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Abstract 
 

We propose a new class of key establishment schemes which are 
based on geometric generalizations of the classical Diffie-Hellman. 
The simplest of our schemes – based on the geometry of the unit 
circle – uses only multiplication of rational numbers by integers and 
addition of rational numbers in its key creation.  Its first computer 
implementation works significantly faster than all known 
implementations of Diffie-Hellman. Preliminary estimations show 
that our schemes are resistant to attacks. This resistance follows the 
pattern of the discrete logarithm problem and hardness of 
multidimensional lattice problems.   

 
Introduction 
 
In this paper we propose a new class of key establishment schemes which we refer to as 
Geometric Key Establishment (GKE).  Similarly to Diffie-Hellman ([3]), the GKE 
schemes do not assume that communicating parties share any kind of secret information 
prior to the act of key creation and distribution.  
 
The GKE schemes are based on the mathematical concept of semigroup action and its 
modification – two-sided action. Cryptographic applications of the semigroup actions are 
well-known: Diffie-Hellman schemes are based on actions of the semigroup of integers 
(under multiplication) on finite groups, more recent applications include the action of 
braid semigroups on the braid groups ([1]), and an action of the semigroup of integer n×n 
matrices on finite commutative groups ([5]).  
 
Although two-sided actions are well-known in mathematics, we are unaware of 
application of this concept in cryptography. In the present work we construct an algebra-
geometric key establishment (AGKE) scheme which is based primarily on the concept of 
two-sided action.    
 
Typically, Diffie-Hellman-like schemes involve time-consuming exponentiation 
procedures in finite fields or finite groups. Unlike this, GKE and AGKE do not use any 
exponentiation. We bypassed exponentiation by replacing the semigroup actions on finite 
groups with actions (or two-sided actions) on infinite and even continuous groups. In 
particular, the simplest of our schemes is based on the action of the semigroup of integer 
square matrices on the unit cube, and, therefore, uses only multiplication of real numbers 
by integers and addition of real numbers in its key creation.   
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First computer implementations of the cube-based scheme work with a much higher 
speed than all known implementations of Diffie-Hellman.  Preliminary estimations show 
that GKE and AGKE are resistant to basic attacks. This resistance follows the pattern of 
the discrete logarithm problem. A more detailed study of GKE and AGKE security is a 
work [2] joint with Professor Itkis of Boston University. 
 
As we said above, our schemes rely on infinite geometric objects, or, more precisely, on 
compact connected topological groups such as the unit circle, the 3-dimensional sphere, 
or an n-dimensional torus.  Of course, the schemes, as based on infinite geometric objects, 
are ideal in that sense that no real computing device can create or communicate keys as 
points of a geometric continuum. In order to implement GKE or AGKE in a real device, 
we, based on the ordinary rounding of real numbers, developed a procedure of 
discretization of our ideal, continuous schemes. This procedure allows for creating an 
infinite family of real key establishment protocols. These real protocols seem to be 
cryptographically sound, which fact is by itself very inspiring.    
 
Having been encouraged by obtaining such a rich family of discretizations for GKE and 
AGKE, we proceeded to generalization of the relationship between ideal and real key 
establishment schemes. As a result, we introduced a general concept of Rounded Key 
establishment (RKE). This latter concept consists of an ideal continuous scheme and a 
family of its discretizations. One of surprising results of this generalization is a rigorous 
mathematical definition of key establishment, in which all existing Diffie-Hellman-like 
schemes fit perfectly. We have not been able to find any reference to similarly rigorous 
mathematical definition of key establishment in the literature.  
 
We hope that, in addition to GKE and AGKE, our concept of RKE will bring new 
interesting examples of key establishment schemes.  
 
The paper is organized as follows: 

 
In Section 1 we overview key establishment paradigms based on semigroup actions.  
Then we introduce a key establishment scheme based on two-sided action. We also 
introduced very general examples of semigroup actions and two-sided actions. In the 
following sections of the present work these examples provide the basis for our GKE and 
AGKE schemes 
 

 
Section 2 is devoted to introduction and study of our first main example – Geometric Key 
Establishment (GKE). We start with a description of an ideal GKE and then construct a 
family of its discretizations.   The main result of the section is Theorem 2.2, which asserts 
that these discretizations bring about a family of real key establishment protocols. We 
conclude the section with a numerical example demonstrating how the real GKE 
protocols work. 
 
Section 3 is devoted to introduction and study of our second main example – Algebro-
Geometric Key Establishment (AGKE). The section is structured similarly to Section 2. 
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We start with a description of an ideal AGKE and then construct a family of its 
discretizations.   The main result of the section is Theorem 3.2, which asserts that these 
discretizations bring about a family of real key establishment protocols. We conclude the 
section with a numerical example demonstrating how the real AGKE protocols work. 

 
In Appendix A of this paper, we develop a conceptual framework for rounded key 
establishment (RKE). The basic key establishment scheme (Definition A.1) is quite 
trivial and, apparently, is well known (although we have been unable to find appropriate 
references).  However, having been written in the set-theoretical language, it allows for a 
simple conceptual definition of RKE.  This approach is common in modern mathematics: 
once an object is defined set-theoretically, it can further be enriched topologically, 
algebraically, and geometrically.  

 
Appendix B consists of the proofs of our main results –Theorem 2.2 and Theorem 3.2. 
 
Acknowledgements. The authors express their gratitude to Igor Mendelev for invaluable 
help in implementation of the first prototype of GKE and for performing the comparative 
analysis of GKE prototype with other key establishment systems. Our thanks are due to 
Professor Itkis of Boston University for extremely helpful comments and remarks on this 
manuscript. 
 
 
Section 1. Key establishment schemes based on semigroup actions 
 
In this section we introduce a class of key establishment schemes which we refer to as 
metric key establishment (MKE) schemes. This class of schemes is based on the 
mathematical concept of metric action of a semigroup on a metric space.  
 
We start with the standard mathematical definitions leading to the concept of the metric 
actions of semigroups.  Then we will formulate a theorem that each metric action brings 
about an infinite family of discrete approximate actions. We conclude the section with the 
schemes of metric key establishment which are based on this family of discrete 
approximate actions. 
 
Definition 1.1. A semigroup is a set A with an associative multiplication A×A  A, i.e. 
 

(ab)c=a(bc) 
for any a,b,c in A. 
 
