
A Scheme for Timed-Release Public Key Based Authenticated
Encryption

Ivan Osipkov1, Yongdae Kim1, Jung Hee Cheon2

1 University of Minnesota - Twin Cities, {osipkov,kyd}@cs.umn.edu
2 Seoul National University, Korea, jhcheon@math.snu.ac.kr

Abstract. We propose the first provably-secure scheme that provides public key based authenticated encryp-
tion with timed-release property (TR-PKAE). Any application that requires delayed opening of information can
use our construction. Detailed security model for TR-PKAE is derived from sealed-bid auction example. The
proposed protocol has minimal overhead in storage, computation and communication, while providing strong
security as well as diverse functionalities. The construction requires minimal infrastructure overhead, which can
be shared among multiple applications.

Keywords: timed-release, public key authenticated encryption, timelock puzzle

1 Introduction

The goal of timed-release cryptography is to “send a message into the future”. One way to do this is to
encrypt a message such that the receiver cannot decrypt the ciphertext until specific time in the future. A
solution to this problem has immediate applications in the real world. For example, in sealed-bid auctions,
one can prevent prior opening of bids by a dishonest auction house [30]. E-voting is an another example
that requires delayed opening of votes. It can be also used for delayed verification of a signed document,
such as lottery [32] and check cashing. Other applications include release of important documents and
press releases among many others. In order to further motivate the need for our construction, we discuss
in detail sealed-bid auction example in Section 1.1.

The problem of timed-release cryptography was first mentioned by May [25] and then discussed in
detail by Rivest et. al. [30]. Let us assume that the message sender is called Alice and the receiver is Bob,
and Alice wants to send a message to Bob such that Bob will not be able to open it until certain time.
The possible solutions are divided into two ways 1:

Time-lock puzzle approach. Alice would encrypt her message such that Bob would have to perform
non-parallelizable computation without stopping for the required wait time in order to decrypt it.

Agent-based approach. Alice could use trusted agents and encrypt the message such that Bob will need
some secret value, published by the agents on the required date in order to decrypt the message.

Time-lock puzzle approach puts immense computational overhead on the message receiver, which makes
it impractical for real-life scenarios. In addition, knowing computational complexity does not always lead
to correct estimation of time that Bob needs to decrypt the message. Still, this approach is widely used for
specific applications [6, 5, 32, 19, 18]. Using agent-based approach relieves Bob from performing non-stop
computation, sets the date of decryption precisely and does not require Alice to have information on Bob’s
capabilities. This comes at a price, though. The agents have to be trusted and they have to be available
at the designated time.

1 We do not consider schemes that require Alice’s presence at the time of message opening, since this will limit applications.

In this paper we concentrate on the agent-based approach. Several agent-based constructions were
suggested by Rivest et. al. [30]. For example, the agent could encrypt messages on request with a secret key
which will be published on a designated date by the agent. It also could precompute pairs of public/private
keys, publish all public keys and release the private keys on the required days. A different scheme was
proposed by Di Crescenzo et. al. [15], in which non-malleable encryption was used and receiver would
engage in a conditional oblivious transfer protocol with the agent to decrypt the message. In [14], the
authors proposed to use bilinear map based IBE scheme [9] for timed-release encryption. In particular, one
can replace public key in IBE scheme by future time. An agent would publish a secret key corresponding
to current day and consequently the ciphertext will not be decryptable until the specified future time.
Another example using IBE was also proposed in [24], which again replaces identity in the encryption
primitive with future time. Similar IBE-based approach was presented in [7]. Still security of these IBE-
based approaches has never been proven. Furthermore, the constructions were either more expensive than
our approach or did not provide sufficient functionalities.

1.1 Motivating Application: Sealed-Bid Auction

To motivate our construction, we first investigate the relation between timed-release cryptography and
sealed-bid auction. In a sealed-bid auction, bidders submit their bids in closed form to the auction board.
Once the bidding is closed, the bids are opened and the winning bid is chosen according to some publicly
known metric [16]. Examples include government construction bidding auctions, artwork and real estate
sales among others. Because of special nature of such auctions, many security requirements need to be
carefully analyzed and appropriate measures should be specified [28]. One of the problems that may occur
in such auctions is cheating by the auction board [21]. A bid may be opened before the closing time
and communicated to another bidder who can adjust his own bid appropriately. Thus, enforcing delayed
opening of the bid plays a central role in such applications. The following are the main requirements in
sealed-bid auctions:

1. The bids should not be opened by anyone until the bidding is closed.

2. The bids should be decryptable only by the auction board and only after the bidding close.

3. The auction board should be able to verify the identity of the bidder when the bids are opened.

4. The auction board should not be able to disavow bid submission.

5. Bidder should not be able to repudiate his bid.

6. Other requirements include correct calculation of winning bid, verification by bidders among many
more, but they are beyond the scope of this paper and we presently dispense with these considerations.
See [16, 23, 21, 12, 28] for more details.

In the rest of the paper we concentrate solely on timed-release authenticated public key based encryption
that addresses the first three requirements. 2

2 Non-repudiation of the bidder (fifth requirement) can be provided by digital signature mechanisms. An alternative way is to
construct an encryption scheme that allows receiver to (efficiently) prove to a third party that the bid was indeed submitted
by the alleged bidder. The bid submission can be repudiated by the auction board (fourth requirement) as follows: it can
say that 1) the bid was never submitted, 2) the ciphertext is not decryptable, 3) the bid has a different value than what
the bidder had submitted. The first attack can be resolved by requiring that the auction board signs the bids and publicly
posts the signatures in the time-frame between bid-close and bid-opening. Note that dropping bids without knowing their
contents may not be in the interests of the board. To deal with the second attack, the bidder can provide a proof that the
ciphertext is decryptable. One way to resolve the third attack is for the bidder to reveal the bid value and prove that the
ciphertext contains this bid. We suggest such mechanism in Appendix A due to page constraints.

2

1.2 PKAE and TR-PKAE

The first three requirements in Section 1.1 can be provided by combining timed-release cryptography with
public key based authenticated encryption (PKAE) [2, 1]. The goal of PKAE is to provide privacy and
authentication at the same time. In PKAE, the sender uses his private key and receiver’s public key to
encrypt a message such that 1) the resulting encryption stays confidential with respect to a third party
(adaptive IND-CCA, or IND-CCA2), and 2) it provides ciphertext/plaintext unforgeability with respect
to the third party (TUF-CTXT/PTXT). In addition, it is desirable to ensure that 3) sender’s ciphertexts
stay confidential even if his private key is compromised (IND-KC-CCA2) 3 and 4) the receiver cannot
forge valid ciphertexts from the sender to itself (RUF-CTXT/PTXT).4 If RUF-CTXT/PTXT does not
hold and the receiver’s private key is compromised, the adversary will be able to impersonate the sender.
A generic PKAE scheme that satisfies all the above is given in [2] and combines public key encryption and
digital signature. A more efficient PKAE scheme DHETM [2] is based on symmetric encryption using a
shared Diffie-Hellman key (at the expense of losing unforgeability by the receiver).

One timed-release primitive can be derived from Identity-Based Encryption such as FullIdent by Boneh
and Franklin [9]. The ID is replaced by time and the private key generator periodically outputs the private
key associated with current time instead of the ID. The receiver will not be able to decrypt until the
private key associated with the time used in encryption is published. One can extend FullIdent to provide
also confidentiality and authenticity of messages: the plaintext can be first encrypted by PKAE and the
result can be encrypted by this timed-release primitive, or vice versa [24]. So far, concrete schemes for
these combinations as well as security or efficiency analysis are not known to our knowledge. This paper
proposes an efficient scheme for TR-PKAE along with rigorous security analysis.

Our Contribution This paper proposes a new primitive that provides timed-release encryption and
PKAE functionalities (in short, TR-PKAE). The contribution of this paper is four fold:

– The proposed protocol is as efficient as FullIdent in terms of computational and spatial complexity.
– The proposed protocol requires minimal infrastructure (i.e. agent) that can be shared among many

applications. The proposed protocol can be naturally converted to threshold version, which provides
robustness as well as stronger security by allowing outputs of multiple agents to be used.

– The proposed protocol provides provable security under the random oracle model. Namely, it provides
• IND-CCA2 even when sender’s private key and infrastructure are compromised.
• TUF-CTXT/PTXT: unforgeability of the ciphertext/plaintext by the third party (even when

the infrastructure is compromised).
• IND-RTR-CCA2: timed-release version of IND-CCA2 by the receiver. In other words, before the

designated time, IND-CCA2 is provided with respect to the receiver.
• RUF-TR-CTXT/PTXT: the receiver cannot forge ciphertext from a sender to the receiver for

the future time.
– In addition, even though our protocol does not use digital signatures, receiver can still prove to a third

party the message origin. 5

Organization: The rest of the paper is organized as follows. An overview of our approach is given in
Section 2. In Section 3 we formulate the TR-PKAE cryptosystem and security definitions. In Section 4
we describe proposed protocol and state security results. Section 5 discusses efficiency of the protocol.
Appendix A shows how a ciphertext receiver can prove message origin to a third party, state security
properties and corresponding security results. Finally, in Section 6 we conclude the paper.

3 It stands for IND-CCA2 even after Key Compromise.
4 IND-CCA2, TUF/RUF-CTXT/PTXT are introduced as desirable properties in [2].
5 Once again, this part was moved to Appendix A due to page constraints

3

2 Timed-Release Infrastructure: Overview

The central concept of our approach is a public agent, call it TiPuS (Timed-release Public Server). Every
unit of time T , say every day, it publishes new self-authenticating information IT which combines publicly
computable (i.e., it can be precomputed for any future or past day by anyone) information PT and its
unique private information S. In other words, TiPuS acts similarly to NTP server [27]. The value PT can
be published on its web page or broadcasted when broadcast channel is available. Alice can encrypt a
message using PT , her private key and Bob’s (receiver’s) public key. Only when IT is published on day T ,
will Bob be able to decrypt the message using IT , his private key and Alice’s public key.

We implement the above setting using admissible bilinear map defined in Section 4.1. Public parameters
such as groups, bilinear map and a generator P ∈ G1 are setup independently of TiPuS. Each TiPuS
chooses a secret s ∈ Zq and publishes authenticated Ppub = sP . On day T , it publishes IT = sH(T) (which
corresponds to the private key for identity T in Full-Ident), where H is a cryptographic hash function.
Returning to the previous notation, we have s = S, H(T) = PT . The value of PT is self-authenticating :
namely, each user can compute e(sP, H(T)) and verify if it is equal to e(P, sH(T)), since by bilinearity
e(sP, H(T)) = e(P, sH(T)) = e(P, H(T))s.

Every user A has private/public key pair (SKA, PKA) = (a, aP), and aP is certified by a CA. One
can authenticate if A indeed possesses A. (for example, using short signatures [10]). Using the information
provided by TiPuS, the mentioned private/public keys and bilinear map, one can construct an efficient
TR-PKAE. A high level description is as follows:

Setting: Alice is the sender and Bob is the receiver with private/public pairs (a, aP) and (b, bP) respectively.
Encryption: Alice chooses random r, computes bilinear map d = e(sP +bP, (r+a)PT), applies hash function

H2 to obtain K = H2(d), and then encrypts message m as EK(m), where EK is a symmetric encryption
using key K. Bob also receives r · bP .

Decryption: Bob can extract rP from r · bP , and having sPT can compute d as e(rP + aP, sPT + bPT) 6.
Applying hash function H2, Bob computes K and uses it to decrypt EK(m).

The full detailed protocol and all required definitions/discussions are presented in later sections. Note
the following practical aspects already exhibited by the sketched scheme:

User Secret vs TiPuS Secret: The secret value of TiPuS is not related to private keys of users. It will be
shown later that compromise of TiPuS does not jeopardize user secrets (more precisely, the protocol
provides confidentiality and unforgeability with respect to TiPuS).

Usage: The published value sPT can be shared among multiple applications.
Scalability: The protocol can take full advantage of 1) several independent TiPuS’s (if siP is Ppub of the i-th

token generator, then combined Ppub is
∑

siP and combined sPT is
∑

siPT), 2) threshold generation
of sPT (using Pederson’s distributed threshold scheme [29], a brief setup is needed between token
generators after which they can function independently). The increase in computational complexity is
minimal when such schemes are applied to the protocol.

3 Basic Definitions

3.1 Basic Cryptosystem

The goal of proposed Timed-Release Public Key Based Authenticated Encryption (TR-PKAE) is to pro-
vide public key based authenticated encryption that takes sender’s private key, receiver’s public key and

6 Note that according to properties of bilinear map, e(rP +aP, sPT +bPT) = e((r+a)P, (s+b)PT) = e((s+b)P, (r+a)PT) = d

4

designated time so that the resulting ciphertext can be decrypted only by receiver and only starting with
designated time using receiver’s private key, sender’s public key and some secret that will be disclosed only
on designated time. We specify TR-PKAE by the following randomized algorithms:

General Setup: On input of security parameter k, it produces in a randomized manner public parameters
πg, which include hash functions, message and ciphertext spaces among others.

