime} b^{\prime} c^{\prime}\right)\left(s c_{T} t^{*}\right)}$ as
before. It follows that the corresponding computation carried out in the After Challenge phase will in fact yield the true solution to BDHP and thus the list \mathcal{L} will contain $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$. It follows that if the simulation becomes inconsistent then one of the output choices of \mathcal{B} will be the solution to BDHP and since the size of the output list is at most $q_{d}+q_{2}$, the conclusion follows.

To show that advantage obtained is at least $\frac{2 \epsilon}{q_{2}+q_{d}}$, we construct a new simulator $S I M_{\text {new }}$. Denote by $S I M_{\text {old }}$ the original simulator above. In $S I M_{\text {new }}$ to be constructed, challenger knows a^{\prime}, b^{\prime} and c^{\prime}. Up to the challenge, $S I M_{\text {new }}$ behaves the same way as $S I M_{\text {old }}$ including the random oracle queries. In addition, $S I M_{\text {new }}$ calculates correctly the bilinear map in the challenge and assigns the hash value to this pairing as in $S I M_{\text {old }}$ unless this input was already queried by adversary from H_{2}, in which case $S I M_{\text {new }}$ uses the value of K returned by H_{2}. In $S I M_{\text {new }}$, this value of K is put in the database of H_{2} with input being the correct calculation of the pairing. In both simulations, Q and c_{2} of the ciphertext are chosen in the same way with the only possible difference being in $c_{1} . S I M_{\text {new }}$ replies to decryption queries in Decryption Queries After Challenge the same way as in Decryption Queries Before Challenge using its knowledge of a^{\prime}, b^{\prime} and c^{\prime}.

Lemma 11. If \mathcal{A} wins with advantage ϵ in the real game then he also wins with advantage of at least ϵ in SIM $M_{\text {new }}$ simulation (up to probability of guessing).

Proof: We note that in the Decryption Queries Before/After Challenge SIM new provides incorrect answer only if adversary guessed one of the values. In the Challenge phase SIM new differs from a real game only in the fact that some choices may be replaced with new random choices to ensure that adversary did not query those choices before. Probability that these choices have to be replaced with new ones is similar to probability of guessing in the previous case. Other than these remarks, SIM new is indistinguishable from a real game since all values in $S I M_{\text {new }}$ are chosen at random starting with random initial seeds.

Lemma 12. If \mathcal{A} attains advantage of at least ϵ in the real game, then the fraction of inconsistent runs of SIM $M_{\text {old }}$ is at least 2ϵ and therefore SIM $M_{\text {old }}$ will have a solution to BDHP in its database with probability of at least 2ϵ.

Proof: From Lemma 11 it follows that \mathcal{A} achieves advantage ϵ in $S I M_{\text {new }}$. We construct the following bi-simulation:

1. Both simulators start to run simultaneously
2. Replies by $S I M_{\text {old }}$ are given to $S I M_{\text {new }}$ which checks them for correctness and passes them to adversary.
3. When $S I M_{\text {old }}$ becomes inconsistent (when \mathcal{A} queries H_{2} with the true value of the challenge bilinear map, or $S I M_{\text {new }}$ intercepts incorrect reply of $S I M_{\text {old }}$ to decryption query according to its own calculations), $S I M_{\text {old }}$ goes through the current step locally (by recording in H_{2} adversary query or finishing completely decryption phase) and stops.
4. $S I M_{\text {new }}$ takes over from $S I M_{\text {old }}$ at this point (e.g. the incorrect decryption query reply of $S I M_{\text {old }}$ is replaced with correct one, where $S I M_{\text {new }}$ uses the Before Challenge phase for all decryption queries) and runs alone.

The advantage that adversary wins in this game is ϵ since the bi-simulation is indistinguishable from $S I M_{\text {new }}$. This means that adversary wins in fraction $1 / 2+\epsilon$ of runs of this bi-simulation. Let $p_{\text {fail }}$ be the fraction of the runs in which $S I M_{\text {old }}$ stops pre-maturely. Then

- Simulator $S I M_{\text {old }}$ has a value of BDHP solution in its database in $p_{\text {fail }}$ of the runs
- In runs where $S I M_{\text {old }}$ does not stop, adversary wins with probability $1 / 2$, since no correct query of the challenge bilinear map was made to H_{2} and, therefore, adversary cannot distinguish ciphertexts other than by guessing

Let k be the fraction of times adversary wins when $S I M_{\text {old }}$ stops. Then $\left(1-p_{\text {fail }}\right) 1 / 2+p_{\text {fail }} \cdot k=1 / 2+\epsilon$. It follows from this equation that $p_{\text {fail }}(k-1 / 2)=\epsilon$ and, therefore, $p_{\text {fail }} \geq 2 \epsilon$. Thus, the fraction of all runs of bi-simulation in which $S I M_{\text {old }}$ stops is at least $p_{\text {fail }} \geq 2 \epsilon$, which means that $S I M_{\text {old }}$ will have a value of BDHP in its databases with probability of at least 2ϵ.

Corollary 13. Probability that a random run of SIM old produces the solution to BDHP is at least $\frac{2 \epsilon}{q_{d}+q_{2}}$
Proof: From Lemma 12 it follows that probability that a random run of SI $M_{\text {old }}$ contains a solution to BDHP in its list of possible answers is at least 2ϵ. From $S I M_{\text {old }}$ we recall that size of this list is at most $q_{d}+q_{2}$ and $S I M_{\text {old }}$ returns a random value from this list (with some pre-processing, possibly). Therefore, it follows that $S I M_{\text {old }}$ solves BDHP with probability at least $\frac{2 \epsilon}{q_{d}+q_{2}}$.

Proof of Theorem 2 [TUF-CTXT] Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ (output by $\mathcal{G}\left(1^{k}\right)$) and a random instance of BDH parameters $\left\langle X, a^{\prime \prime} X, b^{\prime \prime} X, c^{\prime \prime} X\right\rangle$ be given, where X is a generator of \mathbb{G}_{1}. Consider an adversary \mathcal{A} against TUF-CTXT. First we design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real TUF-CTXT game for the adversary in order to compute solution to special case of BDHP with parameters $\left\langle X, a^{\prime} X, b^{\prime} X, b^{\prime} X\right\rangle$.