Definition 1.2. Let A be a semigroup and let X be a set.  A left action of A on X is a map 
A×X  X (to be denoted by (a, x)  a(x) for any a ∈ A, x ∈ X) such that 
 
(1.1)                                                 a(b(x)) = (ab)(x) 
 
for any elements a and b of A and any x∈X. 
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A right action of A on X is a map A×X  X (to be denoted by (x,a)  (x)a for any a∈A, 
x ∈ X) such that 
 
(1.2)                                                 ((x)a)b = (x)(ab) 
 
for any elements a and b of A and any x∈X. 
 
 
Lemma 1.3. Let A be a semigroup, X be a set, and let A×X  X be a left action.  Then  
(1.3)                                                 a(b(x)) = b(a(x)) 
for any x∈X and any a, b ∈ A such that ab = ba. Similarly, if X×A  X is a right action,   
then  
(1.4)                                                 ((x)a)b = ((x)b)a 
for any x∈X and any a, b ∈ A such that ab = ba. 
 
Proof.  For any a, b ∈ A such that ab = ba and for any x∈X we have: 

a(b(x)) = (ab)(x) = (ba)(x) = b(a(x)). 
Similarly,  

((x)a)b = (x)(ab) = (x)(ba) = ((x)b)a. 
 
This proves the lemma.    
 
The result of Lemma 1.3 is widely used in key establishment protocols. The following 
classical example illustrates the typical usage of this result. 
 
Let X be a group and let A=  be the set of all integers considered a semigroup under 
multiplication. Then the setting a(x) = xa defines a left action of A on X (which action 
consists of raising elements of X into integer powers).  Clearly, this action is 
simultaneously a right action because A= is a commutative semigroup. Obviously, the 
formula (1.3) holds for any integers a and b and any element x∈ X.  
 
We propose the following generalization of this classical example, which also generalizes 
examples of semigroup actions constructed in [5]. 
 
Main Example 1. Let G be any group and n be any natural number. Denote by Gn the n-th 
Cartesian power of G, i.e., the set of all n-tuples g=(g1,…,gn) of elements of G. Now let 
X=[Gn] ⊆ Gn  be the set of all pairwise commuting tuples g=(g1,…,gn), i.e.,  

gkgm= gmgk 
for all m, k∈{1,2,…,n}.  
 
Note that if G is a commutative group or if n=1, then [Gn] = Gn (for an arbitrary non-
commutative group G the sub-space [Gn] can have a very complicated structure).  
 
Let An=Matn( ), which is the set of all integer n×n matrices. Clearly, An is a semigroup 
under the matrix multiplication. Define a map [Gn] ×An  Gn by the formula: 
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 (g)a = ga 

 
for any a=(aij)∈An, g=(g1,…,gn)∈ [Gn], where ga is the a-th power of g: 

ga=(g'1,…,g'n),  
where  
(1.5)     g'j=∏i=1

n
 gi

a
ij
 

 
Clearly, for each matrix a∈An and any element g=(g1,…,gn)∈[Gn] the power ga also 
belongs to [Gn]. Therefore, the assignment (g,a)  (g)a =ga defines a map  
 
(1.6)     [Gn]×An  [Gn].  
 
Lemma 1.4. The map [Gn] ×An  [Gn] given by (1.6) is a right action of the semigroup 
An=Matn( ) on the set X=[Gn]. That is, for any integer n×n matrices a=(aij), b=(bij),  and 
any commuting n-tuple g=(g1,…,gn) ∈ [Gn]  one has 
 
(1.7)      (ga)b=gab . 
 
Proof.  It suffices to prove only (1.7). Indeed, using the fact that all gi

a commute with all 
gj

b, we have by (1.5) for all j: 
((ga)b)j =∏k=1

n 
 (g

a)k
b

kj =∏k=1
n

 (∏i=1
n

 gi
a

ik)bkj=∏i=1
n

 gi
c

ij, 
where  

cij=Σ k=1
n 

 aikbkj=(ab)ij.  
 

Therefore, ((ga)b)j=(gab)j. This proves (1.7).  
 
The lemma is proved.   
 
We will construct below even more general class of actions in which the semigroup 
property is not required.  
 
Definition 1.5. Let A,B, and X be sets. A pair of maps A×X X and X×B X (which we 
denote respectively as: (a, x) a(x) and (x, b)  (x)b ) is a two-sided action if: 

(a(x))b=a((x)b) 
for any x∈X and any a ∈ A, b∈ B. 
 
The simplest example of a two-sided action is as follows.  
 
Lemma 1.6. Let X be a semigroup and let A⊆X be a sub-semigroup (i.e., A is a subset of 
X closed under the multiplication A×A  A). And let B be another sub-semigroup of X. 
Then  the maps A×X X and X×B X given respectively by: 

(a, x)  a(x) = a⋅x and (x, b)  (x)b = x⋅b 
constitute a two-sided action. 
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Proof. We have: 

(a(x))b=(a⋅x)⋅b =a⋅(x⋅b) =a((x)b) 
due to the associativity of the multiplication in the semigroup X. 
 
Below we propose our main example of a two-sided action.  
 
Main Example 2. Let G be a group. Denote by Matm×n(G) the set of m×n matrices g=(gij) 
with coefficients gij ∈G. Now let [Matm×n(G)] ⊆ Matm×n (G) be the set of all those 
elements g=(gij)∈Matm×n(G)  in which the entries pairwise commute, that is,  

gijgkl= gklgij 
for all i,k=1,2,…,m, j,l=1,2,…,n.  
 
Note that if G is a commutative group, then [Matm×n (G)] =Matm×n(G).  
 
For each m×m matrix a=(aij) with integer coefficients,  and any g=(gij)∈ [Matm×n(G)]  
define the left a-th power ag  by the formula  

ag=(g'ij),  
where  

g'ij=∏k=1
m

  gkj
a

ik
 

 
By definition, for each matrix a the assignment g  ag  defines a transformation 
[Matm×n(G)]  [Matm×n(G)] . 
 
Also for each n×n matrix b=(bij)  and any g=(gij)∈ [Matm×n(G)]  define gb to be the right 
b-th power of g: 

gb =(g'ij), 
where  

g'ij=∏k=1
n
  gik

b
kj

 

 
By definition, for each matrix b the assignment g  gb defines a transformation 
[Matm×n(G)]  [Matm× n(G)]. 
 