Timed-Release Setup: On input of πg, it produces in a randomized manner a pair 〈δ, πtr〉 where δ is a
master secret and πtr the corresponding timed-release public parameters. This setup is carried out by
TiPuS which keeps the master secret key confidential, while all other parameters are public. We denote
the combined public parameters of πg and πtr by π.

KeyGeneratorπg
: On input of valid private key sk computes corresponding public key pk.

TokenGeneratorπ,δ: On input of valid time encoding T computes corresponding private token tkn[T] using
〈δ, π〉. This is the functionality performed by TiPuS which (at certain time-intervals) publishes tkn[T]
at time T .

Encryptπ: On input 〈skA, pkB, m, T 〉 returns authenticated timed-release ciphertext c denoting encryption
from sender A to receiver B of message m and time encoding T .

Decryptπ: On input 〈pkA, skB, ĉ, tkn[T]〉 outputs plaintext m̂ and “true” if decryption is successful and
“false” otherwise.

For consistency, we require that, ∀pkA, pkB, and setup values, if c = Encryptπ[skA, pkB, m, T] and m̂ =
Decryptπ[pkA, skB, c, tkn[T]] then m̂ = m.

3.2 Security

The introduction of TokenGenerator and the master secret leads to the following question: how much should
the security of the cryptosystem depend on these timed-release additions? Should the cryptosystem main-
tain typical PKAE [2] security properties even if the master secret is compromised? One of our goals
is to separate the timed-release infrastructure from PKAE security as much as possible. That is, the
timed-release infrastructure should only affect the timed-release properties of the cryptosystem and not
the PKAE properties. With this in mind, we discuss required security properties below.

3.2.1 Confidentiality

Suppose Alice is the sender, Bob is the receiver and Alice composes a ciphertext for Bob using desig-
nated time T . It is standard to require that the PKAE cryptosystem be secure against adaptive IND-CCA
(IND-CCA2) adversaries [33, 4, 2]. This confidentiality must be provided even if all tokens tkn[T] are given
to the adversary, i.e. it should be time-independent. A stronger requirement is to demand IND-CCA2
security even if the master secret is out in the open. This requirement separates the timed-release infras-
tructure from the cryptosystem in the following sense: even if all master secrets are compromised, the
sender and receiver will still be guaranteed IND-CCA2 security against any third party. To strengthen
security even more, one can require that the scheme stays IND-CCA2 even if the private key of the sender
is compromised, ensuring that the adversary will not be able to obtain information on any ciphertexts
generated by the sender, even though it will be able to decrypt ciphertexts received by the sender.

The timed-release functionality, i.e. stopping decryption until the designated time, is provided by
the token-generating infrastructure (i.e. TiPuS). Not knowing the corresponding token is what keeps the
receiver from decrypting ciphertext until a designated time. Therefore, any TR-PKAE cryptosystem must

5

provide some confidentiality guarantees against the receiver itself until the corresponding token is made
available.

Below, we sketch two particular games which will be used in security proofs: 1) IND-CCA2 game in
which the adversary is given the private key of the sender and the master secret and 2) IND-RTR-CCA2
game in which the ciphertext receiver is launching an IND-CCA2 attack for a given designated time.

IND-CCA2 with Key Compromise (IND-KC-CCA2): Below we sketch a simple variation of adaptive
IND-CCA (IND-CCA2) game in which the adversary is given the private key of the sender (i.e. we would
like the scheme to provide IND-CCA2 confidentiality even in the case of sender’s key compromise) and
the master secret (to separate confidentiality against third party from the timed-release infrastructure).

We say that function g : R → R is negligible if g(k) is smaller than 1/f(k) for any polynomial f
(and k > nf). TR-PKAE encryption scheme is said to be secure against an adaptive chosen ciphertext
attack with key compromise (IND-KC-CCA2) if no polynomial adversary (denoted by AIND-KC-CCA2) has
a non-negligible advantage (denoted by AdvIND-KC-CCA2

T R−PKAE,A(k)) against the challenger in the following IND-
KC-CCA2 game:

Setup: The challenger runs setup with security parameter k and generates 〈δ, π〉, receiver public/private key
pair (pkb, skb) and sender public/private pair set {(pka, ska)}. The adversary is given 〈π, δ, {ska}, pkb〉.

Pre-Challenge: Adversary issues the following queries
Random Oracle Queries: Adversary may query any random oracle, which will model hash functions.
Decryption Queries: Adversary submits ciphertext, time encoding T and pka. Challenger responds with

decryption of ciphertext using pka (sender), skb (receiver) and time encoding T .
Selection: Adversary chooses two distinct equal-size plaintexts m0, m1, time T , sender key ska and submits

it to the challenger.
Challenge: Challenger flips β ∈ {0, 1} and returns encryption of mβ to adversary using ska (sender), pkb

(receiver) and time T .
Queries Repeated: Adversary repeats queries but does not ask to decrypt the challenge ciphertext using

challenge time and keys.
Guess: Adversary answers the challenge with β̂ and wins if β̂ = β

We define AdvIND-KC-CCA2

T R−PKAE,A(k) = Pr[β̂ = β]−1/2, where k is the system security parameter and probability
is taken over random bits used by the challenger and adversary.

Timed-Release Receiver IND-CCA2 (IND-RTR-CCA2): A prerequisite of a secure TR-PKAE scheme
is message confidentiality against the receiver itself prior to the time when the secret tkn[T] that corre-
sponds to the designated time is made available. We modify the IND-CCA2 game to restrict adversary
access to tkn[T] for designated time, which means that master secret is no longer available to the adversary.
Note that this type of security is inherently dependent on the timed-release infrastructure. The adversary
plays the ciphertext receiver in the game. In the decryption queries, we allow adversary to decrypt messages
destined even for this designated time as long as the ciphertext is different from the challenge.

We say that TR-PKAE encryption scheme is timed-release secure against a receiver adaptive chosen
ciphertext attack (IND-RTR-CCA2) if no polynomial adversary (denoted by AIND-RTR-CCA2) has a non-
negligible advantage (denoted by AdvIND-RTR-CCA2

T R−PKAE,A(k)) against the challenger in the following IND-RTR-
CCA2 game:

Setup: The challenger runs setup with security parameter k and generates 〈δ, π〉, sender public/private
key pair (pka, ska), receiver public/private pair set {(pkb, skb)} and designated time Ta. The public key
pka, set {skb} and Ta are given to the adversary.

6

Pre-Challenge :
Random Oracle Queries: Adversary may query any random oracle.
Queries for tkn[T]: Adversary submits T where T 6= Ta and receives tkn[T].
Decryption Queries: Adversary submits ciphertext and time T . Challenger responds with decryption of

ciphertext using pka (sender), skb (receiver) and tkn[T].
Selection: Adversary chooses two distinct equal-size plaintexts m0,m1 and submits them to the challenger.
Challenge: Challenger flips β ∈ {0, 1} and returns encryption of mβ to adversary using ska (the sender),

pkb (the receiver) and time Ta.
Queries Repeated: Adversary repeats queries but does not ask to decrypt the challenge ciphertext using

the same parameters used in the challenge.
Guess: Adversary answers the challenge with β̂ and wins if β̂ = β

We define AdvIND-RTR-CCA2

T R−PKAE,A(k) = Pr[β̂ = β]− 1/2.
The difference between IND-KC-CCA2 and IND-RTR-CCA2 is in reversal of adversary roles. In IND-

TR-CCA2, the goal is to ensure security against the receiver itself prior to designated time.

3.2.2 Ciphertext (Plaintext) Forgery
If a cryptosystem has a goal of providing some kind of authentication, one should analyze what types

of forgeries are possible or impossible. We concentrate on the ciphertext forgery (plaintext forgery is de-
fined analogously). We consider two types of ciphertext forgery: 1) forgery by adversary that does not
know the sender’s and receiver’s private keys (TUF-CTXT) and 2) forgery by ciphertext receiver itself
(RUF-CTXT) [2]. If the TR-PKAE is not secure against TUF-CTXT then the scheme cannot claim au-
thentication properties since a third-person may be able to forge decryptable (perhaps containing junk)
ciphertext between two users. If TR-PKAE is not secure against RUF-CTXT, then 1) the receiver itself
can generate the ciphertext allegedly coming from another user to itself, which means that the receiver
will not be able to prove to anybody that ciphertext was generated by the alleged sender even if all secret
information is disclosed, and 2) consequently, if receiver private key is compromised, the attacker can
impersonate any sender to this receiver. We introduce the following games which will be used in security
proofs.

Timed-Release RUF-CTXT/PTXT (RUF-TR-CTXT/PTXT): We introduce a slightly weaker notion
of RUF-CTXT, which requires that the receiver should not be able to forge ciphertext to itself for a future
date. Given such unforgeability: 1) the receiver should discard any ciphertexts received past decryption
dates if his private key may be compromised and 2) the receiver may be able to prove to a 3rd party that
ciphertext was generated by the alleged sender, provided he can produce a proof of ciphertext existence
prior to the decryption date. The game below is a slight modification of RUF-CTXT in which the receiver
is not given access to one particular token. We say that TR-PKAE encryption is secure against timed-
release RUF-CTXT, denoted by RUF-TR-CTXT, if no polynomial adversary (denoted by ARUF-TR-CTXT)
has a non-negligible advantage (denoted by AdvRUF-TR-CTXT

T R−PKAE,A(k)) against the challenger in the following
RUF-TR-CTXT game:

Challenger Setup: The challenger runs setup with security parameter k and generates 〈δ, π〉, public/private
key pair (pks, sks) of sender and time Ta. The adversary receives 〈π, pks, Ta〉.

Adversary Setup: Adversary runs setup with security parameter k, generates public key pkr. Note that the
corresponding private key is not known to the challenger. In fact, the adversary may not know it itself.

7

Pre-Forgery :
Random Oracle Queries: Adversary may query any random oracle
Queries for tkn[T]: Adversary submits T 6= Ta and receives tkn[T]
Encryption Queries: Adversary submits plaintext m, time T and obtains encryption using sks (sender),

pkr (receiver) and T .
Forgery: Adversary submits ciphertext c and private key sk.
Outcome: Adversary wins the game if c successfully decrypts using pks (sender), sk (receiver) and Ta, and

c was not obtained during encryption queries using the same parameters.

We define AdvRUF-TR-CTXT

T R−PKAE,A(k) = Pr[Decrypt[c, pks, sk, Ta] = true]. By requiring that in the above game
the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corre-
sponding notion of RUF-TR-PTXT. We skip the details.

TUF-CTXT (PTXT) In addition, below we state a time-independent TUF-CTXT game. A good ques-
tion would be to ask why would one require TUF-CTXT security if the best we can provide with respect to
the receiver is RUF-TR-CTXT. Perhaps we should only require TUF-TR-CTXT, which will automatically
be provided given RUF-TR-CTXT security. The main reason for TUF-CTXT security is to ensure that
some kind of unforgeability is guaranteed even if the master secret is compromised, i.e. we would like
to separate timed-release functionality from PKAE. Thus, in TUF-CTXT the master key is given to the
adversary. We say that TR-PKAE encryption is secure against third-person chosen-plaintext ciphertext
forgery (TUF-CTXT) if no polynomial adversary (denoted by ATUF-CTXT) has a non-negligible advantage
(denoted by AdvTUF-CTXT

T R−PKAE,A(k)) against the challenger in the following TUF-CTXT game:

Setup: The challenger runs setup with security parameter k and generates 〈δ, π〉 and public/private key
pairs (pka, ska) and (pkb, skb) of sender and receiver correspondingly. The public keys and both δ and
π are given to the adversary.

Pre-forgery :
Random Oracle Queries: Adversary may query any random oracle
Encryption Queries: Adversary submits plaintext m, time T and obtains encryption using ska (sender),

pkb (receiver) and T .
Forgery: Adversary submits ciphertext c and T .
Outcome: Adversary wins the game if c successfully decrypts using pka (sender) and skb (receiver), and c

was not obtained during encryption queries.

We define AdvTUF-CTXT

T R−PKAE,A(k) = Pr[Decrypt[c, pka, skb, T] = true]. As in the previous cases, we obtain
corresponding TUF-PTXT game.

4 The Proposed TR-PKAE

First, we review the bilinear maps, the assumptions that we make and BDHP definition. Then we specify
the proposed protocol and discuss security.

4.1 Bilinear Maps

Let G1 and G2 be two abelian groups of prime order q. We will use additive notation for G1 (aP denotes
the P added a times for element P ∈ G1) and multiplicative notation for G2 (ga denotes the g multiplied
a times for element g of G2).

A map e : G1 ×G1 → G2 is called an admissible bilinear map if it satisfies the following conditions:

8

1. Bilinearity For any P, Q ∈ G1 and a, b ∈ Zq, e(aP, bQ) = e(P, Q)ab.
2. Non-degeneracy e(P, Q) 6= 1 for at least one pair of P, Q ∈ G1.
3. Efficiency There exists an efficient algorithm to compute the bilinear map.

The Weil and Tate pairings can be used to construct an admissible bilinear pairing. For groups, one
can take G1 to be a subgroup of an elliptic curve and G2 a subgroup of the multiplicative group of a finite
field. See the details of pairings and the conditions on curves in [13].

