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Abstract. In many situations we want to enjoy confidentiality, authenticity and non-repudiation
of message simultaneously. A traditional approach to achieve this objective is to “sign-then-
encrypt” the message, or we can employ special cryptographic scheme like signcryption. Two
open problems about ID-based signcryption were proposed in [15]. The first one is to devise
an efficient forward-secure signcryption scheme with public verifiability and public ciphertext
authenticity, which is promptly closed by [10]. Another one which still remains open is to devise
a hierarchical ID-based signcryption scheme that allows the user to receive signcrypted messages
from sender who is under another sub-tree of the hierarchy. This paper aims at solving this
problem by proposing two concrete constructions of hierarchical ID-based signcryption.
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1 Introduction

In traditional public key infrastructure, certificates leak data and are not easily located. Strict
online requirement removes offline capability, and validating policy is time-consuming and
difficult to administer. Traditional PKI may not provide a good solution in many scenarios. For
example, in tetherless computing architecture (TCA)[20] where two mobile hosts wanting to
communicate might be disconnected from each other and also from the Internet. As exchange
of public keys is impossible in this disconnected situation, ID-based cryptosystem fits in very
well since the public key can be derived from the identity of another party.

In many situations we want to enjoy confidentiality, authenticity and non-repudiation of
message simultaneously. A traditional approach to achieve this objective is to “sign-then-
encrypt” the message, or we can employ special cryptographic scheme like signcryption. A
recent direction is to merge the concept of ID-based cryptography and signcryption. Two
open problems about ID-based signcryption were proposed in [15]. The first one is to devise
an efficient forward-secure signcryption scheme with public verifiability and public ciphertext
authenticity, which is promptly closed by [10]. Another one which still remains open is to
devise a hierarchical ID-based signcryption scheme that allows the user to receive signcrypted
messages from sender who is under another sub-tree of the hierarchy. This paper aims at
solving this problem.

As shown by [7], the integrity checking necessary for security against adaptive adversaries
can be obtained from the signature. We employ the same idea here to proposed two concrete
constructions of hierarchical ID-based signcryption.
? corresponding author



2 Sherman S.M. Chow, Tsz Hon Yuen et al.

1.1 Applications

Identity-based cryptography is suitable for the use of commercial organizations. The inherent
key-escrow of property is indeed beneficial in commercial organizations, where the big boss has
the power to monitor his/her employees’ Internet communications if necessary. Hierarchical
structure is common in nowadays’ organizations, single trusted authority for generation of
private key and authentication of users is simply impractical, all these give rise to the
hierarchical ID-based cryptosystem.

Moreover, hierarchical ID-based cryptosystem is also useful in other scenarios, such as
in TCA, a computing architecture with the concept of “regions”, which can be viewed as a
branch of the hierarchy[14].

1.2 Related Work

Malone-Lee gave the first ID-based signcryption scheme [17]. This scheme is not semantically
secure as the signcrypted text produced is a concatenation of a signature by a variant of Hess’s
ID-based signature [13] and a ciphertext by a simplified version of Boneh and Franklin’s ID-
based encryption [4]. In short, the signature of the message is visible in the signcrypted
message.

On the other hand, Nalla and Reddy’s ID-based signcryption scheme [19] cannot provide
public verifiability as well as public ciphertext authenticity since the verification can only
be done with the knowledge of recipient’s private key. Libert and Quisquater proposed three
ID-based signcryption schemes [15]. None of them can satisfy the requirements for public
verifiability and forward security at the same time.

Boyen’s multipurpose ID-based signcryption scheme [5] is the first scheme that provides
public verifiability and forward security and is also provably secure. However, this scheme
aims at providing ciphertext unlinkability and anonymity. So, a third party cannot verify
the origin of the ciphertext, thus the scheme does not satisfy the requirement of public
ciphertext authenticity. We remark that Boyen’s scheme is very useful in applications that
require unlinkability and anonymity.

The public verifiability of the signcrypted message usually can only be checked with some
ephemeral data computed by the intended recipient of the signcrypted message. The notion of
verifiable pairing was introduced in [8] to ensure the non-repudiation property of the ID-based
signcryption by disallowing the intended recipient to manipulate the ephemeral data.

In 2004, [18] claimed that they were the first one closing the open problem proposed by
[15]; however, the open problem was indeed closed by [10] in 2003. Recently, a simple but
secure ID-based signcryption scheme was proposed in [7] and another ID-based signcryption
scheme was proposed in [16]. The first blind ID-based signcryption scheme with the security
model was proposed in [21]. This scheme offers the option to choose between authenticated
encryption and ciphertext unlinkability. Moreover, the generic group and pairing model was
introduced in this paper. Notice that none of the previously mentioned schemes works with
hierarchical ID-based cryptosystem.