Setup :

Choice of Generator: \mathcal{B} chooses generator P to be X.
Choice of $s: \mathcal{B}$ chooses $s \in \mathbb{Z}_{q}^{*}$ and makes it public.
Choice of $p k_{a}$ and $p k_{b}: \mathcal{B}$ chooses public key of receiver $p k_{b}$ to be $b^{\prime} P=b^{\prime} X$ and public key of sender $p k_{a}$ to be $a^{\prime} P=a^{\prime} X$. The public keys are given to \mathcal{A}.
Databases: Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database D_{s} updated in the Encryption Queries phase.
Oracle queries :
P_{T} (or H_{1}) Queries : \mathcal{B} chooses random $c_{T} \in \mathbb{Z}_{q}^{*}$ and returns $c_{T}\left(b^{\prime} P\right)$. Query T along with c_{T} are stored and replies for repeated queries use the database. Note that given $Q=r \cdot b^{\prime} P \in \mathbb{G}_{1}$ for some $r \in \mathbb{Z}_{q}$, $r H_{1}(T)=r \cdot c_{T} b^{\prime} P=c_{T} \cdot r b^{\prime} P=c_{T} Q$, i.e. knowing $r \cdot b^{\prime} P$ we can compute $r H_{1}(T)$ for arbitrary T without knowledge of r.
H_{2}, H_{3}, H_{4} Queries: Same as in the proof of Theorem 1.
Encryption queries : When \mathcal{A} submits T and m, \mathcal{B} chooses random $Q \in \mathbb{G}_{1}^{*}, \sigma$ and two random strings c_{1} and c_{2} and returns ciphertext $c=\left\langle T, Q, c_{1}, c_{2}\right\rangle$. The ciphertext represents encryption of m with $p k_{a}=a^{\prime} P$ being the sender and $p k_{b}=b^{\prime} P$ the receiver. The databases are updated as follows:
$H_{3}: \mathcal{B}$ puts Q as a value (marked appropriately in the database) and (σ, m) as the query. If such (σ, m) was queried previously, a new choice of σ is made. In addition, Q is checked against existing replies in the database (by multiplying each reply by $p k_{b}$ and comparing it with Q; in addition \mathcal{B} ensures that this choice of Q was not submitted in one of the previous Encryption Queries) and if it already exists, a new choice for Q is made.
H_{4}, H_{1}, H_{2} : updated the same way as in the Challenge phase of the proof of Theorem 1
\mathcal{B} keeps the local database D_{s} in which it enters the pair $\langle T, Q\rangle$. Denote by $T R U E[T, Q]$ the true value of $e\left(s P+p k_{b},\left(r+s k_{a}\right) H_{1}(T)\right)$, where $r \cdot p k_{b}=Q$
Forgery : \mathcal{A} submits ciphertext $\left\langle T^{*}, Q^{*}, c_{1}^{*}, c_{2}^{*}\right\rangle$.
Outcome : \mathcal{A} returns forged ciphertext or simulation halts.

1. \mathcal{B} goes through database D_{s}, obtains a pair of T and $Q=r \cdot p k_{b}(r$ is unknown to $\mathcal{B})$ from each entry and computes $\left[Y /\left[e\left(s P, r H_{1}(T)\right) e\left(s k_{a}, s H_{1}(T)\right) e\left(p k_{b}, r H_{1}(T)\right)\right]\right]_{T}^{c_{T}^{-1}}$, for every query Y of \mathcal{A} to H_{2}. The results are written down as possible values of $e(P, P)^{a^{\prime} b^{\prime 2}}$.
2. If \mathcal{A} submitted a forgery, \mathcal{B} first verifies that Q^{*} is in the database of H_{3}, either in the form of r (this is checked by multiplying each r by $p k_{b}$) or Q. If the answer is yes, two cases are possible: Corresponding r is absent : It follows that Q^{*} was entered by $\mathcal{B} . \mathcal{B}$ retrieves corresponding σ and m. If $c_{2}^{*}=m \oplus H_{4}(\sigma)$ and c_{1}^{*} is not equal to the corresponding part of a ciphertext generated in the encryption queries, \mathcal{B} computes $K=c_{1}^{*} \oplus \sigma$. If K was returned by H_{2}, the corresponding query is divided by $e\left(s P, r H_{1}\left(T^{*}\right)\right) e\left(p k_{a}, s H_{1}\left(T^{*}\right)\right) e\left(p k_{b}, r H_{1}\left(T^{*}\right)\right)$ and the result is taken to c_{T}^{-1}-th power (note that $r H_{1}\left(T^{*}\right)$ can be computed as $c_{T^{*}} Q^{*}$). The answer is written down as possible value of $e(P, P)^{a^{\prime} b^{\prime 2}}$
Corresponding r is found : \mathcal{B} obtains m and σ and goes through the same steps as in the previous case (except that c_{1}^{*} is not compared) to obtain possible value of $e(P, P)^{a^{\prime} b^{\prime 2}}$
Note that if \mathcal{A} wins then the query corresponding to K will be the correct calculation of the corresponding bilinear map and, therefore, the answer computed by \mathcal{B} will in fact be equal to $e(P, P)^{a^{\prime} b^{\prime 2}}$ (up to probability of guessing).
Out of calculated possible values of $e(P, P)^{a^{\prime} b^{\prime 2}}, \mathcal{B}$ picks one at random and outputs it as the value of $e(P, P)^{a^{\prime} b^{\prime 2}}$. Note that the size of the list of possible values of $e(P, P)^{a^{\prime} b^{\prime 2}}$ is at most $q_{e} \cdot q_{2}+1$.

Definition 14. We say that simulation above becomes inconsistent when \mathcal{A} makes a query to H_{2} with a true value corresponding to one of the $T R U E[T, Q]$ in D_{s}.

Lemma 15. If the simulation above becomes inconsistent, then \mathcal{B} will have correct answer for $e(X, X)^{a^{\prime} b^{\prime 2}}$ in its output list.

Proof: Let Y be a query to H_{2} which happens to be the correct computation of the bilinear map corresponding to some $\operatorname{TRUE}[T, Q]$ in D_{s}. Denote $r \cdot p k_{b}=Q$. Then $Y=e\left(s P+p k_{b},\left(r+s k_{a}\right) H_{1}(T)\right)$ $=e\left(p k_{b}, s k_{a} H_{1}(T)\right) e\left(s P, r H_{1}(T)\right) e\left(p k_{a}, s H_{1}(T)\right) e\left(p k_{b}, r H_{1}(T)\right)$. In the Outcome phase of the simulation, \mathcal{B} computes $Y /\left[e\left(s P, r H_{1}(T)\right) e\left(p k_{a}, s H_{1}(T)\right) e\left(p k_{b}, r H_{1}(T)\right)=e\left(p k_{b}, s k_{a} H_{1}(T)\right)=e\left(p k_{b}, s k_{a}\left(c_{T} b^{\prime} P\right)\right)=\right.$ $e(P, P)^{a^{\prime} b^{\prime 2}} c_{T}$. Since \mathcal{B} takes the result to power c_{T}^{-1}, the true value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ is indeed in the list of possible values. It follows that at least one out of $q_{e} \cdot q_{2}+1$ possible values in the list is a true value of $e(P, P)^{a^{\prime} b^{\prime 2}}$.