We make several comments about G1, G2 and e(·, ·).

1. Discrete Logarithm Problem (DLP) is assumed to be hard in G2

2. It follows that DLP is also hard in G1 [26]
3. Decisional Diffie-Hellman Problem (DDHP) is easy in G1 [22].
4. Decisional Diffie-Hellman Problem (DDHP) is hard in G2.
5. Hardness of DDHP in G2 implies that, ∀Q ∈ G

∗
1, inverting the isomorphism that takes P ∈ G1 and

computes e(P, Q) is hard [9]

Let G be BDH Parameter Generator [9], i.e. G is a randomized algorithm that takes positive integer
input k, runs in polynomial time in k and outputs prime q, descriptions of G1, G2 of order q, description
of admissible bilinear map e : G1 × G1 → G2 along with polynomial deterministic algorithms for group
operations and e and generators P ∈ G1, Q ∈ G2.

We say that algorithm A has advantage ε(k) in solving BDHP for G if there exists k0 such that:

AdvG,A(k) = Pr[〈q, G1, G2, e〉 ← G(1
k), P ← G

∗
1, a, b, c← Z

∗
q :

A(q, G1, G2, e, P, aP, bP, cP) = e(P, P)abc] ≥ ε(k), ∀k > k0 (1)

We say that G satisfies Bilinear Diffie-Hellman Assumption (BDH assumption) if for any randomized
polynomial algorithm A and any polynomial f ∈ Z[x] we have AdvG,A(k) < 1/f(k) for sufficiently large k

4.2 Description of the Scheme

Let G be BDH Parameter Generator that satisfies BDH assumption.

General Setup: Given security parameter k ∈ Z
+, the following steps are followed

1: G takes k and generates a prime q, two groups G1, G2 of order q and an admissible bilinear map
e : G1 ×G1 → G2. Arbitrary generator P ∈ G1 is chosen.

2: The following cryptographic hash functions are chosen: 1)7 H1 : {0, 1}∗ → G
∗
1, 2) H2 : G2 → {0, 1}

n

for some n, 3) H3 : {0, 1}n × {0, 1}n → Z
∗
q and 4) H4 : {0, 1}n → {0, 1}n. These functions will be

treated as random oracles in security considerations.
3: The message space is chosen to beM = {0, 1}n and the ciphertext space is C = G

∗
1×{0, 1}

n×{0, 1}n.
The general system parameters are πg = 〈q, G1, G2, e, n, P, Hi, i = 1...4〉

Timed-Release Setup :
1: Random s ∈ Z

∗
q is chosen and one sets Ppub = sP .

2: The timed-release public system parameter is πtr = Ppub and the master key δ is s ∈ Z
∗
q . The

combined public parameters are π = πg||πtr = 〈q, G1, G2, e, n, P, Ppub, Hi, i = 1...4〉
KeyGenerator: Given private key sk = a ∈ Z

∗
q , the corresponding public key pk is aP ∈ G

∗
1.

7 As in [9], we can weaken surjectivity assumption on hash function H1. The security proofs and results will hold true with
minor modifications. We skip the details and refer reader to [9].

9

TokenGenerator: On input of time encoding T ∈ {0, 1}n outputs sPT where PT = H1(T)
Encrypt: Given private key ska of sender, public key pkb of receiver, plaintext m ∈M and designated time

encoding T , encryption is done as follows: 1) random σ ∈ {0, 1}n is chosen, one computes r = H3(σ, m)
and sets Q = r · pkb, 2) symmetric key is computed as K = H2[e(Ppub + pkb, (r + ska)PT)] and 4) the
ciphertext c is set to be c = 〈Q, σ ⊕K, m⊕H4(σ)〉

Decrypt: Given ciphertext c = 〈Q, c1, c2〉 encrypted using ska and pkb and time T , one decrypts it as
follows: 1) tkn[T] = sPT is obtained, 2) one computes R = sk−1

b Q and K̂ = H2[e(R+pka, sPT +skbPT)],

3) one retrieves σ̂ = c1 ⊕ K̂ and then m̂ = c2 ⊕H4(σ̂) and 4) one verifies R = H3(σ̂, m̂)P

The symmetric encryption scheme above is due to Fujisaki and Okamoto [17]. Next we show that the
proposed encryption scheme is consistent. Given ciphertext c = 〈Q, σ ⊕ K, m ⊕ H4(σ)〉 computed using
ska, pkb and T , we note that in the corresponding Decrypt computations the following hold:

1. R = rP
2. K̂ = K since e(R + pka, sPT + skbPT) = e(rP + skaP, sPT + skbPT) = e([r + ska]P, [s + skb]PT) =

e([s + skb]P, [r + ska]PT) = e(Ppub + pkb, [r + ska]PT).

3. It follows that σ̂ = σ since c1 ⊕ K̂ = (σ ⊕K)⊕K = σ
4. m̂ = m since c2 ⊕H4(σ̂) = (m⊕H4(σ))⊕H4(σ) = m
5. It follows that R = rP = H3(σ̂, m̂)P

Thus the original plaintext is retrieved.

4.3 Security of the Scheme

The following security results apply to the proposed TR-PKAE. The proofs are given in Appendix B. First,
we note that proposed scheme satisfies a stronger version of IND-CCA2 with sender key compromise.

Theorem 1 (IND-KC-CCA2). Let A be IND-KC-CCA2 adversary, qd be the number of decryption
queries and q2 the number of queries made to the H2 oracle. Assume that Adv

IND-KC-CCA2

T R−PKAE,A(k) ≥ ε. Then

there exists an algorithm that solves BDHP with advantage Adv(k) ≥ 2ε
qd+q2

and running time O(time(A)).

Also, the proposed protocol is TUF-CTXT secure.

Theorem 2 (TUF-CTXT). Let A be TUF-CTXT adversary, let qe be the number of encryption queries
and q2 be the number of queries to random oracle H2. Assume that Adv

TUF-CTXT

T R−PKAE,A(k) ≥ ε. Then there
exists an algorithm that solves BDHP with advantage Adv(k) ≥ [ε

qe·q2+1]2 and running time O(time(A))+
O(qe · q2).

The corresponding result for TUF-PTXT with the same inequality is proved similarly, only minor details
need to be modified in the proof.

Theorem 3 (IND-RTR-CCA2). Let A be IND-RTR-CCA2 adversary, let qd be the number decryption
queries and q2 the number of queries made to the H2 oracle. Assume that Adv

IND-RTR-CCA2

T R−PKAE,A(k). Then there

exists an algorithm that solves BDHP with advantage Adv(k) ≥ 2ε
qd+q2

and running time O(time(A)).

Theorem 4 (RUF-TR-CTXT). Let A be RUF-TR-CTXT adversary, let qe be the number of encryption
queries and q2 be the number of queries to random oracle H2. Assume that Adv

RUF-TR-CTXT

T R−PKAE,A(k) ≥ ε.

Then there exists an algorithm that solves BDHP with advantage Adv(k) ≥ ε2

(qe·q2)2+2
and running time

O(time(A)) + O([qe · q2]
2).

Again RUF-TR-PTXT with the same inequality holds as well. Only minor modifications in the proof are
required.

10

5 Efficiency

We note that the proposed scheme is almost as efficient as the FullIdent [9] in terms of computational and
spatial complexity. First, encryption operation in FullIdent and the proposed scheme for TR-PKAE both
require the same number of significant operations: 1 bilinear pairing, 1 MapToPoint, 2 exponentiations
in G1. The decryption in IBE requires 1 bilinear pairing and 1 exponentiation in G1 while the proposed
TR-PKAE adds 2 additional exponentiations in G1. Second, the proposed scheme shares the same spatial
complexity with FullIdent. Therefore, the hybrid protocols (suggested in Section 1.2) that combine IBE
with additional cryptographic primitives are bound to be at least as expensive as our scheme.

We implemented the proposed primitives using Miracl library v.4.8.2 [31]. The group G1 was chosen to
be a subgroup of order q in a supersingular elliptic curve E over Fp, where p is a 512 bit and q is a 160 bit
primes. Group G2 was a subgroup of a finite field of order 1024 bits. The library uses Tate pairing for the
bilinear map. We used a P3-977 MHz desktop with 512 MB of memory. The performance measurements
are summarized in Table 1. As expected, the proposed TR-PKAE is slightly more expensive than FullIdent
in decryption, but when FullIdent is extended to provide comparable functionality to TR-PKAE we expect
the resulting scheme to be at least as expensive as the proposed protocol.

Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)

RSA(Sig/Dec) 1024 1024 4.65

RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.36

Expo in Fp 1024 160 3.93

Scalar Mul in EC over Fp 160 160 3.44

BLS sign 512 160 7.33

MapToPoint 512 - 2.42

Pairing 512 160 31.71

TR-PKAE Enc 512 160 41

TR-PKAE Dec 512 160 42

FullIdent Enc 512 160 41

FullIdent Dec 512 160 35

6 Concluding Remarks and Future Work

In this paper, we presented a new cryptographic scheme for timed-release public-key based authenticated
encryption (TR-PKAE), and proved that it is IND-CCA2 (even when sender key is compromised) and
TUF-CTXT secure. Our security model introduces additional timed-release security notions such as timed-
release IND-CCA2 (against the receiver) and timed-release RUF-CTXT: the receiver cannot distinguish
ciphertexts until the designated time and cannot forge ciphertexts to itself for the future designated time.

In the proposed schemes, the past tokens have to be stored in a repository in case a user attempts to
decrypt message with designated time well in the past. As a result, the required storage grows linearly. The
authors recently became aware of a new development proposed by Boneh et al. [8] in HIBE (hierarchical
identity based encryption) [20] that allows to reduce required storage to O(log3/2 T), where T is the upper
bound on the number of time periods when tokens are published. In proposed TR-PKAE, the bilinear
map used to generate symmetric key is e(sP + bP, (r +a)PT). We can adapt proposed TR-PKAE to HIBE

11

as follows. Using notation in [8] (in particular multiplicative notation for both groups) for Hybrid scheme,
the sender computes now {e(gb · gα, g2)

r+a, grb, ga, L}, where g replaces P , (b, gb) and (a, ga) are now the
private/public key pairs of receiver and sender, L is the remaining part of ciphertext as in [8] using public
key (I1, ..., Ik) (which denotes the time) and s = r + a. Note that the gs in the ciphertext of [8] is replaced
by ga and grb. To decrypt the ciphertext using private key b and private key (a0, b1, ...) corresponding to
(I1, ..., Ik), the receiver replaces a0 by a0 · g

b
2 and then applies the decryption mechanism used in [8] with

gs = gr · ga and message M = 1 to obtain the required bilinear map. Note that the number of bilinear
map computations does not increase when we add authentication property. We also note that now we can
now use the property of [8] to reduce the amount of storage required to store tokens. In particular, at
each time-period the agent need only O(log3/2 T) amount of storage from which all previous tokens can
be derived. The HIBE proposed by Boneh et al. relies on BDHE assumption while TR-PKAE relies on
BDHP. In the future we plan to analyze thoroughly the security of proposed TR-PKAE when adapted to
HIBE.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions and an analysis of dhies. In LNCS,
volume 2020, pages 143–158. Springer-Verlag., 2001.

2. J. H. An. Authenticated encryption in the public-key setting: Security notions and analyses. http://eprint.iacr.org/
2001/079/, 2001.

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group signature
scheme. In Proceedings CRYPTO 2000, Springer LNCS 1880, pp 255 - 270, 1999.

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption
schemes. In Proceedings CRYPTO 1998, Springer LNCS 1462, pp 26 - 45, 1998.

5. M. Bellare and S. Goldwasser. Encapsulated key escrow. In In MIT/LCS/TR-688, 1996.
6. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic compo-

sition paradigm. In Proc. of Asiacrypt ’00, Lecture Notes in Computer Science, Vol. 1976, 2000.
7. I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-anonymous timed release public key encryption from bilinear

pairing. http://eprint.iacr.org/2004/211/, 2004.
8. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In to appear

in Eurocrypt 2005, 2005.
9. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Proc. of Crypto ’01, 2003.

10. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Proc. of Asiacrypt ’01, 2001.
11. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for identity-based cryptography. In Proceedings

CRYPTO 2003, Springer LNCS 2729, pp 382 - 398, 2003.
12. F. Brandt. Fully private auctions in a constant number of rounds. In In Proceedings of the 7th Annual Conference on

Financial Cryptography (FC), 2003.
13. J. Cha and J. Cheon. An id-based signature from gap-diffie-hellman groups. In In Public Key Cryptography - PKC 2003,

2003.
14. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities in pairing based cryptosystems.