Lemma 1.7. In the notation as above the maps Am×[Matm×n(G)] [Matm×n(G)] and 
[Matm×n(G)]× An [Matm×n(G)] given respectively by: 
 

(a,g)  ag and (g,b)  gb 
 
constitute a two-sided action, that is,  

 (ag)b= a(gb). 
Proof.  It is equivalent to the associativity of the matrix multiplication with commuting 
coefficients: 

(ax)b=a(xb) 
for any m×m matrix a, any m×n matrix x, and n×n matrix b.  
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That is, the operations of raising to the left and right powers commute (so we denote the 
resulting (a, b)-th power by agb ). 
 
A general semigroup key establishment scheme was suggested in [5] (in particular, a 
class of key establishment schemes has been constructed in [5] based on An-action on Gn 
in the case when the group G is finite and commutative). For reader’s convenience we 
present here this general scheme. 
 
Left action key establishment scheme 
 
Setup  

• a semigroup A 
• a set X 
• a left semigroup action A×X  X 

 
Protocol 

1. Two communicating parties (let us call them Alice and Bob) choose x∈ X. 
2. Alice chooses a secret element a∈A and Bob independently chooses a secret 

element b∈A in such a way that ab = ba. 
3. Alice computes a(x) and sends it to Bob via an open channel and Bob computes 

b(x) and sends it to Alice via an open channel. 
4. Alice computes the secret element k1=a(b(x)) by applying a to the received 

element b(x); and Bob computes the secret element k2=b(a(x)) by applying b to 
the received element a(x). 

 
The elements k1 and k2 equal by Lemma 1.1 (and they also equal (ba)(x)=(ab)(x)) and 
therefore constitute secret key shared by Alice and Bob.   
 
Remark. Choosing the commuting elements a and b by Alice and Bob independently is 
not a trivial task. However, there is a way to guarantee a solution for the task in the case 
when A is a ring. Alice and Bob may construct commuting elements a and b as follows. 
They start with a (public) shared element S∈A, and then:  
 

1. Alice chooses an n-tuple of secret integers (a1, a2,…,an), and Bob independently 
chooses an m-tuple of secret integers (b1, b2,…,bm). 

2. Alice computes the (secret) element a=a1S+a2S2+…+anSn and Bob independently 
computes the (secret) matrix b=b1S+b2S2+…+ bmSm (hence  ab = ba). 

 
Replacing the left action by a right action in the above scheme we obtain the right action 
key establishment scheme. This right action key establishment scheme along with the 
above method of obtaining commuting elements will be used in Section 2 – in the ideal 
GKE scheme and its rounded version.  
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The following key establishment scheme is based on the proposed above concept of a 
two-sided action. The advantage of the scheme is that the scheme bypasses the problem 
of choosing commuting elements a and b (of a given semigroups). 
 
Two-sided  action key establishment scheme 
 
Setup  

• Sets A, B, and X.  
• a two-sided action A×X  X and X×B  X 

 
Protocol 

1. Two communicating parties (let us call them Alice and Bob) choose x∈ X. 
2. Alice chooses a secret element a∈A and Bob independently chooses a secret 

element b∈B. 
3. Alice computes a(x) and sends it to Bob via an open channel and Bob computes 

(x)b and sends it to Alice via an open channel. 
4. Alice computes the secret element k1=a((x)b) by applying a to the received 

element (x)b; and Bob computes the secret element k2=(a(x))b by applying b to 
the received element a(x). 

 
By Definition 1.5 of two-sided actions the elements k1 and k2 equal and therefore 
constitute secret key shared by Alice and Bob. 
 
Section 2. Geometric Key Establishment 
 
In this section we present a key establishment scheme based on our first main example 
and the general right action key establishment scheme of Section 1. We will refer to it as 
geometric key establishment (GKE).  

 
First, we present the ideal GKE scheme (i.e., without any rounding involved).  
 
Ideal Geometric Key Establishment (GKE) Scheme 
 
Setup 
• n is a natural number (it is the dimension of the scheme). 
• An=Matn( ) is the semigroup of all integer matrices under the multiplication. 
• Xn=[0,1)n is the semi-open n-dimensional cube, X is the n-th Cartesian power of the 

semi-open interval [0,1) of the real line. Each point of Xn is an n-tuple  

g=(g1, g2,..., gn) , 

       where each gi ∈[0,1). 

• The map [0,1)n ×An  [0,1)n is given by the formula 

 (2.1)                                           (g)a = {g⋅a}  
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for any matrix a∈An and any g ∈[0,1)n, where for each vector x=(x1, x2,..., xn) of 
real numbers we use the notation 

 (2.2)                                        {x}=({x1}, {x2},..., {xn}), 
where {xi} stands for the fractional part of the real number xi. 
 
The following fact is a corollary of Lemma 1.4. 
 

Lemma 2.1.  The map [0,1)n ×An  [0,1)n given by (2.1) is a right action of the semigroup 
An=Matn( ) on the set Xn=[0,1)n. That is, for any integer n×n matrices a=(aij), b=(bij),  
and any n-tuple g=(g1,…,gn) ∈ [0,1)n one has 
 
(2.3)      {{g⋅a}⋅b}={g⋅a⋅b} 

Proof. In order to reduce the statement to Lemma 1.4 it suffices to show that the set 
G=[0,1) with the following operation:  

α*β={α+β} 

is a group. Indeed, the operation is associative, it has the unit 0, and the inverse of each 
α∈[0,1) is {-α}. 

This proves the lemma.   

 
Protocol 

1. Two communicating parties (let us call them Alice and Bob) choose a non-secret 
n-tuple g in X=[0,1)n and a matrix S in An=Matn( ). 

2. Alice chooses an n-tuple of secret integers (a0,…,an-1), and Bob independently 
chooses an n-tuple of secret integers (b0,…,bn-1). 

3. Alice computes the (secret) matrix a= a0⋅I+a1⋅S+a2⋅S2+…+ an-1⋅Sn-1 and Bob 
independently computes the (secret) matrix b= b0⋅I+b1⋅S+b2⋅S2+…+ bn-1⋅Sn-1, 
where I is the identity matrix (so that one guarantees the commutation a⋅b = b⋅a). 

4. Alice computes the tuple {g⋅a} and sends it to Bob via an open channel and Bob 
computes the tuple {g⋅b} and sends it to Alice via an open channel. 

5. Alice computes the tuple k1={{g⋅b}⋅a}; and Bob computes the tuple k2={{g⋅a}⋅b}. 
 

 The tuples k1and k2 are equal and therefore constitute the secret shared by Alice 
and Bob.  The equality of the tuples follows from the formula (2.3). 
 
