
Authenticated Key-Insulated Public Key Encryption
and Timed-Release Cryptography

Jung Hee Cheon1, Nick Hopper2, Yongdae Kim2, Ivan Osipkov2

1 Seoul National University, Korea, jhcheon@math.snu.ac.kr
2 University of Minnesota - Twin Cities, {hopper,kyd,osipkov}@cs.umn.edu

Abstract. In this paper we consider two security notions related to Identity-
Based Encryption: Key-insulated public key encryption, introduced by Dodis,
Katz, Xu and Yung; and Timed-Release Public Key cryptography, introduced
independently by May and Rivest, Shamir and Wagner. We first formalize the
notion of secure timed-release cryptography, and show that, despite several dif-
ferences in its formulation, it is equivalent to strongly key-insulated public key
encryption (with optimal threshold). Next, we introduce the concept of an au-
thenticated timed-release cryptosystem, briefly consider generic constructions,
and then give a construction based on a single primitive which is efficient and
provably secure. Our construction also gives a strongly key-insulated authenti-
cated encryption scheme.

Keywords: timed-release, authenticated encryption, key-insulated encryption

1 Introduction

Timed-Release cryptography. The goal of timed-release cryptography is to “send a
message into the future.” One way to do this is to encrypt a message such that the re-
ceiver cannot decrypt the ciphertext until a specific time in the future. Such a primitive
would have many practical applications, a few examples include preventing a dishonest
auctioneer from prior opening of bids in a sealed-bid auction [30], preventing early open-
ing of votes in e-voting schemes, and delayed verification of a signed document, such as
electronic lotteries [33] and check cashing. The problem of timed-release cryptography
was first mentioned by May [23] and then discussed in detail by Rivest et. al. [30]. Let
us assume that Alice wants to send a message to Bob such that Bob will not be able to
open it until a certain time. The possible solutions fall into two categories:
– Time-lock puzzle approach. Alice encrypts her message and Bob needs to perform
non-parallelizable computation without stopping for the required time to decrypt it.
– Agent-based approach. Alice encrypts a message such that Bob needs some secret value,
published by a trusted agent on the required date, in order to decrypt the message.

The first approach puts immense computational overhead on the message receiver,
which makes it impractical for real-life scenarios. In addition, knowing the computational
complexity of decryption, while giving us a lower bound on the time Bob may need
to decrypt the message, does not guarantee that the plaintext will be available at a
certain date. Still, this approach is widely used for specific applications [10, 4, 33, 20, 19].



The agent-based approach, on the other hand, relieves Bob from performing non-stop
computation, sets the date of decryption precisely and does not require Alice to have
information on Bob’s capabilities. This comes at a price, though: the agents have to be
trusted and they have to be available at the designated time.

In this paper we concentrate on the agent-based approach. Several agent-based con-
structions were suggested by Rivest et. al. [30]. For example, the agent could encrypt
messages on request with a secret key which will be published on a designated date by the
agent. It also could precompute pairs of public/private keys, publish all public keys and
release the private keys on the required days. A different scheme was proposed in [13],
in which non-malleable encryption was used and receiver would engage in a conditional
oblivious transfer protocol with the agent to decrypt the message. In [12], the authors
proposed to use Boneh and Franklin’s IBE scheme [9] for timed-release encryption: for
that, one can replace the identity in an IBE scheme with the time of decryption. Similar
proposals appear in [22, 6]. While some of these proposals contain informal proofs of
security, none of them give a formal treatment of the security properties.

Since all known efficient constructions rely on the Boneh-Franklin IBE construction, a
natural question to consider is if the existence of IBE is necessary for an efficient timed-
release cryptosystem. In this paper, we formalize the security requirements of timed-
release encryption and show that indeed this is the case: the existence of secure timed-
release encryption is equivalent to the existence of strongly key-insulated encryption
with optimal threshold; which in turn is known to imply the existence of IBE [5].

Strongly key-insulated encryption with Optimal Threshold. Strongly key-insulated
encryption addresses the problem of computer intrusion by breaking up the lifetime of a
public key into periods, and splitting the decryption key between the user (say, a mobile
device) and a trusted “helper” (say, a desktop server) so that:

– At the beginning of each time period, the helper securely transmits a “helper secret
key” hski to the user, which he combines with his previous key, uski−1, to obtain a
secret key uski that will decrypt messages encrypted during time period i.

– An adversary who is given access to uski for several time periods i cannot break the
encryption for time periods j in which he has not obtained uskj .

– An adversary given only the hsk cannot break the encryption scheme.

This notion, SKIE-OT, was introduced by Bellare and Palacio [5], who showed that
without the 3rd requirement, key-insulated encryption is equivalent to Identity-Based
Encryption. While key-insulated signature schemes and encryption schemes have ap-
peared in the literature, to our knowledge no one has considered the notion of a strongly
key-insulated authenticated encryption scheme.

Authentication for Timed-Release Encryption. Many of the applications of timed-
release cryptography mentioned above require some form of authentication as well. For
example, if there is no authentication of bids in a sealed auction, any bidder may be able
to forge bids for others, or force the auction to fail by submitting an unreasonably high
bid. In this paper, we consider the security properties required by these applications
and develop formal security conditions for a Timed-Release Public Key Authenticated
Encryption (TR-PKAE) scheme.

One avenue for developing a TR-PKAE scheme would be composing an unauthenti-
cated TR-PKE scheme with either a signature scheme or a (non-timed-release) PKAE

2



scheme. Although such constructions are possible, we note that the details of this com-
position are not trivial; examples from [2, 14] illustrate that naive constructions can fail
to provide the expected security properties. Additionally, we note that such schemes
are likely to suffer a performance penalty relative to a scheme based on a single prim-
itive. Thus we also introduce a provably secure construction of a TR-PKAE scheme
that is essentially as efficient as previous constructions of non-authenticated TR-PKE
schemes [12, 22, 6].

Our Contribution This paper proposes a new primitive that provides timed-release
public key authenticated encryption (in short, TR-PKAE). The contribution of this
paper is four fold:

– We give the first formal analysis of the security requirements for timed-release public
key encryption (TR-PKE) and show that this notion is equivalent to SKIE-OT.

– We introduce the notion of TR-PKAE, as satisfying four notions: IND-CCA2, se-
curity against adaptive chosen ciphertext attacks under compromise of the timed-
release agent and sender’s private key; TUF-CTXT, or third-party unforgeability of
ciphertexts; IND-RTR-CCA2, or receiver undecryptability before release time; and
RUF-TR-CTXT, or receiver unforgeability before release time.

– We introduce a protocol that provides authenticated timed-release (or strongly key-
insulated) public key encryption using a single primitive. The proposed protocol is es-
sentially as efficient as Boneh and Franklin’s chosen-ciphertext secure IBE scheme [9]
in terms of computational and spatial complexity and is provably secure in the ran-
dom oracle model. The proposed protocol requires minimal infrastructure (a single
trusted agent) that can be shared among many applications and can be naturally
converted to a threshold version, which provides robustness as well as stronger se-
curity by allowing outputs of multiple agents to be used.

In addition, we show how to efficiently adapt the resulting protocol to a Hierarchical
Identity-Based Encryption scheme [8] to reduce the storage requirement of the support-
ing infrastructure.

Overview of our construction Consider a public agent (similar to NTP server [25]),
called TiPuS (Timed-release Public Server), which at discrete time-intervals publishes
new self-authenticating information IT = f(PT , s) for current time T , where f and PT

are public, and s is secret. Alice can encrypt a message for Bob at time T using PT , her
private key and Bob’s public key. Only when IT is published on day T , will Bob be able
to decrypt the message using IT , his private key and Alice’s public key.

We implement the above setting using an admissible bilinear map e (see Section 4.1),
which along with the choice of groups and generator P is chosen independently of TiPuS.
Each TiPuS chooses a secret s ∈ Zq and publishes Ppub = sP . At time T , the TiPuS
publishes IT = sPT = sH(T ) 1 (i.e. the private key for identity T in FullIdent), where
H is a cryptographic hash function.

Let (SKA, PKA) = (a, aP ) and (SKB , PKB) = (b, bP ) be Alice’s and Bob’s authen-
ticated private/public key pairs respectively. To encrypt message m for Bob, 1) Alice
computes bilinear map d = e(sP +bP, (r+a)PT ) for random r and applies hash function

1 The value of IT is self-authenticating : namely, each user can compute e(Ppub, PT ) and verify
that it is equal to e(P, IT ), since by bilinearity e(sP, H(T )) = e(P, sH(T )) = e(P, H(T ))s.

3



H2 to obtain K = H2(d), 2) she then encrypts message m as EK(m), where EK is a
symmetric encryption using key K. Bob also receives r · bP . To decrypt the ciphertext,
1) Bob extracts rP from r · bP , and having sPT computes d as e(rP +aP, sPT + bPT ) 2,
2) applying hash function H2, Bob computes K and uses it to decrypt EK(m).3 The full
detailed protocol and all required definitions/discussions are presented in later sections.

Note the following practical aspects already exhibited by the sketched scheme: 1)
(User Secret vs TiPuS Secret) the secret value of TiPuS, system parameters and users’
private keys are completely independent. It will be shown later that compromise of TiPuS
does not jeopardize confidentiality and unforgeability of user ciphertexts; 2) (Sharing)
the published value sPT can be shared among multiple applications; 3) (Scalability)
the protocol can take full advantage of a) several independent TiPuS’s, 4 b) threshold
generation of sPT [27]. The increase in computational complexity is minimal when such
schemes are applied to the protocol.

2 Timed-Release Public Key Encryption (TR-PKE)

In this section we formalize the functionality and security requirements for a timed-
release public-key encryption system. These requirements are meant to capture the in-
formal treatments given in previous work [23, 30, 12, 22, 6]; in particular they do not
address the authentication requirements, which we add in section 3.

2.1 Functional requirements

Formally, we define a timed-release public-key encryption system Γ to be a tuple of five
randomized algorithms:

– Setup, which given input 1k (the security parameter), produces public parameters
πg, which include hash functions, message and ciphertext spaces among others.

– TRSetup, which on input πg, produces a pair (δ, πtr) where δ is a master secret and
πtr the corresponding timed-release public parameters. This setup is carried out by
TiPuS which keeps the master secret key confidential, while all other parameters are
public. We denote the combined public parameters of πg and πtr by π.

– KeyGen, given public parameters πg, outputs a pair of secret key and public key
(sk, pk).

– TG(π, δ, T ) computes the token corresponding to time T , tknT using (δ, π). This is
the functionality performed by TiPuS which publishes tknT at time T .

– Encrypt(π, pk,m, T ) computes the timed-release ciphertext c denoting the encryption
with public key pk of message m with public parameters π and time encoding T .

– Decrypt(π, sk, ĉ, tknT ) outputs the plaintext corresponding to ĉ if decryption is suc-
cessful or the special symbol fail otherwise.

2 Note that according to properties of bilinear map, e(rP + aP, sPT + bPT ) = e((r + a)P, (s +
b)PT ) = e((s + b)P, (r + a)PT ) = d.

3 We note that this scheme is somewhat similar to Bellare and Palacio’s construction of an
SKIE-OT scheme. Our results on the relationship between TR-PKE and SKIE-OT suggest
this is not surprising; indeed, one can see our protocol as augmenting that scheme to add
authentication.