Next, one constructs $S I M_{\text {new }}$ and bi-simulation analogously to the proof of Theorem 1 (details skipped). And Lemma 11 carries over here as well with obvious modifications. The following Lemmas are slightly different from those in the proof of Theorem 1.

Lemma 16. If \mathcal{A} attains advantage of at least ϵ in the real game, then the probability that SIM $M_{\text {old }}$ will have the correct value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ in its output list is at least ϵ.

Proof: Let p_{f} be the fraction of runs of the bi-simulation in which $S I M_{\text {old }}$ becomes inconsistent. From Lemma 15, in these runs, $S I M_{\text {old }}$ will contain the true value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ in its output list. Then we note that in fraction $1-p_{f}$ of the runs the probability that $S I M_{o l d}$ will have correct value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ in its output list depends on success of \mathcal{A} in the runs of bi-simulation where $S I M_{\text {old }}$ becomes inconsistent. If \mathcal{A} is successful, the possible value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ extracted by $S I M_{\text {old }}$ from the forgery result will be the true value of $e(P, P)^{a^{\prime} b^{\prime 2}}$. Let k_{1} denote the fraction of times adversary wins when SIM ${ }_{\text {old }}$ stays consistent in the bi-simulation, and k_{2} the fraction when $S I M_{\text {old }}$ becomes inconsistent. Then $k_{1} \cdot\left(1-p_{f}\right)+k_{2} \cdot p_{f}=\epsilon$. It follows that probability that output list of $S I M_{\text {old }}$ will contain correct value of $e(P, P)^{a^{\prime} b^{\prime 2}}$ is $p_{f}+\left(1-p_{f}\right) \cdot k_{1} \geq$ $k_{1} \cdot\left(1-p_{f}\right)+k_{2} \cdot p_{f}=\epsilon$. \square

Corollary 17. Probability that a random run of the above simulation produces the correct value of e $(P, P)^{a^{\prime} b^{\prime 2}}$ is at least $\frac{\epsilon}{q_{e} \cdot q_{2}+1}$

Proof: Since the size of the output list is at most $q_{e} \cdot q_{2}+1$ and \mathcal{B} makes a random choice from this list, the result follows from Lemma 16

The above simulation is used to solve $\operatorname{BDHP}\left\langle X, a^{\prime \prime} X, b^{\prime \prime} X, c^{\prime \prime} X\right\rangle$ as follows. Algorithm \mathcal{B} runs the above simulation with parameters $\left\langle X, a^{\prime \prime} X, Y_{1}, Y_{1}\right\rangle$ where $Y_{1}=b_{1} X=\left(c^{\prime \prime} X+b^{\prime \prime} X\right) / 2$, where $b_{1}=\left(c^{\prime \prime}+b^{\prime \prime}\right) / 2$, and computes $E_{1}=e(X, X)^{b_{1}^{2} a^{\prime \prime}}$ with advantage at least $\frac{\epsilon}{q_{e} \cdot q_{2}+1}$. Then \mathcal{B} runs the simulation with parameters $\left\langle X, a^{\prime \prime} X, Y_{2}, Y_{2}\right\rangle$ where $Y_{2}=b_{2} X=\left(c^{\prime \prime} X-b^{\prime \prime} X\right) / 2$, where $b_{2}=\left(c^{\prime \prime}-b^{\prime \prime}\right) / 2$, and computes $E_{2}=e(X, X)^{b_{2}^{2} a^{\prime \prime}}$ with advantage at least $\frac{\epsilon}{q_{e} \cdot q_{2}+1}$. Dividing E_{1} by E_{2}, \mathcal{B} obtains $e(X, X)^{a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}}$ with advantage $\left[\frac{\epsilon}{q_{e} \cdot q_{2}+1}\right]^{2}$

Proof of Theorem 3 [IND-RTR-CCA] The Theorem result follows from Corollary 18. Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ and a random instance of BDH parameters $\left\langle X, a^{\prime} X, b^{\prime} X, c^{\prime} X\right\rangle$ be given. Consider an adversary \mathcal{A} against IND-RTR-CCA. We design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real IND-RTR-CCA game for the adversary in order to compute solution to $\operatorname{BDHP} e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$

Setup :

Choice of Generator: \mathcal{B} chooses generator P to be X.
Choice of $P_{p u b}: \mathcal{B}$ chooses $P_{p u b}=s P$ to be $b^{\prime} P$.
Choice of $p k_{a}$, set $\left\{\left(s k_{b}, p k_{b}\right)\right\}$ and $T_{a}: \mathcal{B}$ chooses random $s k_{a}=a \in \mathbb{Z}_{q}^{*}$, $s k_{b_{i}}=b_{i} \in \mathbb{Z}_{q}^{*}$ and T_{a}. Adversary \mathcal{A} receives $p k_{a}=a P,\left\{s k_{b_{i}}=b_{i}\right\}$ and T_{a}. Public key $p k_{a}$ denotes the message sender that will be used in the simulation.
Databases: Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database \mathcal{L} of possible values of $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$ updated in the Decryption Queries After Challenge phase.

Oracle queries :

P_{T} (or H_{1}) Queries: If $T \neq T_{a}, \mathcal{B}$ returns $c_{T} P$, for random $c_{T} \in \mathbb{Z}_{q}^{*}$, and stores the query T in the database coupled with the c_{T}. Repeated queries retrieve answers from the database. If $T=T_{a}$, simulator returns $c^{\prime} P$.
H_{2}, H_{3}, H_{4} Queries: Same as in the proof of Theorem 1.
Queries for $t k n[T]=s P_{T}$: When \mathcal{A} submits $T \neq T_{a}, \mathcal{B}$ queries H_{1}, obtains corresponding c_{T} and returns $s H_{1}(T)=c_{T}\left(b^{\prime} P\right)$.
Decryption Queries Before Challenge : \mathcal{A} submits ciphertext (with sender $p k_{a}$ and receiver $p k_{b_{i}}$) $\left\langle b, T, Q, c_{1}, c_{2}\right\rangle$, where $b=s k_{b_{i}}$ is the choice of the receiver and T, Q, c_{1} and c_{2} carry the same meaning as in the previous proofs.
\mathcal{B} computes $r P=Q / b$ and goes through the database of H_{3} searching for appropriate r (by multiplying each r by P and comparing with Q / b). If it is not found, false is returned. If it is found, then corresponding σ and m are retrieved. Then database of H_{4} is searched for query with σ. If this σ was not queried in H_{4} then false is returned. Otherwise, \mathcal{B} computes $c_{2} \oplus H_{4}(\sigma)$ and compares it with m. If they are not equal, false is returned. Next, database of H_{1} is queried: if it never returned $H_{1}(T)$ false is returned. Next \mathcal{B} computes $K=c_{1} \oplus \sigma$ and queries the database of H_{2} to see if this K was ever returned. If it was not, false is returned. If it was, it obtains corresponding query given to H_{2} and verifies that it is equal to $e\left(s P+b P,(r+a) H_{1}(T)\right)$. If they are equal, true is returned. Otherwise, false is returned.