Now we present our main example – rounded GKE. Below we will use the following 
notation. 
 
For any real vector y = (y1, y2, …, yn) and z = (z1, z2, …, zn), the vector inequality y ≤ z 
is equivalent to n scalar inequalities: 

y1≤ z1, y2≤ z2, …, yn≤ zn. 
Also the inequality  

| y|<z 
means that y<z and -y<z. 
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Denote by Round(z) the standard rounding of a real number z to the closest integer. Also 
for any real number g∈[0,1) and any natural number P denote: 
  

[g]P=(Round(gP))/P 
if Round(gP) < P, and 
 

[g]P=0 
if Round(gP) = P. 
 
For an n-tuple P = (P1, P2,..., Pn) of natural numbers and a vector g = (g1, g2,..., gn) of real 
numbers such that each gi ∈[0, 1), we define the P-rounding to a rational n-tuple [g]P by 
the formula: 

[g]P=([g1]P1, [g2]P2, ..., [gn]Pn). 
 
For an n-tuple P = (P1, P2,..., Pn) of natural numbers we denote P-1= (1/P1,1/P2,...,1/Pn). 
 
The following theorem formulates the first main practical result of the present work.  
 
Theorem 2.2. Let P=(P1, P2,..., Pn), Q=(Q1, Q2,..., Qn), and K=(K1, K2,..., Kn) be n-tuples 
of natural numbers. Let also A and B be n×n matrices with natural coefficients such that: 

Q-1·A≤ K-1, P-1·B≤ K-1. 

Then for any real vector g = (g1, g2,…,gn) any integer  n×n matrices a =(aij) and b =(bij)  
such that a·b = b·a and  
 

| aij|<Aij, | bij|<Bij 

 
(for all i=1,2,.., n, j=1,2,..,n) one has: either at least one coordinate of [{[{g·a}]P·b}]K 
equals 0, or at least one coordinate of [{[{g·b}]Q·a}]K equals 0, or   

 
|{[{g·a}]P·b}-{[{g·b}]Q·a}|< K-1. 

 
Therefore, in the latter case, 
 

[{[{g·a}]P}·b]K = [{[{g·b}]Q}·a]K + ∆, 

where ∆ = (ε1/K1, ε2/K2,…, εn/Kn) and where each εi belongs to the set {–1, 0, 1}. In 
particular, the vector ∆ can take 3n

 values. 

For the proof of Theorem 2.2 see Appendix B. 
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Rounded Geometric Key Establishment (Rounded  GKE) Scheme 
 
Setup  

Public discrete parameters:  
• a natural number n  
• two n-tuples of natural numbers P=(P1, P2,..., Pn), K=(K1, K2,..., Kn) as the  

parameters of rounding  
• an n-tuple M=(M0, M1,..., Mn-1) of natural numbers 
• an integer n×n matrix S 
 
It is required that: 

P-1·C≤ K-1,       
where  

C = M0· I + M1·|S| + M2·|S2| + … + Mn-1·|Sn-1|, 
P-1= (1/P1, 1/P2, ..., 1/Pn), K-1= ( 1/K1, 1/K2, ..., 1/Kn). 

 
Public continuous parameter: an n-tuple of real numbers g = (g1, g2,…,gn).  

 
Protocol  

Alice chooses an n-tuple of secret random integers a0, a1, a2, … an-1 such that 
 

|a0| < M0, |a1| < M1, |a2| < M2, …, |an-1| < Mn-1, 
 
then constructs an integer n×n matrix a by the formula 
 

a = a0·I + a1·S + a2·S2 + … +  an-1·Sn-1, 
 
then computes the rounded vector [{g·a}]P and sends it to Bob. 
 
Independently Bob chooses an n-tuple of secret random integers b0, b1, b2, … bn-1 
such that 

|b0| < M0, |b1| < M1, |b2| < M2, …, |bn-1| < Mn-1, 
 
and constructs an integer n×n matrix b by the formula 
 

b= b0·I + b1·S + b2·S2  + … +  bn-1·Sn-1, 
 
and computes the rounded vector [{g·b}]P and sends it to Alice. 
 
Upon receiving the vector [{g·b}]P from Bob, Alice computes the vector  
 

VA=[{[{g·b}]P⋅a}]K. 
 

Upon receiving the vector [{g·a}]P from Alice, Bob computes the vector 
  

VB=[{[{g·a}]P⋅b}]K. 
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Common Secret:  
 

By Theorem 2.2, one has 
 

VA= VB + (ε1/K1, ε2/K2,…, εn/Kn), 
 

where each εi belongs to the set {–1, 0, 1}. In particular, the difference between VA  
and VB can take at most 3n

  values. This difference can be eliminated in the follow-up 
communication of Alice and Bob. Thus, the shared secret is the vector VA. 
 

Remark. The idea to eliminate the difference between VA and VB using the follow-up 
communication of Alice and Bob was suggested by Gene Itkis. We express our gratitude 
to him for this idea. 
 
Numerical example. We take in the setup as above: 

• n=2  
• P=(1018, 1018), K=(1010, 1010) as the parameters of rounding  
• M=(108, 108).   
• an integer 2×2 matrix  
 

         0       -1  
S =                  
         1        0  

so that  

         a0      - a1  
a0·I+a1·S =                             
                     a1         a0  

for any integers a0, a1 . 

Public continuous parameter: g = (g1, g2) =(√2, √3).  

Protocol. Alice chooses a pair of secret integers (a0, a1) = (48176925, 18034725). Alice 
calculates the rounded vector  

y=(y1, y2)=([{g1a0 + g2a1}]P, [{- g1a1+ g2a0 }]P) . 
That is,  

 y=([{√2·48176925+√3·18034725}]P, [{-√2·18034725+√3·48176925 }]P)= 
 

([{68132460.728431422183990297539596+31237060.000532620547511774721314}]P, 
[{-25504952.688669116604000035676723+83444881.852435233704474767836253}]P) 

 
=(0.728964042731502072, 0.163766117100474732). 