4 If siP is Ppub of the i-th token generator, then combined Ppub is
P

siP and combined sPT

is
P

siPT .

4



For consistency, we require that Decrypt(π, sk,Encrypt(π, pk,m, T ),TG(π, δ, T )) = m,
for all valid (pk, sk), (π, δ), T , and m,

2.2 Security

The introduction of TG and the master secret leads to the following question: how much
should the security of the cryptosystem depend on these timed-release additions? Ideally,
the cryptosystem should maintain receiver confidentiality properties even if the master
secret is compromised. One of our goals (and a property of other recent proposals for
timed-release encryption) is separation of the timed-release infrastructure from encryp-
tion security as much as possible. That is, the timed-release infrastructure should only
affect the timed-release properties of the cryptosystem and not the PKE properties.

It is standard to require that the PKE cryptosystem be secure against adaptive
chosen-ciphertext (IND-CCA2) adversaries [29, 3, 2]. This confidentiality must be pro-
vided even if all tokens tknT are given to the adversary, i.e. it should be time-independent.
A stronger requirement is to demand IND-CCA2 security even if the master secret is
out in the open. This requirement separates the timed-release infrastructure from the
cryptosystem in the following sense: even if all master secrets are compromised, the re-
ceiver will still be guaranteed IND-CCA2 security against any third party. We model this
attack by a slightly modified IND-CCA2 game, shown in Figure 1. Here, in addition to
choosing two “challenge plaintexts” that the adversary will need to distinguish between,
he also chooses a “challenge time” for which his challenge ciphertext will be decrypted;
he wins when he can tell whether his challenge ciphertext is an encryption of his first
or second plaintext for the challenge time, given access to a decryption oracle and the
master secret key of the TiPuS.

Algorithm 2.1: ExpIND−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pk, sk) ← KeyGen(πg)

(m0, m1, T
∗) ← ADecrypt(π,sk,·,·)(π, δ, pk)

b ←R {0, 1}
c∗ ← Encrypt(π, pk, mb, T

∗)

b′ ← ADecrypt(π,sk,·,·)(π, δ, pk, c∗)
if (A queried Decrypt(π, sk, c∗, tknT∗))
then return (false)
else return (b′ = b)

AdvIND−CCA2
A,Γ (k) = Pr[ExpIND−CCA2

A,Γ (k) = true] − 1
2

Algorithm 2.2: ExpIND−RTR−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pk, sk) ← KeyGen(πg)

(m0, m1, T
∗) ← ATG(π,δ,·),Decrypt∗(π,δ,sk,·,·)(π, pk, sk)

b ←R {0, 1}
c∗ ← Encrypt(π, pk, mb, T

∗)

b′ ← ATG(π,δ,·),Decrypt∗(π,δ,sk,·,·)(π, pk, sk, c∗)
if (A queried Decrypt∗(π, sk, c∗, T ∗) or TG(π, δ, T ∗))
then return (false)
else return (b′ = b)

AdvIND−RTR−CCA2
A,Γ (k) = Pr[ExpIND−RTR−CCA2

A,Γ (k) = true] − 1
2

Fig. 1. TR-PKE security experiments for the IND-CCA2 and IND-RTR-CCA2 games

The timed-release functionality, i.e. stopping decryption until the designated time,
is provided by the token-generating infrastructure (i.e. TiPuS). Not knowing the corre-
sponding token is what keeps the receiver from decrypting ciphertext until a designated
time. Therefore, any TR-PKE cryptosystem must provide some confidentiality guaran-
tees against the receiver itself until the corresponding token is made available. We model
this property by the IND-RTR-CCA2 game, shown in Figure 1; in this game, we modify

5



the basic IND-CCA game by giving the adversary access to the receiver’s secret key,
arbitrary tokens tknT ′ , where T ′ 6= T , the “challenge time” chosen by the adversary,
and a decryption oracle Decrypt∗(π, δ, sk, ·, ·) which computes Decrypt(π, sk, ·,TG(π, δ, ·).
The adversary may thus compute the decryption of any ciphertext for any time, except
the challenge ciphertext in the challenge time. We say a timed-release public-key cryp-
tosystem Γ is secure if every polynomial time adversary A has negligible advantages
AdvIND−CCA2

A,Γ (k) and AdvIND−RTR−CCA2
A,Γ (k).

2.3 Strongly Key-Insulated Public Encryption and Timed-Release

The notion of key-insulated public key encryption has been discussed in [15, 16, 5]. As
mentioned previously, Bellare and Palacio [5] have shown that the existence of (chosen-
ciphertext) secure (not strongly) key-insulated encryption is a necessary and sufficient
condition for the existence of secure IBE. Briefly, a strongly key-insulated encryption
(SKIE) scheme is a quintuple of algorithms: KG, which generates a triple (pk, usk0, hsk)
of public key, initial user secret key, and master helper key; HKU which computes a
stage i helper secret key hski given (pk, hsk, i); UKU, which computes the stage i user
secret key uski given i, j, pk, hski, uskj for j ≤ i; Enc, which produces a ciphertext
corresponding to m to be decrypted in stage i, given (pk,m, i); and Dec, which, given
(i, pk, uski, c) attempts to decrypt a ciphertext for stage i. Intuitively, hsk is given to a
“helper”, who will securely transmit, at the beginning of each stage i, the secret hski to
the user. The user can then compute uski, delete any old usk’s in his possession, and
use uski to decrypt messages sent to him during stage i.

A SKIE scheme is considered CCA-secure with optimal threshold if two conditions
hold: (1) given access to pk, a decryption oracle, and as many pairs (hski, uski) of his
choosing, an adversary cannot break the encryption scheme for a stage j for which he has
not been given hskj ; and (2) given pk, hsk, and a decryption oracle, an adversary cannot
break the encryption scheme for any stage. (For formal statements of these requirements,
see [15, 16, 5]. The idea of separation of the timed-release master and user secrets in a
timed-release cryptosystem very closely parallels the notions of helper and user secrets in
a key-insulated cryptosystem; and both involve a “time period” parameter for encryption
and decryption. Furthermore, the two security conditions for a SKIE scheme, in which
either user keys or helper keys are assumed to be compromised, closely resemble the
conditions IND-CCA2 and IND-RTR-CCA2 developed here.

However, there is a key difference between the SKIE and TR-PKE notions. In the
SKIE setting, a helper is associated with at most one user, and cooperates exclusively
with that user, whereas in the TR-PKE setting, it is assumed that many users may use
the services of the TiPuS server, but the interaction between each user and the server
will be minimal. This results in several operational differences; for instance, in a TR-
PKE scheme, the user and master keys are generated independently, whereas in a SKIE
scheme, they are generated jointly. Another difference is in the dissemination of secrets
per time period: a SKIE scheme must use a secure channel to send the hski to only one
user, whereas the tokens generated by a TiPuS are assumed to be publicly disseminated.
Finally, the “user compromise” security notions for each scheme differ slightly, in that
a SKIE scheme’s notion of user compromise is limited to chosen time periods, whereas
a TR-PKE’s notion of user compromise gives away the user’s secret.

6



The following theorem shows that despite these differences, these notions are essen-
tially equivalent.

Theorem 1. There exists a (chosen-ciphertext) secure timed-release public key cryp-
tosystem if and only if there exists a secure strongly key-insulated public-key encryption
scheme with optimal threshold that allows random-access key updates.

Proof. (Sketch) Suppose we have a secure TR-PKE scheme Γ = (Setup,TRSetup,TG,
Encrypt,Decrypt). We construct a SKIE-OT scheme from Γ as follows. Set KG(1k) =
((π, pk), sk, δ), where (π, δ) ← TRSetup(1k) and (pk, sk) ← KeyGen(π); HKU((π, pk), δ, i)
= tkni, where tkni ← TG(π, δ, i); UKU(i, j, (π, pk), tkni, (sk, tknj)) = (sk, tkni);
Enc((π, pk),m, i) = c, where c ← Encrypt(π, pk,m, i); and finally, set Dec(i, (π, pk),
(sk, tkni), c) = Decrypt(π, sk, c, tkni). This scheme essentially makes the TiPuS server
in TR-PKE scheme Γ into a helper for an SKIE-OT scheme.

It is easy to see that this scheme must be a secure SKIE-OT scheme. Suppose an
attacker given access to spk = (π, pk), hsk = δ and a decryption oracle can break the
scheme; then it is easy to see that such an adversary can also be used to mount an
IND-CCA2 attack on Γ , since these are exactly the resources given to an adversary in
the IND-CCA2 game. Likewise, an adversary who can break the scheme given access to
spk = (π, pk), selected (uski, hski) = (sk, tkni) pairs, and a decryption oracle can easily
be used to mount an IND-RTR-CCA2 attack on Γ : when the SKIE adversary makes a
corruption request for stage i, the corresponding RTR-CCA2 adversary queries its TG
oracle for tkni and can forward (sk, tkni) to the SKIE adversary since the RTR-CCA2
adversary gets sk as an input; all other queries made by the SKIE adversary can be
passed directly to the corresponding oracles of the RTR-CCA2 adversary.

Now suppose we have a secure SKIE-OT scheme with random access updates, Σ.
If Σ has the additional property that KG can be implemented as two independent
keying algorithms that generate (pkh, hsk) and (pku, usk), then it is straightforward
to transform Σ into a TR-PKE scheme. Since we would not expect this property to
hold in general, we work around this problem as follows. We know that by the exis-
tence of Σ there also exists an ordinary chosen-ciphertext secure PKC with labels Π =
(PKGen,PKEnc,PKDec); and we can use standard techniques such as those proposed by
Shoup [32] to add labels to Σ. The idea behind our construction is that TRSetup will
sample (spk, hsk, usk0) ← Σ.KG(1k) and set π = spk and δ = (hsk, usk0); KeyGen
will sample (pk, sk) ← Π.PKGen(1k) and output (pk, sk). TG(π, δ, i) will first com-
pute hski = HKU(spk, hsk, i) and then use usk0 and hski to compute tkni = uski =
UKU(i, 0, spk, usk0, hski). Encryption and Decryption will use the multiple-encryption
technique of Dodis and Katz [14].5 Applying the results of [14], an IND-CCA2 attack on
this scheme reduces to a chosen-ciphertext attack on Π, while an IND-RTR-CCA2 attack
on this scheme reduces to an SKIE chosen-ciphertext attack on Σ.

5 Specifically, to encrypt message m for time T , we: (1) pick s1 ← U|m|, and set
s2 = m ⊕ s1, (2) pick signing and verification keys (SK, V K) for a one-time signa-
ture scheme, (3) let c1 = Σ.EncV K(spk, s1, T ), c2 = Π.PKEncV K(pk, s2), and (4) output
(V K, c1, c2, Sig(V K, (T, c1, c2))). Decryption follows the scheme of [14], except that c1 is de-
crypted using tknT = uskT .

7



3 Authenticated Timed-release Public Encryption

The notion of authenticated encryption has been explored in depth in [2, 1]. In this
section we adapt these definitions to give formal security and functionality requirements
for a timed-release public-key authenticated encryption (TR-PKAE) scheme.