In Proceedings InfraSec 2002, Springer LNCS 2437, pp 260-275, 2002.
15. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer and timed-release encryption. In Proc.

of Eurocrypt ’99, 1999.
16. M. K. Franklin and M. K. Reiter. The design and implementation of a secure auction service. In Proceedings of 1995

IEEE Symposium on Security and Privacy, pp. 2-14, Oakland, California, 1995.
17. E. Fujisaki and T. Okamoto. Secure integration of assymetric and symmatric encryption schemes. In Proceedings CRYPTO

1999, Springer LNCS 1666, pp 537 - 554, 1999.
18. J. Garay and C. Pomerance. Timed fair exchange of arbitrary signatures. In In Financial Crypto, 2003.
19. J. A. Garay and C. Pomerance. Timed fair exchange of standard signatures. In In Financial Cryptography ’02, 2002.
20. C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Proceedings Asiacrypt 2002, Springer LNCS 2501,

pp 548 - 566, 2002.
21. J. T. Harkavy and H. Kikuchi. On cheating in sealed-bid auctions. In EC’03, 2003.

12

22. A. Joux and K. Nguyen. Separating decision diffie-hellman from diffie-hellman in cryptographic groups. Available from
http://eprint.iacr.org/2001/003/, 2001.

23. J. T. M. Harkavy and H. Kikuchi. Electronic auctions with private bids. In 3 rd USENIX Workshop on Electronic
Commerce, Boston, Mass., pp. 61–73, 1998.

24. K. H. Marco Casassa Mont and M. Sadler. The hp time vault service: Exploiting ibe for timed release of confidential
information. In WWW2003, 2003.

25. T. May. Timed-release crypto. http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html-.
26. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. In IEEE

Transactions on Information Theory IT-39, 5 (1993), 1639–1646, 1993.
27. D. Mills. Network time protocol (version 3) specification, implementation. Technical Report 1305, Mar. 1992.
28. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proceedings of ACM

Conference on Electronic Commerce, pp. 129–139, 1999.
29. T. P. Pederson. A threshold cryptosystem without a trusted party. In In Advances in Cryptology-Eurocrypt 91, 1991.
30. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and time-released crypto. In MIT laboratory for Computer

Science,MIT/LCS/TR-684, 1996.
31. Shamus Software Ltd. Miracl: Multiprecision integer and rational arithmetic c/c++ library. http://indigo.ie/∼mscott/.
32. P. F. Syverson. Weakly secret bit commitment: Applications to lotteries and fair exchange. In 1998 IEEE Computer

Security Foundations Workshop (CSFW11), 1998.
33. C. Tackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In

Proceedings CRYPTO 1991, Springer LNCS 576, pp 433 - 444, 1992.

A Proof of Ciphertext/Plaintext Origin to a Third Party For The Proposed Scheme

In this section, we restrict ourselves to the specific implementation of TR-PKAE proposed in the previous
sections.

A.1 Basic Definitions

Let pkb be the public key of receiver, ska the public key of sender and T the designated time. We note
that given security against RUF-TR-CTXT (PTXT) and TUF-TR-CTXT (PTXT), the receiver cannot
forge a ciphertext with specified parameters unless tkn[T] is disclosed. If receiver obtains a time-stamp on
the ciphertext from a trusted signing authority at time at which tkn[T] has not been disclosed (where T
is the designated time), and eventually proves that the ciphertext can be constructed using pka (sender),
skb (receiver) and tkn[T] to a third party, then this would prove that the ciphertext was indeed generated
by the alleged sender. 8.

Now suppose the sender received a time-stamped signature from the receiver on the ciphertext prior to
the decryption time. Suppose now that the receiver decides to 1) deny that pka had sent the ciphertext, or
2) claim that the ciphertext is not decryptable, or 3) claim that the plaintext contains a value different from
what the sender alleges. In this case, if the sender manages to prove to a third party that the ciphertext
was formed correctly this type of attack could be prevented. Both of these situations are directly applicable
to sealed-bid auction as discussed in Section 1.1. Below we concentrate only on proof by the receiver, as
we proceed, but we will comment on the case when the sender has to prove to a third party.

When we look at the scheme, it is rather easy to see that the receiver may be able to (efficiently) prove
ciphertext origin to a third party only if he is willing to: 1) disclose the plaintext, 2) disclose the symmetric
encryption key K. In addition, he will have to prove that the hash pre-image of K has a certain form which
may leak some information to the verifier. This is somewhat expected since the scheme uses symmetric
encryption. Still, it turns out that the scheme will retain forward/backward security with respect to time.

8 We stress that “non-repudiation” provided by this kind of proof is inherently different from non-repudiation provided by
digital signatures (and also by signcryption schemes such as [11])

13

More precisely, the verifier will only be able to forge ciphertexts for this particular sender/receiver pair
and only for the designated time used in the verified ciphertext.

We define the following additional algorithms:

TokenTesterTokenGenerator: Given designated time T , it outputs either (corresponding token is) “published”
or “unpublished”. Note that this algorithm depends on the internal state of TokenGenerator.

TimeStampTokenGenerator: Given signing authority SA, on input of any message c it generates
tsSA(c, T, Tokenspub), signature on 〈c, T, Tokenspub〉 using SA’s private key (and possibly different
cryptosystem). Tokenspub denotes a set of times for which TokenTester outputs “published”.

We will present a protocol for the proposed TR-PKAE scheme that allows receiver to prove to a
third-party the ciphertext/plaintext origin. Abstractly, the corresponding algorithm is defined as follows:

Proveπ: This is an abstract function which involves a prover P and verifier V .
Prover submits 〈pkA, pkB, T,R(skB, pkA, T, tkn[T], c), tsSA(c, T ′, T okenspub)〉 to the verifier, where c ∈
{0, 1}n is the corresponding ciphertext allegedly encrypted using skA (sender), pkB (receiver) and time
T . Then both parties engage in an interactive proof. Verifier outputs either “true” or “false”, where
“true” means that verifier confirms that ciphertext (and corresponding plaintext) were indeed generated
by A.

For consistency, we require that Proveπ outputs “true” in the case of honest-prover and honest-verifier.

A.2 Protocol Description

As we have seen previously, our specific construction for TR-PKAE is based on symmetric key encryption.
In general, an authenticated encryption based on symmetric key encryption does not allow for the receiver
to prove the origin of the message to a third party. Nevertheless, this property would be desirable, even
though perhaps counter-intuitive. In this section, we show how the proposed TR-PKAE scheme allows for
proof of ciphertext/plaintext origin to a third party.

The Prove algorithm works as follows:

Setting: Prover P with private/public key pair 〈skp, pkp〉, verifier V , ciphertext c = 〈Q, c1, c2〉 with receiver
pkp and sender pka, time T , time-stamp tsSA[c, Tokenspub]. Assume that tkn[T] has been made public,
i.e. TokenTester(T) outputs “published”.

Decryption: Prover decrypts c using pka (sender), skp (receiver) and tkn[T]. Corresponding σ, plaintext
m are retrieved.

Step 1: Prover picks random r ∈ Z
∗
q and submits 〈T, m, σ, KB, J1 = kPT , J2 = skpJ1, tsSA[c, Tokenspub]〉

to the verifier where KB = e(sk−1
p Q + pka, tkn[T] + skpPT).

Step 2 :
1. Verifier computes ciphertext using submitted σ, m, KB and T .
2. It verifies the time-stamp tsSA using the computed ciphertext and public key of SA.
3. It checks that T /∈ Tokenspub

Step 3: Verifier checks equality e(J2, P) = e(J1, pkp) and then computes
1. KB2 = e(rP + pka, tkn[T])e(pkp, rPT) where r = H3(σ, m)
2. KBpart = KB/KB2

3. KB∗ = e(pka, J2)
Interactive Proof: Let L∗ = e(J1, PT) and L = e(PT , PT). Prover proves to verifier that KBk∗

part = KB∗

and Lk∗

= L∗ for the same k∗ (and knowledge of k∗) using zero-knowledge proof [3]. Alternatively
expressed, P proves equality logKBpart

KB∗ = logL L∗ and knowledge of the logarithms.

14

From group properties, it follows that if e(J2, P) = e(J1, pkp), then 〈J1, J2〉 must have the form
〈X, skpX〉 for some X ∈ G1. Note that KB2 · e(pka, skpPT) = e(rP + pka, tkn[T] + skpPT). Thus
the prover has to show that KB = KB2 · e(pka, skpPT), or equivalently that KBpart = KB/KB2 =
e(pka, skpPT). Verifier can compute e(pka, skpX). Zero-knowledge proof proves knowledge of k∗ = logPT

X

and that e(pka, skpX)1/k∗

= KBpart. Noting that 1/k∗ = logX PT , we obtain that e(pka, skpX)1/k∗

=
e(pka, skp logX(PT)X) = e(pka, skpPT). As a result, this proves that KB has the required form. Since
TR-PKAE is secure against RUF-TR-CTXT and TUF-CTXT and provided the time-stamp verifies, it
follows that the alleged sender had generated the ciphertext.

Leaked Information The verification protocol exposes the following information to the verifier: plain-
text/ciphertext, skp(kPT), kPT and e(pka, skpPT).

Note that due to the symmetric nature of the protocol (once tkn[T] is known), the sender can prove
to a third party that the ciphertext/plaintext is generated by either the sender or receiver if he saves the
value r used in the encryption. The protocol is almost identical except that in Step 3, the sender submits
J2 = skaJ1. This property is useful in sealed-bid auction.

A.3 Security Experiments

From now on we consider solely the case when the prover is the receiver. The case when the prover is the
sender is almost the same with obvious modifications. We need to answer the following questions:

1. Does the above protocol affect confidentiality of prover’s other ciphertexts?
2. Can the verifier generate ciphertexts on behalf of the prover using the obtained information?

A.3.1 Confidentiality
To answer the first question, we need to determine if the proposed TR-PKAE scheme will stay IND-

KC-CCA2 and IND-RTR-CCA2 given the information obtained by verifier.

IND-KCV -CCA2 We modify IND-KC-CCA2 game to include verifications. More precisely, the adversary
is again in possession of a sender’s private key and obtains information leaked by the receiver during
verifications for ciphertexts sent by any sender, other than for ciphertext generated during the challenge.
We say that the proposed scheme is secure against adaptive chosen-ciphertext with verifications (and
key compromise) attack (IND-KCV -CCA2) if no polynomial adversary (denoted by AIND-KCV -CCA2) has a
non-negligible advantage (denoted by AdvIND-KCV -CCA2

T R−PKAE,A(k)) against the challenger in the IND-KCV -CCA2
game. The IND-KCV -CCA2 game is identical to the IND-KC-CCA2 except for the following addition:

Verifications : Adversary submits valid ciphertext c encrypted with pk ∈ {pka} (sender), pkb (receiver)
and time T . Adversary is not allowed to submit the ciphertext obtained during the challenge with the
same keys and time. Adversary obtains information exposed during verification.

We define AdvIND-KCV -CCA2

T R−PKAE,A(k) = Pr[β̂ = β]− 1/2.

IND-RTRV -CCA2 We also modify IND-RTR-CCA2 to add verifications. Now, the receiver obtains
information exposed during verifications carried out by the sender. We say that the proposed scheme
is secure against timed-release receiver adaptive chosen-ciphertext with verifications attack (IND-RTRV -
CCA2) if no polynomial adversary (denoted by AIND-RTRV -CCA2) has a non-negligible advantage (denoted

15

by AdvIND-RTRV -CCA2

T R−PKAE,A (k)) against the challenger in the IND-RTRV -CCA2 game. The IND-RTRV -CCA2
game is identical to the IND-RTR-CCA2 except for the following addition:

Verifications : Adversary submits valid ciphertext c, pks (from the set of receiver public keys) and time T .
The receiver in the ciphertext is pka and sender is pks. Adversary obtains information exposed during
verification.

We define AdvIND-RTRV -CCA2

T R−PKAE,A (k) = Pr[β̂ = β]− 1/2.

A.3.2 Ciphertext (Plaintext) Forgery
Note that in the proposed scheme, the verifier obtains e(pka, skpPT) which will allow the verifier to

forge ciphertexts between this sender and receiver for time T . Thus, we lose TUF-CTXT/PTXT. Still, it
turns out that given verification for designated time T ′ it will be hard for the verifier to forge a ciphertext
if one the following holds: 1) designated time of the forgery T 6= T ′, 2) either the sender or receiver of the
forgery was not part of the verified ciphertext. This will be true even if the master key is known to the
adversary. Besides TUF-CTXT, we also need to ask ourselves if RUF-TR-CTXT is retained, that is, if the
verifier can forge ciphertext with the prover as the sender and verifier as the receiver for a designated time
T without knowledge of corresponding tkn[T].

TUF-TRV -CTXT (PTXT) The corresponding game is a modification of TUF-CTXT game. Now,
the challenger also generates time Tc. The adversary is allowed to obtain verification information on
ciphertexts using the above sender and receiver only for designated time T 6= Tc. Otherwise, it can obtain
any verification information. The goal is to forge a valid ciphertext with these public keys (representing
sender and receiver) and time Tc. We say that TR-PKAE encryption is secure against timed-release third-
party chosen-plaintext ciphertext forgery with verifications attack (TUF-TRV -CTXT) if no polynomial
adversary (denoted by ATUF-TRV -CTXT) has a non-negligible advantage (denoted by AdvTUF-TRV -CTXT

T R−PKAE,A (k))
against the challenger in the following TUF-TRV -CTXT game:

Setup: The challenger runs setup with security parameter k and generates 〈δ, π〉, time Tc, public/private
key pairs (pka, ska), (pkb, skb) and a random set of public/private pairs {(pkv, skv)}. The adversary
receives 〈π, δ, Tc, pka, pkb, {skv}〉. Denote Sv = {pkv}

⋃
pka

⋃
pkb and Rv = pka

⋃
pkb.