2 Preliminaries

Before presenting our results, we give the definition of a hierarchical ID-based signcryption
scheme by extending the framework in previous work (e.g. [10, 21]). We also review the
definitions of groups equipped with a bilinear pairing and the related complexity assumptions.
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2.1 Framework of Hierarchical ID-based Signcryption Schemes

An ID-based signcryption (IDSC) scheme consists of six algorithms: Setup, Extract, Sign,
Encrypt, Decrypt and Verify. Setup and Extract are executed by the private key generators
(PKGs henceforth). Based on the security level parameter, Setup is executed to generate the
master secret and common public parameters. Extract is used to generate the private key
for any given identity. The algorithm Sign is used to produce the signature of a signer on a
message, it also outputs some ephemeral data; Encrypt takes the message, the signature, the
ephemeral data and the recipient’s identity to produce a signcrypted text. Decrypt takes the
input of secret key and decrypt the message and the corresponding signature, finally Verify
is used by any party to verify the signature of a message.

In the hierarchical ID-based signcryption (HIDSC henceforth), PKGs are arranged in a
tree structure, the identities of users (and PKGs) can be represented as vectors. A vector of
dimension ` represents an identity at depth `. Each identity ID of depth ` is represented as an
ID-tuple ID|` = {ID1, · · · , ID`}. The algorithms of HIDSC have similar functions to that of
IDSC except that the Extract algorithm in HIDSC will generate the private key for a given
identity which is either a normal user or a lower level PKG. The private key for identity ID
of depth ` is denoted as SID|` or SID if the depth of ID is not important. The functions of
Setup, Extract, Sign, Encrypt, Decrypt and Verify in HIDSC are described as follows.

– Setup: Based on the input of an unary string 1k where k is a security parameter, it outputs
the common public parameters params, which include a description of a finite message
space together with a description of a finite signature space; and the master secret s,
which is kept secret by the private key generator.

– Extract: Based on the input of an arbitrary identity ID, it makes use of the master
secret s (for root PKG) or SID|j−1 (for lower level PKGs) if ID is of depth j to output
the private key SID|j for ID corresponding to params.

– Sign: Based on the input (m,SID), it outputs a signature σ and some ephemeral data r,
corresponding to params.

– Encrypt: Based on the input (m,SA, IDB, σ, r), it outputs a signcrypted message c.
– Decrypt: Based on the input (c, SB, IDB), it outputs the message m and the corresponding

signature σ.
– Verify: Based on the input (σ,m, ID), it outputs > for “true” or ⊥ for “false”, depending

on whether σ is a valid signature of message m signed by ID or not, corresponding to
params.

These algorithms must satisfy the standard consistency constraint of hierarchical ID-based
signcryption, i.e. if {σ, r} = Sign(m,SA) and C =Encrypt(SA, IDB,m, σ, r), we must have
{m′, IDA′ , σ

′} = Decrypt(c, SB), m = m′, IDA = IDA′ and > = Verify(σ′,m, IDA).

2.2 Bilinear Pairing

Let (G, ·) and (G1, ·) be two cyclic groups of prime order p and g be a generator of G. The
bilinear pairing is given as ê : G×G→ G1, which satisfies the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v) ∀u, v ∈ G.
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2.3 Diffie-Hellman Problems

Definition 1. The computational Diffie-Hellman problem (CDHP) in G is defined as follows:
Given a 3-tuple (g, ga, gb) ∈ G3, compute gab ∈ G. We say that the (t, ε)-CDH assumption
holds in G if no t-time algorithm has advantage at least ε in solving the CDHP in G.

Definition 2. The bilinear Diffie-Hellman problem (BDHP) in G is defined as follows: Given
a 4-tuple (g, ga, gb, gc) ∈ G4 and a pairing ê(·, ·), compute ê(g, g)abc ∈ G1. We say that the
(t, ε)-BDH assumption holds in G if no t-time algorithm has advantage at least ε in solving
the BDHP in G.

Definition 3. The decisional bilinear Diffie-Hellman problem (DBDHP) in G is defined as
follows: Given a 5-tuple (g, ga, gb, gc, T ) ∈ G4 × G1 and a pairing ê(·, ·), decides whether
T = ê(g, g)abc. We say that the (t, ε)-DBDH assumption holds in G if no t-time algorithm has
advantage at least ε in solving the DBDHP in G.

3 Security model

We present our security model for indistinguishability, existential unforgeability and ciphertext
authenticity for HIDSC.

3.1 Indistinguishability

Indistinguishability for HIDSC against adaptive chosen ciphertext attack (IND-CCA2) is
defined as in the following IND-CCA2 game. The adversary is allowed to query the random
oracles qH times, the key extraction oracle qE times, the signcryption oracle qS times and the
Un-signcryption / Recover oracle qR times. The game is defined as follows:

1. The simulator selects the public parameter and sends the parameter to the adversary.
2. The adversary is allowed to perform a polynomial number of oracle queries adaptively.
3. The adversary generates m0,m1, IDA, IDB, and sends them to the simulator. The

simulator randomly chooses b ∈R {0, 1} and delivers the challenge ciphertext c to the
adversary where {σ, r} = Sign(m,SA) and C = Encrypt(SA, IDB,mb, σ, r).