3.1 Basic Cryptosystem

The syntactic definition of a TR-PKAE is essentially the same as that of a TR-PKE
with the addition of the sender’s public and secret key. Namely, the types of Setup,
TRSetup, KeyGen and TG stay the same, but Encrypt and Decrypt are modified to take
into account sender’s keys:
– Encrypt(π, skA, pkB ,m, T ) returns an authenticated timed-release ciphertext c de-

noting the encryption from sender A to receiver B of message m for time T .
– Decrypt(π, pkA, skB , ĉ, tknT ) outputs plaintext m̂ if both decryption and authenti-

cation are successful and the special symbol fail otherwise.

The consistency requirement is modified to require that, for all valid (pkA, skA), (pkB , skB)
(π, δ), T , and m, Decrypt(π, pkA, skB ,Encrypt(π, skA, pkB ,m, T ),TG(π, δ, T )) = m.

3.2 Security

Confidentiality. The confidentiality requirements of a TR-PKAE are essentially the
same as the confidentiality requirements of a TR-PKE; except that we make the conser-
vative assumption that the third party (in the case of IND-CCA2) or the receiver (in the
case of IND-RTR-CCA2) has compromised the sender’s secret key. That is, the scheme
should still provide confidentiality if an adversary knows the sender’s secret key and
either the master secret key or the user’s secret key. This results in two new notions,
IND-KC-CCA2 and IND-RTR-KC-CCA2, which we define formally in Figure 2. As be-
fore, we say that a TR-PKAE scheme provides confidentiality if every polynomial time
adversary has negligible advantage, as defined in Figure 2.

As in the case of TR-PKE, the difference between IND-KC-CCA2 and IND-RTR-
KC-CCA2 is in reversal of adversary roles. In IND-RTR-KC-CCA2, the goal is to ensure
security against the receiver itself prior to the designated time.

Ciphertext (Plaintext) Forgery. If a cryptosystem has a goal of providing some
kind of authentication, one should analyze what types of forgeries are possible or impos-
sible. We concentrate on forgery of ciphertexts (plaintext forgery is defined analogously).
We consider two types of ciphertext forgery: third-party forgery, by an adversary that
does not know the sender’s and receiver’s private keys (TUF-CTXT); and forgery by
the ciphertext receiver (RUF-CTXT) [2]. If the TR-PKAE is not secure against TUF-
CTXT then the scheme cannot claim authentication properties since a third party may
be able to forge decryptable (perhaps containing junk) ciphertexts between two users.
If a TR-PKAE is not secure against RUF-CTXT, then the scheme provides no non-
repudiation 6 and furthermore, if the receiver’s private key is compromised, the attacker

6 Since the receiver can generate the ciphertext allegedly coming from another user to himself,
the receiver will not be able to prove to anybody that ciphertext was generated by the alleged
sender even if all secret information is disclosed.

8



can impersonate any sender to this receiver. We introduce the following games to model
unforgeability.

Algorithm 3.1: ExpIND−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pkA, skA) ← KeyGen(πg)
(pkB , skB) ← KeyGen(πg)
(m0, m1, T

∗)

← ADecrypt(π,pkA,skB ,·,·)(π, δ, pkA, skA, pkB)
b ←R {0, 1}
c∗ ← Encrypt(π, skA, pkB , mb, T

∗)

b′ ← ADecrypt(π,pkA,skB ,·,·)(π, δ, pkA, skA, pkB , c∗)
if (A queried Decrypt(π, pkA, skB , c∗, tknT∗))
then return (false)
else return (b′ = b)

AdvIND−CCA2
A,Γ (k) = Pr[ExpIND−CCA2

A,Γ (k) = true] − 1
2

Algorithm 3.2: ExpIND−RTR−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pkA, skA) ← KeyGen(πg)
(pkB , skB) ← KeyGen(πg)
κ ← (π, pkA, skA, pkB , skB)
(m0, m1, T

∗)

← ATG(π,δ,·),Decrypt∗(π,δ,pkA,skB ,·,·)(κ)
b ←R {0, 1}
c∗ ← Encrypt(π, skA, pkB , mb, T

∗)

b′ ← ATG(π,δ,·),Decrypt∗(π,δ,pkA,skB ,·,·)(κ, c∗)
if (A queried Decrypt∗(π, pkA, skA, c∗, T ∗)
or TG(π, δ, T ∗))
then return (false)
else return (b′ = b)

AdvKC−RTR
A,Γ (k) = Pr[ExpIND−RTR−CCA2

A,Γ (k) = true] − 1
2

Fig. 2. TR-PKAE security experiments for the IND-CCA2 and IND-RTR-CCA2 games

Timed-Release RUF-CTXT (RUF-TR-CTXT). We introduce a slightly weaker timed-
release notion of RUF-CTXT, which requires that the receiver should not be able to
forge ciphertext to himself for a future date. This notion has two important implica-
tions: (1) the receiver should discard any ciphertexts received past decryption dates if
his private key may be compromised; and (2) the receiver may be able to prove to a
3rd party that a ciphertext was generated by the alleged sender, provided he can pro-
duce a proof of ciphertext existence prior to the decryption date. The game in Figure 3
is an enhancement of the RUF-CTXT condition proposed by An [2] to allow adap-
tive adversarial behaviour: the receiver is not given access to the token for a single,
adaptively-chosen challenge time period; in addition, the adversary adaptively chooses
and fixes its public key only at the time of the first encryption query. We say that
a TR-PKAE encryption is secure against timed-release RUF-CTXT, denoted by RUF-
TR-CTXT, if every polynomial-time adversary A has negligible advantage (denoted by
AdvRUF−TR−CTXT

A,Γ (k)) against the challenger in the RUF-TR-CTXT game.

TUF-CTXT In addition to timed-release receiver unforgeability, we also require a time-
independent third-party unforgeability (TUF-CTXT) condition. A good question would
be to ask why would one require TUF-CTXT security if the best we can provide with
respect to the receiver is RUF-TR-CTXT; after all RUF-TR-CTXT would automatically
imply TUF-TR-CTXT. The main reason to require TUF-CTXT security is to ensure
that some kind of unforgeability is guaranteed even if the master secret is compromised,
that is, we would like to separate timed-release functionality from PKAE. Thus, in the

9



Algorithm 3.3: ExpTUF−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pkA, skA) ← KeyGen(πg)
(pkB , skB) ← KeyGen(πg)

(c, t) ← AEncrypt∗(π,skA,pkr,·,·)(π, δ, pkA, pkB)
if (Decrypt∗(π, δ, pkA, skB , c, Ta) = fail

or Encrypt∗(π, skA, pkB , ·, T ) returned c)
then return (false)
else return (true)

Algorithm 3.4: ExpRUF−TR−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pkA, skA) ← KeyGen(πg)

pkr ← ATG(π,δ,·)(π, pkA)

C ← ATG(π,δ,·),Encrypt∗(π,skA,pkr,·,·)(π, pkA, pkr)
(c, Ta, pkB , skB) ← C
if (Decrypt∗(π, δ, pkA, skB , c, Ta) = fail

or Encrypt∗ returned c

or (pkB , skB) 6∈ [KeyGen(1k)]
or A queried TG(Ta))
then return (false)
else return (true)

AdvTUF−CTXT
A,Γ (k) = Pr[ExpTUF−CTXT

A,Γ (k) = true] .

AdvRUF−TR−CTXT
A,Γ (k) = Pr[ExpRUF−TR−CTXT

A,Γ (k) = true .

Fig. 3. TR-PKAE security experiments for the TUF-CTXT and RUF-TR-CTXT games

TUF-CTXT game defined in Figure 3, the master key is given to the adversary. We say
that a TR-PKAE scheme Γ is secure against third-person chosen-plaintext ciphertext
forgery (TUF-CTXT) if every polynomial time adversary A has negligible advantage,
AdvTUF−CTXT

A,Γ (k), in k.

4 The Proposed TR-PKAE

Following the proof of Theorem 1, one approach to achieve TR-PKAE would be to com-
bine a key-insulated encryption scheme with a PKAE scheme in a modular fashion using
techniques such as given in [14]. However, modern authenticated encryption requires one
primitive that achieves the desired security properties [11]: such solutions generally al-
low for a more efficient scheme, tighter security bounds and more stringent security.
Below we construct an example of such a scheme that satisfies all of the above security
requirements and is nearly as efficient as Boneh and Franklin’s FullIdent scheme [9]. We
start with a review of Bilinear Diffie-Hellman Problem.

4.1 Bilinear Diffie-Hellman Problem

Let G1 and G2 be two abelian groups of prime order q. We will use additive notation for
G1 (aP denotes the P added a times for element P ∈ G1) and multiplicative notation
for G2 (ga denotes the g multiplied a times for element g of G2). Let e : G1 × G1 → G2

be an admissible bilinear map [9]. The properties of the groups and constructions of e
are explained in detail in [9]. We assume that the Decisional Diffie-Hellman Problem
(DDHP) is hard in G2. Note that as a trivial consequence of DDHP assumption, the
Discrete Logarithm Problem (DLP) is also hard in G2. As a consequence of the above
assumptions, it follows that 1) DLP is hard in G1 [24], 2) ∀Q ∈ G

∗
1, inverting the

isomorphism that takes P ∈ G1 and computes e(P,Q) is hard [9], 3) the DDHP is easy
in G1 [21].

10



Let G be a BDH Parameter Generator [9], i.e. a randomized algorithm that takes
positive integer input k, runs in polynomial time in k and outputs prime q, descriptions
of G1, G2 of order q, description of admissible bilinear map e : G1×G1 → G2 along with
polynomial deterministic algorithms for group operations and e and generators P ∈ G1,
Q ∈ G2. We say that algorithm A has advantage ε(k) in solving the computational
Bilinear Diffie-Hellman Problem (BDHP) for G if there exists k0 such that:

Advcbdh
A,G (k) = Pr[〈q, G1, G2, e〉 ← G(1k), P ← G

∗
1, a, b, c ← Z

∗
q :

A(q, G1, G2, e, P, aP, bP, cP ) = e(P, P )abc] ≥ ε(k),∀k > k0 (1)

We say that G satisfies the computational Bilinear Diffie-Hellman (BDH) Assumption
if for any randomized polynomial-time algorithm A and any polynomial f ∈ Z[x] we
have Advcbdh

A,G (k) < 1/f(k) for sufficiently large k
We say that algorithm A has advantage ε(k) in solving the decisional Bilinear Diffie-

Hellman Problem (BDHP) [7] for G if there exists k0 such that:

Advdbdh
A,G (k) = Pr[〈q, G1, G2, e〉 ← G(1k), P ← G

∗
1, a, b, c ← Z

∗
q , T ← G

∗
2 :

|Pr[A(q, G1, G2, e, P, aP, bP, cP, e(P, P )abc) = 0]−Pr[A(q, G1, G2, e, P, aP, bP, cP, T ) = 0]|

≥ ε(k),∀k > k0 (2)

We say that G satisfies the decisional Bilinear Diffie-Hellman (BDH) Assumption if
for any randomized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advdbdh

A,G (k) < 1/f(k) for sufficiently large k

4.2 Description of the Scheme

Let G be a BDH Parameter Generator. Figure 4 gives a complete description of our
construction7. The symmetric encryption scheme used is a straightforward adaptation of
the Fujisaki-Okamoto scheme [18]. We briefly demonstrate the consistency of the scheme
before moving on to security considerations. Given ciphertext c = 〈Q,σ⊕K,m⊕H4(σ)〉
computed using skA, pkB and T , we note that in the corresponding Decrypt computations
we have 1) R = rP , 2) K̂ = K since e(R+pka, sPT +skbPT ) = e(rP +skaP, sPT +skbPT )
= e([r + ska]P, [s + skb]PT ) = e([s + skb]P, [r + ska]PT ) = e(Ppub + pkb, [r + ska]PT ),
3) as in Fujisaki-Okamoto, it follows that σ̂ = σ, m̂ = m and 4) R = rP = H3(σ̂, m̂)P .
Thus the original plaintext is retrieved.