Each coordinate y1, y2 of this y has exactly 18 digits because P=(1018, 1018). 
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Alice sends this rounded vector y to Bob.  Independently Bob chooses a pair of secret 
integers (b0, b1) = (19082792, 27045821). Bob calculates the vector  

z=(z1, z2)=([{g1b0 + g2b1}]P, [{- g1b1+ g2b0 }]P) 
That is, 

z= ([{ √2·19082792 + √3·27045821}]P, [{-√2·27045821+ √3·19082792}]P) =   
 

([{26987143.254344799212512475172839 + 46844736.104413300451707772339473}]P,     
[{-38248566.863715063905876737732694 + 33052365.294268911065907204826118}]P) 

 
= (0.358758099664220248, 0.430553847160030467) 

and sends this vector z to Alice.  Upon receiving the vector y from Alice, Bob calculates 
the vector k=(k1, k2) by the formula: 

k =(k1, k2) = ([{ y1b0 + y2b1}]K, [{- y1b1+ y2b0 }]K) . 
That is, 

k=([{0.728964042731502072·19082792+0.163766117100474732·27045821}]K,  
[{- 0.728964042731502072·27045821+ 0.163766117100474732·19082792}]K)=  

 
=([{13910669.202924365887545024+4429189.088964478616694972}]K, 
[{-19715431.015152556100441112+3125114.749276002412011744}]K)  

 
=(0.2918888445, 0.7341234463) 

Each coordinate k1, k2 of this k has exactly 10 digits because K=(1010, 1010). 

Upon receiving the vector z from Bob, Alice calculates the rounded vector k'=(k'1, k'2) by 
the formula: 

k'=(k'1, k'2)=([{z1·a0 + z2·a1}]K, [{- z1·a1+ z2·a0 }]K) . 
That is,   

k' =([{ 0.358758099664220248·48176925 + 0.430553847160030467·18034725}]K,  
[{- 0.358758099664220248·18034725+ 0.430553847160030467·48176925 }]K)  

 
=([{17283862.0606656640713774+ 7764920.231223180463966575}]K,  
[{- 6470103.6689668045121118 + 20742760.403090250806373975}]K) 

 
=(0.2918888445, 0.7341234463) 

Thus, the vector (0.2918888445, 0.7341234463) is the secret shared by Alice and Bob.   

Remark. Unlike in the general case of GKE, in this example Alice and Bob did not need 
any follow-up communication in order to establish the common secret out of k and k'. 
They know that k=k' because, on the one hand, Theorem 2.2 guarantees each coordinate 
of the difference k-k' can be either 0 or ±10-10 and, on the other hand, for  each coordinate 
of each vector k  and k' the 10th digit is neither 0 nor 9.  
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Section 3. Algebro-geometric Key Establishment 

In this section we present a key establishment scheme based on our second main example 
and the general two-sided action key establishment scheme of Section 1. We will refer to 
it as algebro-geometric key establishment (AGKE).  
 
First, we present the ideal AGKE scheme (i.e., without any rounding involved).  
 
Ideal Algebro-Geometric Key Establishment (AGKE) Scheme 
 
Setup 
• m and n are natural numbers (m×n is the dimension of the scheme). 
• Am=Matm( ) and An=Matn( ) are matrix semigroups. 
• Xm×n = Matm×n([0,1)) is the set of all m×n matrices with coefficients in the semi-

open interval [0,1) of the real line (in fact, Xm×n is an m×n dimensional semi-open 
unit cube). Each point of Xm×n is an m×n matrix g=(gij), where each gij ∈[0,1). 

• The maps Am×Xm×n  Xm×n and Xm×n×An  Xm×n are  given respectively by the 
formulas 

 (3.1)                                    (a,g) {a⋅g},  (g,b) {g⋅b}   
  

for any matrices a∈Am , b∈An, and any g ∈ Xm×n , where for each real m×n matrix 
x=(xij) we use the notation 
 

 (3.2)                                              {x}=({xij}), 
 

where {xij} stands for the fractional part of the real number xij. 
 
The following fact is a corollary of Lemma 1.7. 
 

Lemma 3.1.  The maps Am×Xm×n  Xm×n and Xm×n×An  Xm×n given by (3.1) constitute a 
two-sided action of the semigroups Am=Matm( ) and An=Matn( ) on Xm×n = Matm×n([0,1)). 
More precisely, for any integer matrices a∈Am, b∈An, and any g∈ Xm×n one has 
 
(3.3)     {{a⋅g}⋅b}={a⋅g⋅b}={a⋅{g⋅b}} . 

 

Proof. In order to reduce the statement to Lemma 1.7 it suffices to show (similarly to the 
proof of Lemma 2.1) that the set G=[0,1) is a group. Indeed, we have already shown that 
in the proof of Lemma 2.1. 

This proves the lemma.   
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Protocol 

1. Two communicating parties (let us call them Alice and Bob) choose a non-secret 
m×n matrix g in Xm×n . 

2. Alice chooses a secret integer m×m matrix a, and Bob independently chooses a 
secret integer n×n matrix b. 

3. Alice computes the m×n matrix {a⋅g} and sends it to Bob via an open channel. 
4.  Bob independently computes the m×n matrix {g⋅b} and sends it to Alice via an 

open channel. 
5. Alice computes the m×n matrix k1={a⋅{g⋅b}}; and Bob computes the m×n matrix 

k2={{a⋅g}⋅b}. 
 

 The matrices k1and k2 are equal and therefore constitute the secret shared by Alice 
and Bob.  The equality of the matrices follows from the formula (3.3) above. 
 
Now we present the main example of this section– rounded AGKE. Below we will use 
the following notation. 
 
For any real m×n matrices y = (yij) and z = (yij), the matrix inequality y ≤ z is equivalent to 
m×n scalar inequalities: 

yij≤ zij 
 
for i=1,2,…,m; j=1,2,…,n. Also the inequality | y|<z means that y<z and -y<z. 
 
As in Section 2, for any real number g∈[0,1) and any natural number P denote: 
  

[g]P=(Round(gP))/P 
if Round(gP) < P, and 
 

[g]P=0 
if Round(gP) = P. 
 
For an m×n matrix P = (Pij) of natural numbers and any m×n matrix g = (gij) of real 
numbers such that each gij ∈[0,1), we define the P-rounding to a rational m×n matrix [g]P 
by the formula: 

[g]P=([gij]Pij). 
 
For an m×n matrix P = (Pij) of natural numbers we denote P*= (1/Pij). 
 
The following theorem formulates the second main practical result of the present work.  
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Theorem 3.2. Let be P=(Pij), Q=(Qij), and K=(Kij) be m×n matrices of natural numbers. 
Let A=(Aik) be an arbitrary m×m matrix with natural coefficients and let B=(Blj) be an 
arbitrary  n×n matrix with natural coefficients such that: 

A⋅Q*≤ K*, P*⋅B≤ K*. 