Pre-Forgery :
Random Oracle Queries: Adversary may query any random oracle
Verifications: Adversary chooses different pks ∈ Sv (sender), pkr ∈ Rv (receiver) and time T . It submits

ciphertext with these parameters and obtains information exposed during verification. The only
restriction is for time T = Tc: in this case it is not allowed that both pks and pkr come from
{pka, pkb}.

Encryption Queries: Adversary submits plaintext m, time T and obtains encryption using pka (sender),
pkb (receiver) and time T .

Forgery: Adversary submits ciphertext c.
Outcome: Adversary wins the game if c successfully decrypts using pka (sender), pkb (receiver) and Tc,

and c was not obtained during encryption queries.

We define AdvTUF-TRV -CTXT

T R−PKAE,A (k) = Pr[Decrypt[c, pka, skb, Tc] = true]. By requiring that in the above game
the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corre-
sponding notion of TUF-TRV -PTXT. We skip the details.

16

RUF-TRV -CTXT (PTXT) We modify the RUF-TR-CTXT(PTXT) in which the adversary (receiver)
obtains information exposed during verifications carried out by the sender. We say that TR-PKAE encryp-
tion is secure against timed-release receiver chosen-plaintext ciphertext forgery with verifications attack
(RUF-TRV -CTXT) if no polynomial adversary (denoted by ARUF-TRV -CTXT) has a non-negligible advan-
tage (denoted by AdvRUF-TRV -CTXT

T R−PKAE,A (k)) against the challenger in the RUF-TRV -CTXT game. The game is
identical to that of RUF-TR-CTXT except for the following addition:

Verifications: Attacker submits a sender private key sk (or alternatively, a set of such keys could be gen-
erated by the challenger and given to the adversary), time T 6= Ta and ciphertext encrypted with sk,
pks (receiver) and T . Attacker obtains the information exposed during the verification.

We define AdvRUF-TRV -CTXT

T R−PKAE,A (k) = Pr[Decrypt[c, pks, skb∗ , Ta] = true]. By requiring that in the above game
the decrypted plaintext m in the outcome was not submitted during encryption queries, we obtain corre-
sponding notion of RUF-TRV -PTXT. We skip the details.

A.4 Security Results

Below we state security properties of TR-PKAE against IND-KCV -CCA2, IND-RTRV -CCA2, TUF-TRV -
CTXT and RUF-TRV -CTXT. The proofs are given in Appendix B.

Theorem 5 (IND-KCV -CCA2). Let A be IND-KCV -CCA2 adversary, qd be the number of decryp-
tion queries and q2 the number of queries made to the H2 oracle. Assume that Adv

IND-KCV -CCA2

T R−PKAE,A(k) ≥ ε.

Then there exists an algorithm that solves BDHP with advantage Adv(k) ≥ [2ε
qd+q2

]2 and running time
O(time(A)).

Theorem 6 (IND-RTRV -CCA2). Let A be IND-RTRV -CCA2 adversary, let qd be the number of de-
cryption queries and q2 the number of queries made to the H2 oracle. Assume that Adv

IND-RTRV -CCA2

T R−PKAE,A (k) ≥ ε.

Then there exists an algorithm that solves BDHP with advantage Adv(k) ≥ 2ε
qd+q2

and running time
O(time(A)).

Theorem 7 (TUF-TRV -CTXT). Let A be TUF-TRV -CTXT adversary, let qe be the number of encryp-
tion queries and q2 be the number of queries to random oracle H2. Assume that Adv

TUF-TRV -CTXT

T R−PKAE,A (k) ≥ ε.
Then there exists an algorithm that solves BDHP with advantage Adv(k) ≥ ε

qe·q2+1 and running time
O(time(A)) + O(qe · q2).

We have TUF-TRV -PTXT security with the same inequality. Only minor modifications are required in
the proof.

Theorem 8 (RUF-TRV -CTXT). Let A be RUF-TRV -CTXT adversary, let qe be the number of encryp-
tion queries and q2 be the number of queries to random oracle H2. Assume that Adv

RUF-TRV -CTXT

T R−PKAE,A (k) ≥ ε.

Then there exists an algorithm that solves BDHP with advantage Adv(k) ≥ ε2

(qe·q2)2+2
and running time

O(time(A)) + O([qe · q2]
2).

We have RUF-TRV -PTXT security with the same inequality. Only minor modifications are required in
the proof.

17

B Security Proofs

Proof of Theorem 1 [IND-KC-CCA2] The Theorem result follows from Corollary 12. Let 〈q, G1, G2, e〉
(output by G(1k)) and a random instance of BDH parameters 〈X, a′X, b′X, c′X〉 be given, where X is a
generator of G1. Consider an adversary A against IND-KC-CCA2. We design an algorithm B that interacts
with A by simulating a real IND-KC-CCA2 game for the adversary in order to compute solution to BDHP
e(X, X)a′b′c′

Setup :

Choice of Generator: B chooses generator P to be P = a′X.
Choice of s: B chooses master secret s and makes it public.
Choice of pkb: B chooses receiver public key pkb to be X. The adversary A receives pkb.
Choice of Set {(ska, pka)}: B chooses ai ∈ Z

∗
q at random and forms the set {(ai, aiP)}. The adversary

A receives {ai}.
Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies

being the values. In addition, B maintains database L of possible values of e(X, X)a′b′c′ updated in
the Decryption Queries After Challenge phase.

Oracle queries :
PT (or H1) Queries: B returns cT Z for random cT ∈ Z

∗
q , where Z = c′X, and stores the query T in the

database coupled with cT . Repeated queries retrieve answers from the database.
H2,H3,H4 Queries: B returns a random value and stores it in its database coupled with the query.

Whenever a query is made, this query is stored in a database along with the answer given. Repeated
queries retrieve answers from the database.

Decryption Queries Before Challenge: A submits ciphertext 〈T, Q, aP = aiP, c1, c2〉 where c1 denotes
σ ⊕K and c2 denotes m⊕H4(σ), Q represents r · pkb, a (note that simulator can extract a = ai from
aP = aiP) is the sender private key and T is the designated time.
B goes through the database of H3 searching for appropriate r (by multiplying each r by pkb and
comparing with Q; alternatively, the multiplication can be done whenever a query to H3 is made). If it
is not found, false is returned. If it is found, then corresponding σ and m are retrieved. Then database
of H4 is searched for query with σ. If this σ was not queried in H4 then false is returned. Otherwise, B
computes c2 ⊕H4(σ) and compares it with m. If they are not equal, false is returned. Next, database
of H1 is queried: if it never returned H1(T) false is returned. Next B computes K = c1⊕σ and queries
the database of H2 to see if this K was ever returned. If it was not, false is returned. If it was, it obtains
corresponding query given to H2 and compares it with the true value of the bilinear map which can be
computed as e(rP, sH1(T)) · e(aP, sH1(T)) · e(pkb, aH1(T)) · e(Q, H1(T)) (note that simulator knows
r). If they are equal, true is returned. Otherwise, false is returned.

Selection: A chooses two equal-sized plaintexts m0,m1, sender private key a∗ ∈ {ai} and T = T ∗.
Challenge: B chooses arbitrary β ∈ {0, 1}, arbitrary t∗ ∈ Z

∗
q and assigns Q∗ = t∗(b′X). Then B chooses

σ∗, two random strings c∗1 and c∗2, and composes and returns ciphertext c∗ = 〈T ∗, Q∗, a∗, c∗1, c
∗
2〉. The

databases are updated as follows:
H3: B puts r · pkb = Q∗ as a value (marked appropriately in the database) and (σ∗, mβ) as the query.

If such (σ∗, mβ) was queried previously, a new choice of σ∗ is made. In addition, Q∗ is checked
against existing replies in the database (by multiplying each reply by pkb and comparing it with
Q∗) and if it already exists, a new choice for t∗ is made.

H4: B puts mβ ⊕ c∗2 as a value and σ∗ as the query into database of H4. If σ∗ was already queried, a
new choice of σ∗ is made (in addition, corresponding (σ∗, mβ) should not have been queried from
H3). If mβ ⊕ c∗2 was returned previously as a reply to some query, a new choice of c∗2 is made.

18

H1: If H1(T
∗) was never queried then the query is made.

H2: The database of H2 is instructed never to return the corresponding value of K = K∗ = σ∗⊕ c∗1 (if
it returned this value previously, a new choice of c∗1 is made)

Queries Cont’d: A has a choice to continue queries or to reply to the challenge. A is not allowed to
query for decryption of c∗ using a∗ and T ∗ chosen for the challenge. For decryption queries, B behaves
according to Decryption Queries After Challenge phase.

Decryption Queries After Challenge: A submits ciphertext 〈T, Q, aP = aiP, c1, c2〉. B searches for r cor-
responding to Q in database of H3. Three cases are possible:

Q is found without r: Then Q = Q∗ and B returns false independent of the rest of the ciphertext. In
addition the following local actions are carried out. If c2 = c∗2 and c1 6= c∗1, B retrieves appropriate
σ = σ∗ and computes K = c1 ⊕ σ∗ 6= K∗. If H2 did return this value of K for query Y , then B
computes [Y/[e(sP + pkb, aH1(T)) · e(Q, H1(T))]](scT t∗)−1

and writes the result in the list L as a
possible value of e(X, X)a′b′c′ .

r is found: If Q = Q∗, then B quits and computes e(rP, sH1(T)) = e(b′X/skb, Z)scT t∗ . Thus B can
calculate e(b′X/ logP X, Z) = e(logX(P) · b′X, Z) = e(X, X)a′b′c′ . Otherwise, the same procedure
as in the Before Challenge case is followed.

None of the above: false is returned

Outcome: β is returned or simulation halts.

1. If r corresponding to challenge Q∗ was found in the After Challenge phase, then the procedure
specified there produces e(X, X)a′b′c′ . This value is the solution to BDHP and is output by B.

2. Otherwise, B goes through all q2 adversary queries to H2 and the list L that was produced in the
After Challenge phase and picks a random value Y . If Y comes from queries to H2, B computes
[Y/[e(sP +pkb, a

∗H1(T
∗))·e(Q∗, H1(T

∗))]](scT∗ t∗)−1

and outputs the result as the solution to BDHP.
If the choice came from the After Challenge list, this choice in its original form is output as a solution
to BDHP.

Definition 9. We say that simulation above becomes inconsistent when: 1) A makes a query to H2 with
a true value of challenge bilinear map e(sP + pkb, (r + a∗)H1(T

∗) where r · pkb = t∗b′X or 2) in the After
Challenge phase B returns false where true is due, were the calculation done the same way as in Before
Challenge phase.

Lemma 10. If the simulation above becomes inconsistent, then B outputs correct answer to BDHP with
probability 1

qd+q2

Proof: Suppose simulation becomes inconsistent due to queries to H2 and let Y be the query which is the
true value of the challenge bilinear map. Then Y/[e(sP +pkb, a

∗H1(T
∗)) ·e(Q∗, H1(T

∗))] = e(sP, rH1(T
∗))

where r · pkb = t∗(b′P) and e(sP, rH1(T
∗)) = e(b′X/skb, Z)scT∗ t∗ = e(b′X/ logP X, Z)scT∗ t∗ = e(logX(P) ·

b′X, Z)scT∗ t∗ = e(X, X)(a
′b′c′)(scT∗ t∗). Thus if this Y is chosen in the Outcome phase, the corresponding

computation by B will output the true solution to BDHP.

If simulation becomes inconsistent due to incorrect reply in the After Challenge phase, then A must
have submitted ciphertext 〈T, Q, a, c1, c2〉 where Q = Q∗. To return true to this query we must have:

1. c2 = c∗2 (since σ and m are the same in both cases)

2. and c1 6= c∗1. If c1 = c∗1, then K∗ = K which is true only when a = a∗ and T = T ∗ (up to some negligible
probability) provided that no query to H2 with a true value of the challenge bilinear map was made.
In this case, submitted ciphertext is the same as the challenge ciphertext and B should return false.

19

If true should have been returned, then A must have made a query Y to H2 and received K = c1 ⊕ σ,
where Y is the correct value of the bilinear map e(sP + aP, (r + skb)PT). In this case, Y can be re-
written as e(sP + pkb, aH1(T)) · e(Q, H1(T))e(rP, sH1(T)) where e(sP, rH1(T)) = e(b′X/skb, Z)scT t∗ =
e(X, X)(a

′b′c′)(scT t∗) as before. It follows that the corresponding computation carried out in the After
Challenge phase will in fact yield the true solution to BDHP and thus the list L will contain e(X, X)a′b′c′ .
It follows that if the simulation becomes inconsistent then one of the output choices of B will be the
solution to BDHP and since the size of the output list is at most qd + q2, the conclusion follows. �

To show that advantage obtained is at least 2ε
q2+qd

, we construct a new simulation with challenger
denoted by C. The new game will be denoted as GameC while the game with challenger B specified above
will be denoted by GameB.