4.3 Security of the Scheme

The following security results apply to TR-PKAE. Due to space considerations, the
detailed proofs of these results are omitted from this extended abstract. First, we note
the confidentiality properties of the proposed scheme. The proofs of these properties
are similar to the security proofs of Bellare and Palacio’s SKIE-OT scheme [5] and will
appear in the full version [26].

7 As in [9], we can weaken surjectivity assumption on hash function H1. The security proofs
and results will hold true with minor modifications. We skip the details and refer reader
to [9].

11



Setup: Given security parameter k ∈ Z
+, the following steps are followed

1: G takes k and generates a prime q, two groups G1, G2 of order q and an admissible
bilinear map e : G1 × G1 → G2. Arbitrary generator P ∈ G1 is chosen.

2: The following cryptographic hash functions are chosen: 1) H1 : {0, 1}∗ → G
∗
1, 2) H2 :

G2 → {0, 1}n for some n, 3) H3 : {0, 1}n×{0, 1}n → Z
∗
q and 4) H4 : {0, 1}n → {0, 1}n.

These functions will be treated as random oracles in security considerations.
3: The message space is chosen to be M = {0, 1}n and the ciphertext space is C = G

∗
1 ×

{0, 1}n × {0, 1}n. The general system parameters are πg = 〈q, G1, G2, e, n, P, Hi, i =
1...4〉

TRSetup :
1: Choose s ∈R Z

∗
q and set Ppub = sP .

2: The timed-release public system parameter is πtr = Ppub and the master key δ is s ∈ Z
∗
q .

The combined public parameters are π = πg||πtr = 〈q, G1, G2, e, n, P, Ppub, Hi, i =
1...4〉

KeyGen: Uniformly choose private key sk = a ∈ Z
∗
q , and compute the corresponding public

key pk as aP ∈ G
∗
1.

TG: On input the time encoding T ∈ {0, 1}n, output sPT where PT = H1(T )
Encrypt: Given the private key skA of the sender, public key pkB of receiver, plaintext m ∈ M

and time encoding T , encryption is done as follows: 1) choose σ ∈ {0, 1}n uniformly at
random, compute r = H3(σ, m) and set Q = r · pkb; 2) compute L = e(Ppub + pkb, (r +
ska)PT ) and symmetric key K = H2(L) and 3) the ciphertext c is set to be c = 〈Q, σ ⊕
K, m ⊕ H4(σ)〉

Decrypt: Given ciphertext c = 〈Q, c1, c2〉 encrypted using skA, pkN and time T , one decrypts

it as follows: (1) obtain tknT = sPT ; (2) compute R = sk−1
B Q and bK = H2(e(R +

pkA, sPT + skBPT )); 3) retrieve bσ = c1 ⊕ bK and compute bm = c2 ⊕ H4(bσ) and 4) one
verify that R = H3(bσ, bm)P ; if so, output bm, otherwise output fail.

Fig. 4. The proposed TR-PKAE scheme, T R − PKAE

Theorem 2 (IND-KC-CCA2). Let A be a IND-KC-CCA2 adversary that makes qd de-
cryption queries and q2 queries to H2. Assume that AdvIND−KC−CCA2

A,T R−PKAE (k) ≥ ε. Then there

exists an algorithm B that solves computational BDHP with advantage Advcbdh
B,G (k) ≥

2ε
qd+q2

and running time O(time(A)).

Theorem 3 (IND-RTR-CCA2). Let A be a IND-RTR-CCA2 adversary that makes qd

decryption queries, q2 queries to H2 and qtok queries to TG. Assume that
AdvIND−RTR−CCA2

A,T R−PKAE (k) ≥ ε. Then there exists an algorithm B that solves computational

BDHP with advantage Advcbdh
B,G (k) ≥ 2ε

e·(1+qtok)(qd+q2)
and running time O(time(A)).

The proposed protocol also satisfies the authentication properties specified in the pre-
vious section, i.e., TUF-CTXT and RUF-TR-CTXT. We briefly sketch the proof of Theo-
rem 4; the proof of Theorem 5 is more involved and we include it in the full version of
the paper.

Theorem 4 (TUF-CTXT). Let A be a TUF-CTXT adversary that makes qe encryption
queries and q2 queries to H2, and let AdvTUF−CTXT

A,T R−PKAE(k) ≥ ε. Then there exists an

algorithm B with computational BDHP advantage Advcbdh
B,G (k) ≥

[
ε

(qe·q2+1)

]2

and running

time O(time(A)) + O(qe · q2).

12



Proof. (Sketch). Suppose we are given a triple (P, xP, yP ). Then given A we can use

relatively straightforward random oracle simulation techniques to compute e(P, P )xy2

with probability ρ = ε/(qeq2 + 1) as follows. We run A, picking uniform s and set-
ting setting Ppub = sP , pkA = xP , pkB = yP and responding to oracle queries H1(T )
with cT yP for a uniformly chosen cT . Then on a successful forgery (T, ryP, c1, c2) we
know that (except with negligible probability) A must have queried e(Ppub + pkB , (r +
skA)H1(T )) to H2, and from this value and cT we can compute e((s+y)P, (r+x)cT yP ) =

e(P, P )ysr+y2r+ysx+y2x; since we know s and ryP , we can also compute e(P, P )ysr,e(yP, yrP ) =

e(P, P )y2r, and e(yP, xP )s = e(P, P )ysx; dividing these off gives e(P, P )xy2

. Given a
BDH problem (P, aP, bP, cP ) we can compute e(P, P ) with probability ρ2 by using this

procedure twice: once with x1P = r1aP, y1P = 1
2 (bP + cP ), yielding e(P, P )a(b/2+c/2)2 ;

and once with x2P = r2aP, y2P = 1
2 (bP−cP ), yielding e(P, P )a(b/2−c/2)2 . If both results

are correct, dividing them gives e(P, P )abc.

Theorem 5 (RUF-TR-CTXT). Let A be a RUF-TR-CTXT adversary that makes qe en-
cryption queries, q2 queries to H2, and qtok queries to TG, and let AdvRUF−TR−CTXT

A,T R−PKAE (k) ≥

ε. Then there exists an algorithm B with decisional 8 BDHP advantage
Advdbdh

B,G (k) ≥ [ ε
e·(1+qtok) ]

4 · 1
[16·(qe·q2+4)·qe·q2]

and running time O(time(A))+O([qe ·q2]
2).

5 Efficiency

To compare the proposed scheme to Boneh and Franklin’s FullIdent [9], note that, first,
encryption in both schemes requires the same number of significant operations: 1 bilinear
pairing, 1 MapToPoint, 2 exponentiations in G1. The decryption in FullIdent requires
1 bilinear pairing and 1 exponentiation in G1 while the proposed TR-PKAE adds 2
additional exponentiations in G1. Second, the proposed scheme shares the same spatial
complexity with FullIdent. Therefore, the hybrid protocols that combine SKIE-OT with
additional cryptographic primitives are bound to be at least as expensive as our scheme.

We implemented the proposed primitives using Miracl library v.4.8.2 [31] with Tate
pairing for the bilinear map. The group G1 was chosen to be a subgroup of order q in
a supersingular elliptic curve E over Fp, where p is a 512 bit and q is a 160 bit primes.
Group G2 was a subgroup of a finite field of order 1024 bits. We used a P3-977 MHz
desktop with 512 MB of memory. The performance measurements are summarized in
Table 1. As expected, the proposed TR-PKAE is slightly more expensive than FullIdent
in decryption, but when FullIdent is extended to provide comparable functionality to
TR-PKAE we expect the resulting scheme to be at least as expensive as the proposed
protocol.

6 Adaptation of HIBE to TR-PKAE

The timed-release schemes proposed here and in the literature, require that past tokens
be stored in a repository in case a user attempts to decrypt a message with designated

8 Computational BDH assumption suffices when RUF-TR-CTXT is adapted from [2]. The
resulting bound is of the order ε2 order

13



Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)

RSA(Sig/Dec) 1024 1024 4.65

RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.36

Scalar Mul in EC over Fp 160 160 3.44

MapToPoint 512 - 2.42

Pairing 512 160 31.71

TR-PKAE Enc 512 160 41

TR-PKAE Dec 512 160 42

FullIdent Enc 512 160 41

FullIdent Dec 512 160 35

time well in the past. As a result, the required storage for tokens grows linearly over
time. A Hierarchical IBE (HIBE) scheme recently proposed by Boneh et al. [8] allows

to reduce the required token storage to O(log3/2 T ), where T is an upper bound on the
number of time periods when tokens are published 9. This adaptation works as follows.
Using the notation of [8] (in particular, multiplicative notation for both groups), the
sender now computes {e(gb ·g1, g2)

r+a, grb, ga, L}, where g replaces P , (b, gb) and (a, ga)
are now the private/public key pairs of the receiver and sender, and L is the remaining
part of the ciphertext as in [8] using public key (I1, ..., Ik) (which denotes the time) and
s = r + a. Note that the gs in the ciphertext of [8] is replaced by ga and grb. To decrypt
the ciphertext using private key b and private key (a0, b1, ...) corresponding to (I1, ..., Ik),
the receiver replaces a0 by a0 · g

b
2 and then applies the decryption mechanism used in [8]

with gs = gr · ga and message M = 1 to obtain the required bilinear map. Note that the
number of pairings required does not increase when we add authentication. We also note
that now we can use the property of [8] to reduce the amount of storage required to store

tokens. In particular, at each time-period the agent only needs to store O(log3/2 T ) group
elements, from which all previous tokens can be derived. The security in [8] relies on
the Bilinear Diffie Hellman Exponent assumption, which is stronger than computational
BDH assumption; aside from this, the security analysis of the adapted scheme is similar
to the original schemes and is left to the full paper due to space constraints.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In CT-RSA, 2001.

2. J. H. An. Authenticated Encryption in the Public-Key Setting: Security Notions and
Analyses. http://eprint.iacr.org/2001/079/, 2001.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. In CRYPTO, 1998.

4. M. Bellare and S. Goldwasser. Encapsulated key escrow. Technical report, MIT/LCS/TR-
688, 1996.

5. M. Bellare and A. Palacio. Protecting against Key Exposure: Strongly Key-Insulated En-
cryption with Optimal Threshold. http://eprint.iacr.org/2002/064/, 2002.

9 The possibility of using HIBE for this purpose was initially suggested in online sci.crypt

newsgroup [17] and further discussed in [8].