Then for any integer m×m matrix a and any integer n×n matrix b such that |a|<A, | b|<B 
one has:  either at least one coefficient of the matrix [{[{a⋅g}]P⋅b}]K equals 0, or at least 
one coefficient of the matrix [{a⋅[{g·b}]Q}]K equals 0, or   

 
|{[{a⋅g}]P⋅b}-{a⋅[{g⋅b}]Q}|<K*. 

 
Therefore, in the latter case one has 
 

{[{a⋅g}]P⋅b}K = {a⋅[{g⋅b}]Q}+∆, 

where ∆ = (εij/Kij) and where each εij belongs to the set {–1, 0, 1}. In particular, the 
matrix ∆ can take 3mn

 values. 

For the proof of Theorem 3.2 see Appendix. 
 
Rounded Algebro-Geometric Key Establishment (Rounded  AGKE) Scheme 
 
Setup  

Public discrete parameters:  
• natural numbers m and  n  
• two m×n matrices of natural numbers P=(Pij), K=(Kij) as the parameters of 

rounding  
• a  n-tuple M=(Mij) of natural numbers 
It is required that: 

M⋅P*≤ K*, P*⋅M≤ K*.       
 

Public continuous parameter: an m×n matrix of real numbers g = (gij).  
 
Protocol  

Alice chooses a secret m×m matrix a such that |a|<M then computes the rounded m×n 
matrix [{a·g}]P and sends it to Bob. 
Independently Bob chooses a secret n×n matrix b such that |b|<M and computes the 
rounded m×n matrix [{g·b}]P and sends it to Alice. 
Upon receiving the matrix [{g·b}]P from Bob, Alice computes the matrix  

 
VA=[{a⋅[{g·b}]P}]K. 

 
Upon receiving the matrix [{a·g}]P from Alice, Bob computes the matrix 

 
VB=[{[{a·g}]P⋅b}]K . 
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Common Secret:  
 

By Theorem 3.2, one has 
VA= VB + (εij/Kij), 

 
where each εij belongs to the set {–1, 0, 1}. In particular, the difference between VA  
and VB can take at most 3mn

  values. This difference can be eliminated in the follow-
up communication of Alice and Bob. Thus, the shared secret is the matrix VA. 

 
Numerical example. We take in the setup as above: 

• m=n=2  
• P=(Pij),  where each Pij=109, K=(Kij) where each Kij=105   
• M=(Mij),  where each Mij=103 

 
Public continuous parameter:  

                  √2      √3                                             
g = (gij) =                  
                  √5      √7  

Protocol. Suppose that Alice chooses a secret integer 2×2 matrix a: 

         123     456                                             
A =                     
         817    391  
 

Alice calculates the 2×2 matrix y=[{a⋅g}]  each element of which rounded to  9 decimal 
places: 

                      0.595265912   0.504847176  
y=[{a⋅g}] =  |                                                 
                       0.715059661      0.574272410 

 
and sends this 2×2 matrix y to Bob.  Suppose that at independently Bob chooses a secret 
integer 2×2 matrix B:  

         691     378                                             
b =                      
         529    109  
 

Bob calculates the 2×2 matrix z =[{g⋅b}]  each element of which rounded to 9 decimal 
places: 

           0.476448804     0.366264602                                             
z = [{g⋅b}]=                                                   

           0.725416006     0.620588401 
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and sends this 2×2 matrix z to Alice.  Upon receiving the 2×2 matrix y from Alice, Bob 
calculates the 2×2 matrix k =[{y⋅B}] with the precision 5 decimal places after dot:      

                            0.39290   0.03885                                             
  k = [{y⋅b}]  =                                  
                            0.89633  0.88824   

 
Upon receiving the 2×2 matrix z from Bob, Alice calculates the 2×2 matrix k'=[{a⋅z}]  
with the precision 5 decimal places after dot:   

                           0.39290   0.03885                                             
  k' =[{a⋅z}]  =                                 
                           0.89633  0.88824  
 

Remark. Unlike in the general case of AGKE, in this example Alice and Bob did not need 
any follow-up communication in order to establish the common secret out of k and k'. 
They know that k=k' because, on the one hand, Theorem 3.2 guarantees that each matrix 
coefficient of the difference k-k' can be either 0 or ±10-5 and, on the other hand, for each 
coefficient of each matrix k  and k' the 5th digit is neither 0 nor 9. 
 
Appendix A. General Key Establishment Scheme and its rounded versions 

 
We start with a natural generalization of Diffie-Hellman protocol. Apparently, this 
generalization is well known, but we have failed to find references.  Hence, we will take 
liberty to call it ‘basic key establishment scheme.’ 
 
Definition A.1. Let A, B and X, YA, YB, Z be sets. Let A×X YA, B×YA Z, and  
B×X YB , A×YB Z be a quadruple of maps (we denote them respectively by (a, x)  
a(x), (b, y)  b(y),  and (b, x)  b(x), (a, y')  a(y') for any elements a∈A, b ∈B, x∈X, 
y∈YA, y'∈YB).  We say that elements a∈A and b∈B commute if  
(A.1)     a(b(x)) = b(a(x)) 
for any and x∈X.  
  
The basic key establishment scheme consists of the following setup and protocol. 
  
Basic key establishment scheme 
 
Setup: 
• a set A  
• a set B 
• a set X (of shared parameters) 
• a set YA (of Alice’s transmittable elements) 
• a set YB (of Bob’s transmittable elements) 
• a set Z (of shared key elements) 
• a quadruple of maps A×X YA, B×YA Z, B×X YB , A×YB Z 
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Protocol 
1. Two communicating parties (let us call them Alice and Bob) choose a shared 

parameter x of X (this x is not secret). 
2. Alice chooses a private (secret) element a in A, and Bob independently chooses a 

private (secret) element b in B in such a way that a commutes with b. 
3. Alice computes the transmittable element a(x) and Bob independently computes b(x). 
4. Alice sends the element a(x) to Bob via an open channel and Bob sends the element 

b(x) to Alice via an open channel. 
5. Alice computes the element kA=a(b(x)) by applying the element a to the received 

element b(x); and Bob computes the element kB=b(a(x)) by applying the element b to 
the received element a(x).  
 