4. The adversary can again perform a polynomial number of oracle queries adaptively.
5. The adversary tries to compute b.

The adversary wins the game if he can guess b correctly. The advantage of the adversary is the
probability, over half, that he can compute b accurately. The oracles are defined as follows.

– Key extraction oracle KEO: Upon the input of an identity, the key extraction oracle
outputs the private key corresponding to this identity, but oracle query to KEO with input
IDB is not allowed.

– Signcryption oracle SO: Upon the input of the message m, sender IDA, recipient IDB,
the signcryption oracle produces a valid signcryption c; but oracle query to SO with input
(m0/m1, IDA, IDB) is not allowed.

– Unsigncryption oracle UO: Upon the input of the ciphertext c, sender IDA and
recipient IDB, the unsigncryption oracle outputs the decryption result and the verification
outcome, but oracle query to UO for the challenge ciphertext from the simulator is not
allowed.
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Definition 4. (Indistinguishability) A hierarchical ID-based signcryption scheme is IND-
CCA2 secure if no PPT adversary has a non-negligible advantage in the IND-CCA2 game.

Our security notion above is a strong one. It incorporates previous security notions
including insider-security in [1], indistinguishability in [17]. Notice that if we set the adversary
to send the recipient identity IDB to the simulator before step 1 (say, in an initialization
stage) in the game, the security is reduced to the indistinguishability against selective identity,
adaptive chosen ciphertext attack (IND-sID-CCA2).

3.2 Existential unforgeability

Existential unforgeability against adaptive chosen message attack (EU-CMA2) for HIDSC is
defined as in the following EU-CMA2 game. The adversary is allowed to query the random
oracles, KEO, SO and UO, which are defined in the above section. The game is defined as
follows:

1. The simulator selects the public parameter and sends it to the adversary.
2. The adversary is allowed to perform a polynomial number of oracle queries adaptively.
3. The adversary delivers a recipient identity IDB and a ciphertext c.

The adversary wins the game if he can produce a valid (c, IDB) such that c can be decrypted,
under the private key of IDB, to a message m, sender identity IDA and a signature s which
passes the verification test.

Oracle query to KEO with input IDA is not allowed. No SO request that resulted in a
ciphertext c, the signcryption of m from IDA to IDB, whose decryption under the private
key of IDB is the claimed forgery (σ,m, IDA).

Definition 5. (Existential Unforgeability) A hierarchical ID-based signcryption scheme is
EU-CMA2 secure if no PPT adversary has a non-negligible probability in winning the EU-
CMA2 game.

The adversary is allowed to get the private key of the recipient in the adversary’s answer.
This gives us an insider-security in [1]. Notice that if we set the adversary to send the sender
identity IDA to the simulator in Step 1 in the game, the security is reduced to the existential
unforgeability against selective identity, adaptive chosen ciphertext attack (EU-sID-CMA2).

3.3 Ciphertext Authenticity

Ciphertext authenticity against adaptive chosen message attack (AUTH-CMA2) for HIDSC is
defined as in the following AUTH-CMA2 game. The adversary is allowed to query the random
oracles, KEO, SO and UO, which are defined in the above section. The game is defined as
follows:

1. The simulator selects the public parameter and sends the parameter to the adversary.
2. The adversary is allowed to perform a polynomial number of oracle queries adaptively.
3. The adversary delivers a recipient identity IDB and a ciphertext c.

The adversary wins the game if he can produce a valid (c, IDB) such that c can be decrypted,
under the private key of IDB, to a message m, sender identity IDA and a signature s which
passes the verification test.

Oracle query to KEO with input IDA and IDB is not allowed. The adversary’s answer
(c, IDB) should not be computed by SO before.
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Definition 6. (Ciphertext Authenticity) A hierarchical ID-based signcryption scheme is AUTH-
CMA2 secure if no PPT adversary has a non-negligible probability in winning the AUTH-
CMA2 game.

Outsider-security is considered in this model since the adversary is not allowed to get the
private key of the recipient in the adversary’s answer. This model represents the attack where
a signature is re-encrypted by using a public key with unknown secret key.

4 Scheme 1

4.1 Construction

Let H1, H2 and H3 be three cryptographic hash functions where H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → G, and H3 : G1 → {0, 1}k0+k1+n where k0 is the number of bits required
to represent an element of G, k1 is the maximum number of bits required to represent an
identity and n is the number of bits of a message to be signcrypted. Our first construction of
A hierarchical ID-based signcryption scheme is given below. The construction is based on the
idea in [12].

Setup: On the input of a security parameter k ∈ N, the BDH parameter generator [4] will
generate G, G1, p and ê(·, ·). Then the PKG executes the following steps.

1. Select an arbitrary generator P0 from G.
2. Pick a random s0 from Zp, which is the system’s master secret key.
3. Compute Q0 = P0

s0 .
4. The public system parameters are

params =< G,G1, ê(·, ·), p, P0, Q0,H1(·),H2(·),H3(·) > .