Selection : \mathcal{A} chooses two equal-sized plaintexts m_{0}, m_{1} and $p k_{b^{*}} \in\left\{p k_{b_{i}}\right\}$. (Note that simulator can determine b^{*})
Challenge : \mathcal{B} chooses arbitrary $\beta \in\{0,1\}$, arbitrary $t^{*} \in \mathbb{Z}_{q}^{*}$ and assigns $Q^{*}=t^{*} b^{*}\left(a^{\prime} X\right)$. Then σ^{*} is chosen, \mathcal{B} chooses two random strings c_{1}^{*} and c_{2}^{*} and composes and returns ciphertext $c^{*}=\left\langle T_{a}, b^{*}, Q^{*}, c_{1}^{*}, c_{2}^{*}\right\rangle$ denoting encryption using $a P$ (sender), $b^{*} P$ (receiver), m_{β} and T_{a}. The databases are updated as follows:
$H_{3}: \mathcal{B}$ puts $r P=t^{*} a^{\prime} P$ as a value (marked appropriately in the database) and $\left(\sigma^{*}, m_{\beta}\right)$ as the query. If such $\left(\sigma^{*}, m_{\beta}\right)$ was queried previously, a new choice of σ^{*} is made. In addition, $t^{*} a^{\prime} P$ is checked against existing replies in the database (by multiplying each reply by P and comparing it with $\left.t^{*} a^{\prime} P\right)$ and if it already exists, a new choice for t^{*} is made.
H_{4}, H_{2} : updated the same way as in the Challenge phase of the proof of Theorem 1
Queries Cont'd : \mathcal{A} has a choice to continue queries or to reply to the challenge. \mathcal{A} is not allowed to query for decryption of c^{*} using b^{*} as the receiver and T_{a}. For decryption queries, \mathcal{B} behaves according to Decryption Queries After Challenge phase.
Decryption Queries After Challenge: \mathcal{A} submits ciphertext $\left\langle T, b, Q, c_{1}, c_{2}\right\rangle . \mathcal{B}$ searches for r corresponding to $Q / b=r P$ in database of H_{3}. If $r P$ is not found, \mathcal{B} returns false. Otherwise, two cases are possible:
$r P$ is found without r : Then $b^{*}(r P)=Q^{*}$. If $c_{2}=c_{2}^{*}$, then $\sigma=\sigma^{*}$ and $m=m_{\beta}$ are retrieved and \mathcal{B} computes $K=c_{1} \oplus \sigma$. Otherwise false is returned. If H_{2} never returned K, false is returned. Otherwise, the corresponding query J is retrieved.
$T \neq T_{a}: \mathcal{B}$ can compute the true value of the bilinear map, compare it to J and based on that return true or false.
$T=T_{a}: \mathcal{B}$ returns false and computes $\left[J /\left[e\left(s P, a H_{1}\left(T_{a}\right)\right) e\left(r b P, H_{1}\left(T_{a}\right)\right) e\left(b P, a H_{1}\left(T_{a}\right)\right)\right]\right]^{t^{*-1}}$. The answer is written down as possible value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$ in a list \mathcal{L}.
$r P$ is found with r : If $r b^{*} P=Q^{*}$, then \mathcal{B} quits, computes $e\left(r P, s H_{1}\left(T_{a}\right)\right)=e\left(t^{*} a^{\prime} P, b^{\prime} c^{\prime} P\right)$ and, taking the result to power t^{*-1}, obtains $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$. Otherwise, the same procedure as in the Before Challenge case is followed.
Outcome : β is returned or simulation halts.

1. If r corresponding to challenge Q^{*} was found in the After Challenge phase, then the procedure specified there produces $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$. This value is the solution to BDHP and is output by \mathcal{B}.
2. Otherwise, \mathcal{B} goes through all q_{2} adversary queries to H_{2} and the list \mathcal{L} that was produced in the After Challenge phase and picks a random value. If the choice comes from queries to H_{2}, then result is divided by $e\left(s P+b^{*} P, a H_{1}\left(T_{a}\right)\right) e\left(Q^{*}, H_{1}(T)\right)$ to obtain possible value of $e\left(r P, s H_{1}(T)\right)=$ $e\left(a^{\prime} P, b^{\prime} c^{\prime} P\right)^{t^{*}}$. \mathcal{B} takes the t^{*-1} root and outputs the result as a solution to BDHP. If the choice came from the After Challenge list, this choice in its original form is output as a solution to BDHP.

The definition of inconsistency, construction of $S I M_{\text {new }}$ and bi-simulation, and the Lemmas that follow the simulation of the proof of Theorem 1 naturally carry over with minor modifications. We skip the details and just state the final Corollary:

Corollary 18. Probability that a random run of the above simulation produces the solution to BDHP is at least $\frac{2 \epsilon}{q_{d}+q_{2}}$.
Proof of Theorem 4 [RUF-TR-CTXT] The Theorem result follows from Corollary 21. Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ and a random instance of BDH parameters $\left\langle X, a^{\prime} X, b^{\prime} X, c^{\prime} X\right\rangle$ be given. Consider an adversary \mathcal{A} against RUF-TR-CTXT. We design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real RUF-TR-CTXT game for the adversary in order to compute solution to the BDHP with parameters $\left\langle X, a^{\prime} X, b^{\prime} X, c^{\prime} X\right\rangle$.

Setup :

Choice of Generator: \mathcal{B} chooses generator P to be X.
s and $P_{p u b}: \mathcal{B}$ chooses $P_{p u b}=s P$ to be $b^{\prime} P$.
Choice of $p k_{s}$ and $T_{a}: \mathcal{B}$ chooses $p k_{s}$ to be $a^{\prime} P$ and a random T_{a}. Adversary receives $p k_{s}$ and T_{a}.
Adversary Setup : Adversary chooses a key pair $(b, b P)$ and registers the public key $b P$. Registration means that the adversary actually knows b, i.e. we assume that there is a polynomial algorithm that extracts b from the adversarial Turing machine. As a result, in the game we assume that the simulator knows b.
Databases : Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database D_{s} updated in the Encryption Queries phase.