14



6. I. F. Blake and A. C.-F. Chan. Scalable, Server-Passive, User-Anonymous Timed Release
Public Key Encryption from Bilinear Pairing. In ICDCS, 2005.

7. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without
Random Oracles. In EUROCRYPT, 2004.

8. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical Identity Based Encryption with Constant
Size Ciphertext. In EUROCRYPT, 2005.

9. D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. In CRYPTO,
2003.

10. D. Boneh and M. Naor. Timed commitments. In CRYPTO, 2000.
11. X. Boyen. Multipurpose Identity-Based Signcryption: A Swiss Army Knife for Identity-

Based Cryptography. In CRYPTO, 2003.
12. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities

in pairing based cryptosystems. In InfraSec, 2002.
13. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional Oblivious Transfer and

Timed-Release Encryption. In EUROCRYPT, 1999.
14. Y. Dodis and J. Katz. Chosen-Ciphertext Security of Multiple Encryption. In Theory of

Cryptography Conference, 2005.
15. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public Key Cryptosystems. In

EUROCRYPT, 2002.
16. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes. In PKC,

2003.
17. P. from newsgroup sci.crypt. Key Evolving Encryption. Available from http://www.

groupsrv.com/science/viewtopic.php?t=61168&start=0, 2004.
18. E. Fujisaki and T. Okamoto. Secure Integration of Assymetric and Symmatric Encryption

Schemes. In CRYPTO, 1999.
19. J. Garay and C. Pomerance. Timed Fair Exchange of Arbitrary Signatures. In Financial

Cryptography, 2003.
20. J. A. Garay and C. Pomerance. Timed Fair Exchange of Standard Signatures. In Financial

Cryptography, 2002.
21. A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in cryp-

tographic groups. Journal of Cryptology, 16, 2003.
22. K. H. Marco Casassa Mont and M. Sadler. The HP Time Vault Service: Exploiting IBE

for Timed Release of Confidential Information . In WWW, 2003.
23. T. May. Timed-Release Crypto. http://www.cyphernet.org/cyphernomicon/chapter14/

14.5.html-.
24. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms

in a finite field. In IEEE Transactions on Information Theory IT-39, 5, 1993.
25. D. Mills. Network Time Protocol (Version 3) Specification, Implementation. Technical

Report 1305, RFC, 1992.
26. I. Osipkov, Y. Kim, and J. H. Cheon. A Scheme for Timed-Release Public Key Based

Authenticated Encryption. Available from http://eprint.iacr.org/2004/231, 2004.
27. T. P. Pederson. A Threshold Cryptosystem Without a Trusted Party. In EUROCRYPT,

1991.
28. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In EUROCRYPT,

1996.
29. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and

Chosen Ciphertext Attack. In CRYPTO, 1991.
30. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and Time-released Crypto.

Technical report, MIT/LCS/TR-684, 1996.
31. Shamus Software Ltd. MIRACL: Multiprecision Integer and Rational Arithmetic C/C++

Library. http://indigo.ie/~mscott/.

15



32. V. Shoup. ISO 18033-2: An Emerging Standard for Public-Key Encryption. Available from
http://shoup.net/iso/, 2004.

33. P. F. Syverson. Weakly Secret Bit Commitment: Applications to Lotteries and Fair Ex-
change. In Computer Security Foundations Workshop, 1998.

A Selected Security Proofs

Proof of Theorem 2 [IND-KC-CCA2] The Theorem result follows from Corol-
lary 9. Let 〈q, G1, G2, e〉 (output by G(1k)) and a random instance of BDH parameters
〈X, a′X, b′X, c′X〉 be given, where X is a generator of G1. Consider an adversary A
against IND-KC-CCA2. We design an algorithm B that interacts with A by simulating
a real IND-KC-CCA2 game for the adversary in order to compute solution to BDHP
e(X,X)a′b′c′

Setup :

Choice of Generator: B chooses generator P to be P = a′X.
Choice of s: B chooses master secret s and makes it public.
Choice of pkb: B chooses receiver public key pkb to be X. The adversary A receives

pkb.
Choice of Set {(ska, pka)}: B chooses ai ∈ Z

∗
q at random and forms the set {(ai, aiP )}.

The adversary A receives {ai}.
Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by

queries with replies being the values. In addition, B maintains database L of
possible values of e(X,X)a′b′c′ updated in the Decryption Queries After Chal-
lenge phase.

Oracle queries :
PT (or H1) Queries: B returns cT Z for random cT ∈ Z

∗
q , where Z = c′X, and stores

the query T in the database coupled with cT . Repeated queries retrieve answers
from the database.

H2,H3,H4 Queries: B returns a random value and stores it in its database cou-
pled with the query. Whenever a query is made, this query is stored in a
database along with the answer given. Repeated queries retrieve answers from
the database.

Decryption Queries Before Challenge: A submits ciphertext 〈T,Q, aP = aiP, c1, c2〉
where c1 denotes σ⊕K and c2 denotes m⊕H4(σ), Q represents r ·pkb, a (note that
simulator can extract a = ai from aP = aiP ) is the sender private key and T is the
designated time.
B goes through the database of H3 searching for appropriate r (by multiplying
each r by pkb and comparing with Q; alternatively, the multiplication can be done
whenever a query to H3 is made). If it is not found, false is returned. If it is found,
then corresponding σ and m are retrieved. Then database of H4 is searched for
query with σ. If this σ was not queried in H4 then false is returned. Otherwise, B
computes c2⊕H4(σ) and compares it with m. If they are not equal, false is returned.
Next, database of H1 is queried: if it never returned H1(T ) false is returned. Next
B computes K = c1 ⊕ σ and queries the database of H2 to see if this K was ever
returned. If it was not, false is returned. If it was, it obtains corresponding query

16



given to H2 and compares it with the true value of the bilinear map which can be
computed as e(rP, sH1(T )) · e(aP, sH1(T )) · e(pkb, aH1(T )) · e(Q,H1(T )) (note that
simulator knows r). If they are equal, true is returned. Otherwise, false is returned.

Selection: A chooses two equal-sized plaintexts m0,m1, sender private key a∗ ∈ {ai}
and T = T ∗.

Challenge: B chooses arbitrary β ∈ {0, 1}, arbitrary t∗ ∈ Z
∗
q and assigns Q∗ = t∗(b′X).

Then B chooses σ∗, two random strings c∗1 and c∗2, and composes and returns cipher-
text c∗ = 〈T ∗, Q∗, a∗, c∗1, c

∗
2〉. The databases are updated as follows:

H3: B puts r · pkb = Q∗ as a value (marked appropriately in the database) and
(σ∗,mβ) as the query. If such (σ∗,mβ) was queried previously, a new choice of
σ∗ is made. In addition, Q∗ is checked against existing replies in the database
(by multiplying each reply by pkb and comparing it with Q∗) and if it already
exists, a new choice for t∗ is made.

H4: B puts mβ ⊕ c∗2 as a value and σ∗ as the query into database of H4. If σ∗ was
already queried, a new choice of σ∗ is made (in addition, corresponding (σ∗,mβ)
should not have been queried from H3). If mβ ⊕ c∗2 was returned previously as a
reply to some query, a new choice of c∗2 is made.

H1: If H1(T
∗) was never queried then the query is made.

H2: The database of H2 is instructed never to return the corresponding value of
K = K∗ = σ∗ ⊕ c∗1 (if it returned this value previously, a new choice of c∗1 is
made)

Queries Cont’d: A has a choice to continue queries or to reply to the challenge. A is
not allowed to query for decryption of c∗ using a∗ and T ∗ chosen for the challenge.
For decryption queries, B behaves according to Decryption Queries After Challenge
phase.

Decryption Queries After Challenge: A submits ciphertext 〈T,Q, aP = aiP, c1, c2〉. B
searches for r corresponding to Q in database of H3. Three cases are possible:
Q is found without r: Then Q = Q∗ and B returns false independent of the rest of the

ciphertext. In addition the following local actions are carried out. If c2 = c∗2 and
c1 6= c∗1, B retrieves appropriate σ = σ∗ and computes K = c1 ⊕ σ∗ 6= K∗. If H2

did return this value of K for query Y , then B computes [Y/[e(sP +pkb, aH1(T ))·

e(Q,H1(T ))]](scT t∗)−1

and writes the result in the list L as a possible value of
e(X,X)a′b′c′ .

r is found: If Q = Q∗, then B quits and computes e(rP, sH1(T )) = e(b′X/skb, Z)scT t∗ .
Thus B can calculate e(b′X/ logP X,Z) = e(logX(P ) · b′X,Z) = e(X,X)a′b′c′ .
Otherwise, the same procedure as in the Before Challenge case is followed.

None of the above: false is returned
Outcome: β is returned or simulation halts.

1. If r corresponding to challenge Q∗ was found in the After Challenge phase, then
the procedure specified there produces e(X,X)a′b′c′ . This value is the solution
to BDHP and is output by B.

2. Otherwise, B goes through all q2 adversary queries to H2 and the list L that was
produced in the After Challenge phase and picks a random value Y . If Y comes
from queries to H2, B computes [Y/[e(sP+pkb, a

∗H1(T
∗))·e(Q∗,H1(T

∗))]](scT∗ t∗)−1

and outputs the result as the solution to BDHP. If the choice came from the After
Challenge list, this choice in its original form is output as a solution to BDHP.

17



Definition 6. We say that simulation above becomes inconsistent when: 1) A makes
a query to H2 with a true value of challenge bilinear map e(sP + pkb, (r + a∗)H1(T

∗)
where r · pkb = t∗b′X or 2) in the After Challenge phase B returns false where true is
due, were the calculation done the same way as in Before Challenge phase.

Lemma 7. If the simulation above becomes inconsistent, then B outputs correct answer
to BDHP with probability 1

qd+q2

Proof: Suppose simulation becomes inconsistent due to queries to H2 and let Y be
the query which is the true value of the challenge bilinear map. Then Y/[e(sP +
pkb, a

∗H1(T
∗))·e(Q∗,H1(T

∗))] = e(sP, rH1(T
∗)) where r·pkb = t∗(b′P ) and e(sP, rH1(T

∗))
= e(b′X/skb, Z)scT∗ t∗ = e(b′X/ logP X,Z)scT∗ t∗ = e(logX(P )·b′X,Z)scT∗ t∗ = e(X,X)(a

′b′c′)(scT∗ t∗).
Thus if this Y is chosen in the Outcome phase, the corresponding computation by B will
output the true solution to BDHP.

If simulation becomes inconsistent due to incorrect reply in the After Challenge
phase, then A must have submitted ciphertext 〈T,Q, a, c1, c2〉 where Q = Q∗. To return
true to this query we must have:

1. c2 = c∗2 (since σ and m are the same in both cases)

2. and c1 6= c∗1. If c1 = c∗1, then K∗ = K which is true only when a = a∗ and T = T ∗

(up to some negligible probability) provided that no query to H2 with a true value
of the challenge bilinear map was made. In this case, submitted ciphertext is the
same as the challenge ciphertext and B should return false.