KeyGen: For an entity with ID|k−1 = {ID1, ID2, ..., IDk−1} of depth k−1, it uses its secret
key SID|k−1 to generate the secret key for a user ID|k (where the first k−1 elements of ID|k
are those in ID|k − 1) as follows.

1. Compute Pk = H1(ID1, ID2, · · · , IDk−1, IDk).
2. Pick random sk−1 from Zp.
3. Set the private key of the user to be SID|k = SID|k−1 · Pksk−1 =

∏k
i=1 Pi

si−1 , where SID|0
is defined as the identity element in G.

4. Send the values of Qi = P0
si for 1 ≤ i ≤ k − 1 to the user.

Sign: For a user A|k with secret key SA|k =
∏k
i=1 PA|i

si−1 and the points Qi = P0
si for

1 ≤ i ≤ k to sign on a message M , he/she follows the steps below.

1. Pick a random number r from Z
∗
p.

2. Compute PM = H2(M).
3. Compute σ = SA|k · PMr.
4. Return signature = {r, σ,Q1, Q2, · · · , Qk−1, Qk = P0

r}.

Encrypt: To signcrypt the message M to user B|l, the steps below are used.

1. Compute PB|j = H1(B1, B2, · · · , Bj) for 1 ≤ j ≤ l.
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2. Return ciphertext =

{PB|2r, · · · , PB|lr, (M ||σ||A|k)⊕H3(ĝr), Q1, Q2, · · · , Qk}

where ĝ = ê(Q0, PB|1) ∈ G1 and ⊕ represents the bitwise XOR.

Decrypt: For user B|l with secret key SB|l =
∏l
i=1 PB|i

s′i−1 and the points Q′i = P0
s′i for

1 ≤ i ≤ l to decrypt the signcrypted message C, the steps below are used.

1. Let C = {U2, · · · , Ul, V,Q1, Q2, · · · , Qk}
2. Compute V ⊕H3( ê(Qk,SB|l)∏l

i=2 ê(Q
′
i−1,Ui)

) = M ||σ||A|k.

3. Return {M,σ,H1(IDA|k), Q1, Q2, · · · , Qk}.

Verify: For A’s signature {σ,Q1, Q2, · · · , Qk}, everyone can do the following to verify its
validity.

1. Compute PM = H2(M).
2. Compute PA|i = H1(A1, A2, · · · , Ai) for 1 ≤ i ≤ k.
3. Return > if ê(P0, σ)/

∏k
i=2 ê(Qi−1, PA|i) = ê(Q0, PA|1)ê(Qk, PM ).

4.2 Efficiency Analysis

The signcrypted message is shortened by one G1 element, as compared with using the scheme
HIDE and HIDS in [12] together. Moreover, chosen ciphertext secure HIDE requires the
transformation in Section 3.2 of [12], while our scheme does not require such transformation
as the integrity checking of the ciphertext is obtained from the signature.

4.3 Security analysis

Theorem 1. Suppose that the (t, ε)-BDH assumption holds in G, then the above scheme is
(t′, qS , qH , qE , qR, ε)-adaptive chosen ciphertext (IND-CCA2) secure for arbitrary qS , qH , qE , qR,
and any t′ < t− o(t).

Proof. Dealer D gives (g, ga, gb, gc) to Simulator S and wants S to compute ê(g, g)abc. Set
P0 = g,Q0 = ga. S sends the system parameter to A. S randomly picks µ with 1 ≤ µ ≤ qH .

Phase 1: Query on H1 for input (A1, · · · , Ak):

– If k = 1, the µ-th query to H1 with k = 1 is back patched to gb. The corresponding
identity is denoted as IDb. Adds the entry 〈IDb, g

b〉 to tape L1 and returns gb.
– Otherwise, randomly picks λ ∈ Zp; add 〈A1, · · · , Ak, λ〉 to L1 and returns gλ.

When there is a query on H2 for input M , randomly picks λ ∈ Zp; adds 〈M,λ〉 to L2 and
returns (ga)λ. Query on H3 is handled by producing a random element from the codomain,
and adding both query and answer to tape L3.

Key Extraction Oracle (KEO): For input identity ID = (I1, · · · , Ik) ∈ Zpk where k ≤ `.

– If I1 = IDb , then abort the simulation.
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– Otherwise, look up at the tape LK = 〈ID1, · · · , IDu, α1, · · · , αu−1〉 which stores the
previously extracted keys. Let y be the maximal value such that (I1, · · · , Iy) = (IDj1, · · · , IDjy)
for some tuple 〈IDj1, · · · , IDju, αj1, · · · , αj(u−1)〉 ∈ LK . Then:
• For 1 ≤ i ≤ y, set αi = αj1, Qi = gαi . Get Pi = H1(A1, · · · , Ai) from L1 and also get
λ from (A1, λ) ∈ L1.
• For y < i ≤ k, query the value of Pi from H1. Randomly generate αi ∈ Zp.
• Put 〈I1, · · · , Ik, α1, · · · , αk−1〉 in LK . Set the private key as sID|k =

∏k
i=1 Pi

si−1 =
(ga)λ · P2

α1 · · ·Pkαk−1 . Returns sID|k and Qi = gαi for 1 ≤ i ≤ k − 1.
Note that the private key satisfies the required form.