Oracle queries :

P_{T} (or H_{1}) Queries: If $T \neq T_{a}, \mathcal{B}$ returns $c_{T} P$ for random $c_{T} \in \mathbb{Z}_{q}^{*}$ and stores c_{T} indexed by T in the database. If $T=T_{a}, \mathcal{B}$ returns $c^{\prime} P$.
H_{2}, H_{3}, H_{4} Queries: Same as in the proof of Theorem 1.
Queries for $s P_{T}: \mathcal{A}$ submits $T \neq T_{a}$. \mathcal{B} queries H_{1} with T and returns $s H_{1}(T)=c_{T}\left(b^{\prime} P\right)$. Queries for $s P_{T}$ with $T=T_{a}$ are not allowed.
Encryption queries : \mathcal{A} submits T, m. The simulator is expected to output the encryption of m using a^{\prime} (sender) and $b P$ (receiver). Two cases are considered:
$T \neq T_{a}: \mathcal{B}$ computes the ciphertext in a normal way. It chooses arbitrary σ, queries H_{3} for r and queries H_{4} with input σ. Then it computes bilinear map as $e\left(r P+a^{\prime} P, s H_{1}(T)+b H_{1}(T)\right)$ by noting that $s H_{1}(T)=c_{T}\left(b^{\prime} P\right)$. The corresponding query is made to H_{2} and \mathcal{B} returns resulting ciphertext $c=\left\langle r b P, b, T, c_{1}, c_{2}\right\rangle$.
$T=T_{a}: \mathcal{B}$ chooses random $r \in \mathbb{Z}_{q}^{*}, \sigma$ and two random strings c_{1}, c_{2}, and returns ciphertext $c=$ $\left\langle r b P, b, T_{a}, c_{1}, c_{2}\right\rangle$. The databases are updated as follows:
$H_{3}: \mathcal{B}$ puts r as a value and (σ, m) as the query. If such (σ, m) was queried previously, a new choice of σ is made. In addition, r is checked against existing replies in the database and if it already exists, a new choice for r is made.
H_{4}, H_{1}, H_{2} : updated the same way as in the Challenge phase of the proof of Theorem 1
\mathcal{B} keeps the local database D_{s} in which it enters the triple $\left\langle T_{a}, r, b\right\rangle$. Denote by $\operatorname{TRUE}\left[T_{a}, r, b\right]$ the true value of $e\left(s P+b P,\left(r+a^{\prime}\right) s H_{1}\left(T_{a}\right)\right)$.
Forgery : \mathcal{A} submits ciphertext $c^{*}=\left\langle Q^{*}, T_{a}, c_{1}^{*}, c_{2}^{*}\right\rangle$ and the receiver secret key b^{*} that will be used for verification.
Outcome : \mathcal{A} returns forged ciphertext or simulation halts.

1. \mathcal{B} goes through database D_{s}, obtains $\left\langle T_{a}, r, b\right\rangle$ from each entry and computes $Y /\left[e\left(s P, r H_{1}\left(T_{a}\right)\right) e\left(b P, r H_{1}\left(T_{a}\right)\right) e\left(a^{\prime} P, b H_{1}\left(T_{a}\right)\right)\right]$ for every query Y to H_{2}. The results are written down as possible values of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$.
2. If \mathcal{A} submitted a forgery, \mathcal{B} computes $r^{*} P=b^{*-1} Q^{*}$ and searches query for r^{*} in database of H_{3}. If this query is found, \mathcal{B} retrieves corresponding σ^{*} and computes $K^{*}=c_{1}^{*} \oplus \sigma^{*}$. Then H_{2} is queried for query corresponding to K^{*}. If it exists, \mathcal{B} divides the query by $\left.e\left(s P+b^{*} P, r^{*} H_{1}\left(T_{a}\right)\right) e\left(a^{\prime} P, b^{*} H_{1}\left(T_{a}\right)\right)\right)$ and writes down the answer as a possible value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$.
Note that if \mathcal{A} wins (and the simulation stays consistent) then the query corresponding to K^{*} will be the correct calculation of the corresponding bilinear map and, therefore, the answer computed by \mathcal{B} will in fact be equal to $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$ (up to probability of guessing). To see this, note that $e(s P+$ $\left.b^{*} P,\left(r^{*}+a^{\prime}\right) P_{T_{a}}\right)=e(P, P)^{c^{\prime}\left(s+b^{*}\right)\left(r^{*}+a^{\prime}\right)}$ and this value is equal to a bilinear map $e(P, P)^{c^{\prime}(s+b)\left(r+a^{\prime}\right)}$ (used in the encryption queries for T_{a}) iff $\left(s+b^{*}\right)\left(r^{*}+a^{\prime}\right)=(s+b)\left(r+a^{\prime}\right) \bmod q$. We can modify
the above simulation by taking s to be known (i.e. $a^{\prime} P$ is the DLP parameter here and we need to determine a^{\prime}). Then if collision happens we can compute the value of a^{\prime}. Under the assumption of hardness of DLP in \mathbb{G}_{1}, this happens only in a negligible number of cases. Thus we may safely ignore such collisions.
Out of calculated possible values of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}, \mathcal{B}$ picks one at random and outputs it as the value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$. Note that the size of the list of possible values of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$ is at most $q_{e} \cdot q_{2}+1$.

Definition 19. We say that simulation above becomes inconsistent when \mathcal{A} makes a query to H_{2} with a true value corresponding to one of the $T R U E\left[T_{a}, r, b\right]$ in D_{s}.

Lemma 20. If the simulation above becomes inconsistent, then \mathcal{B} will have correct answer for $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$ in its output list.

Proof: Let Y be a query to H_{2} which happens to be the correct computation of the bilinear map corresponding to some $T R U E\left[T_{a}, r, b\right]$ in D_{s}. Then $Y=\left[e\left(s P, r H_{1}\left(T_{a}\right)\right) e\left(b P, r H_{1}\left(T_{a}\right)\right) e\left(a^{\prime} P, b H_{1}\left(T_{a}\right)\right)\right] e\left(s P, a^{\prime} P_{T_{a}}\right)$. In the Outcome phase of the simulation, \mathcal{B} computes $Y /\left[e\left(s P, r H_{1}\left(T_{a}\right)\right) e\left(b P, r H_{1}\left(T_{a}\right)\right) e\left(a^{\prime} P, b H_{1}\left(T_{a}\right)\right)\right]=$ $e\left(s P, a^{\prime} P_{T_{a}}\right)=e\left(b^{\prime} P, a^{\prime} c^{\prime} P\right)=e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$. Therefore, the true value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$ will be in the output list of \mathcal{B}.