In GameC , challenger C runs G(1k) to generate (q, G1, G2, e) and then chooses at random X, a′, b′ and
c′. Up to the challenge, C behaves the same way as B including answering the random oracle queries. In
addition, C calculates correctly the bilinear map in the challenge and assigns the hash value to this pairing
the same way as B unless this input was already queried by adversary from H2, in which case C uses the
value of K returned by H2. In GameC , this value of K is put in the database of H2 with input being the
correct calculation of the pairing. In both games, Q and c2 of the ciphertext are chosen in the same way
with the only possible difference being in c1. C replies to decryption queries in Decryption Queries After
Challenge the same way as in Decryption Queries Before Challenge using its knowledge of a′, b′ and c′.

Lemma 11. If A wins with advantage ε in the real game then he also wins with advantage of at least ε
in the GameC (up to negligible probability of guessing).

Proof: We note that in the Decryption Queries Before/After Challenge C provides incorrect answer only
if adversary guessed one of the values. In the Challenge phase, behavior of C differs from a real game only
in the fact that some choices may be replaced with new random choices to ensure that adversary did not
query those choices before. Probability that these choices have to be replaced with new ones is similar to
probability of guessing in the previous case. Other than these remarks, GameC is indistinguishable from a
real game since all values are chosen at random starting with random initial seeds. �

Corollary 12. If A attains advantage of at least ε in the real game, then the probability that GameB outputs
solution to BDHP is at least 2ε

qd+q2
.

Proof: Some additional notation is needed first:

– Denote by rB the random tape of B, rA the random tape of A and rC the random tape of C used by C
after generation of BDHP parameters.

– Denote by ParC(rC) the set (q, G1, G2, e, X, a′X, b′X, c′X) of BDHP parameters generated by C with
random tape rC .

– Denote by Inc(Par, rA, rB) the event that the run of GameB with BDHP parameters Par, random
tapes rA and rB, is inconsistent.

– Denote by Succ(rA, rC) the event that the adversary A wins in GameC with random tapes rA and rC .

From Lemma 11 it follows that A achieves advantage ε in GameC and, therefore, PrrA,rB [Succ(rA, rC)] =
1/2+ε. We have PrrA,rC [Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)] = 1/2 since no correct query of the challenge
bilinear map was made to H2 by A and, therefore, A cannot distinguish ciphertexts other than by guessing.
Note that B is running with random tape rC and C’s BDHP parameters, therefore, GameB is identical to
GameC until GameB becomes inconsistent.

20

We have

Pr[Succ(rA, rC)] =
Pr[Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)] · Pr[¬Inc(ParC(rC), rA, rC)]

+
Pr[Succ(rA, rC) | Inc(ParC(rC), rA, rC)] · Pr[Inc(ParC(rC), rA, rC)]

= 1/2 + ε

where all probabilities are taken over random tapes rA and rC
Denote pf = Pr[Inc(ParC(rC), rA, rC)] and k = PrrA,rC [Succ(rA, rC) | Inc(ParC(rC), rA, rC)]. Then the

above equation becomes 1/2 · (1− pf) + pf · k = 1/2 + ε. It follows that pf · (k − 1/2) = ε and, therefore,
pf ≥ 2ε.

We note that PrrA,rC [Inc(ParC(rC), rA, rC)] = PrPar,rA,rB [Inc(Par, rA, rB)] since C generates ParC(rC)

independently from rC using a separate random tape. It follows that probability that GameB is inconsistent
is at least 2ε. Applying Lemma 10 we obtain the result.�

Proof of Theorem 2 [TUF-CTXT] Let 〈q, G1, G2, e〉 (output by G(1k)) and a random instance of BDH
parameters 〈X, a′′X, b′′X, c′′X〉 be given, where X is a generator of G1. Consider an adversary A against
TUF-CTXT. First we design an algorithm B that interacts with A by simulating a real TUF-CTXT game
for the adversary in order to compute solution to special case of BDHP with parameters 〈X, a′X, b′X, b′X〉.

Setup :

Choice of Generator: B chooses generator P to be X.

Choice of s: B chooses s ∈ Z
∗
q and makes it public.

Choice of pka and pkb: B chooses public key of receiver pkb to be b′P = b′X and public key of sender
pka to be a′P = a′X. The public keys are given to A.

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies
being the values. In addition, B maintains database Ds updated in the Encryption Queries phase.

Oracle queries :

PT (or H1) Queries: B chooses random cT ∈ Z
∗
q and returns cT (b′P). Query T along with cT are stored

and replies for repeated queries use the database. Note that given Q = r ·b′P ∈ G1 for some r ∈ Zq,
rH1(T) = r · cT b′P = cT · rb

′P = cT Q, i.e. knowing r · b′P we can compute rH1(T) for arbitrary T
without knowledge of r.

H2,H3,H4 Queries: Same as in the proof of Theorem 1.

Encryption queries: When A submits T and m, B chooses random Q ∈ G
∗
1, σ and two random strings

c1 and c2 and returns ciphertext c = 〈T, Q, c1, c2〉. The ciphertext represents encryption of m with
pka = a′P being the sender and pkb = b′P the receiver. The databases are updated as follows:

H3: B puts Q as a value (marked appropriately in the database) and (σ, m) as the query. If such (σ, m)
was queried previously, a new choice of σ is made. In addition, Q is checked against existing replies
in the database (by multiplying each reply by pkb and comparing it with Q; in addition B ensures
that this choice of Q was not submitted in one of the previous Encryption Queries) and if it already
exists, a new choice for Q is made.

H4, H1, H2: updated the same way as in the Challenge phase of the proof of Theorem 1

B keeps the local database Ds in which it enters the pair 〈T, Q〉. Denote by TRUE[T, Q] the true value
of e(sP + pkb, (r + ska)H1(T)), where r · pkb = Q

Forgery: A submits ciphertext 〈T ∗, Q∗, c∗1, c
∗
2〉.

21

Outcome: A returns forged ciphertext or simulation halts.

1. B goes through database Ds, obtains a pair of T and Q = r · pkb (r is unknown to B) from each

entry and computes [Y/[e(sP, rH1(T)) · e(ska, sH1(T)) · e(pkb, rH1(T))]]c
−1

T , for every query Y of A
to H2. The results are written down as possible values of e(P, P)a′b′2 .

2. If A submitted a forgery, B first verifies that Q∗ is in the database of H3, either in the form of r
(this is checked by multiplying each r by pkb) or Q. If the answer is yes, two cases are possible:

Corresponding r is absent: It follows that Q∗ was entered by B. B retrieves corresponding σ and m.
If c∗2 = m ⊕H4(σ) and c∗1 is not equal to the corresponding part of a ciphertext generated in
the encryption queries, B computes K = c∗1 ⊕ σ. If K was returned by H2, the corresponding
query is divided by e(sP, rH1(T

∗)) · e(pka, sH1(T
∗)) · e(pkb, rH1(T

∗)) and the result is taken to
c−1
T -th power (note that rH1(T

∗) can be computed as cT ∗Q∗). The answer is written down as

possible value of e(P, P)a′b′2

Corresponding r is found: B obtains m and σ and goes through the same steps as in the previous
case (except that c∗1 is not compared) to obtain possible value of e(P, P)a′b′2

Note that if A wins then the query corresponding to K will be the correct calculation of the
corresponding bilinear map and, therefore, the answer computed by B will in fact be equal to
e(P, P)a′b′2 (up to probability of guessing).

Out of calculated possible values of e(P, P)a′b′2 , B picks one at random and outputs it as the value of
e(P, P)a′b′2 . Note that the size of the list of possible values of e(P, P)a′b′2 is at most qe · q2 + 1.

Definition 13. We say that simulation above becomes inconsistent when A makes a query to H2 with a
true value corresponding to one of the TRUE[T, Q] in Ds.

Lemma 14. If the simulation above becomes inconsistent, then B contains e(X, X)a′b′2 in its output list.

Proof: Let Y be a query to H2 which happens to be the correct computation of the bilinear map cor-
responding to some TRUE[T, Q] in Ds. Denote r · pkb = Q. Then Y = e(sP + pkb, (r + ska)H1(T)) =
e(pkb, skaH1(T)) · e(sP, rH1(T)) · e(pka, sH1(T)) · e(pkb, rH1(T)). In the Outcome phase of the simulation,
B computes Y/[e(sP, rH1(T)) · e(pka, sH1(T)) · e(pkb, rH1(T))] = e(pkb, skaH1(T)) = e(pkb, ska(cT b′P)) =
e(P, P)a′b′2cT . Since B takes the result to power c−1

T , the true value of e(P, P)a′b′2 is indeed in the list of
possible values. �

Next, one constructs GameC analogously to the proof of Theorem 1 (details skipped – the reader is
asked to refer to analysis in Theorem 1 for notation). And Lemma 11 carries over here as well with
obvious modifications. The following Lemma is slightly different from the corresponding one in the proof
of Theorem 1.

Lemma 15. If A attains advantage of at least ε in the real game, then the probability that GameB outputs
e(P, P)a′b′2 is at least ε

qe·q2+1 .

Proof: We use the same notation as in Corollary 12. In addition to notation used in Corollary 12, denote
k∗ = PrrA,rC [Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)]. Then, as in Corollary 12, k∗ · (1− pf) + k · pf = ε.

Note that when A is successful in GameC and GameB (using rC as B’s random tape, Par generated by C
and the same random tape for A) is consistent, the output list of B will contain e(P, P)a′b′2 (namely, the
candidate for e(P, P)a′b′2 extracted by B from the forgery). From this remark and Lemma 14, it follows that
the probability that B contains e(P, P)a′b′2 in its output list is at least pf +(1−pf)·k∗ ≥ k∗ ·(1−pf)+k·pf =
ε. Since the output list contains qe · q2 + 1 entries, the result follows. �

22

The GameB is used to solve BDHP 〈X, a′′X, b′′X, c′′X〉 as follows. We run GameB with BDHP parameters
〈X, a′′X, Y1, Y1〉 where Y1 = b1X = (c′′X + b′′X)/2, where b1 = (c′′ + b′′)/2, and obtain E1 = e(X, X)b2

1
a′′

with advantage at least ε
qe·q2+1 . Then we run GameB with BDHP parameters 〈X, a′′X, Y2, Y2〉 where

Y2 = b2X = (c′′X − b′′X)/2, where b2 = (c′′ − b′′)/2, and obtain E2 = e(X, X)b2
2
a′′

with advantage
at least ε

qe·q2+1 . Dividing E1 by E2, we obtain e(X, X)a′′b′′c′′ with advantage [ε
qe·q2+1]2

Proof of Theorem 3 [IND-RTR-CCA2] The Theorem result follows from Corollary 16. Let 〈q, G1, G2, e〉
and a random instance of BDH parameters 〈X, a′X, b′X, c′X〉 be given. Consider an adversary A against
IND-RTR-CCA2. We design an algorithm B that interacts with A by simulating a real IND-RTR-CCA2
game for the adversary in order to compute solution to BDHP e(X, X)a′b′c′

Setup :

Choice of Generator: B chooses generator P to be X.

Choice of Ppub: B chooses Ppub = sP to be b′P .

Choice of pka, set {(skb, pkb)} and Ta: B chooses random ska = a ∈ Z
∗
q , skbi

= bi ∈ Z
∗
q and Ta. Adver-

sary A receives pka = aP , {skbi
= bi} and Ta. Public key pka denotes the message sender that will

be used in the simulation.

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies
being the values. In addition, B maintains database L of possible values of e(X, X)a′b′c′ updated in
the Decryption Queries After Challenge phase.

Oracle queries :

PT (or H1) Queries: If T 6= Ta, B returns cT P , for random cT ∈ Z
∗
q , and stores the query T in the

database coupled with the cT . Repeated queries retrieve answers from the database. If T = Ta,
simulator returns c′P .

H2,H3,H4 Queries: Same as in the proof of Theorem 1.

Queries for tkn[T] = sPT : When A submits T 6= Ta, B queries H1, obtains corresponding cT and returns
sH1(T) = cT (b′P).

Decryption Queries Before Challenge: A submits ciphertext 〈b, T, Q, c1, c2〉, where b = skbi
is the choice

of the receiver, pka is the sender and T , Q, c1 and c2 carry the same meaning as in the previous proofs.

B computes rP = Q/b and goes through the database of H3 searching for appropriate r (by multi-
plying each r by P and comparing with Q/b). If it is not found, false is returned. If it is found, then
corresponding σ and m are retrieved. Then database of H4 is searched for query with σ. If this σ was
not queried in H4 then false is returned. Otherwise, B computes c2 ⊕H4(σ) and compares it with m.
If they are not equal, false is returned. Next, database of H1 is queried: if it never returned H1(T)
false is returned. Next B computes K = c1 ⊕ σ and queries the database of H2 to see if this K was
ever returned. If it was not, false is returned. If it was, it obtains corresponding query given to H2 and
verifies that it is equal to e(sP + bP, (r +a)H1(T)). If they are equal, true is returned. Otherwise, false
is returned.