Signcryption Oracle (SO): For input messageM , sender IDA|k = {IA1, · · · , IAk}, and recipient
IDB|l = {IB1, · · · , IBl}.

– If IA1 = IDb, query PM from H2 and obtain λM from 〈M,λM 〉 ∈ L2. Query PA|i from
H1 and obtain λi from 〈IA1, · · · , IAi, λi〉 ∈ L1, for 1 ≤ i ≤ k. Randomly generate αi ∈ Zp
for 1 ≤ i ≤ k. Compute σ = (ga)(αkλM )

∏k
i=2 g

λiαi−1 , Qi = gαi for 1 ≤ i ≤ k − 1,
Qk = (gαk)(gb)−1/λM . Query PB|i from H1 and obtain get λBi from 〈IB1, · · · , IBi, λBi〉 ∈

L1, for 1 ≤ i ≤ l. Compute Ui = (gαk)(gb)−
λBi
λM for 2 ≤ i ≤ l, V = (M ||σ||A|k) ⊕

H3(ê(ga, (gαk)(gb)−
λB1
λM )). Return the ciphertext C = {U2, · · · , Ul, V,Q1, · · · , Qk}. S puts

〈IDA|k, IDB|l,M,C〉 in LS . It is easy to see that the signature will pass the verification
test:

ê(P0, σ)/
k∏
i=2

ê(Qi−1, PA|i)

= ê(g, (g(aαkλM ))
k∏
i=2

gλiαi−1)/
k∏
i=2

ê(gαi−1 , gλi)

= ê(g, g(aαkλM ))ê(g,
k∏
i=2

gλiαi−1)/
k∏
i=2

ê(g, gλiαi−1)

= ê(gαk , g(aλM ))
k∏
i=2

ê(g, gλiαi−1)/
k∏
i=2

ê(g, gλiαi−1)

= ê(ga, gb)ê(gαk , g(aλM ))ê(gaλM , (gb)
−1/λM )

= ê(ga, gb)ê((gαk)(gb)−1/λM , gaλM )
= ê(Q0, PA|1)ê(Qk, PM )

.
– Otherwise, S retrieves the private key of IDA|k using the same way as KEO and then uses

it to run signcryption and gets ciphertext c. S puts 〈IDA|k, IDB|l,M,C〉 in LS .

Un-signcryption / Recover Oracle (UO): For input sender IDA|k = {IA1, · · · , IAk}, recipient
IDB|l = {IB1, · · · , IBl} and ciphertext C = {U2, · · · , Ul, V,Q1, · · · , Qk}.

– For the case IDB|l = IDb, S finds if 〈IDA|k, IDB|l,M,C〉 is in LS . If so, returns M .
Otherwise, S searches for all combinations 〈M,σ〉 such that 〈M,h2〉 ∈ L2, 〈g′, h3〉 ∈
L3, for some h2, h3, under the constraints that h3 ⊕ V = M ||σ||A|k, and ê(g, σ) =
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ê(ga, PA|1)ê(Qk, h2)
∏k
i=2 ê(Qi−1, PA|i). S simply picks one of the valid message M from

the above and return it as answer. If no such tuple is found, the oracle signals that the
ciphertext is invalid.

– For other cases, S retrieves the private key of IDB|l using the same way as KEO and then
uses it to decrypt and verify.

Witness Extraction: As in the IND-CCA2 game, at some point A chooses plaintext m0,m1,
and sender IDA|k on which he wishes to be challenged. S retrieves the private key of IDA|k
and Q1, · · · , Qk using the same way as KEO. S queries PB|i from H1 and obtain get λBi from
〈IB1, · · · , IBi, λBi〉 ∈ L1, for 2 ≤ i ≤ l. S randomly picks V ∈ {0, 1}k0+k1+n and responds
with challenge ciphertext C = {(gc)λB2 , · · · , (gc)λBl , V,Q1, · · · , Qk−1, g

c}. All further queries
by A are processed adaptively as in the oracles above, with no private key extraction of IDB|l.
Finally, A returns its final guess b′. S ignores the answer from A, randomly picks an entry
〈g′, h3〉 in L3, and returns g′ as the solution to the BDH problem.

If the recipient identity is IDB|l = {IB1, · · · , IBl} with IB1 = IDb, to recognize the
challenge ciphertext is incorrect, A needs to query random oracle H3 with g′ = ê(Q0, PB|1)c =
ê(g, g)abc. It will leave an entry 〈g′, h3〉 on L3, from which S can extract g′ = ê(g, g)abc. ut

Theorem 2. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme is
(t′, qS , qH , qE , qR, ε)-adaptive chosen message (EU-CMA2) secure for arbitrary qS , qH , qE , qR,
and any t′ < t− o(t), ε′ > ε

e2qSqE
.