Next, with minor modifications the steps carried out at this point in the proof of Theorem 2 apply here as well. The proofs are almost the same. We state the final Corollary only:

Corollary 21. Probability that a random run of the above simulation produces the correct value of e $(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$ is at least $\frac{\epsilon}{q_{e} \cdot q_{2}+1}$

Proof of Theorem 7 [TUF-TR ${ }_{V}$-CTXT] Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ and a random instance of BDH parameters $\left\langle X, a^{\prime} X, b^{\prime} X, c^{\prime} X\right\rangle$ be given. Consider an adversary \mathcal{A} against TUF-TR ${ }_{V}$-CTXT. We design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real TUF-TR ${ }_{V}$-CTXT game for the adversary in order to compute solution to BDHP $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$

Setup :

Choice of Generator : \mathcal{B} chooses generator P to be X.
Choice of s and $P_{p u b}: \mathcal{B}$ chooses $s \in \mathbb{Z}_{q}^{*}$ and makes it public.
Choice of $p k_{a}, p k_{b}, T_{c}$ and set $\left\{\left(p k_{v}, s k_{v}\right)\right\}: \mathcal{B}$ chooses $p k_{a}$ to be $a^{\prime} X$ and $p k_{b}$ to be $b^{\prime} X$. Also, random T_{c} and set $\left\{\left(p k_{v}, s k_{v}\right)\right\}$ is chosen. The adversary \mathcal{A} receives $p k_{a}, p k_{b},\left\{s k_{v}\right\}$ and T_{c}.
Databases : Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database D_{s} updated in the Encryption Queries phase.

Oracle queries :

$P_{T}\left(\right.$ or $\left.H_{1}\right)$ Queries : If $T \neq T_{c}, \mathcal{B}$ chooses random $c_{T} \in \mathbb{Z}_{q}^{*}$ and returns $c_{T} P$. Reply c_{T} is indexed by T and stored in the database and replies for repeated queries use the database. If $T=T_{c}$, \mathcal{B} returns $c^{\prime} X$.
H_{2}, H_{3}, H_{4} Queries : Same as in the proof of Theorem 1.
Encryption Queries : Adversary submits plaintext m, time T. In the generated ciphertext, $p k_{a}$ is the sender and $p k_{b}$ is the receiver.
$T \neq T_{c}$: In this case, \mathcal{B} can compute the bilinear map as $e\left(s P+p k_{b}, r H_{1}(T)+c_{T} \cdot p k_{a}\right)$. Therefore, it goes through normal encryption algorithm and makes all necessary queries to $H_{i}, i=1, \ldots 4$. The resulting ciphertext is given to the adversary.
$T=T_{c}:$ In this case, \mathcal{B} generates random $r \in \mathbb{Z}_{q}^{*}$, σ and two random strings c_{1}, c_{2} and updates all necessary databases the same way as in simulation of the proof of Theorem 4 (the $T=T_{a}$ case). \mathcal{B} returns ciphertext $c=\left\langle Q=r \cdot p k_{b}, T, c_{1}, c_{2}\right\rangle$.
\mathcal{B} keeps the local database D_{s} for case $T=T_{c}$ in which it enters r. Let us denote by $T R U E[r]$ the true value of $e\left(s P+p k_{b},\left(r+s k_{a}\right) H_{1}\left(T_{c}\right)\right)$.

Verification Queries :

Case 1 : Adversary submits valid ciphertext encrypted with $s k_{s} \in\left\{s k_{v}\right\}$ (sender), either $p k_{r}\left\{p k_{a}, p k_{b}\right\}$ as the receiver and time T. Challenger decrypts the ciphertext (by querying the databases and computing the bilinear map). \mathcal{B} chooses random $k \in \mathbb{Z}_{q}^{*}$ and returns $\left\langle k P, k\left(p k_{r}\right), m\right\rangle$. (Note that we can omit the zero-knowledge proof here since one can easily remove it from the algorithm \mathcal{A}).
Case 2 : Adversary submits $T \neq T_{c}, p k_{a}$ (sender), $p k_{b}$ (receiver) and a corresponding valid ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle . \mathcal{B}$ verifies validity of c as follows: 1) r and corresponding σ, m are obtained from H_{3}, 2) equality $c_{2}=m \oplus H_{4}(\sigma)$ is verified, 3) $K=c_{1} \oplus \sigma$ is extracted, corresponding query is obtained from H_{2} and one verifies that it is equal to the true value (note that it can be calculated by \mathcal{B} in this case). If either one of these steps fails, c is deemed to be invalid. Next, \mathcal{B} chooses random $k \in \mathbb{Z}_{q}^{*}$ and returns $r P, e\left(p k_{b}, s k_{a} \cdot P_{T_{c}}\right)=e\left(p k_{a}, c_{T} \cdot p k_{b}\right)$ and pair $\left\langle k P, k\left(b^{\prime} X\right)\right\rangle$. The case when the roles of sender and receiver are interchanged is symmetric.
Forgery : \mathcal{A} submits ciphertext $c^{*}=\left\langle Q^{*}, c_{1}^{*}, c_{2}^{*}\right\rangle$. Ciphertext represents encryption using $p k_{b}$ as the sender and $p k_{a}$ as the receiver with designated time T_{c}.
Outcome : \mathcal{A} returns forged ciphertext or simulation halts.

1. \mathcal{B} goes through its database D_{s}, and for each entry of $T R U E[r]$ and query Y to H_{2} computes $Y /\left[e\left(s P, r H_{1}\left(T_{c}\right)\right) e\left(p k_{a}, s H_{1}\left(T_{c}\right)\right) e\left(p k_{b}, r H_{1}\left(T_{c}\right)\right)\right]$. The answer is written down as a possible value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$.
2. If \mathcal{A} submitted a forgery, \mathcal{B} searches H_{3} for corresponding r^{*} (by multiplying every r in H_{3} by $p k_{a}$ and comparing it with Q^{*}). If r^{*} is found, then \mathcal{B} obtains σ^{*} and m^{*} and computes $K^{*}=c_{1}^{*} \oplus \sigma^{*}$. If query corresponding to K^{*} is in database of H_{2}, then this query is divided by $e\left(s P, r^{*} H_{1}\left(T_{c}\right)\right) e\left(p k_{a}, s H_{1}\left(T_{c}\right)\right) e\left(p k_{b}, r^{*} H_{1}\left(T_{c}\right)\right)$. The answer is written down as a possible value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$. Note that if the query corresponding to K^{*} is the true value of the bilinear map, this calculation produced the correct $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$
Out of calculated possible values of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}, \mathcal{B}$ picks one at random and outputs it as the value of $e(P, P)^{a^{\prime} b^{\prime} c^{\prime}}$. Note that the size of the list of possible values is at most $q_{e} \cdot q_{2}+1$.