The secret elements kA and kB are equal to each other because of (A.1). Therefore, kA=kB 
is the secret shared by Alice and Bob. 
  
Remark.  The scheme is secure if the following problem is hard: given x ∈X and y∈YA, 
find a∈A such that y = a(x).   In the case of the original Diffie-Hellman scheme ([3]), this 
problem is known as the discrete logarithm problem.  
 
Of course, for the purpose of implementation of this basic scheme, it is natural to require 
that all the involved sets A, B, X, YA,YB, and Z are finite. In Sections 2 and 3 we 
presented a method for generation of a large family of finite key establishment schemes 
each of which represents a non-trivial approximation of the basic scheme. The richness of 
the family stems from its origin in an infinite or even continuous instantiation of the basic 
scheme. 
   
Based on the rounded schemes introduced in Sections 2 and 3, we propose the general 
rounded key establishment (RKE) scheme. 
 
In the following definitions and results we need a mathematical concept of ‘metric space’. 
For the standard references, see e.g. [4].  
 
Definition A.2. A metric space is a pair (X, d), where X is a set and d:X×X ≥0 is a 
distance function on X satisfying: 

• (symmetry) d(x, x')=d(x', x) for all x, x'∈X 
• d(x, x')=0 if and only if x=x' 
• (triangle inequality) d(x, x'') ≥ d(x, x') + d(x', x'') for all x, x', x''∈X. 

 
Definition A.3. Let (X, d) and (Y, d) be metric spaces. Then a map F:X Y is called 
metric if there exists a positive constant C such that d(F(x),F(x'))≤ C⋅d(x, x') for any x, 
x'∈X. More generally, given a set A and a function f:A >0 , we say that a map A×X  
Y is f-metric if  d(a(x),a(x'))≤ f(a)⋅d(x, x') for any x, x'∈X and a∈A (here we used the 
standard notation (a, x)  a(x) for the map A×X  Y).  
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Definition A.4. Let (X, d) be a metric space. Let K be a discrete subset of X. Consider a 

map [⋅]: X K with the property that for each x∈X the point [x]∈K is the closest to x 
among all points of K. We refer to any such map as K-rounding on (X, d). 
 
In what follows we will consider only infinite or even uncountable metric spaces.  
 
Definition A.5. Let (X, d) be a metric space. Let us consider an infinite ascending chain 
X1⊂ X2⊂ X3⊂ …⊂ Xk⊂… of discrete subsets (each inclusion is strict), and  let r={rk},  
k=1,2,…  be a decreasing sequence of positive real numbers converging to 0. Given an 

infinite family [⋅]k: X Xk of  Xk-roundings on (X, d) for k=1,2,… , we say that the 

family [⋅]k is r-saturated if d(x,[x]k)≤ rk for any point x and for each natural number k. 
 
Definition A.6. Let (X, d) be a metric space, x be a point of X, and r be a positive real 
number. Denote by B(x; r) the set of all points x'∈X such that d(x, x')<r. We refer to 
B(x;r) as the open ball of radius r centered at x. 
 
Definition A.7. Let (X,d) be a metric space, and let X1⊂ X2⊂ X3⊂ …⊂ Xk⊂… be an 
ascending chain of subsets of X. We say that this chain is uniform if there exists a 
sequence r={rk} of positive real numbers and a natural number N such that  

|B(x;rk)∩Xk|<N. 
for every x∈ Xk and each natural number k. In order to emphasize the dependence of the 
uniformness on the sequence r={rk} and the number N, we will refer to the chain  
X1⊂X2⊂X3⊂ …⊂ Xk⊂… as (r, N)-uniform. 
 
Informally speaking, each (r, N)-uniform ascending chain can be used for good 
approximations of points of X similarly to the way in which rational numbers are used for 
good approximations of real numbers.     
 
Definition A.8. For a given (r, N)-uniform ascending chain X1⊂ X2⊂ X3⊂ …⊂ Xk⊂… in 
a metric space (X, d) we say that two points k and k' in Xk are neighbors if d(k, k')<rk.  
 
By definition, any discrete point k ∈ Xk has at most N neighbors. 
 
Theorem A.9. Let A, B, and X be sets, and A×X  YA, B×X YB be maps. Let (YA, d), 
(YB, d), and (Z, d) be metric spaces, and let B×YA  Z be a g-metric maps, A×YB  Z be 

a g′-metric map.  Also let [⋅]m: YA (YA)m be an r-saturated rounding on (YA, d),  

[⋅]′m:YB ( YB)m be an r′-saturated family of roundings on (YB, d), and  [⋅]′′k:Z ( Z)k 
be an r′′-saturated family of roundings on (YB,d) such that the ascending chain Z1⊂ Z2⊂ 
Z3⊂ …⊂ Zk⊂… is (3r′′, N)-uniform. Then for any commuting elements a∈A and b∈B 
such that g(b)<r′′k/(2rm), g'(a)<r′′k/(2r′m) (for some natural m, k) and any x∈X one has: 
 

[a([b(x)]′m)]′′k  and [b([a(x)]m)]′′k are neighbors. 
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Proof. By definition of saturated families of roundings, one has for any m: 
 

d(a(x),[a(x)]m)≤ rm, d(b(x),[b(x)]′m)≤ r′m . 
 

Therefore, for given m and k we have: 
d(b(a(x)), b([a(x)]m))≤ g(b)⋅d(a(x)), [a(x)]m) ≤ g(b)⋅ rm < r′′k /2,   

d(a(b(x)), a([b(x)]′m))≤ g′(a)⋅d(b(x)), [a(x)]′m) ≤g′(a)⋅ r′m < r′′k /2  . 

Denote z=(a(b(x))=(b(a(x)).Then d(z, b([a(x)]m))≤ r′′k /2, d(z, a([b(x)]m))≤ r′′k /2. 
Denote k1=[a([b(x)]′ m)]′′k and k2=[b([a(x)]m)]′′k. Note that   

d(k1, a([b(x)]′m))≤ r′′k, d(k2, b([a(x)]m))≤ r′′k . 

Then, by the triangle inequality,  

d(z, k1) ≤ d(z, a([b(x)]m))+d(k1, a([b(x)]m)) < r′′k/2 + r′′k =3r′′k/2 , 

d(z, k2) ≤ d(z, a([b(x)]m))+d(k2, b([a(x)]m)) < r′′k/2 + rk =3r′′k/2 . 