Proof. Dealer D gives (g, ga, gb) to Simulator S and wants S to compute gab. Set g1 = ga, g2 =
gb. The initialization, setup and the simulation of oracles are similar to those in the proof in
Theorem 1. The difference is that probabilistic simulations are used in the simulation of two
hash oracles: the one for hashing the identity (H1(·)) and the one for hashing the message
(H2(·)).
Queries on oracle H1 for identity (A1, · · · , Ak) : If k = 1, S embeds part of the challenge
gb in the answer of many H1 queries [11]. S picks λ ∈R F∗q and repeats the process until
λ is not in the list L1. S then flips a coin W1 ∈ {0, 1} that yields 0 with probability ζ1

and 1 with probability 1 − ζ1. (ζ1 will be determined in the probability analysis shortly
afterward.) If W1 = 0 then the hash value H1(A1) is defined as gλ; else if W1 = 1 then returns
H1(A1) = (gb)λ. In either case, S stores 〈A1, λ,W1〉 in the list L1.

On the other hand, if k > 1, S performs the simulation as that in the proof of Theorem 1.

Queries on oracle H2 for message m : In this case, S embeds the remaining part of the
challenge ga in the answer of many H2 queries. S picks β ∈R F∗q and repeats the process until
β is not in the list L2. S then flips a coin W2 ∈ {0, 1} that yields 0 with probability ζ2 and 1
with probability 1− ζ2. (ζ2 will be determined later.) If W2 = 0 then the hash value H2(m) is
defined as (ga)β ; else if W2 = 1 then returns H2(m) = gβ. In either case, S stores 〈m,β,W2〉
in the list L2.

Witness Extraction: After such probabilistic behaviour is introduced to the simulation, S will
fail for the KEO query of (A1, · · · , Ak) if W1 = 1 is found in the corresponding entry of A1

in L1. The SO query for the signcryption of message m done by (A1, · · · , Ak) will fail too
when W1 = 1 and W2 = 1 are found in the corresponding entry of A1 in L1 and m in L2

respectively.
At the end of the game, A returns a forgery C = {U2, · · · , Ul, V,Q1, Q2, · · · , Qk} which

is the signcryption of message m done by (A1, · · · , Ak). S cannot solve the CDH problem
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if the forgery is not related to the problem instance at all, i.e. when W1 = 0 is found in
the corresponding entry of A1 in the list L1 and W1 = 1 and W2 = 0 are found in the
corresponding entry of A1 in L1 and m in L2 respectively.

For successful cases, S gets the forged signature {σ,Q1, Q2, · · · , Qk} by the decryption of
the signcrypted text. Suppose that λi is the corresponding entry of P |i in the list L1 and β is
the corresponding entry of PM in the list L2, since σ =

∏k
i=1 (Pisi−1)·PMr = gab·

∏k
i=2 (Pisi−1)·

PM
r C can compute the solution of the CDH problem by σ/

∏k
i=2 (Qi−1

λi) ·Qkβ.

Probability Analysis: The probability that S answers to all private key extraction queries is
ζ1
qE . S can answer all signcrypt queries for users H1(A1, · · · , Ak) where 〈A1, λ, 0〉 is in the

list L1. So the worst case for S to answer all signcrypt queries correctly happens when all
signcrypt requests are for users H1(A1, · · · , Ak) where 〈A1, λ, 1〉 is in the list L1. For these
class of users, S can still signcrypt given the message is M where 〈M,β, 0〉 can be found in
the list L2 So the probability for S to successfully answer all signcrypt requests is ζ2

qS .
Finally, the probability that A makes a forged signature for user H1(A1, · · · , Ak) where

〈A1, λ, 1〉 is in the list L1 is 1 − ζ1 and the probability that A makes a forged signature on
message M where (M,β, 1) is in the list L2 is 1− ζ2.

Hence the probability for S to solve CDH problem successfully is fqE (ζ1)fqS (ζ2) where
fx(ζ) = ζx(1−ζ). Simple differentiation shows that fx(ζ) is maximized when ζ = 1−(x+1)−1,
and the corresponding probability is 1

x(1 − 1
x+1)x+1. So the maximum probability for S to

solve CDH problem successfully is

1
qSqE

(1− 1
qS + 1

)qS+1(1− 1
qE + 1

)qE+1

For large qS and qE , this probability is approximately equal to 1/e2qSqE .
ut

5 Scheme 2

5.1 Construction

Let H be a cryptographic hash function where H : {0, 1}∗ → Zp. We use H(·) to hash the
string representing the identity into an element in Zpk, the same hash function will be used
in the signing algorithm too. Similar to [3], H is not necessarily a full domain hash function.
Our second construction of HIDSC, based on the ideas in [9] and [3], is given below.

Setup: On the input of a security parameter k ∈ N, the BDH parameter generator [4] will
generate G, G1, p and ê(·, ·). Then the PKG executes the following steps.

1. Select α from Z
∗
p, h1, h2, · · · , h` from G and two generators g, g2 from G

∗, where ` is the
number of levels of the hierarchy that our scheme supports.