Definition 22. We say that simulation above becomes inconsistent when \mathcal{A} makes a query to H_{2} with a true value corresponding to one of the $T R U E[r]$ in D_{s}.

Lemma 23. If the simulation above becomes inconsistent, then \mathcal{B} will have correct answer for $e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$ in its output list.

Proof: Let Y be a query to H_{2} which happens to be the correct computation of the bilinear map corresponding to some $T R U E[r]$ in D_{s}. Then $Y=\left[e\left(s P, r H_{1}\left(T_{c}\right)\right) e\left(p k_{a}, s H_{1}\left(T_{c}\right)\right) e\left(p k_{b}, r H_{1}\left(T_{c}\right)\right)\right] e\left(p k_{a}, s k_{b} H_{1}\left(T_{c}\right)\right)$. In the Outcome phase, \mathcal{B} computes $Y /\left[e\left(s P, r H_{1}\left(T_{c}\right)\right) e\left(p k_{a}, s H_{1}\left(T_{c}\right)\right) e\left(p k_{b}, r H_{1}\left(T_{c}\right)\right)\right]=e\left(p k_{a}, s k_{b} H_{1}\left(T_{c}\right)\right)$ $=e\left(a^{\prime} X, b^{\prime}\left(c^{\prime} X\right)\right)=e(X, X)^{a^{\prime} b^{\prime} c^{\prime}}$ and the conclusion follows.

Next, we follow analogous chain of discussion as in the corresponding part of the proof of Theorem 2. In fact, all results and proofs are almost identical with obvious modifications. We skip this part of the proof and conclude that the advantage attained in solving the BDHP problem is at least $\frac{\epsilon}{q_{e} \cdot q_{2}+1}$

Proof of Theorem 5 [IND-KC V_{V}-CCA] The Theorem statement follows from Corollary 24. Let $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right\rangle$ and a random instance of BDH parameters $\left\langle X, a^{\prime \prime} X, b^{\prime \prime} X, c^{\prime \prime} X\right\rangle$ be given. Consider an adversary \mathcal{A} against IND-KC V^{-}-CCA. First we design an algorithm \mathcal{B} that interacts with \mathcal{A} by simulating a real IND-KC V^{-} CCA game for the adversary in order to compute solution to special case of BDHP with parameters $\left\langle X, a^{\prime} X, a^{\prime} X, b^{\prime} X\right\rangle$.

Setup :

Choice of Generator: \mathcal{B} chooses generator P to be $a^{\prime} X$.
s and $P_{p u b}: \mathcal{B}$ chooses s and makes it public.
Choice of $b P: \mathcal{B}$ chooses receiver public key $b P$ to be X. The adversary \mathcal{A} receives $b P$.
Choice of Set $\left\{\left(s k_{a}, p k_{a}\right)\right\}: \mathcal{B}$ chooses $a_{i} \in \mathbb{Z}_{q}^{*}$ at random and forms the set $\left\{\left(a_{i}, a_{i} P\right)\right\}$. The adversary \mathcal{A} receives $\left\{a_{i}\right\}$ (alternatively, the adversary can choose this set by itself).
Databases: Databases corresponding to $H_{i}, i=1, \ldots, 4$ are maintained indexed by queries with replies being the values. In addition, \mathcal{B} maintains database \mathcal{L} of possible values of $e(X, X)^{a^{\prime 2} b^{\prime}}$ updated in the Decryption Queries After Challenge phase.

Oracle Queries :

P_{T} (or H_{1}) Queries : \mathcal{B} returns $c_{T} P$ for random $c_{T} \in \mathbb{Z}_{q}^{*}$ and stores the query in the database coupled with the reply. Repeated queries retrieve answers from the database.
H_{2}, H_{3}, H_{4} Queries: Same as in the proof of Theorem 1.
Verification Queries : \mathcal{A} submits public key $p k_{a} \in\left\{a_{i} P\right\}$, time T and ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle$. \mathcal{B} follows the routine specified in the Decryption Queries After Challenge. If "true" is output by this phase, then corresponding r, m, σ and the value of the bilinear map $K B$ are present. \mathcal{B} computes $k H_{1}(T)=k\left(c_{T} P\right)$ and $k\left(b H_{1}(T)\right)=k c_{T}\left(b^{\prime} P\right)$ for random $k \in \mathbb{Z}_{q}^{*}$, and returns $\left\langle T, m, \sigma, K B, k H_{1}(T), k\left(b H_{1}(T)\right)\right\rangle$. Note that in this case even zero-knowledge protocol will succeed.
Decryption Queries Before Challenge : \mathcal{A} submits ciphertext $\left\langle T, Q, p k_{a}, c_{1}, c_{2}\right\rangle$ where c_{1} denotes encryption of σ and c_{2} is the encryption of plaintext, Q represents $r \cdot b P, p k_{a}=a P \in\left\{a_{i} P\right\}$ and T is the designated time.
\mathcal{B} goes through the database of H_{3} searching for appropriate r (by multiplying each r by $b P$ and comparing with Q). If it is not found, false is returned. If it is found, then corresponding σ and m are retrieved. Then database of H_{4} is searched for query with σ. If this σ was not queried in H_{4} then false is returned. Otherwise, \mathcal{B} computes $c_{2} \oplus H_{4}(\sigma)$ and compares it with m. If they are not equal, false is returned. Next, database of H_{1} is queried: if it never returned $H_{1}(T)$ false is returned. Next \mathcal{B} computes $K=c_{1} \oplus \sigma$ and queries the database of H_{2} to see if this K was ever returned. If it was not, false is returned. If it was, it obtains corresponding query given to H_{2} and compares it with the true value of the bilinear map which can be computed as $e\left(r P, s H_{1}(T)\right) e\left(a P, s H_{1}(T)\right) e\left(b P, a H_{1}(T)\right) e\left(Q, H_{1}(T)\right)$ (note that simulator knows r). If they are equal, true is returned. Otherwise, false is returned.
Selection : \mathcal{A} chooses two equal-sized plaintexts m_{0}, m_{1}, sender secret key $a=a^{*} \in\left\{a_{i}\right\}$ and $T=T^{*}$.
Challenge : \mathcal{B} chooses arbitrary $\beta \in\{0,1\}$, arbitrary $t^{*} \in \mathbb{Z}_{q}^{*}$ and assigns $Q^{*}=t^{*}\left(b^{\prime} X\right)$. Then σ^{*} is chosen, \mathcal{B} chooses two random strings c_{1}^{*} and c_{2}^{*} and composes and returns ciphertext $c^{*}=\left\langle T^{*}, Q^{*}, a^{*}, c_{1}^{*}, c_{2}^{*}\right\rangle$. The databases are updated as follows:
$H_{3}: \mathcal{B}$ puts $r b P=Q^{*}$ as a value (marked appropriately in the database) and (σ^{*}, m_{β}) as the query. If such $\left(\sigma^{*}, m_{\beta}\right)$ was queried previously, a new choice of σ^{*} is made. In addition, Q^{*} is checked against existing replies in the database (by multiplying each reply by $b P$ and comparing it with Q^{*}) and if it already exists, a new choice for t^{*} is made.
H_{4}, H_{1}, H_{2} : updated the same way as in the Challenge phase of the proof of Theorem 1