Finally, again by the triangle inequality,  

d(k1, k2) ≤ d(z, k1)+d(z, k2) <3r′′k/2+3r′′k/2=3r′′k 

That is, k1 and k2 are neighbors. Theorem A.9 is proved.  ▄ 

Based on this general result we propose the following general rounded key establishment 
scheme. 
 
Rounded key establishment (RKE) scheme: 
 
Setup 
• a set A  
• a set B 
• a set X of shared parameters 
• an infinite metric space (YA, d) of Alice’s transmittable elements 
• an infinite metric space (YB, d) of Bob’s transmittable elements 
• two maps A×X YA, B×X YB 

• an r-saturated family of roundings [⋅]m: YA (YA)m on (YA,d) 

• an r′-saturated family of roundings [⋅]′m: YB ( YB)m on (YB,d) 
• an infinite metric space (Z, d) of shared key elements 
• a g-metric map B×YA Z 
• a g′-metric map A×YB Z 

• an r′′-saturated family of roundings [⋅]′′k: Z ( Z)k on (Z,d) such that the 
ascending chain Z1⊂ Z2⊂ Z3⊂ …⊂ Zk⊂… is (3r′′,N)-uniform. 
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Protocol 
1. Alice and Bob choose a shared parameter x∈X  (this x is not secret) and natural 

numbers m, k. 
2. Alice chooses a private (secret) element a∈A, and Bob independently chooses a 

private (secret) element b∈B in such a way that a commutes with b and 
g(b)<r′′k/(2rm), g'(a)< r′′k/(2r′m).  

3. Alice computes the transmittable element [a(x)]m and Bob independently 
computes [b(x)]′m. 

4. Alice sends the element [a(x)]m to Bob via an open channel and Bob sends the 
element [b(x)]m to Alice via an open channel. 

5. Alice computes the element [a([b(x)]′m) ]′′k by applying the element a (followed 

by the rounding [⋅]′′k) to the received element [b(x)]′m; and Bob computes the 

element [b(a(x)) ]′′k by applying the element b (followed by the rounding [⋅]′′k) to 
the received element [a(x)]m.  

 
According to Theorem A.9, these secret elements are neighbors. Therefore, after making 
at most N choices, and without revealing the elements they computed, Alice and Bob 
select [a([b(x)]′m)]′′k as their shared secret.  
 
 
Appendix B. Proof of results of Sections 2 and 3 
  
Proof of Theorem 2.2. By definition, one has: 

[{g·a}]P={g·a}+θ1, {g·b}Q={g·b}+θ2, 
 
where -½·P-1≤ θ1≤ ½·P-1  and -½·Q-1≤ θ2 ≤ ½·Q-1. Therefore,  
 

[{g·a}]P·b = ({g·a}+θ1)·b={g·a}·b +θ1·b= {g·a}·b + E1, 

where E1=θ1·b. 

Similarly,  
[{g·a}]Q·a = ({g·b}+θ2)·a={g·b}·a +θ2·a= {g·b}·a +E2 , 

where E2=θ2·a. 

By the assumptions, one has: 
 

|E1|=|θ1·b|≤1/2·|P-1·b|<1/2·P-1·B ≤1/2·K-1 , |E2|=|θ2·a|≤1/2·|Q-1·a|<1/2·Q-1·B ≤1/2·K-1. 
 
In its turn, the inequality |E1|≤1/2·K-1 implies that either the vector {{g·a}P·b}K  has a 
coordinate equal to 0 or 1, or:  
 

{[{g·a}]P·b}= {{g·a}·b + E1}= {{g·a}·b} + E1={g·a·b} + E1 . 
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Similarly, the inequality |E2|≤1/2·K-1  implies that either the vector {{g·b}Q·a}K  has a 
coordinate equal to 0 or 1, or:  

{[{g·b}]Q·a}= {{g·b}·A + E2}= {{g·b}·a} + E2={g·b·a} + E2 . 

Since a·b= b·a, one has {[{g·a}]P·b}-{[{g·b}]Q·a}= E1- E2. Note that  
 

- K-1=-1/2·K-1 -1/2·K-1≤E1- E2≤1/2·K-1 -1/2· K-1= K-1 

This finishes the proof. Theorem 2.2 is proved.  ▄ 

Proof of Theorem 3.2. By definition, one has: 
 

[{a⋅g}]P={ a⋅g}+θ1, [{g⋅b}]Q={g⋅b}+θ2, 
 
where θ1 and θ2 are real m×n matrices such that 
 

-½ P*≤ θ1≤ ½ P* and -½ Q*≤ θ2 ≤ ½ Q*. 
Therefore,  

([{a⋅g}]P)⋅b=({ a⋅g}+θ1)⋅b={a⋅g}⋅b+θ1⋅b= {a⋅g}⋅b + E1, 

where E1=θ1⋅b. 

Similarly,  
a⋅([{g⋅b}]Q) = a⋅({g⋅b}+θ2⋅Q-1)= a⋅{g⋅b} + a⋅θ2= a⋅{g⋅b} +E2 , 

where E2= a⋅θ2. 

By the assumptions, one has: 

|E1|=|θ1⋅B|≤1/2⋅|P*⋅b|<1/2⋅P*⋅β ≤1/2⋅K*, |E2|=|a⋅θ2|≤1/2⋅|a⋅Q*|<1/2⋅Q*⋅α ≤1/2⋅K*. 

In its turn, this implies that either at least one matrix coefficient in |([{a⋅g}]P)⋅b| is not 
greater than the corresponding coefficient of ½ K* or |([{a⋅g}]P) ⋅b|> ½ K* and:  

{([{a⋅g}]P)⋅ b}= {{a⋅g}⋅b+E1}= {{a⋅g}⋅b} + E1={a⋅g⋅b} + E1 . 

Similarly, the above implies that either at least one matrix coefficient in |a·([{g·b}]Q)|  is 
not greater than the corresponding coefficient of ½ K* or |a·([{g·b}]Q)|> ½K* and:  

{a⋅([{g⋅b}]Q) }= {a⋅{g⋅b} + E2}= {a⋅{g⋅b}} + E2={a⋅g⋅b} + E2 . 

Therefore 
{([{a⋅g}]P)⋅b}-{a⋅([{g⋅b }]Q)}= E1- E2 . 

Finally note that     
-½K* =-½K*-½K* < E1- E2< ½K*+½K*=½K*. 

Theorem 3.2 is proved.  ▄ 
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