Selection: A chooses two equal-sized plaintexts m0,m1 and pkb∗ ∈ {pkbi
}. (Note that simulator can de-

termine b∗)

Challenge: B chooses arbitrary β ∈ {0, 1}, arbitrary t∗ ∈ Z
∗
q and assigns Q∗ = t∗b∗(a′X). Then σ∗ is cho-

sen, B chooses two random strings c∗1 and c∗2 and composes and returns ciphertext c∗ = 〈Ta, b
∗, Q∗, c∗1, c

∗
2〉

denoting encryption using aP (sender), b∗P (receiver), mβ and Ta. The databases are updated as fol-
lows:

23

H3: B puts rP = t∗a′P as a value (marked appropriately in the database) and (σ∗, mβ) as the query.
If such (σ∗, mβ) was queried previously, a new choice of σ∗ is made. In addition, t∗a′P is checked
against existing replies in the database (by multiplying each reply by P and comparing it with
t∗a′P) and if it already exists, a new choice for t∗ is made.

H4, H2: updated the same way as in the Challenge phase of the proof of Theorem 1
Queries Cont’d: A has a choice to continue queries or to reply to the challenge. A is not allowed to query

for decryption of c∗ using b∗ as the receiver and Ta. For decryption queries, B behaves according to
Decryption Queries After Challenge phase.

Decryption Queries After Challenge: A submits ciphertext 〈T, b, Q, c1, c2〉. B searches for r corresponding
to Q/b = rP in database of H3. If rP is not found, B returns false. Otherwise, two cases are possible:
rP is found without r: Then b∗(rP) = Q∗. If c2 = c∗2, then σ = σ∗ and m = mβ are retrieved and
B computes K = c1 ⊕ σ. Otherwise false is returned. If H2 never returned K, false is returned.
Otherwise, the corresponding query J is retrieved.
T 6= Ta: B can compute the true value of the bilinear map, compare it to J and based on that

return true or false.
T = Ta: B returns false and computes [J/[e(sP, aH1(Ta)) ·e(rbP, H1(Ta)) ·e(bP, aH1(Ta))]]

t∗−1

. The
answer is written down as possible value of e(P, P)a′b′c′ in a list L.

rP is found with r: If rb∗P = Q∗, then B quits, computes e(rP, sH1(Ta)) = e(t∗a′P, b′c′P) and, taking
the result to power t∗−1, obtains e(P, P)a′b′c′ . Otherwise, the same procedure as in the Before
Challenge case is followed.

Outcome: β is returned or simulation halts.
1. If r corresponding to challenge Q∗ was found in the After Challenge phase, then the procedure

specified there produces e(X, X)a′b′c′ . This value is the solution to BDHP and is output by B.
2. Otherwise, B goes through all q2 adversary queries to H2 and the list L that was produced in the

After Challenge phase and picks a random value. If the choice comes from queries to H2, then
result is divided by e(sP + b∗P, aH1(Ta)) · e(Q

∗, H1(T)) to obtain possible value of e(rP, sH1(T))
= e(a′P, b′c′P)t∗ . B takes the t∗−1 root and outputs the result as a solution to BDHP. If the choice
came from the After Challenge list, this choice in its original form is output as a solution to BDHP.

The definition of inconsistency, construction of GameC and the Lemmas in the proof of Theorem 1
naturally carry over with minor modifications. We skip the details and just state the final Corollary:

Corollary 16. Probability that a random run of the above simulation produces the solution to BDHP is
at least 2ε

qd+q2
.

Proof of Theorem 4 [RUF-TR-CTXT] The Theorem result follows from Corollary 20. Let 〈q, G1, G2, e〉
and a random instance of BDH parameters 〈X, a′X, b′X, c′X〉 be given. Consider an adversary A against
RUF-TR-CTXT. We design an algorithm B that interacts with A by simulating a real RUF-TR-CTXT
game for the adversary in order to compute solution to the BDHP with parameters 〈X, a′X, b′X, c′X〉.

Since the simulator will not know the private key corresponding to the public key of the adversary
which is generated during setup, the simulation will be run twice. The idea is to obtain two different
simulation results with the same choice of adversarial public key that will allow us to cancel some terms
that involve this public key. The second simulation uses the same BDHP and setup parameters. The only
difference is in the choice of sP . Moreover, the simulations are completely identical from adversarial view.
The final answer to BDHP is given after both simulations have been run. The random tape of the adversary
is the same in both cases (i.e. we restart adversarial Turing machine with the same random tape), while
the random tape of B should be different in both simulations.

24

Setup :

Choice of Generator: B chooses generator P to be X.

s and Ppub: B chooses Ppub = sP to be u · b′P for random u. Denote by u1 the value of u used in the
1st simulation and by u2 the value used in the 2nd simulation

Choice of pks and Ta: B chooses pks to be a′P and a random Ta. Adversary receives pks and Ta.

Adversary Setup: Adversary chooses public key denoted by bP .

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies
being the values. In addition, B maintains database Ds updated in the Encryption Queries phase.

Oracle queries :

PT (or H1) Queries: If T 6= Ta, B returns cT P for random cT ∈ Z
∗
q and stores cT indexed by T in the

database. If T = Ta, B returns c′P .

H2,H3,H4 Queries: Same as in the proof of Theorem 1.

Queries for sPT : A submits T 6= Ta. B queries H1 with T and returns sH1(T) = cT (u · b′P). Queries for
sPT with T = Ta are not allowed.

Encryption queries: A submits T , m. The simulator is expected to output the encryption of m using a′

(sender) and bP (receiver). Two cases are considered:

T 6= Ta: B computes the ciphertext in a normal way. It chooses arbitrary σ, queries H3 for r and queries
H4 with input σ. Then it computes bilinear map as e(rP + a′P, sH1(T) + bH1(T)) by noting that
sH1(T) = cT (u · b′P) and bH1(T) = cT (bP). The corresponding query is made to H2 and B returns
resulting ciphertext c = 〈rbP, b, T, c1, c2〉.

T = Ta: B chooses random r ∈ Z
∗
q , σ and two random strings c1, c2, and returns ciphertext c =

〈rbP, b, Ta, c1, c2〉. The databases are updated as follows:

H3: B puts r as a value and (σ, m) as the query. If such (σ, m) was queried previously, a new choice
of σ is made. In addition, r is checked against existing replies in the database and if it already
exists, a new choice for r is made.

H4, H1, H2: updated the same way as in the Challenge phase of the proof of Theorem 1

B keeps the local database Ds in which it enters the triple 〈Ta, r, b〉. Denote by TRUE[Ta, r, b] the
true value of e(sP + bP, (r + a′)sH1(Ta)).

Forgery: A submits ciphertext c∗ = 〈Q∗, Ta, c
∗
1, c

∗
2〉 and the receiver private key b∗ that will be used for

verification.

Outcome of 1st Simulation: A returns forged ciphertext or simulation halts.

Inspection of Databases: B goes through database Ds, obtains 〈Ta, r, b〉 from each entry and computes
Y/[e(sP, rH1(Ta))·e(bP, rH1(Ta))] for every query Y to H2. The results are written down as possible
values of e(P, P)u1·a′b′c′ · e(bP, a′c′P) in a database Daux.

Forgery Examination: If A submitted a forgery, B computes r∗P = b∗−1Q∗ and searches query for
r∗ in database of H3. If this query is found, B retrieves corresponding σ∗ and computes K∗ =
c∗1 ⊕ σ∗. Then H2 is queried for query corresponding to K∗. If it exists, B divides the query by
e(sP + b∗P, r∗H1(Ta)) · e(a

′P, b∗H1(Ta))), computes 1/u1-th root of the result and writes down the
answer as a possible value of e(P, P)a′b′c′ .

Note that if A wins (and the simulation stays consistent) then the query corresponding to K∗ will
be the correct calculation of the corresponding bilinear map and, therefore, the answer computed by
B will in fact be equal to e(P, P)a′b′c′ (up to probability of guessing). To see this, note that e(sP +
b∗P, (r∗+a′)PTa

) = e(P, P)c′(s+b∗)(r∗+a′) and this value is equal to a bilinear map e(P, P)c′(s+b)(r+a′)

(used in the encryption queries for Ta) iff (s + b∗)(r∗ + a′) = (s + b)(r + a′) mod q. We can modify
the above simulation by taking s to be known (i.e. a′P is the DLP parameter here and we need

25

to determine a′). Then if collision happens we can compute the value of a′. Under the assumption
of hardness of DLP in G1, this happens only in a negligible number of cases. Thus we may safely
ignore such collisions.

Outcome of 2nd Simulation: A returns forged ciphertext or simulation halts.

Inspection of Databases: Note that, with high probability, u1 6= u2. B goes through database Ds, obtains
〈Ta, r, b〉 from each entry and computes Y/[e(sP, rH1(Ta)) ·e(bP, rH1(Ta))] for every query Y to H2

(the result is a possible value of e(P, P)u2·a′b′c′ · e(bP, a′c′P)). Then for each f ∈ Daux, the result is
divided by f and then taken to 1/(u2−u1)-th power. The final result is written down as a possible
value of e(P, P)a′b′c′ .

Forgery Examination: Same as in the 1st simulation. The same comments apply here as well.

Combined Outcome: The final outcome is produced after the 2nd simulation. Out of calculated possible
values of e(P, P)a′b′c′ produced in both simulations (in the 1st simulation, only forgery examination
may produce such possible value), B picks one at random and outputs it as the value of e(P, P)a′b′c′ .
Note that the size of the list of possible values of e(P, P)a′b′c′ is at most (qe · q2)

2 + 2.

Definition 17. We say that 1st (2nd) simulation above becomes inconsistent when A makes a query to
H2 with a true value corresponding to one of the TRUE[Ta, r, b] in Ds.

Lemma 18. If the 1st simulation becomes inconsistent, then B will have correct answer for e(P, P)u1·a′b′c′ ·
e(bP, a′c′P) in a database Daux.

Proof: Let Y be a query to H2 which happens to be the correct computation of the bilinear map correspond-
ing to some TRUE[Ta, r, b] in Ds. Then Y = [e(sP, rH1(Ta))·e(bP, rH1(Ta))]·e(a

′P, bH1(Ta))·e(sP, a′PTa
).

In the Outcome of 1st Simulation phase, B computes Y/[e(sP, rH1(Ta))·e(bP, rH1(Ta))] = e(a′P, bH1(Ta))·
·e(sP, a′PTa

) = e(bP, a′c′P) · e(P, P)u1·a′b′c′ . Therefore, the true value of e(P, P)u1·a′b′c′ · e(bP, a′c′P) will
be in Daux. �

Lemma 19. If both simulations are inconsistent, then B outputs correct answer for e(P, P)a′b′c′ with
probability 1

(qe·q2)2+2
.

Proof: As in the previous lemma, correct value of e(P, P)u2·a′b′c′ · e(bP, a′c′P) will be calculated in the 2nd
simulation run. In addition, a correct value of e(P, P)u1·a′b′c′ · e(bP, a′c′P) will be retrieved from Daux.
Now one can easily see that 2nd simulation in fact will calculate e(P, P)a′b′c′ using these two values. There
will be at most (qe · q2)

2 + 2 calculations and one of them will involve the mentioned values. Thus, the
probability that e(P, P)a′b′c′ is output will be at least 1

(qe·q2)2+2
. �

In case both simulations are consistent, success of B depends on the forgery. Next we follow a similar
line of reasoning to Theorem 2. More precisely, we construct GameC and prove Lemma 11 for the above
simulation (details omitted). Next, similarly to Lemma 15, we prove the following result:

Corollary 20. If A attains advantage of at least ε in the real game, then the probability that simulation
2 outputs solution to BDHP is at least ε2

(qe·q2)2+2
.

Proof: We use the same notation as in Lemma 15. The proof is very similar to that of Lemma 15. Recall
that k∗ denotes probability of event Succ(rA, rC) for one simulation run given that this run is consistent
and pf denotes probability that a single run is inconsistent. When both simulation runs are inconsistent,
one of the possible values of e(P, P)a′b′c′ produced will in fact be the true value of e(P, P)a′b′c′ . When one
run is consistent the probability that we have a true value of e(P, P)a′b′c′ among output possibilities (i.e.

26

when 2nd simulation chooses its answer) depends on k∗. The probability that the the 2nd run above will
have a true value of e(P, P)a′b′c′ in its output list is at least p2

f +(1−p2
f) ·k∗ (the 1st term is the probability

that both runs are inconsistent, and the 2nd term is a lower bound on probability that at least one run is
consistent and A achieves forgery on this run). As in Lemma 15, we have equation k∗(1−pf)+k ·pf = ε. In
particular, k∗(1−pf)+pf ≥ ε. It is a routine check to verify that p2

f +(1−p2
f) ·k∗ ≥ [k∗(1−pf)+pf]2 ≥ ε2.

Since the BDHP answer is chosen from the list of at most (qe · q2)
2 + 2 possible values and one of them is

a true value of e(P, P)a′b′c′ with probability at least ε2, we obtain the claim. �

Proof of Theorem 7 [TUF-TRV -CTXT] Let 〈q, G1, G2, e〉 and a random instance of BDH parameters
〈X, a′X, b′X, c′X〉 be given. Consider an adversary A against TUF-TRV -CTXT. We design an algorithm
B that interacts with A by simulating a real TUF-TRV -CTXT game for the adversary in order to compute
solution to BDHP e(X, X)a′b′c′

Setup :

Choice of Generator: B chooses generator P to be X.
Choice of s and Ppub: B chooses s ∈ Z

∗
q and makes it public.