Queries Cont'd : \mathcal{A} has a choice to continue queries or to reply to the challenge. \mathcal{A} is not allowed to query for decryption of c^{*} using a^{*} and T^{*} chosen for the challenge. For decryption queries, \mathcal{B} behaves according to Decryption Queries After Challenge phase.
Decryption queries After Challenge : \mathcal{A} submits ciphertext $\left\langle T, Q, p k_{a}, c_{1}, c_{2}\right\rangle . \mathcal{B}$ searches for r corresponding to Q in database of H_{3}. Three cases are possible:
Q is found without r : Then $Q=Q^{*}$ and \mathcal{B} returns false independent of the rest of the ciphertext. In addition the following local actions are carried out. If $c_{2}=c_{2}^{*}$ and $c_{1} \neq c_{1}^{*}, \mathcal{B}$ retrieves appropriate $\sigma=\sigma^{*}$ and computes $K=c_{1} \oplus \sigma^{*} \neq K^{*}$. If H_{2} did return this value of K for query Y, then \mathcal{B} computes $\left[Y /\left[e\left(s P+b P, a H_{1}(T)\right) e\left(Q, H_{1}(T)\right)\right]\right]^{\left(s c_{T}\right)^{-1}}$ and writes the result as a possible value of $e(X, X)^{a^{\prime 2} b^{\prime}}$ in the list \mathcal{L}.
r is found : If $Q=Q^{*}$, then \mathcal{B} quits and computes $e\left(r P, s H_{1}(T)\right)=e\left(Q^{*} / b, P\right)^{s c_{T}}$ and by taking the root obtains $e(X, X)^{a^{\prime 2} b^{\prime}}$. Otherwise, the same procedure as in the Before Challenge case is followed. None of the above : false is returned
Outcome : β is returned or simulation halts.

1. If r corresponding to challenge Q^{*} was found in the After Challenge phase, then the procedure specified there produces $e(X, X)^{a^{\prime 2}} b^{\prime}$. This value is the solution to BDHP and is output by \mathcal{B}.
2. Otherwise, \mathcal{B} goes through all q_{2} adversary queries to H_{2} and the list \mathcal{L} that was produced in the After Challenge phase and picks a random value Y. If Y comes from queries to H_{2}, \mathcal{B} computes $\left[Y /\left[e\left(s P+b P, a^{*} H_{1}\left(T^{*}\right)\right) e\left(Q^{*}, H_{1}\left(T^{*}\right)\right)\right]\right]^{\left(s c_{T^{*}}\right)^{-1}}$ and outputs the result as the solution to BDHP. If the choice came from the After Challenge list, this choice in its original form is output as a solution to BDHP.

We define inconsistency the same way as in Definition 9 and go through absolutely the same Lemmas as in the proof of Theorem 1, where in addition verifications phase is added. All proofs and statements stay the same and we obtain the following Corollary (which parallels Corollary 13):

Corollary 24. Probability that a random run of the above simulation produces the solution to BDHP $\left\langle X, a^{\prime} X, a^{\prime} X, b^{\prime} X\right\rangle$ is at least $\frac{2 \epsilon}{q_{d}+q_{2}}$

The above simulation is used to solve BDHP $\left\langle X, a^{\prime \prime} X, b^{\prime \prime} X, c^{\prime \prime} X\right\rangle$ in the same way as at the end of the proof of Theorem 2. Thus, the advantage in solving for $e(X, X)^{a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}}$ is $\left[\frac{2 \epsilon}{q_{d}+q_{2}}\right]^{2}$

Proof of Theorem 8 [RUF-TR ${ }_{V}$-CTXT] The proof is identical to the proof of Theorem 4 except for the following addition:
Verifications : Adversary submits a sender secret key $s k$, valid ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle$ encrypted with $s k$, $p k_{s}$ (receiver) and time $T . \mathcal{B}$ verifies validity of c as follows: 1) r and corresponding σ, m are obtained from $H_{3}, 2$) equality $c_{2}=m \oplus H_{4}(\sigma)$ is verified, 3) $K=c_{1} \oplus \sigma$ is extracted, corresponding query is obtained from H_{2} and one verifies that it is equal to the true value (note that it can be calculated by \mathcal{B} in this case). If either one of these steps fails, c is deemed to be invalid. Next, \mathcal{B} chooses random $k \in \mathbb{Z}_{q}^{*}$ and returns $\left\langle m, \sigma, k P, k\left(a^{\prime} X\right)\right\rangle$ (again note that we can omit the zero-knowledge proof here since one can easily remove it from the algorithm \mathcal{A})
Proof of Theorem 6 [IND-RTR ${ }_{V}$-CCA] The proof is identical to the proof of Theorem 3 except for the following addition:
Verifications : Adversary submits a sender public key $p k_{s} \in\left\{p k_{b}\right\}$, valid ciphertext $c=\left\langle Q, c_{1}, c_{2}\right\rangle$ encrypted with $p k_{s}$ (sender), $p k_{a}=a P$ (receiver) and time T. We note that \mathcal{B} knows a and, therefore, can verify validity (decrypt) of submitted ciphertext in the usual way. As a result, \mathcal{B} can supply \mathcal{A} with all required information.

[^0]: ${ }^{1}$ We do not consider a scheme that requires Alice's participation after initial communication, since this will limit applications.

[^1]: ${ }^{2}$ Note that dropping bids without knowing their contents may not be in the interests of the board.

[^2]: ${ }^{3}$ It stands for IND-CCA even after Key Compromise.
 ${ }^{4}$ IND-CCA, TUF/RUF-CTXT/PTXT are introduced as desirable properties in [2].

[^3]: ${ }^{5}$ As in [8], we can weaken surjectivity assumption on hash function H_{1}. The security proofs and results will hold true with minor modifications. We skip the details and refer reader to [8].

[^4]: ${ }^{6}$ We stress that "non-repudiation" provided by this kind of proof is inherently different from non-repudiation provided by digital signatures (and also by signcryption schemes such as [10])