If true should have been returned, then A must have made a query Y to H2 and received
K = c1 ⊕σ, where Y is the correct value of the bilinear map e(sP +aP, (r + skb)PT ). In
this case, Y can be re-written as e(sP + pkb, aH1(T )) · e(Q,H1(T ))e(rP, sH1(T )) where
e(sP, rH1(T )) = e(b′X/skb, Z)scT t∗ = e(X,X)(a

′b′c′)(scT t∗) as before. It follows that the
corresponding computation carried out in the After Challenge phase will in fact yield
the true solution to BDHP and thus the list L will contain e(X,X)a′b′c′ . It follows that
if the simulation becomes inconsistent then one of the output choices of B will be the
solution to BDHP and since the size of the output list is at most qd + q2, the conclusion
follows. ¤

To show that advantage obtained is at least 2ε
q2+qd

, we construct a new simulation
with challenger denoted by C. The new game will be denoted as GameC while the game
with challenger B specified above will be denoted by GameB.

In GameC , challenger C runs G(1k) to generate (q, G1, G2, e) and then chooses at
random X, a′, b′ and c′. Up to the challenge, C behaves the same way as B including
answering the random oracle queries. In addition, C calculates correctly the bilinear map
in the challenge and assigns the hash value to this pairing the same way as B unless
this input was already queried by adversary from H2, in which case C uses the value of
K returned by H2. In GameC , this value of K is put in the database of H2 with input
being the correct calculation of the pairing. In both games, Q and c2 of the ciphertext
are chosen in the same way with the only possible difference being in c1. C replies to
decryption queries in Decryption Queries After Challenge the same way as in Decryption
Queries Before Challenge using its knowledge of a′, b′ and c′.

18



Lemma 8. If A wins with advantage ε in the real game then he also wins with advantage
of at least ε in the GameC (up to negligible probability of guessing).

Proof: We note that in the Decryption Queries Before/After Challenge C provides incor-
rect answer only if adversary guessed one of the values. In the Challenge phase, behavior
of C differs from a real game only in the fact that some choices may be replaced with new
random choices to ensure that adversary did not query those choices before. Probability
that these choices have to be replaced with new ones is similar to probability of guessing
in the previous case. Other than these remarks, GameC is indistinguishable from a real
game since all values are chosen at random starting with random initial seeds. ¤

Corollary 9. If A attains advantage of at least ε in the real game, then the probability
that GameB outputs solution to BDHP is at least 2ε

qd+q2
.

Proof: Some additional notation is needed first:

– Denote by rB the random tape of B, rA the random tape of A and rC the random
tape of C used by C after generation of BDHP parameters.

– Denote by ParC(rC) the set (q, G1, G2, e,X, a′X, b′X, c′X) of BDHP parameters gen-
erated by C with random tape rC .

– Denote by Inc(Par, rA, rB) the event that the run of GameB with BDHP parameters
Par, random tapes rA and rB, is inconsistent.

– Denote by Succ(rA, rC) the event that the adversary A wins in GameC with random
tapes rA and rC .

From Lemma 8 it follows that A achieves advantage ε in GameC and, therefore,
PrrA,rB

[Succ(rA, rC)] = 1/2+ε. We have PrrA,rC
[Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)] =

1/2 since no correct query of the challenge bilinear map was made to H2 by A and, there-
fore, A cannot distinguish ciphertexts other than by guessing. Note that B is running
with random tape rC and C’s BDHP parameters, therefore, GameB is identical to GameC

until GameB becomes inconsistent.
We have

Pr[Succ(rA, rC)] =
Pr[Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)] · Pr[¬Inc(ParC(rC), rA, rC)]
+
Pr[Succ(rA, rC) | Inc(ParC(rC), rA, rC)] · Pr[Inc(ParC(rC), rA, rC)]

= 1/2 + ε

where all probabilities are taken over random tapes rA and rC
Denote pf = Pr[Inc(ParC(rC), rA, rC)] and k = PrrA,rC

[Succ(rA, rC) | Inc(ParC(rC), rA, rC)].
Then the above equation becomes 1/2 · (1 − pf ) + pf · k = 1/2 + ε. It follows that
pf · (k − 1/2) = ε and, therefore, pf ≥ 2ε.

We note that PrrA,rC
[Inc(ParC(rC), rA, rC)] = PrPar,rA,rB

[Inc(Par, rA, rB)] since C
generates ParC(rC) independently from rC using a separate random tape. It follows that
probability that GameB is inconsistent is at least 2ε. Applying Lemma 7 we obtain the
result.¤

19



Proof of Theorem 4 [TUF-CTXT] Let 〈q, G1, G2, e〉 (output by G(1k)) and a random
instance of BDH parameters 〈X, a′′X, b′′X, c′′X〉 be given, where X is a generator of
G1. Consider an adversary A against TUF-CTXT. First we design an algorithm B that
interacts with A by simulating a real TUF-CTXT game for the adversary in order to
compute solution to special case of BDHP with parameters 〈X, a′X, b′X, b′X〉.

Setup :

Choice of Generator: B chooses generator P to be X.

Choice of s: B chooses s ∈ Z
∗
q and makes it public.

Choice of pka and pkb: B chooses public key of receiver pkb to be b′P = b′X and
public key of sender pka to be a′P = a′X. The public keys are given to A.

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by
queries with replies being the values. In addition, B maintains database Ds

updated in the Encryption Queries phase.

Oracle queries :

PT (or H1) Queries: B chooses random cT ∈ Z
∗
q and returns cT (b′P ). Query T along

with cT are stored and replies for repeated queries use the database. Note that
given Q = r · b′P ∈ G1 for some r ∈ Zq, rH1(T ) = r · cT b′P = cT · rb′P = cT Q,
i.e. knowing r · b′P we can compute rH1(T ) for arbitrary T without knowledge
of r.

H2,H3,H4 Queries: Same as in the proof of Theorem 2.

Encryption queries: When A submits T and m, B chooses random Q ∈ G
∗
1, σ and two

random strings c1 and c2 and returns ciphertext c = 〈T,Q, c1, c2〉. The ciphertext
represents encryption of m with pka = a′P being the sender and pkb = b′P the
receiver. The databases are updated as follows:

H3: B puts Q as a value (marked appropriately in the database) and (σ,m) as
the query. If such (σ,m) was queried previously, a new choice of σ is made. In
addition, Q is checked against existing replies in the database (by multiplying
each reply by pkb and comparing it with Q; in addition B ensures that this
choice of Q was not submitted in one of the previous Encryption Queries) and
if it already exists, a new choice for Q is made.

H4, H1, H2: updated the same way as in the Challenge phase of the proof of The-
orem 2

B keeps the local database Ds in which it enters the pair 〈T,Q〉. Denote by TRUE[T,Q]
the true value of e(sP + pkb, (r + ska)H1(T )), where r · pkb = Q

Forgery: A submits ciphertext 〈T ∗, Q∗, c∗1, c
∗
2〉.

Outcome: A returns forged ciphertext or simulation halts.

1. B goes through database Ds, obtains a pair of T and Q = r · pkb (r is un-
known to B) from each entry and computes [Y/[e(sP, rH1(T )) · e(ska, sH1(T )) ·

e(pkb, rH1(T ))]]c
−1
T , for every query Y of A to H2. The results are written down

as possible values of e(P, P )a′b′2 .

2. If A submitted a forgery, B first verifies that Q∗ is in the database of H3, either
in the form of r (this is checked by multiplying each r by pkb) or Q. If the answer
is yes, two cases are possible:

20



Corresponding r is absent: It follows that Q∗ was entered by B. B retrieves corre-
sponding σ and m. If c∗2 = m⊕H4(σ) and c∗1 is not equal to the correspond-
ing part of a ciphertext generated in the encryption queries, B computes
K = c∗1 ⊕σ. If K was returned by H2, the corresponding query is divided by
e(sP, rH1(T

∗)) · e(pka, sH1(T
∗)) · e(pkb, rH1(T

∗)) and the result is taken to
c−1
T -th power (note that rH1(T

∗) can be computed as cT∗Q∗). The answer

is written down as possible value of e(P, P )a′b′2

Corresponding r is found: B obtains m and σ and goes through the same steps
as in the previous case (except that c∗1 is not compared) to obtain possible

value of e(P, P )a′b′2

Note that if A wins then the query corresponding to K will be the correct cal-
culation of the corresponding bilinear map and, therefore, the answer computed
by B will in fact be equal to e(P, P )a′b′2 (up to probability of guessing).

Out of calculated possible values of e(P, P )a′b′2 , B picks one at random and outputs

it as the value of e(P, P )a′b′2 . Note that the size of the list of possible values of

e(P, P )a′b′2 is at most qe · q2 + 1.

Definition 10. We say that simulation above becomes inconsistent when A makes a
query to H2 with a true value corresponding to one of the TRUE[T,Q] in Ds.

Lemma 11. If the simulation above becomes inconsistent, then B contains e(X,X)a′b′2

in its output list.

Proof: Let Y be a query to H2 which happens to be the correct computation of the bilin-
ear map corresponding to some TRUE[T,Q] in Ds. Denote r·pkb = Q. Then Y = e(sP +
pkb, (r+ska)H1(T )) = e(pkb, skaH1(T )) ·e(sP, rH1(T )) ·e(pka, sH1(T )) ·e(pkb, rH1(T )).
In the Outcome phase of the simulation, B computes Y/[e(sP, rH1(T )) · e(pka, sH1(T )) ·

e(pkb, rH1(T ))] = e(pkb, skaH1(T )) = e(pkb, ska(cT b′P )) = e(P, P )a′b′2cT . Since B takes

the result to power c−1
T , the true value of e(P, P )a′b′2 is indeed in the list of possible

values. ¤

Next, one constructs GameC analogously to the proof of Theorem 2 (details skipped –
the reader is asked to refer to analysis in Theorem 2 for notation). And Lemma 8 carries
over here as well with obvious modifications. The following Lemma is slightly different
from the corresponding one in the proof of Theorem 2.

Lemma 12. If A attains advantage of at least ε in the real game, then the probability
that GameB outputs e(P, P )a′b′2 is at least ε

qe·q2+1 .

Proof: We use the same notation as in Corollary 9. In addition to notation used in
Corollary 9, denote k∗ = PrrA,rC

[Succ(rA, rC) | ¬Inc(ParC(rC), rA, rC)]. Then, as in
Corollary 9, k∗ · (1 − pf ) + k · pf = ε.

Note that when A is successful in GameC and GameB (using rC as B’s random tape,
Par generated by C and the same random tape for A) is consistent, the output list of

B will contain e(P, P )a′b′2 (namely, the candidate for e(P, P )a′b′2 extracted by B from
the forgery). From this remark and Lemma 11, it follows that the probability that B

21



contains e(P, P )a′b′2 in its output list is at least pf +(1−pf )·k∗ ≥ k∗ ·(1−pf )+k ·pf = ε.
Since the output list contains qe · q2 + 1 entries, the result follows. ¤

The GameB is used to solve BDHP 〈X, a′′X, b′′X, c′′X〉 as follows. We run GameB

with BDHP parameters 〈X, a′′X,Y1, Y1〉 where Y1 = b1X = (c′′X + b′′X)/2, where

b1 = (c′′ + b′′)/2, and obtain E1 = e(X,X)b21a′′

with advantage at least ε
qe·q2+1 . Then we

run GameB with BDHP parameters 〈X, a′′X,Y2, Y2〉 where Y2 = b2X = (c′′X − b′′X)/2,

where b2 = (c′′ − b′′)/2, and obtain E2 = e(X,X)b22a′′

with advantage at least ε
qe·q2+1 .