2. The public parameters are: {g, g1 = gα, g2, h1, h2, · · · , h`, ê(g1, g2)}.
3. The master secret key is dID|0 = g2

α.

KeyGen: For a user ID|k− 1 = {I1, I2, ..., Ik−1} of depth k− 1, he/she uses his/her secret key
dID|k−1 to generate the secret key for a user ID|k (where the first k− 1 elements of ID|k are
those in ID|k − 1) as follows.

1. Pick random rk from Zp.
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2. dID|k = {d0Fk(IDk)rk , d1, · · · , dk−1, g
rk}, where Fk(x) is defined as g1

xhk.

Sign: For a user ID|k with secret key {g2
α
∏k
j=1 Fj(IDj)rj , gr1 , · · · , grk} to sign on a message

m, he/she follows the steps below.

1. Pick a random number s from Z
∗
p.

2. Compute h = H(m, ê(g1, g2)s).
3. Repeat Steps 1-3 in case the unlikely event s+ h = 0 occurs.
4. For j = {1, 2, · · · , k}, compute yj = dj

s+h.
5. Compute z = d0

s+h.
6. Return signature = {s, y1, y2, · · · , yk, z}.

Encrypt: To signcrypt a message M ∈ G1 under the public key ID|l = {I1, I2, ..., Il}, the
ciphertext is

{ê(g1, g2)s ·M, gs, F1(I1)s, F2(I2)s, · · · , F`(I`)s, y1, y2, · · · , yk, z}.

Decrypt: For a user ID′|l with secret key {g2
α
∏l
j=1 Fj(ID

′
j)
r′j , gr

′
1 , · · · , gr′`} to decrypt the

signcrypted text {A,B,C1, · · · , C`, y1, y2, · · · , yk, z}, he/she follows the steps below.

1. Compute σ = ê(g1, g2)s by ê(B,d′0)∏l
j=1 ê(Cj ,d

′
j)

.

2. Obtain the message M by A · σ−1

Verify: For ID|k = {I1, I2, · · · , Ik}’s signature {σ, y1, y2, · · · , yk, z}, everyone can do the
following to verify its validity.

1. Compute h = H(m,σ).
2. Return > if ê(g, z) = σ · ê(g1, g2

h
∏k
j=1 y

IDj
j )

∏k
j=1 ê(yj , hj), ⊥ otherwise.

5.2 Efficiency Analysis

The signcrypted message is shortened by one G1 element, as compared with using the scheme
in [9] and [3] together. Moreover, chosen ciphertext secure HIDE requires the transformation
in Section 4 of [6], while our scheme does not require such transformation as the integrity
checking of the ciphertext is obtained from the signature.

5.3 Security Analysis

Theorem 3. Suppose that the (t, ε)-Decision BDH assumption holds in G, then the above
scheme is (t′, qS , qH , qE , qR, ε)-selective identity, adaptive chosen ciphertext (IND-sID-CCA2)
secure for arbitrary qS , qH , qE , qR, and any t′ < t− o(t).

Proof. Dealer D gives (g, ga, gb, gc, T ) to Simulator S and wants S to output 1 if T = ê(g, g)abc

or output 0 otherwise. Set g1 = ga, g2 = gb, g3 = gc.

Initialization: Adversary A sends an identity ID∗ = (I1
∗, · · · , Ik∗) ∈ Zkp of depth k ≤ `

that it intends to attack to S.
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Setup: S randomly picks α1, · · · , α` ∈ Zp and defines hj = g1
−I∗j gαj ∈ G for j = 1, · · · , `. S

sends the system parameter (g, g1, g2, h1, · · · , h`, ê(g1, g2)) to A.

Phase 1: Query on H for input (m,σ):

– If (m,σ, h) ∈ L for some h, return h.
– Otherwise, randomly picks h ∈ Zp; add (m,σ, h) to L and returns h.

Key Extraction Oracle (KEO): For input identity ID = (I1, · · · , Iu) ∈ Zpu where u ≤ `.

– If ID = ID∗ or ID is a prefix of ID∗ , then abort the simulation.
– Otherwise, let j be the smallest index such that Ij 6= I∗j . S firstly derives a private key for

identity (I1, · · · , Ij) from which it then construct a private key for ID. S randomly picks
r1, · · · , rj ∈ Zp and sets:

d0 = g2

−αj
Ij−I∗j

∏j
v=1 Fv(Iv)

rv , d1 = gr1 , · · · , dj−1 = grj−1, dj = g2

−1
Ij−I∗j grj

We now show that (d0, d1, · · · , dj) is a valid random private key for (I1, I2, · · · , Ij). Let
r̃j = rj − b/(Ij − I∗j ) and then we have:

g2

−αj
Ij−I∗j Fj(Ij)rj = g2

−αj
Ij−I∗j (g1

Ij−I∗j gαj )rj = g2
a(g1

Ij−I∗j gαj )
rj− b

Ij−I∗j = g2
aFj(Ij)r̃j

So the private key satisfies the required form.

Signcryption Oracle (SO): For input message m, sender IDA|k = {IA1, · · · , IAk}, and recipient
IDB|l = {IB1, · · · , IBl}.