Choice of pka, pkb, Tc and set {(pkv, skv)}: B chooses pka to be a′X and pkb to be b′X. Also, random
Tc and set {(pkv, skv)} is chosen. The adversary A receives pka, pkb, {skv} and Tc.

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies
being the values. In addition, B maintains database Ds updated in the Encryption Queries phase.

Oracle queries :
PT (or H1) Queries: If T 6= Tc, B chooses random cT ∈ Z

∗
q and returns cT P . Reply cT is indexed by T

and stored in the database and replies for repeated queries use the database. If T = Tc, B returns
c′X.

H2,H3,H4 Queries: Same as in the proof of Theorem 1.
Encryption Queries: Adversary submits plaintext m, time T . In the generated ciphertext, pka is the sender

and pkb is the receiver.
T 6= Tc: In this case, B can compute the bilinear map as e(sP + pkb, rH1(T) + cT · pka). Therefore, it

goes through normal encryption algorithm and makes all necessary queries to Hi, i = 1, ...4. The
resulting ciphertext is given to the adversary.

T = Tc: In this case, B generates random r ∈ Z
∗
q , σ and two random strings c1, c2 and updates all

necessary databases the same way as in simulation of the proof of Theorem 4 (the T = Ta case). B
returns ciphertext c = 〈Q = r · pkb, T, c1, c2〉.

B keeps the local database Ds for case T = Tc in which it enters r. Let us denote by TRUE[r] the true
value of e(sP + pkb, (r + ska)H1(Tc)).

Verification Queries :
Case 1: Adversary submits valid ciphertext encrypted with sks ∈ {skv} (sender), either pkr{pka, pkb}

as the receiver and time T . Challenger decrypts the ciphertext (by querying the databases and
computing the bilinear map). B chooses random k ∈ Z

∗
q and returns 〈kP, k(pkr), m〉. (Note that we

can omit the zero-knowledge proof here since one can easily remove it from the algorithm A).
Case 2: Adversary submits T 6= Tc, pka (sender), pkb (receiver) and a corresponding valid ciphertext

c = 〈Q, c1, c2〉. B verifies validity of c as follows: 1) r and corresponding σ, m are obtained from H3,
2) equality c2 = m⊕H4(σ) is verified, 3) K = c1⊕ σ is extracted, corresponding query is obtained
from H2 and one verifies that it is equal to the true value (note that it can be calculated by B
in this case). If either one of these steps fails, c is deemed to be invalid. Next, B chooses random
k ∈ Z

∗
q and returns rP , e(pkb, ska ·PTc

) = e(pka, cT · pkb) and pair 〈kP, k(b′X)〉. The case when the
roles of sender and receiver are interchanged is symmetric.

27

Forgery: A submits ciphertext c∗ = 〈Q∗, c∗1, c
∗
2〉. Ciphertext represents encryption using pkb as the sender

and pka as the receiver with designated time Tc.
Outcome: A returns forged ciphertext or simulation halts.

1. B goes through its database Ds, and for each entry of TRUE[r] and query Y to H2 computes
Y/[e(sP, rH1(Tc)) · e(pka, sH1(Tc)) · e(pkb, rH1(Tc))]. The answer is written down as a possible
value of e(P, P)a′b′c′ .

2. If A submitted a forgery, B searches H3 for corresponding r∗ (by multiplying every r in H3 by pka

and comparing it with Q∗). If r∗ is found, then B obtains σ∗ and m∗ and computes K∗ = c∗1 ⊕ σ∗.
If query corresponding to K∗ is in database of H2, then this query is divided by e(sP, r∗H1(Tc)) ·
e(pka, sH1(Tc)) · e(pkb, r

∗H1(Tc)). The answer is written down as a possible value of e(P, P)a′b′c′ .
Note that if the query corresponding to K∗ is the true value of the bilinear map, this calculation
produced the correct e(P, P)a′b′c′

Out of calculated possible values of e(P, P)a′b′c′ , B picks one at random and outputs it as the value of
e(P, P)a′b′c′ . Note that the size of the list of possible values is at most qe · q2 + 1.

Definition 21. We say that simulation above becomes inconsistent when A makes a query to H2 with a
true value corresponding to one of the TRUE[r] in Ds.

Lemma 22. If the simulation above becomes inconsistent, then B will have correct answer for e(X, X)a′b′c′

in its output list.

Proof: Let Y be a query to H2 which happens to be the correct computation of the bilinear map correspond-
ing to some TRUE[r] in Ds. Then Y = [e(sP, rH1(Tc))·e(pka, sH1(Tc))·e(pkb, rH1(Tc))]·e(pka, skbH1(Tc)).
In the Outcome phase, B computes Y/[e(sP, rH1(Tc))·e(pka, sH1(Tc))·e(pkb, rH1(Tc))] = e(pka, skbH1(Tc))
= e(a′X, b′(c′X)) = e(X, X)a′b′c′ and the conclusion follows.�

Next, we follow analogous chain of discussion as in the corresponding part of the proof of Theorem 2.
In fact, all results and proofs are almost identical with obvious modifications. We skip this part of the
proof and conclude that the advantage attained in solving the BDHP problem is at least ε

qe·q2+1

Proof of Theorem 5 [IND-KCV -CCA2] The Theorem statement follows from Corollary 23. Let
〈q, G1, G2, e〉 and a random instance of BDH parameters 〈X, a′′X, b′′X, c′′X〉 be given. Consider an ad-
versary A against IND-KCV -CCA2. First we design an algorithm B that interacts with A by simulating a
real IND-KCV -CCA2 game for the adversary in order to compute solution to special case of BDHP with
parameters 〈X, a′X, a′X, b′X〉.

Setup :

Choice of Generator: B chooses generator P to be a′X.
s and Ppub: B chooses s and makes it public.
Choice of bP : B chooses receiver public key bP to be X. The adversary A receives bP .
Choice of Set {(ska, pka)}: B chooses ai ∈ Z

∗
q at random and forms the set {(ai, aiP)}. The adversary

A receives {ai} (alternatively, the adversary can choose this set by itself).
Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by queries with replies

being the values. In addition, B maintains database L of possible values of e(X, X)a′2b′ updated in
the Decryption Queries After Challenge phase.

Oracle Queries :
PT (or H1) Queries: B returns cT P for random cT ∈ Z

∗
q and stores the query in the database coupled

with the reply. Repeated queries retrieve answers from the database.

28

H2,H3,H4 Queries: Same as in the proof of Theorem 1.
Verification Queries: A submits public key pka ∈ {aiP}, time T and ciphertext c = 〈Q, c1, c2〉. B follows

the routine specified in the Decryption Queries After Challenge. If “true” is output by this phase, then
corresponding r, m, σ and the value of the bilinear map KB are present. B computes kH1(T) = k(cT P)
and k(bH1(T)) = kcT (b′P) for random k ∈ Z

∗
q , and returns 〈T, m, σ, KB, kH1(T), k(bH1(T))〉. Note

that in this case even zero-knowledge protocol will succeed.
Decryption Queries Before Challenge: A submits ciphertext 〈T, Q, pka, c1, c2〉 where c1 denotes encryp-

tion of σ and c2 is the encryption of plaintext, Q represents r · bP , pka = aP ∈ {aiP} and T is the
designated time.

B goes through the database of H3 searching for appropriate r (by multiplying each r by bP and
comparing with Q). If it is not found, false is returned. If it is found, then corresponding σ and m are
retrieved. Then database of H4 is searched for query with σ. If this σ was not queried in H4 then false
is returned. Otherwise, B computes c2 ⊕H4(σ) and compares it with m. If they are not equal, false is
returned. Next, database of H1 is queried: if it never returned H1(T) false is returned. Next B computes
K = c1 ⊕ σ and queries the database of H2 to see if this K was ever returned. If it was not, false is
returned. If it was, it obtains corresponding query given to H2 and compares it with the true value of
the bilinear map which can be computed as e(rP, sH1(T)) · e(aP, sH1(T)) · e(bP, aH1(T)) · e(Q, H1(T))
(note that simulator knows r). If they are equal, true is returned. Otherwise, false is returned.

Selection: A chooses two equal-sized plaintexts m0,m1, sender private key a = a∗ ∈ {ai} and T = T ∗.
Challenge: B chooses arbitrary β ∈ {0, 1}, arbitrary t∗ ∈ Z

∗
q and assigns Q∗ = t∗(b′X). Then σ∗ is chosen,

B chooses two random strings c∗1 and c∗2 and composes and returns ciphertext c∗ = 〈T ∗, Q∗, a∗, c∗1, c
∗
2〉.

The databases are updated as follows:
H3: B puts rbP = Q∗ as a value (marked appropriately in the database) and (σ∗, mβ) as the query. If

such (σ∗, mβ) was queried previously, a new choice of σ∗ is made. In addition, Q∗ is checked against
existing replies in the database (by multiplying each reply by bP and comparing it with Q∗) and if
it already exists, a new choice for t∗ is made.

H4, H1, H2: updated the same way as in the Challenge phase of the proof of Theorem 1
Queries Cont’d: A has a choice to continue queries or to reply to the challenge. A is not allowed to

query for decryption of c∗ using a∗ and T ∗ chosen for the challenge. For decryption queries, B behaves
according to Decryption Queries After Challenge phase.

Decryption queries After Challenge: A submits ciphertext 〈T, Q, pka, c1, c2〉. B searches for r correspond-
ing to Q in database of H3. Three cases are possible:
Q is found without r: Then Q = Q∗ and B returns false independent of the rest of the ciphertext. In

addition the following local actions are carried out. If c2 = c∗2 and c1 6= c∗1, B retrieves appropriate
σ = σ∗ and computes K = c1 ⊕ σ∗ 6= K∗. If H2 did return this value of K for query Y , then B
computes [Y/[e(sP + bP, aH1(T)) · e(Q, H1(T))]](scT)−1

and writes the result as a possible value of
e(X, X)a′2b′ in the list L.

r is found: If Q = Q∗, then B quits and computes e(rP, sH1(T)) = e(Q∗/b, P)scT and by taking the
root obtains e(X, X)a′2b′ . Otherwise, the same procedure as in the Before Challenge case is followed.

None of the above: false is returned
Outcome: β is returned or simulation halts.

1. If r corresponding to challenge Q∗ was found in the After Challenge phase, then the procedure
specified there produces e(X, X)a′2b′ . This value is the solution to BDHP and is output by B.

2. Otherwise, B goes through all q2 adversary queries to H2 and the list L that was produced in the
After Challenge phase and picks a random value Y . If Y comes from queries to H2, B computes

29

[Y/[e(sP + bP, a∗H1(T
∗)) · e(Q∗, H1(T

∗))]](scT∗)−1

and outputs the result as the solution to BDHP.
If the choice came from the After Challenge list, this choice in its original form is output as a
solution to BDHP.

We define inconsistency the same way as in Definition 9 and go through absolutely the same Lemmas
as in the proof of Theorem 1, where in addition verifications phase is added. All proofs and statements
stay the same and we obtain the following Corollary (which parallels Corollary 12):

Corollary 23. Probability that a random run of the above simulation produces the solution to BDHP
〈X, a′X, a′X, b′X〉 is at least 2ε

qd+q2

The above simulation is used to solve BDHP 〈X, a′′X, b′′X, c′′X〉 in the same way as at the end of the
proof of Theorem 2. Thus, the advantage in solving for e(X, X)a′′b′′c′′ is [2ε

qd+q2
]2

Proof of Theorem 8 [RUF-TRV -CTXT] The proof is identical to the proof of Theorem 4 except for
the following addition:

Verifications: Adversary submits a sender public key pk, valid ciphertext c = 〈Q, c1, c2〉 encrypted with sk
(private key corresponding to pk), pks (receiver) and time T 6= Ta. B verifies validity of c as follows: 1)
r and corresponding σ, m are obtained from H3, 2) equality c2 = m⊕H4(σ) is verified, 3) K = c1⊕ σ
is extracted, corresponding query is obtained from H2 and one verifies that it is equal to the true
value (note that it can be calculated by B in this case since skPT = cT (skP)). If either one of these
steps fails, c is deemed to be invalid and verification fails. Next, B chooses random k ∈ Z

∗
q and returns

〈m, σ, kP, k(a′X)〉 (again note that we can omit the zero-knowledge proof here since one can easily
remove it from the algorithm A)

Proof of Theorem 6 [IND-RTRV -CCA2] The proof is identical to the proof of Theorem 3 except for
the following addition:

Verifications: Adversary submits a sender public key pks ∈ {pkb}, valid ciphertext c = 〈Q, c1, c2〉 encrypted
with pks (sender), pka = aP (receiver) and time T . We note that B knows a and, therefore, can verify
validity (decrypt) of submitted ciphertext in the usual way. As a result, B can supply A with all
required information.

30