Dividing E1 by E2, we obtain e(X,X)a′′b′′c′′ with advantage [ ε
qe·q2+1 ]2

Proof of Theorem 3 [IND-RTR-CCA2] The Theorem result follows from Corol-
lary 13. Let 〈q, G1, G2, e〉 and a random instance of BDH parameters 〈X, a′X, b′X, c′X〉
be given. Consider an adversary A against IND-RTR-CCA2. We design an algorithm B
that interacts with A by simulating a real IND-RTR-CCA2 game for the adversary in
order to compute solution to BDHP e(X,X)a′b′c′ .

We use a biased coin that with probability θ > 0 returns 0 and otherwise returns 1.
The optimal value of θ will be determined later.

Setup :

Choice of Generator: B chooses generator P to be X.
Choice of Ppub: B chooses Ppub = sP to be b′P .
Choice of pka and set {(skb, pkb)}: B chooses random ska = a ∈ Z

∗
q and skbi

= bi ∈
Z
∗
q . Adversary A receives pka = aP and {skbi

= bi}. Public key pka denotes the
message sender that will be used in the simulation.

Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by
queries with replies being the values. In addition, B maintains database L of
possible values of e(X,X)a′b′c′ updated in the Decryption Queries After Chal-
lenge phase.

Oracle queries :
PT (or H1) Queries: B chooses random cT ∈ Z

∗
q , flips coin and returns cT P if coin

outcome is 0. Otherwise, it returns cT · c′P . Results are stored and repeated
queries retrieve answers from the database.

H2,H3,H4 Queries: Same as in the proof of Theorem 2.
Queries for tkn[T ] = sPT : B queries H1, obtains corresponding cT and 1) if returns

sH1(T ) = cT (b′P ) if H1(T ) = cT P , 2) fails otherwise.
Decryption Queries Before Challenge: A submits ciphertext 〈b, T,Q, c1, c2〉, where b =

skbi
is the choice of the receiver, pka is the sender and T , Q, c1 and c2 carry the

same meaning as in the previous proofs.

B computes rP = Q/b and goes through the database of H3 searching for appropriate
r (by multiplying each r by P and comparing with Q/b). If it is not found, false is
returned. If it is found, then corresponding σ and m are retrieved. Then database of
H4 is searched for query with σ. If this σ was not queried in H4 then false is returned.
Otherwise, B computes c2 ⊕ H4(σ) and compares it with m. If they are not equal,
false is returned. Next, database of H1 is queried: if it never returned H1(T ) false is
returned. Next B computes K = c1⊕σ and queries the database of H2 to see if this K

22



was ever returned. If it was not, false is returned. If it was, it obtains corresponding
query given to H2 and verifies that it is equal to e(sP + bP, (r + a)H1(T )). If they
are equal, true is returned. Otherwise, false is returned.

Selection: A chooses two equal-sized plaintexts m0,m1, key pkb∗ ∈ {pkbi
} and time Ta.

(Note that simulator can determine b∗). If PTa
= cTa

P the simulator quits. It is
assumed that A did not query (nor will in the future) for tkn[Ta].

Challenge: B chooses arbitrary β ∈ {0, 1}, arbitrary t∗ ∈ Z
∗
q and assigns Q∗ = t∗b∗(a′X).

Then σ∗ is chosen, B chooses two random strings c∗1 and c∗2 and composes and re-
turns ciphertext c∗ = 〈Ta, b∗, Q∗, c∗1, c

∗
2〉 denoting encryption using aP (sender), b∗P

(receiver), mβ and Ta. The databases are updated as follows:

H3: B puts rP = t∗a′P as a value (marked appropriately in the database) and
(σ∗,mβ) as the query. If such (σ∗,mβ) was queried previously, a new choice of
σ∗ is made. In addition, t∗a′P is checked against existing replies in the database
(by multiplying each reply by P and comparing it with t∗a′P ) and if it already
exists, a new choice for t∗ is made.

H4, H2: updated the same way as in the Challenge phase of the proof of Theorem 2

Queries Cont’d: A has a choice to continue queries or to reply to the challenge. A is not
allowed to query for decryption of c∗ using b∗ as the receiver and Ta. For decryption
queries, B behaves according to Decryption Queries After Challenge phase.

Decryption Queries After Challenge: A submits ciphertext 〈T, b,Q, c1, c2〉. B searches
for r corresponding to Q/b = rP in database of H3. If rP is not found, B returns
false. Otherwise, two cases are possible:

rP is found without r: Then b∗(rP ) = Q∗. If c2 = c∗2, then σ = σ∗ and m = mβ are
retrieved and B computes K = c1 ⊕ σ. Otherwise false is returned. If H2 never
returned K, false is returned. Otherwise, the corresponding query J is retrieved.

PT = cT P : B can compute the true value of the bilinear map, compare it to J
and based on that return true or false.

PT = cT · c′P : B returns false and computes [J/[e(sP, aH1(T )) · e(rbP,H1(T )) ·

e(bP, aH1(T ))]]t
∗−1

. The answer is written down as possible value of e(P, P )a′b′c′

in a list L.

rP is found with r: If rb∗P = Q∗, then B quits, computes e(rP, sH1(Ta)) = e(t∗a′P, b′c′P )
and, taking the result to power t∗−1, obtains e(P, P )a′b′c′ . Otherwise, the same
procedure as in the Before Challenge case is followed.

Outcome: β is returned or simulation halts.

1. If r corresponding to challenge Q∗ was found in the After Challenge phase, then
the procedure specified there produces e(X,X)a′b′c′ . This value is the solution
to BDHP and is output by B.

2. Otherwise, B goes through all q2 adversary queries to H2 and the list L that
was produced in the After Challenge phase and picks a random value. If the
choice comes from queries to H2, then result is divided by e(sP +b∗P, aH1(Ta)) ·
e(Q∗,H1(T )) to obtain possible value of e(rP, sH1(T )) = e(a′P, b′c′P )t∗ . B takes
the t∗−1 root and outputs the result as a solution to BDHP. If the choice came
from the After Challenge list, this choice in its original form is output as a
solution to BDHP.

23



The optimal value of θ maximizes the probability that simulation does not quit during
token queries or during selection. This probability is at least θqtok · (1 − θ), where qtok

is the number of token queries made by A, and is maximized when θ = 1− 1/(qtok + 1)
with value 1

e·(1+qtok) .

The definition of inconsistency, construction of GameC and the Lemmas in the proof
of Theorem 2 naturally carry over with minor modifications. We skip the details and
just state the final Corollary:

Corollary 13. Probability that a random run of the above simulation produces the so-
lution to BDHP is at least 2ε

e·(1+qtok)(qd+q2)
.

[Auxiliary Simulation for RUF-TR-CTXT] Let 〈q, G1, G2, e〉 and a random in-
stance of BDH parameters 〈X, a′X, b′X, c′X〉 be given. Consider an adversary A against
RUF-TR-CTXT. Denote Z = e(a′P, c′P )b, where bP is the adversarial public key that
will be used in the encryption queries. The challenger is given candidate value of Z. A
biased coin is used which with probability θ > 0 outputs 0 and outputs 1 otherwise.

Setup :

Choice of Generator: B chooses generator P to be X.
s and Ppub: B chooses Ppub = sP to be b′P .
Choice of pks and Ta: B chooses pks to be a′P . Adversary receives pks.
Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by

queries with replies being the values. In addition, B maintains database Ds

updated in the Encryption Queries phase.

Oracle queries :
PT (or H1) Queries: B picks random cT ∈ Z

∗
q and flips the coin. If the output is 0, it

returns cT P , otherwise it returns cT · c′P . Result is stored and repeated queries
retrieve the answer from the database.

H2,H3,H4 Queries: Same as in the proof of IND-KC-CCA2 Theorem.
Queries for sPT : B queries H1 with T and 1) returns sH1(T ) = cT · b′P if PT = cT P ,

2) fails otherwise.
Encryption queries: A submits T , m and public key bP . The value bP stays fixed after

the 1st initial query. The simulator is expected to output the encryption of m using
a′ (sender) and bP (receiver). Two cases are considered:
PT = cT P : B computes the ciphertext in a normal way. It chooses arbitrary σ,

queries H3 for r and queries H4 with input σ. Then it computes bilinear map as
e(rP + a′P, sH1(T ) + bH1(T )) by noting that sH1(T ) = cT · b′P and bH1(T ) =
cT (bP ). The corresponding query is made to H2 and B returns resulting cipher-
text c = 〈rbP, T, c1, c2〉.

PT = cT · c′P : B chooses random t ∈ Z
∗
q , σ and two random strings c1, c2, and

returns ciphertext c = 〈Q = t · a′P, T, c1, c2〉. The databases are updated as
follows:
H3: B puts Q as a value and (σ,m) as the query. If such (σ,m) was queried

previously, a new choice of σ is made. In addition, Q is checked against
existing replies in the database and if it already exists, a new choice for t is
made.

24



H4, H1, H2: updated the same way as in the Challenge phase of the proof of
IND-KC-CCA2 Theorem

B keeps the local database Ds in which it enters the triple 〈T, t, bP 〉. Denote by
TRUE[T, t, bP ] the true value of e(sP + bP, (r + a′)H1(T )), where rbP = Q.

Forgery: A submits ciphertext c∗ = 〈Q∗, Ta, c∗1, c
∗
2〉 and the receiver private key b∗ that

will be used for verification.
Outcome of Simulation: A returns forged ciphertext or simulation halts.

Inspection of Databases: B goes through database Ds, obtains 〈T, t, bP 〉 from each
entry, computes Y/[e(c′P, t · a′P ) · e(bP, rH1(T )) ·ZcT ] for every query Y to H2,
and then takes the result to power c−1

T . The results are written down as possible

values of e(P, P )a′b′c′ in a database Daux.
Forgery Examination: If A submitted a forgery, B computes r∗P = b∗−1Q∗ and

searches query for r∗ in database of H3. If this query is found, B retrieves
corresponding σ∗ and computes K∗ = c∗1 ⊕ σ∗. Then H2 is queried for query
corresponding to K∗. If it exists, B divides the query by e(sP + b∗P, r∗H1(Ta)) ·
e(a′P, b∗H1(Ta))), and writes down the answer as a possible value of e(P, P )a′b′c′ .
Note that if A wins, Z is correct and the simulation stays consistent then the
query corresponding to K∗ will be the correct calculation of the corresponding
bilinear map and, therefore, the answer computed by B will in fact be equal to
e(P, P )a′b′c′ (up to probability of guessing).

Candidate Solutions to BDHP: We output the set of all candidates for e(P, P )a′b′c′

compiled in the previous phase.

Definition 14. We say that the simulation is inconsistent if A makes a query to H2

with a true value corresponding to one of the TRUE[T, r] in Ds.

The optimal value of θ maximizes the probability that simulation does not quit during
token queries or during forgery. This probability is at least θqtok · (1 − θ), where qtok is
the number of token queries made by A, and is maximized when θ = 1 − 1/(qtok + 1)
with value 1

e·(1+qtok) .