– If IDA|k equals ID∗ or a prefix of ID∗, then S randomly chooses h ∈ Zp, and computes
σ = ê(g1, g2)−h. Then S randomly picks r1, · · · , rk ∈ Zp, computes yv = g2

rv for 1 ≤ v ≤ k
and z =

∏k
v=1 g2

rvαv . Then S adds the tuple (m,σ, h) to L to force the random oracle
H(m,σ) = h. Finally, S returns the ciphertext C =
{σ ·m, g−h, F1(IB1)−h, F2(IB2)−h, · · · , Fl(IBl)−h, y1, y2, · · · , yk, z}.
S puts (IDA|k, IDB|l,m,C,−h, h) in LS .

– Otherwise, S retrieves the private key of IDA|k using the same way as KEO and then uses
it to run signcryption and gets ciphertext c. S puts (IDA|k, IDB|l,m,C, s, h) in LS .

Un-signcryption / Recover Oracle (UO): For input sender IDA|k = {IA1, · · · , IAk}, recipient
IDB|l = {IB1, · · · , IBl} and ciphertext C = {A,B,C1, · · · , Cl, y1, · · · , yk, z}.

– For the case IDB|l = ID∗, S finds if (IDA|k, IDB|l,m,C, s, h) is in LS . If so, returns m.
Otherwise, S searches for a valid m in all entries 〈m,σ, h〉 ∈ L, under the constraints that
σ ·m = A, σ = ê(g, z)/(ê(g1, g2

h
∏k
j=1 y

IDA|j
j )

∏k
j=1 ê(yj , hj)) and ê(B,Fj(IBj)) = ê(g, Cj)

for 1 ≤ j ≤ l. S simply picks a message in one of the valid m in the above and return it
as the answer. If no such tuple is found, the oracle signals that the ciphertext is invalid.

– For other cases, S retrieves the private key of IDA|k using the same way as KEO and then
uses it to decrypt and verify.

Witness Extraction: As in the IND-sID-CCA2 game, at some point A chooses plaintext
m0,m1, and sender IDA|k on which he wishes to be challenged. S picks a random bit
b ∈ {0, 1} and responds with challenge ciphertext C = {T ·Mb, g3, g3

α1 , · · · , g3
αl , y1, · · · , yk, z},
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where (y1, · · · , yk, z) is a valid signature from IDA|k. All further queries by A are processed
adaptively as in the oracles above. Finally, A returns its final guess b′. If b = b′, then S outputs
1 meaning T = ê(g, g)abc. Otherwise it outputs 0 meaning T 6= ê(g, g)abc.

If the recipient identity is ID∗, then the value of ê(g1, g2)s is equal to ê(ga, gb)c = ê(g, g)abc.
If A has the advantage ε to guess b correctly, then S has the advantage ε to solve the DBDHP.

ut

Theorem 4. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme
is (t′, qS , qH , qE , qR, ε′)-selective identity, adaptive chosen message (EU-sID-CMA) secure for
arbitrary qS , qH , qE , qR, and any t′ < t− o(t), ε′ > ε · (1− qS(qH+qS)

q ).

Proof. Dealer D gives (g, ga, gb) to Simulator S and wants S to compute gab. Set g1 = ga, g2 =
gb. The initialization, setup and the simulation of oracles are the same as the proof of Theorem
3. At the end of the game, A returns a forgery C = {A,B,C1, · · · , Cl, y1, · · · , yk, z} using h
from H query. By forking lemma, we rewind A to the time when the H query was issued
and get C ′ = {A′, B′, C ′1, · · · , C ′l , y′1, · · · , y′k, z′} using h′ from H query. We can get dj =
(yj/y′j)

(h−h′)−1
for 1 ≤ j ≤ k. Then we can calculate d0 = (z/z′)(h−h′)−1

. Finally we can get
g2
α = d0/

∏k
j=1 dj

αj which is the solution to the CDH problem. ut
Let us consider the possibility for SO to fail. The only possibility for introducing an error

is in defining H(m,σ) which is already defined. Since σ takes its value uniformly at random
in G1, the chance for the occurrence of one of these events is at most (qH + qS)/q for each
query. Therefore over the whole simulation, the chance of an error is at most qS(qH + qS)/q.
Hence S succeeds with probability at least ε · (1− qS(qH+qS)

q ). ut

6 Conclusion

Two concrete constructions of hierarchical identity based signcryption are proposed, which
closed the open problem proposed by [15]. Our schemes are provably secure under the random
oracle model [2]. Moreover, our schemes does not require transformation which is necessary for
the case of hierarchical identity based encryption as the integrity checking of the ciphertext is
obtained from the signature. We believe that hierarchical identity based signcryption schemes
are useful in nowadays commercial organization and also in new network architecture such as
tetherless computing architecture. Future research directions include further improvement on
the efficiency of hierarchical identity based signcryption schemes and achieving other security
requirements such as public ciphertext authenticity ([10, 15]) or ciphertext anonymity ([5]).
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