Assume that Z is correctly computed and simulation does not fail during token
queries. Then if A succeeds in forgery and the simulation stays consistent then the
query corresponding to K∗ will be the correct calculation of the corresponding bilinear
map and, therefore, the answer computed by B will in fact be equal to e(P, P )a′b′c′ (up
to probability of guessing). If the simulation is inconsistent, then (irrespective of forgery
outcome) the database Daux will a correct value of e(P, P )a′b′c′ in its list. We summarize
these observations in the following Lemma.

Lemma 15. Assume that Z = e(a′P, c′P )b is correct. Let ε > 0 be adversarial advantage
in the RUF-TR-CTXT and qtok the number of token queries. Then the probability that the
set output in the above simulation contains correct solution to BDHP is at least ε

e·(1+qtok)

Proof of Theorem 5 [RUF-TR-CTXT] Let 〈q, G1, G2, e〉 and a random instance
of BDH parameters 〈X, a′X, b′X, c′X〉 be given along with decisional BDH challenge
F . Consider an adversary A against RUF-TR-CTXT. We design an algorithm B that
interacts with A by simulating a real RUF-TR-CTXT game for the adversary in order
to decide if equality F = e(P, P )a′b′c′ holds.

25



Note that the public key of the adversary used in the encryption queries needs to
be revealed only during the encryption queries. Moreover, the simulator does not know
the corresponding secret key. Also the challenge time is not known apriori but can
be chosen by adversary adaptively. To deal with lack of apriori knowledge of challenge
time, the simulator will use a biased coin that with probability θ > 0 returns 0 and
otherwise returns 1. The optimal value of θ will be determined later. To deal with lack
of knowledge of secret key corresponding to the public key chosen by adversary during
encryption queries, we will run the simulation two times. Finally, to deal with the fact
that the adversarial public key used in the encryption queries can be chosen adaptively,
in the end we will run the Auxiliary RUF-TR-CTXT simulation above feeding it the
output of the first two simulations.

Setup :

Choice of Generator: B chooses generator P to be X.
s and Ppub: B chooses Ppub = sP to be b′P .
Choice of pks: B chooses pks to be a′P . Adversary receives pks.
Databases: Databases corresponding to Hi, i = 1, ..., 4 are maintained indexed by

queries with replies being the values. In addition, B maintains database Ds

updated in the Encryption Queries phase.

Oracle queries :

PT (or H1) Queries: B chooses random cT ∈ Z
∗
q , flips coin and returns cT P if coin

outcome is 0. Otherwise, it returns cT · c′P . Results are stored and repeated
queries retrieve answers from the database.

H2,H3,H4 Queries: Same as in the proof of Theorem on IND-KC-CCA2.

Queries for sPT : B queries H1, obtains corresponding cT and 1) it returns sH1(T ) =
cT (b′P ) if H1(T ) = cT P , 2) fails otherwise.

Encryption queries: A submits T , m and bP . After 1st submission of bP it stays fixed
for future encryption queries. The simulator is expected to output the encryption of
m using a′ (sender) and bP (receiver). Two cases are considered:

PT = cT P : B computes the ciphertext in a normal way. It chooses arbitrary σ,
queries H3 for r and queries H4 with input σ. Then it computes bilinear map as
e(rP + a′P, sH1(T ) + bH1(T )) by noting that sH1(T ) = cT · b′P and bH1(T ) =
cT (bP ). The corresponding query is made to H2 and B returns resulting cipher-
text c = 〈rbP, bP, T, c1, c2〉.

PT = cT · c′P : B chooses Q = rbP = t ·a′P for random t, σ and two random strings
c1, c2, and returns ciphertext c = 〈Q, bP, T, c1, c2〉. The databases are updated
as follows:
H3: B puts Q as a value rbP and (σ,m) as the query. If such (σ,m) was queried

previously, a new choice of σ is made. In addition, Q is checked against
existing replies in the database and if it already exists, a new choice for Q
is made.

H4, H1 and H2: updated the same way as in the Challenge phase of the proof
of IND-KC-CCA2 Theorem

B keeps the local database Ds in which it enters the triple 〈cT , T, t, bP 〉. Denote
by TRUE[cT , T, t, bP ] the true value of e(sP + bP, (r + a′)H1(T )).

26



Forgery: A submits ciphertext c∗ = 〈Q∗, Ta, c∗1, c
∗
2〉 and the receiver private key b∗ that

will be used for verification. If PTa
= cTa

P , the simulation fails
Outcome of Simulation: A returns forged ciphertext or simulation halts.

Inspection of Databases: B goes through database Ds, obtains 〈cT , T,Q = t ·a′P, bP 〉
from each entry and computes Y/[F · e(Q,H1(T ))] for every query Y to H2. The
results are written down as possible values of e(a′P, b′c′P )t/b · e(a′P, c′P )b in a
database Daux.

Forgery Examination: If A submitted a forgery, B computes r∗P = b∗−1Q∗ and
searches query for r∗ in database of H3.
r∗ is found: B retrieves corresponding σ∗ and computes K∗ = c∗1⊕σ∗. Then H2 is
queried for query corresponding to K∗. If it exists, B divides the query by e(sP +
b∗P, r∗H1(Ta))·e(a′P, b∗H1(Ta))), and writes down the answer as a possible value
of e(P, P )a′b′c′ . We record this value as as L1 (in the 2nd simulation, it would
be marked S2).
r∗ is not found: If r∗ · b 6= t · a′, ∀t, we can safely disregard this case (note that
we can check equality e(r∗P, bP ) = e(t · a′P, P ) to determine that). If equality
holds for some t = t∗, we can retrieve the corresponding values (σ,m) and derive
K from the ciphertext. The query to H2 (that resulted in K) should be equal to
e(b′P +b∗P, (r∗+a′) ·cTa

·c′P ) which we divide by e(r∗P +a′P, b∗ ·cTa
·c′P ) ·F cTa

to obtain possible value of e(P, P )a′b′c′·t/b·cTa and consequently e(P, P )a′b′c′·t/b.
This value is entered as S1 (in the 2nd simulation, it would be marked S2)

Second Simulation: We run the adversary with the same random tape. We replace
the portion of simulator’s random tape used to generate values t in the encryption
queries with a new one, keeping the rest of the tape the same. Note that in this case
the choice of bP will be the same in both simulations, while the values of t used by
simulator in the encryption queries are fresh. Denote by Daux1

,Daux2
the databases

Daux in the 1st and 2nd run correspondingly.
Combined Outcome: Three possibilities are considered:

L1 and L2: We combine values L1 and L2 (possible solutions to BDHP) and put
them in set S

Daux1
and Daux2

: We go through x ∈ Daux1
and y ∈ Daux2

, and compute possible
values of β = e(a′P, c′P )b. Namely, provided that x and y are computed correctly

(and F is correct) we have x = F t1/b · β and y = F t2/b · β. Then β = xt2/(t2−t1)

yt1/(t2−t1) .

S1 and S2: We go through x ∈ Si and y ∈ Dauxj
, where i, j = 1, 2, computing

possible values of e(a′P, c′P )b.
Single run of Auxiliary RUF-TR-CTXT simulator: Finally, we run a single simulaion

of original RUF-TR-CTXT feeding it BDH parameters, F and randomly chosen
possible value of e(a′P, c′P )b obtaining a set of possible values of e(P, P )a′b′c′ . The
random tape of adversary stays the same, while the random tape of simulator is
the same except for the portion used to compute values t in the encryption queries
which is replaced with a new one.

Decision on equality F = e(P, P )a′b′c′ : If one of the values in S or in the output of
Auxiliary simulator is equal to F we output 1, otherwise we output 0.

Definition 16. We say that 1st (2nd) simulation above becomes inconsistent when A
makes a query to H2 with a true value corresponding to one of the TRUE[cT , T, t, bP ]
in Ds.

27



Suppose that F = e(P, P )a′b′c′ holds and both simulations do not fail. If one simula-
tion is consistent with correct forgery, and second simulation is inconsistent, then either
one of the values in S will be equal to F or we will have correct value of e(a′P, c′P )b.
In the latter case, we will output 1 if Auxiliary simulation will have BDHP solution
in its output set. If both simulations are inconsistent, then once again we will have a
correct value of e(a′P, c′P )b. If both simulations are consistent, the only case of concern
is when both output forgeries in the “r∗ is not found” category, in which case we can
compute neither feeding value to Auxiliary simulation nor BDHP solution. However, we
note that in case of consistent simulation, forgery cases from “r∗ is not found” and “r∗ is
found” categories happen with the same probability since adversary cannot distinguish
if r∗ · b = t · a′ or not. The formal analysis follows below.

We use well-known probability lemma (see [28] for the statement of this Lemma)
to ensure that all runs of simulations behave in expected way (since we use the same
random tape of adversary and random tape of the simulator is partially changed). Denote
by ε the adversarial advantage in RUF-TR-CTXT. Denote by P the probability that
the RUF-TR-CTXT simulation either 1) stays consistent, does not fail and produces
correct forgery, or 2) is inconsistent and does not fail, computed over all possibilities of
adversarial and simulator random tapes. Then the probability that all three simulations
fall in one of the above categories is at least P 4/16. 10

The optimal value of θ maximizes the probability that simulation does not quit during
token queries or during forgery. This probability is at least θqtok · (1 − θ), where qtok is
the number of token queries made by A, and is maximized when θ = 1 − 1/(qtok + 1)
with value 1

e·(1+qtok) . Let J denote probability that simulation is consistent. Then P =
1

e·(1+qtok) · [J · ε + (1 − J)] ≥ ε
e·(1+qtok) . We make the following comments for the cases

with respect to the first two simulations:

Case 1: One simulation run is inconsistent and the other one either is inconsistent or
consistent producing correct forgery. In this case, one of possible (qe · q2 + 4) · qe · q2

values that we can possibly feed to the auxiliary simulation is correct and, provided
that we feed correct value and auxiliary simulation does not fail, we obtain correct
answer to the decisional BDHP. Thus, in this case our advantage is at least 1/[(qe ·
q2 + 4) · qe · q2].

Case 2: Both runs are consistent. Note that if correct forgery is produced then with
equal probability it can be in the “r∗ is not found” or “r∗ is found” categories. Thus,
our advantage in this case is at least 1/4.

Case 3: Either both runs are consistent with incorrect forgery or one is inconsistent and
the other one is consistent with incorrect forgery. In this case, our simulations do not
provide results and we simply flip a coin returning 1 or 0 at random. Our advantage
is 0.

10 Let X be the space of possible values of portion of simulator tape that stays the same, Y
the remaining space of simulator’s random tape and Z the set of adversarial random tapes.
Then there exists a subset D ⊂ X ×Z of size at least P/2 such that for any fixed (x, y) ∈ D,
the probability that simulation falls within 1) or 2) above is at least P/2 for random y ∈ Y.
It follows that if we pick X and Z at random, the probability that we obtain “good” values
is at least P/2. Using these “good” values and picking Y at random, the probability that we
get desired outcome is at least P/2. The result follows

28



Probability that either Case 1 or Case 2 happen is at least P 4/16 and the our ad-
vantage in this case is at least 1/[(qe · q2 + 4) · qe · q2]. Probability of Case 3 is at most
(1−P 4/16) and our advantage is 0. Recalling that P ≥ ε

e·(1+qtok) , the Theorem statement

follows immediately.

29


